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Abstract. The paper investigates an initial and boundary values problem which
is derived from a dissipative Fremond model for shape memory alloys. Existence of a
global solution for the abstract version of the evolution problem is proved by use of a
semi-implicit time discretization scheme combined with an a priori estimates-passage to
the limit procedure.

1. Introduction to the problem. In this paper we aim to prove a global existence
result for a three dimensional dissipative model for shape memory proposed by Fremond.
For a detailed presentation of the thermomechanical model and the derivation of a math-
ematical formulation we refer to [5] and references therein, where we have also proved
uniqueness of the solution for the related initial and boundary values problem in the case
when higher order quadratic terms are neglected in the energy balance equation.

Shape memory alloys are materials characterized by the possibility of recovering their
original shape just by thermal means after mechanical deformations (cf. [10. 11, 13. 16]).
It is known that the phenomenon of shape memory behavior can be ascribed to a solid-
solid phase transition between two different configurations of the metallic lattice, called
austenite and martensite. In the macroscopic model proposed by Fremond, one variant of
austenite and two variants of martensite are considered and it is assumed that they may
coexist at each point. Hence, the model is written in terms of the absolute temperature 9,
the vector of small displacements u, and two phase parameters (X17X2) linearly related
to the volumetric fractions of the variants of martensite and austenite. In addition,
the phase parameters are forced to fulfill an internal constraint forcing the volumetric
fractions of the phases to assume only meaningful values, in the sense that no void or
overlapping can occur. The constitutive equations of the Fremond model are derived by
two functionals, the free energy and the pseudo-potential of dissipation (cf. [12, 13]) for a
diffusive phase transformation. Hence, a PDE's system is written in terms of the energy
balance and the principle of virtual power written both for macroscopic movements, in a
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quasi-stationary situation, and for microscopic velocities, which are related to the time
derivatives of the phase parameters (xiti Xit)-

Now, let us introduce the set of partial differential equations related to the model
proposed by Fremond and the associated initial and boundary conditions. We consider a
smooth bounded domain Q C R! with T = DQ — ToUTi, the measure of To being strictly
positive, and describe the evolution of the thermomechanical system during a finite time
interval (0,T) and denote by Q := $7 x (0, T). Let us point out that we do not detail
the physical meaning of the ingredients of the following mathematical formulation of the
model for which we refer to [12] and [5], where the system is derived by the balance laws
and the constitutive equations in terms of the free energy functional and the pseudo-
potential of dissipation. Here, for the sake of synthesis, the problem is directly written
in the abstract framework of a Hilbert triplet V <—* H V' with H := L2(Q) and
V := H1^). We denote by (-, •) the duality pairing between V' and V and identify as
usual H with its dual space H'. Finally, by abuse of notation, we let || • ||h stand for the
norm both in H and H3. We also introduce the Hilbert space

W := {v £ F3 : v = 0 on To and divv € V}, (1-1)

endowed with the norm

llullw = / |Vdivv|2+ V [ (dXiVj)2 v = (»i,u2,ti3)€W. (1.2)
JQ i,j = l Q

In addition, let us specify a bilinear continuous symmetric form on W x W by

a(u,v) = v / Vdivu • Vdivv + Al / divudivv + 2/i^ 2_. / £ij(u)£j?(v)' (1-3)
Jtt Jq 1J_1 >/o

Ai and hl being the Lame constants and v > 0. Notice that by the Korn's inequality
we can deduce that it is W-elliptic, i.e.,

a(u. u) > C||u||yv, C > 0, (1.4)

as well as it is a standard matter to verify that the following inequality holds (cf. [8]):

a(u, u) > v\\ divv||fj + (\L + 2^L/3)|| div v||^. (1.5)

Hence, we introduce the operators

A-.V->V\ {Au,v) = [ Vu-Vv u,veV, (1.6)
Jn

H : W —» W', (Hu, v) = o,(u, v) u, v e W, (1.7)

B : H -> W', (Bh, v) = / h div u h £ H, u e W. (1.8)
JQ

and two functions 1Z and Q, in V and W' respectively, collecting external thermome-
chanical forces. More precisely, we introduce an external rate of heat production r and
the heat flux h through the boundary, whose contributions are collected by the function
1Z in V' specified by

= (1Zi+1l2,v) = f rv + f hv |r veV. (1.9)
J n J r
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Analogously, letting G be an exterior volumic force acting on the body and g a traction
applied on Tx, we define Q in W as follows:

(Q, w)w = / G-w+ / g • W|F w G W. (1-10)
J o Jr1

The constraint on (XI1X2) is imposed by the presence of a subdifferential term in the
equation governing the phases' dynamics, forcing the parameters to assume only phys-
ically meaningful values. Towards this aim, in our abstract framework, we can fix any
bounded closed convex subset K of H2 such that 0 G K and refer, i.e., to [5] for a precise
form of K derived by the model. Let us in particular observe that, by construction,
there exists a positive constant ck, depending on K, such that for any (71,72) G K,
there holds

(I71I2 + |72|2)1/2 < CK a.e. in fl. (1.11)

For the reader's convenience we also recall the definition of the indicator function Ikhv2
of K fl V2, lKnv2(y) = 0 if y G K n V2 and Ikpv2{y) — +°° otherwise, and the
subdifferential operator of Ixnv2 from V2 in (V')2, i.e., (cf. [3])

(£1,6) G (V)2 belongs to dIK,v(xI1X2) if and only if
2

(Xii X2) G K fl V2 and ;C&>7i-Xi><0V(7l,72) G Knv2. (1.12)
1=1

Next, we can formulate the abstract problem we aim to solve. Let us point out that for
the sake of simplicity, we have fixed some strictly positive physical constants equal to 1
(see the complete model in [5, Sec. 2]).

Problem P. Find (0,u, xi,X2) satisfying the Cauchy conditions

0(0) = 00,' (1-13)

Xi(0) = Xm * = 1,2, (1.14)

and fulfilling a.e. in (0, T)

F(0, u, Xi, X2)#t + A9 = TZ + 6\'{6)xit + 9a'(0) div \1x2t

+ 0a'(0)x2 div ut + E(Xit)2 in (L15)

£;)+GS)+(£)+3 (-mlu)" <y?>
Hu + B(Q(«)X2)=einW', (1.17)

where F in (1.15) is specified by

F{0, u,Xi.X2) = cs- 0a"(0) divu^2 + 9\"{0)(l - Xi)- (1-18)

Let us make precise the ingredients of the above system (1.15)—(1.17) and (1.18). The
constant cs is positive and stands for the heat capacity of the system, while the function
A is related to the energy associated to the phase transition. It is assumed that A is a
nondecreasing bounded function such that A(0„) = 0, with 9* being the critical transition
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temperature, and strictly increasing in a neighborhood of 0t. In addition, we require that
A fulfills

Ae W2'°°(R)nC2(R),

ll^llw2'=°(R) + l^'(0£l ^ C\, |A"(£)£| < cA,e R, (1-19)
for c\,c\ > 0. Note, in particular, the additional boundedness requirements in (1.19)
with respect to the natural bound of the functions in W2,°°. Concerning the function a,
representing a thermal expansion coefficient, it is prescribed as a nonnegative bounded
function, nonincreasing, and vanishing over the interval (6>c,+oo), 0C > 6t being the
so-called Curie temperature. More precisely, we let

c*eC2(R), {(eR:a'(O/0}C[0,9c],
|a"(OI < cQ e R, e R. (1.20)

As a consequence of (1.20) we have, in particular, that

|c/(OI <ca0c, \&{0\<ca02c. (1.21)

Moreover, let us point out that the above assumptions are physically consistent as it is
justified in our first paper on this subject [5], Finally, in order to prove an existence
result for the Problem P we have to set some compatibility conditions on the involved
quantities, but for the sake of convenience we will specify them later. Nonetheless, as
they regard ca and c\, we can postulate in advance

ca and c\ are sufficiently small. (1-22)

Remark 1.1. We point out at once that the variational inclusion governing the phases'
dynamics (1.16) is written in the abstract setting of the (V')2 - V2 duality pairing.
Nonetheless, even if it cannot be written a.e. in Q, the model retains its physical consis-
tence, since (1.16) forces the phases to attain only meaningful values, i.e., {X11X2) & K
(cf. Remark 3.2 and 3.3 in [5]).

Now, let us specify the hypotheses on the data of the above problem. We prescribe
that

r6L2(0J;I2(Sl)), (1.23)

heWh\0,T-L2(T)), (1.24)

G G i?1(0,T;L2(Q)3), (1.25)

g € H1(0,T;L2(Ti)3), (1.26)
so that we have (cf. (1.9) and (1.10))

TZ = TZ1+TZ2G L2{0, T; H) + W1J(0, T; V'), (1.27)

GeH\0,T;W'). (1.28)
Finally, we assume

0O e H^fi), (1.29)

(xio, X20) e H2(n)2 n K, dnXio = 0 7 = 1,2 a.e. on T. (1.30)

Here is the precise formulation of the existence result.
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Theorem 1.1. Let (1.19), (1.20), (1.22), (1.23)-(1.26) (i.e., (1.27)-(1.28)), and (1.29)-
(1.30) hold. Then, there exists a quadruple of functions (#,u, X11X2) solving Problem P
and fulfilling

0 € H1(0,T;H)r\Loo{0,T;V), (1.31)

u e Hl(0,T-, W) with divu e i/1(0,T; H2(Q)), (1.32)
Xi e W'llTO(0,T;l0nLoo(0,T;Jff2(fi)), i = 1,2. (1.33)

Remark 1.2. Concerning the uniqueness of the solution to the Problem P, we recall
that in [5] by use of a contracting argument we have proved it holds for a solution
(0, u, (xi, X2)) fulfilling (1.31)—(1.33) in the case when all the quadratic dissipative terms
in the energy balance are neglected.

2. Approximation of the problem. In order to achieve the proof of Theorem 1.1,
we need to state a preliminary result concerning the well-posedness of Eq. (1.17), which
is fairly standard in the theory of elliptic boundary value problems. Thus, we omit the
detail and refer to [9] for the existence result and to [6] for the regularity statement,
which mainly exploit the Lax-Milgram theorem and well-known regularity results on
elliptic equations.

Lemma 2.1. Let 6 and ^2 belong to L2(0, T\H) and fulfill |x21 < ck a-e. in Q (cf.
(1.11)), a G V^1,00(R), and Q e L°°(0,T; W'). Then, there exists a unique

ueL°°(0,T;W) (2.1)

satisfying

Hu + B{a(6)x2) ** g in W' (2.2)

a.e. in (0, T). Moreover, the following inequality can be proved (by use of the Sobolev
inclusion H2(fi)

II divu||L=c(Q) < c|| divu||£oo(0iT;jy2(fi)) < c 1, (2.3)

for some positive constant Cj depending only on f2, C, ||^||l°o((),T;W')> ||«||z.°°(R-), and
ck- In addition, if 9 and \2 belong to H1(0, T; H) and if Q fulfills (1.28), then it follows

u € H\0,T;W), (2.4)
div u £ i?1 (0, T; H2(fi)). (2.5)

Next, we aim to approximate the Problem P by use of a semi-implicit time discretiza-
tion scheme. Thus, letting N be an arbitrary positive integer, we denote by r := T/N
the time step of our backward finite differences scheme. Then, by easily adapting the
argument of Lemma 2.1, and due to (1.29)-(1.30) (cf. (1.13) and (1.14)) and (1.28), we
can introduce the vector of initial displacements u() £ W defined as the unique solution
of the abstract equation (cf. (1.17))

■Hu0 + B(a(90)x2o) = G(0). (2.6)
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Moreover, as it is usual in time discretization procedures, we approximate the functions
1Z — IZi + 1Z2 and Q, specified by (1.9)—(1.10), by two vectors {TV} and {Q1}, which are
constructed as follows (cf. (1.27) and (1.28)):

1 riTTZl = n\ + TZl2 := - Ki{-,t)dt + K2(-,iT) e H + V', (2.7)
T J (i — 1) t

Qi:=Gi(;iT)e W', (2.8)

for i = and set G° = Q(0) (cf. (2.6)). Then, the approximated problem PT
can be formulated as in a moment. Let us note in advance that, in the approximating
form, we set the discretization of the variational inclusion (1.16) in H2 by substituting
the abstract operator dlx,v by the corresponding maximal monotone graph in H2, dlx,
provided we can prove some regularity of the solutions. For the sake of completeness, we
recall that (cf. [4])

(£1,62) e dIK(x 11X2) if and only if (xi,X2) G K and

V [ £i(xi - Xi) < 0 V(xi,x2)eK. (2.9)
i=iJ"

As a consequence, we will be able to solve the discrete variational inclusion a.e. in Q (cf.
also Remark 1.1).

Problem Pt. Find vectors

(e°,e1,...,eJV)eyJV+1, (2.10)
(Ut,U1,„.,Ulv)€W''+1, (2.11)

{X?,Xt,...,X?) G H2(fl)N+1, (2.12)
(X°,X^,...,X^) € H2(Q)n+1, (2.13)

satisfying

0° = 0O, U° = u0, X? = xiOj X2 = X20, (2.14)

and such that, by letting Z1 = divlP, the following equations hold for i = 1,..., N:

£)' — f)i~1
F(0i~1,TJi~1, XI , X£~ )   +^e

= TC + e^A'fe4-1)^—
r r

f-i 2 (xi - x!'1 s 2yi _ 71-1 * / _ XL~L \

+ ei-1a'(ei~1)xt1—-— + Y2 ^ J T J J inV7> (2-15)

_1(X1l - X^1} (AX{ - AX{~~1 \ (AXfi—1

Xi ■ Xf'J ' [ax< - Ax;-') + [AX'J T (~i
-A<e') ^ in (2.16)

HUZ + B{a{Ol)Xi) = Gl in W', (2.17)
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for
(Hi ,Ei)edIK(Xi,X}), (2.18)

and F being specified by (1.18).
Remark 2.1. In view of (2.6), (2.17), (2.8), and Lemma 2.1, it is not difficult to check

that for i = 0,..., N the function Zl satisfies (2.3) with the same constant c\. Thus, the
positions (2.6)-(2.8) and (2.10)-(2.14) allow us to give a meaning to (2.15) and (2.16),
which contain the explicit terms of the above scheme.

Let us note that the function F in (1.15) represents the specific heat of the phase
transition (as it is the coefficient of the time derivative of the temperature in the en-
ergy balance) and consequently it seems physically consistent to require it is positive
everywhere. Thus, after observing that by (1.11), (2.3), (1.20), and (1.19), we have

F{6, u, Xi,X2) > -ca(1 + ck) ~0ccacicK, (2.19)

we require that

c2 := cs - cA(l + cK) - dccaCiCK > 0, (2.20)

which is sufficient to ensure that F is positive a.e. in Q. Henceforth, in the following
lemma we establish the existence of a solution for the approximating discrete problem
PT, at any step r > 0.

Lemma 2.2. Under the assumptions (1.29)—(1 -30), (1.19)—(1.20), (2.7)-(2.8), and
(2.20), for any r > 0 the problem PT admits a solution.

Proof. Owing to (2.6), (2.14), and (1.29)—(1.30), we can restrict ourselves to prove
that for any fixed r > 0 and for any i > 1, the system (2.15)—(2.18) admits a solution.
The main idea is to proceed by induction on i. Indeed, we suppose to know

(0i_1, IP-1, (Xi'^Xt1)) e V X W x H2(Q)2 n K (2.21)

and Zl~l fulfilling (2.3) (see (2.10)-(2.13)). We look for

(0\ U\ {XI Xj,)) e V x W x H2(fl)2 n K (2.22)

solving the resulting equations (2.15)-(2.17). To this aim, we perform a fixed point
argument; namely, by use of the Schauder theorem we shall prove that a suitable operator
D : H2 —» H2 admits at least a fixed point.

We first fix
(0,^2) G H2 with |x21 < ck, (2.23)

and substitute 0® and X% in (2.17). Thus, due to (1.20), (2.8), and (2.23), we can refer
to the first part of Lemma 2.1 and find a unique corresponding solution

UJ =D1(Q,X2) g W, (2.24)

such that divU1 = Zl fulfills (2.3) (for any i).
On a second step, we write 0 instead of 0* in (2.16) and fix Ul = Dj(0, X2). Known

results on elementary abstract equations with maximal monotone operators ensure the
existence and uniqueness of a pair of functions

(XI, X\) = D2(0, IT) 6 H2(n)2 n K (2.25)
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fulfilling in H2

T-■'IVaWtSWsX£ ) \ A Xr2 /

(2.26)
+AXI'1) - A(0) \

r 1 + AY*"1) - a(0)Zj)'

for (S^E^) G dIi<{X{, X2). We can prove the above result owing to (2.21), (1.19)—(1.20),
and (2.3). Indeed, as the right hand side, called, i.e., J7, of (2.26) is known in H2, the
above relation can be equivalently rewritten as

(r~1Id + A + dIK)(XIX12) 9 T, (2.27)

where Id stands for the identity operator in H2 and (cf. (1.6))

A(X1,X*) = (1+t-1)(AX<,AX1).

Thus, we can approximate the subdifferential operator in (2.27) by its Yosida regular-
ization and solve the approximated equation owing to well known results on the sum
of maximal monotone operators (cf. [4, Lemme 2.4, p. 34]). Hence, a standard a priori
estimates-passage to the limit procedure leads to (2.25) solving (2.27) (cf. [6, Appendix]).
On a second step we can test (2.26) by (X\, X2) and exploit monotonicitv arguments to
show that Yij=i fn~jXj — as (0,0) G 8Ik(0,0). Thus, by virtue of the Young
inequality, and owing to (1.20), (1.19), and (2.3), we can write

IV*,
/Q

i 12

^ 2~ ll*;il2v + rl^l(ll^lli°°(R) + IMll^fR)0?) + 11 <*7 ' IIv ' (2.28)
j=1 j=1

where |0| stands for the Lebesgue measure of 12, and finally deduce (cf. (2.21))

2

£ll^<c, (2.29)
i=i

for a suitable positive constant c depending on the explicit terms in (2.26), on r, cj,
IMIl~(R)> II^IU~(R), and fl, but not on the choice of (Q.X2) (cf. (2.23)). Let us point
out in addition that, as (X\, X2) solve (2.27), (X{, X2) G K and consequently fulfil (1.11).
We also note that here and in the sequel the same notation c stands for possibly different
constants, depending 011 the data of the problem and the parameters which from row to
row are considered as constants.

Finally, we take in (2.15) the functions (X{. X2) = -D2(GK D\ (0. X2)) and U' =
D 1(0,^2). Hence, by exploiting once more the Lax-Milgram theorem, we can find a
unique function

0! = Aj(U\ Xi, Xi) G V (2.30)
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solving in V' the resulting equation

r^FiG1-1, U<_1, Xl~\+ AO1 = X[_1, X2~l)&~1

+ n1 + ei-1Y(ei~1)'** ~Xl + Qi-1a'{ei~1)zi-lX*~X2
T T

yi _ yi—1 _ 2 ( X1 — \ 2
+ el-1a'{Oi~1)Xt1   +^2 y J T 3 j - (2.3i)

where the right hand side is known in H + V'. More precisely, notice that the following
inequalities are straightforward (cf. (2.20), (1.19)—(1.20), (1.11), and (2.3)):

0<c2 <cs + cx{l + cK) + 6ccacKc1. (2.32)

Thus, it is clear that the left hand side of (2.31) is associated to a continuous bilinear
form, which turns out to be 1^-coercive, while the right hand side represents a continuous
linear operator on V. Thus, Lax-Milgram theorem is applied to get the required existence
and uniqueness result (2.30). Finally, we can prove a uniform bound for 0J, independent
of the choice of 0 and X2. Indeed, if we test (2.31) by 0®, owing to (1.19) (1.20), (2.3),
(1.11), and (2.32), thanks to the Young inequality we can easily get

||0ik<c, (2.33)

for a constant c depending on the explicit terms of (2.31), r, C\, c2, ck, Q, ca, 0C, c\, c\,
and \\TZ1\\h+v-

By the above arguments, it turns out that the operator D : H2 —> H2, specified by

D(Q,x2) := {D3{Di(Q,X2),Xl,X^),X^), X}) = D2(0, £>i(0, X2)). (2.34)

In particular, we observe that (2.29) and (2.33) imply that D is a compact operator in
H2. Thus, in order to achieve the proof by Schauder's fixed point theorem, it remains to
show that D is continuous with respect to the natural topology of H2. This property can
be verified by exploiting contracting arguments and showing that the operators Di, D2,
and £>3 are Lipschitz continuous.

To this aim, we first write (2.17) for (01; X2\) and (02, X22) fulfilling (2.23), denote by
U| and Ul2 the corresponding solutions, take the difference of the two resulting equations

H(Uj - Uj) + B(a(Q1), X21 - 0(03)^22) = 0, (2.35)

and test it by U!x — U|. With the help of (1.4), (1,20), and (1.11), we can infer that

C||U| - U* j|^ < / (|a(0i) - a(02)| \X2i\ + \X2i - ^22| |a(02)|)|Z\ - Zl2\
Jq

< 0ccacK\\Qi - Q2\\h\\Z\ - Zl2\\H + ||a||Loc(R)||^21 - X22\\H\\Z{ - Z\\\H, (2.36)

and then, by recalling (1.2), we apply the Young inequality and get

IIU1 - Ul2||^ < cdl©! - 02 ||// + ||*21 - <?22||2h) (2.37)

for a constant c which depends on C, ||a||/,°o(R), 9C, ca, and c#.
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Then, we write (2.26) for (©^Uj) and (02, U2), take the difference and, after ob-
serving that the explicit terms cancel, we write

-1 pl\ - <*72\ , , -1 , ,, (A{Xh - X{2)
U(^21 - ^2)

+ -(A(0i) - A(02)) \
\ 2i ~ ^22) \-(a(Q1)Zl-a(Q2)Z^J

Thus if we test (2.38) by the difference of the corresponding solutions (Xh — X{2, X21 —
X22), the monotonicity of the subdifferential operator ensures

2
0,£ / (s}i - >Juj=1JQ

since (E\j,El2j) € dIx{Xij, X2j). By similarly proceeding as above, and recalling (1.20),
(1.19), and (2.3), we finally get

2

E ll*ii - XU\v < c(||0i - ©2||I + liuj - U'||^) (2.39)
3=1

for c depending on r,c\, ||a||vyi,°°(R.), and ||A||wi.~(r) (i.e. on 9c,ca, and c\).
Finally, we write (2.31) for {V\, X{1: X21) and (Ul2, X{2, X22), take the difference so

that the explicit terms cancel, and write the equality

T-1F(0i-1,U<-1,*1i-1,*2i-1)(0i -0j) + A(0i -0j)

= 0'-1A'(0i"1)^—^
T T

W 1 <,'■.(->■ 1 ; VV~ 7; -Z'

(2.40)

Hence, if we test (2.40) by 0\ — Ol2, due to (2.20), (1.20), (1.19), (2.3), (1.2), and (1.11),
by applying the Holder inequality, it is now a standard matter to infer that

II©1 " ©y2v < c f||Ui - Ui||^ + J2 ll^i " XJ2\\h j (2-41)

for c depending on r, ci, c2, ck , ca, 9C, and ca •
Now, we can combine (2.37), (2.39), and (2.41) and claim

||01 - ©2II+ 11^1 - ^2 III/ < c (110! - 02 III + 11^21 - ^22II h) , (2.42)
which ensures that the operator D introduced in (2.34) is Lipschitz continuous in H2.
Thus, the hypotheses of the Schauder theorem are satisfied by D and consequently we
can deduce that it admits a fixed point (0\X2). This concludes our proof of Lemma
2.2, since for any i, and any fixed r > 0, it is now clear that the corresponding quadruple
(0% LP, XI, X2) turns out to solve the system (2.15)—(2.17).



SHAPE MEMORY ALLOYS. PART II: EXISTENCE 63

3. A priori estimates. Now, we aim to establish some a priori estimates indepen-
dent of r, holding at least for r G (0, f) with t sufficiently small, on the time-discrete
solutions. Thus, we refer to the existence result which has been previously stated by
Lemma 2.2. Moreover, we require that the following inequality holds:

(IeccQcK(6c + l))2 < c2(Al + 2Ml/3), (3.1)

and observe that (2.20) and (3.1) make eventually precise (1.22).
For the sake of clarity, we introduce some useful notations. Let {a1}, i = 0,1,..., N,

be a vector. Then, we denote by aT and aT two functions defined on (—oo, T] and [0, T]
which interpolate the values of the vector piecewise linearly and backward constantly,
respectively. That is

aT(t) := a0 if t < 0,

aT(t) := a1 if t G ((i — l)r, ir\, (3.2)

aT(t) := a1 + - — (t - it) if t G [(z - l)r, it], (3.3)
r

for i = 1,..., N. In addition, let IT denote the one-step backward translation operator
of the scheme, namely

lTf{x, t) := f(x, t — t) for a.e. (x, t) G x (0, T),

V/€L1(nx(-T,T))- (3.4)

Hence, we can equivalently write Eqs. (2.15) and (2.17), respectively, as follows:

lr(F(9r,UT,XiT,X2T))dtOT + AdT = KT +lT{6T\'(6T))dtxiT

+ XT (0Ta'(er)zT)dtX2r + 1T {0Ta'(9T)x2r)dtzT
2

+ X)(dtXjr)2 in V', (3.5)
j=i

and
Hvlt + B(a(dT)X2r) = Qr in W', (3.6)

a.e. in (0, T). As to the inclusion (2.16), we could write it in H2 in terms of the above
introduced piecewise linear and constant functions. Nonetheless, in order to perform a
passage to the limit procedure as r \ 0, we have to set this inclusion in the abstract
framework of the (V')2-V2 duality. Thus, instead of din, we write the corresponding
abstract operator dixy and we recall that it is the subdifferential from (V)2 into (V)2
of the indicator function IkhV2 of the convex K D V2 (cf. (1.12)). Obviously, by the
regularity of the vectors {01}, {X{}, {<*2}* and {U®} (cf. (2.10)-(2.13) and (2.18)), the
existence result we have proved in the previous section can be obviously extended to the
abstract framework of (V')2 (cf. Remark 1.1); namely, we have

(dtXlr\ fAdtX lr\ (Axi r\ /£ lr
\dtX2T/ \AdtX2Tj \AX2t) V^2r

-A (0r)
Ck(^r )^-r

in {vy, (3.7)
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a.e. in (0, T), for

€ dlK,v(xiT,X2T) in (V)2. (3.8)

In addition, let us observe that by construction (cf. (3.3)), 0T,\iT, and xir satisfy the
natural Cauchy conditions (cf. (1.29) (1.30) and (2.14))

0r(O) = 0O, (3.9)

(Xlr(0), X2r(0)) = (XlO, X20), (3-10)

while zT and zT fulfil (2.3) independently of r.
Hence, we are going to prove some estimates, holding at legist for r sufficiently small,

but not depending on r, on the approximating functions solving (3.5)-(3.7). Indeed, our
aim is passing to the limit in the above system as r \ 0, by compactness or direct proof,
to get (1.15)—(1.17) solved in a suitable sense.

Nonetheless, in order to prove these uniform bounds, we need to impose another
restriction on the data in the same spirit of (2.20), i.e., we have to assume that (3.1)
holds. In addition, let us recall the trivial equality

2 a(a — b) = a2 + (a — b)2 — b2, Va,6sR, (3-11)

which will be applied in the following estimates on the discrete solutions.

First a priori estimate. We first test (2.16) by (<¥/ - X{~1, X?, - X^'1). Let us
observe that, by definition of the subdifferential, (2.18) yields (cf. (2.9))

£ / Sj(A7 - A-*-1) > 0, (3.12)j=i Jn

as (yX[ 1,X£ 1) € K (cf. (2.21)). Hence, exploiting the relation (3.11) and Holder's
inequality, by use of (1.20), (1.19), and (2.3), we can infer

i-1

T

2

2

+

H

VXj - SIX]i—1 2 \

+ \ £ / (iv^i2+- xrl) i2 - iv^-T)
i=i

<T |A(0l
\>i -yi — \ /• \>i \>i — l

I I r,1l ^9 ^9+ r / |a(e')Zl 2

^ 2(II/MIloo(r) + llalli~(R)ci)l^l + 2 E
i=i

(3.13)
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Next, by summing up (3.13) for i — 1,..., m, with m < N — T/r, it is easy to recover
(cf. (1.30) and (2.14))

m 2

EZii=ij=i
v-xr1

T

I lV^°|2<c- (3-14)
1 ,-i Jn

2v j=i
n2

3 =1

Let us note that we can improve the regularity of the estimate (3.14). Indeed, we can
test (2.16) by t(AX[, AX^,) (cf. (2.12)—(2.13) and (1.6)). Bv formal arguments, it is a
standard matter to verify that the monotonicity of the subdifferential operator leads to
(cf. [6, Appendix])

2'VJ-~jAXj > 0.
n

Hence, by exploiting once more (3.11) and Holder's inequality, by similarly proceeding
as for (3.13), we owe to (1.20), (1.19), and (2.3) and write

III f Iv^Mv^-T + iv^-^-1)
3=1

2

+ E l(\\Axl\\H - IIMj-'Wh + \\A(xj ~ <*f ̂ll2*)
3 = 1

2 2

+ r £ || < Ir \\AXjfH + c. (3.15)
j=i j=i

Thus, by summing up for i = 1,..., m, we get (cf. (1.30))

-2 m 2 1 m «

Eii^nEEii^ + oE/ i™
j=l *=1j=1 *=1

2 2

/ft

m2
3 I

^c+JE/ IV^I2 + ̂ EII^II^<C, (3.16)
i=iJ=1

for any m < N.

Second and third a priori estimates. We test (2.15) by (0i - 0i_1). In view of the
equality (3.11) and by recalling (2.7), (1.19)—(1.20), (2.20), (1.11), and (2.3), the Holder
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inequality can be applied to infer that

C2T
0i _ 0i-l

<T \ CX

T

xi-x,
+ \ ! (|V0f + |v(0l - e^1)]2 - ive'"1!2)

h 2 Jn
i _ V*-1

+ 02ccaci

+ T0 CKCa
Zl - z

H
:-i

■yi -yi — \A. 2 A,2

T

08 - 01"1

Qi _ 0»-l

2

+ T 'u x>~xr
H

Qi _ ©'"I

H

+ r\\n\\\H
H

H
01 - 0'-1

H

+ (7Zl2,0* — 0 ). (3.17)

On a second step, we write (2.17) for i and i = 1, take the difference, and test it by
u —. Owing to (1.4), (1.5), (1-11), (1-20), and (2.8), by use of the Holder inequality,
we can find a positive constant c, depending in particular on C, ck, and ||q||^oc(R), such
that the following estimate holds:

C
4 T

LP - LP"1 2
A l + 2/xl/3H ^ r

w 2

2

H

< CT
X% - ^2i-1 2

+
H

gi - gi~1
2

+ T6cCaCK
H

W'

Qi _ 0»"1yi yi—lZ -Z " " (3-18)
H

Indeed, (1.4) and (1.5) imply

2a(lP - IP^.LP - U'"1) > C||LP - + (\L + 2/iL/3)||- Zl~l\\2H, (3.19)

while the Lipschitz continuity of a (cf. (1.20)) and the definition of W-norm (cf. (1.2))
enable us to infer that (cf. (1.8))

\Zl - 2"■i—i i[ |a(0i)^-a(0i-1)Xr1|
Jn

< [ (|a(0®) - a(0!"1)| Ixr1! + K©1)| \X* - Xt'DIZ* - Z
J o

<cKecca\\ei-ei-1\\H\\zi-zi-1\\H,

+ ^||q|U=o(R)||^21 - X^WhWW - Ul-1||w- (3.20)

Finally, we can easily get

T~1{Qi — Qi_1, LP — LP_1)| < t gi _ gi-1 LP - U i-1

(3.21)
ww

Thus, by use of Young's inequality, due to (3.19)—(3.21), we can finally deduce (3.18).
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Now, we can combine the estimates (3.17) and (3.18) and sum them. By use of the
extended Holder inequality, we easily obtain

2

+
3 c2~TT q1 - e4-1

H 2
1 [ (iveT-lve'-^ + iv^-e2-1)!2)
2 J n

C
+ T4

Ui_uz-1 2 AL + 2/iL/3 Z^-Z*"1 2■ T X 

W

xij-x;-1 2,   yl _ y-~A * yl _ A 4

^cr (E
w=i

H

+ T0ccacK(i + ec)

+£
H 3 = 1

Z* - Z*-1
r H

L*(Q)

©i - e^-1 + (7el2,eJ -01-1)
H

CT
gi_gi-l 2

+ \\K\\\h • (3-22)
w /

Hence, due to (3.1), we claim

TdcCaCK( 1 + (9C)
Z'-Z i-l 0l -0 i—1

< T~(6ccacK(l + 9C))2
2 c2

Zi - Zi-l

Al + 2/^x,/3< r   
Zl - Z i-l

T

2
i C2+ TJ

H z

H
2

, C2+ TT
H Z

0J - 0'-1

Q^ _ 0»-l
r

2

H

2

if

(3.23)

so that two terms cancel in (3.22) and we get

C2

4 T
©i_0»-i 2

//
+ I [ (|V0l|2 - IV02"1!2 + |V(0J - ©l_1)|2)

2 J n

C
+ T4

IP — Ui_1 2 2<°tJ2
w J = 1

i—1

+

H

x; -xj-'

+ {-RlQ' - O1-1) + ct gi _ gi-1 I 2

L4(n),

+ ||^||2J. (3.24)
W'

Finally, by summing up (3.24), for i = 1,..., to, we write

C2

4 T

m csi — 1 2 i r m

£ ^r- +i=i T h z Aj i=i

C U» - IP"1

m 2

^crEE ^ - a-;-1
2

+
H

xj - x;-1

2=1 j = l

m

+j2m,ei-Qi-1)\+crj2
i=l i=l

r

4

L4(Q)y

2

W

+

2

i/jvef

+ ||^i||2K). (3.25)
W'
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We first observe that, on account of (3.2)-(3.3) and (1.27)—(1.28), we can deduce

TH
1=1

gi _ gi-1 2 + WKWH
W' ,T

— II^ II Z/1 (0,T;W') + ll^-l \\2L2{0,T-,H)- (3.26)

Next, in order to treat the term ~~ we exploit a standard procedure
and write

m m— 1

^{^,0' - e1"1) = (w;\ em) + ]T (K - &) - {n\, e°)
i=l

< I 2 max ll^llv" +
1 <i<m *—  i=2

- TZ'f1 max ||0*||v
0<z<m

< c||7?_2IIw11 (o,t;v") max ||0J||v- (3.27)
0<i<m

In addition, we note that the following trivial relation holds:

Qi _ Q»-1||0m||2H<c

1 = 1
+ II© II// , (3-28)

H /

for a suitable constant c. Thus, if we apply the Young inequality to (3.27), on account
of (3.28), (3.14), and (3.26), from (3.25) we can write

max . ^
l<m<M I 8

Qi _ ©i-1 2

?-£ +C4ii0mn2,+-E?
2=1 H i= 1

IP -u 2—1

W

M 2
<c+^ max ||0m||^ + cr

2 0<m<M '
i= 1 J = 1

4

(3.29)
LJ(£7)

for a suitable constant C4 and r sufficiently small (i.e., we could take C4 = 1/2 and
t < £2/(4c)), and for any M with 0 < M < N. In particular, by (3.29) we can deduce

»=1

2 m xt? TTi-1 2
^ W — W "r

" 7~i ' w

<c + cr^E
i=i j=i

i—1

(3.30)
L4(Q)

for a suitable constant c and any integer m < N.
Now, we would like to apply to (3.29) the discrete Gronwall lemma in the form pre-

sented by [14] and establish some uniform bounds on the discrete solutions. To this aim
we have to exploit the following a priori estimate in order to control the L4-norms in the
last term on the right hand side of (3.29).

Fourth a priori estimate. Write (2.16) for i and i - 1, % = 2,..., AT, take the differ-
ence, and rewrite it in terms of (w\,w|) := t~^(X\ — ). Then, we can
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write

w\-w\ /A(w\-w\ J)\ fAw\
4 - Wl2 V + \A(wl2 - U>2 1))+T\Aw2

f -A(0i) + A(0i_1)
+ - =2" V + aio^Z'-1)' ^3'31^

and test (3.31) by {w\,wl). By similarly proceeding as above, and owing to the Young
inequality, we obtain (cf. (2.3), (1.20), (1.19), (1-2), and (3.11))

2 2

11>2(W\\v - ll«>j~1|lv + IK - ̂ -'llv) + I \Vw}\2
3 = 1 j=1 Jn

Qi _ 0»-l
<-rcA ||wi||ff

H
Zi _ Zi-1

+ r ca9cci

T

ei - e1-1

< St
Ql - 01"1

r
2

+ !NIl~(r.)
H T H

IKIIH

+
H

IP -u i-1 2 \ 2

W,
+ C5T^||w}|||f) (3.32)

3 = 1

for a suitable (5 we will fix later. Let us point out that, in order to deduce (3.32), we
have exploited the following inequality

E^-T'K^0' (3-33)

holding by monotonicity of the subdifferential (cf. also (2.18)) and the form of the func-
tions Wj. Next, we add (3.32) for i = 2,... , m, with m < N and, owing to (3.30), we
write

1 2 1 2 ^ 7/t

2 E iKiiv ^ c+ 2 E K-iiv+c*r EE H\\h
j=1 j=1 j = l i=l

m 2+^EE
4

»=ij=i

2 2 m — 1
L4(Q)

< lEK-llv + ̂EE ikii^E«
J=1 j=1 i=l j=l

m— 1 2 2

+ Jct £ £ iKK<(o) + <5cr + c. (3.34)
i=1 j=1 j=l

Now, we aim to estimate the first term on the right hand side of (3.34). We can proceed
directly by writing (2.16) for i = 1, and test it by - X°)- Thus, by
definition of the subdifferential and (1.30) (cf. also (2.14)), we can test (2.16) written for
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i = 1 by — X®, X\ — X%) and write

2

Ej=i
x}-x« 2

T
V

\ [ |v(*/-a?)|2T J Q

< II^I|loo(R)I^|1//2 — — + IMIl°°(R)ci|^|1/'2
H H

j=i
(3.35)

H

Hence, by applying the Young inequality to (3.35), it is easy to deduce a uniform bound
for (w\,w2), namely

2

<c j = 1,2. (3.36)
X)-*S

Ihjfv
V

Next, by recalling (3.14) and the embedding //1(f2) <—► L4(fi), we can choose <5 such that

2 2

<5cr £ |Km||l<(n) < ^ £ IKIIv. (3-37)
j=1 ; = 1

and
2

c«5T^||iuf ||h < c- (3.38)
3=1

Consequently, by combining (3.36)-(3.38) with (3.34), we finally get

2 / m — 1 2 m-l 2 \

i £ Ikfllv < c 1 + r Y, E IISHvllSH2v +^EE KH« • (3-39)
j = l y i= 1 j=l i=1 j=1 )

Hence, we can apply the discrete Gronwall lemma (cf. [14]) to (3.39) and, due to (3.14),
deduce

i 2■ym   -ym—L

IKlv= J" T J"
V

for any m < N. Now, combining (3.40) with (3.29) yields

<c, j = 1,2, (3.40)

M
T

i=l

M

TT 1 <m<M
H i=l

ip -u 2 — 1
< c, (3.41)

w

for any M < N.

4. Passage to the limit as r \ 0. In order to prove Theorem 1.1 we aim to pass
to the limit as r tends to 0 in (3.5)-(3.7). Thus, we can combine the previous estimates
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(3.14), (3.16), (3.40), (3.41), by recalling also (2.3) and (1.2), to obtain, on account of
(3.2)-(3.3), and at least for t(0, f) for a suitable f,

l|0-r!l//1(O,T;/f")nL°o(O,r;V) + ll#r ||(0,T;V) < c> (4-1)
2

Y, iixj r||W1,oo(0,T;V')nLoo(0,T+ llXjr||L=°(0,T;H2(n)) < ci (4-2)
j = l

I|Ut||//1(0,T;W) + llur ||t~(0,T;W) < c> (4-3)

pr ||H1(0,T;V)nL°°(<5) + II^TIIL°°(Q)ni°°(0,T;V) < C, (4.4)

for c not depending on r £ (0, f). Now, it remains to pass to the limit in (3.5)-(3.7) as
t \ 0. We first observe that well-known weak and weak star compactness results apply
to (4.1)-(4.4) and ensure that the following weak (—*■) and weak star (^) convergences
hold, at least up to the extraction of suitable subsequences,

6t 9 in H1 (0,T; H) fl L°° (0,T-,V), (4.5)

Xjr^Xjin W1'°°(0,T;V)nL°°(0,T;H\n)), j = 1,2, (4.6)
ur ->• u in /^(O.TjW), (4.7)

zT ^ zin H1{0,T;V)nLoc{Q). (4.8)

Let us note that, even if you do not specify it, the following convergence results have to
be intended to hold up to the extraction of suitable subsequences of r, still denoted by r
just for the sake of convenience. Then, owing to strong compactness theorems (cf. [15]),
by (4.5), (4.6), and (4.8), we get (actually, something more holds)

9t -*6 in C°([0,T];ff), (4.9)
Xjr-Xjr inC°([0,T];y), j = 1,2, (4.10)

Zr-*zmC°([0,T\;H), (4.11)

for z = divu (cf. (4.7)). Now, since the following relation is fulfilled (cf. (3.2) and (3.3)),

©i _ ©i-i
% - Mr.oornT-m < max T2\L°°(0,T\H) ^ '

H

< r\\dtOT||l2(o,t;//) — TC> (4-12)

and analogous estimates hold for

||uT — UT T;W)' IIl°° (0,T;//)' \\Xjr ~ Xjr lli°°(0,T;V)' 3 = 2-
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With the help of (4.5)—(4.11) (cf. also (4.1)-(4.4)), we are allowed to infer that

Or -* 0 in L°°{0,T-H), 6r 0 in L°°(0, T; V), (4.13)
Xjr-Xj in L°°(0, T; V),

XjT A Xj in L°°(0,T;i?2(O)), j = 1,2, (4.14)

zT -> divu in L°°(0, T: H),

zT div u in Loo(Q)nLoo(0,T;y), (4.15)

uT u in L^O.T; W). (4.16)

Finally, we observe that it is easily verified (cf. (2.7)-(2.8) and [1])

Qr -* g in L2(0,T;W'), (4.17)

■R2T-+K2 mL2{0,T-V'), (4.18)

nlT — 1h in L2(0,T-,H). (4.19)

Now, by the above convergences, we are in the position of taking the limit as r \ 0 of
(3.5)-(3.7). First, we observe that, by (4.16), (4.13)-(4.14), and (4.17), due to (1.20),
we can pass to the limit in (3.6) and get (1.17). Let us detail the following convergence
results as we apply a procedure we will exploit also in the sequel of our argumentation.
Since (4.13)-(4.14) and (1.20) imply, for some subsequence,

ol(9t)x2t —* a(0)\2 a.e. in Q, (4.20)

we owe in addition to (4.2) (cf. (1.11)) and deduce

\\a{0r)X2r\\L°°(Q) < C. (4.21)

Then, the Lebesgue dominated convergence theorem yields

ol{6t)xIt —1> a(0)x2 in LP(Q) for any p < +00. (4.22)

We point out that (4.22) holds for the whole fixed sequence. By arguing as in the previous
deduction, on account of (1.20), (1.19), and (4.4) (cf. (2.3)), by (4.13) and (4.15), we
obtain

A{0T) -► A(<9), (4.23)

a{0T)zT —» a(6) div u (4.24)

in LP(Q) for any p < +oc. Thus, by virtue of (4.6), (4.14), and (4.23)-(4.24), in order
to pass to the limit as r \ 0 in (3.7), it suffices to control the sequence (£it,£2t); i-e.,
it remains to verify that it converges, in a suitable sense, to some selection (£1,^2) of
9Ik,v(x 11X2)- To this aim, let us observe that, by a comparison in (3.7), (1.19), (4.2),
(1.20), and (4.4) imply

I|^t||l~(0,T;V) < ci j = 1-2, (4-25)

and consequently we have

CjrA£jin L^iO.T-V'), 3 = 1,2. (4.26)
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Hence, by (4.14) and (4.26), we can deduce
2 2

Y.^.\jr) (4-27)
j=i j=i

as t \ 0, which enables us to apply the result presented in [3, Lemma 1.3, p. 42] and
deduce

(£1^2) G dlx,v{x 15X2), (4.28)

which, in particular, yields that (XI1X2) € A~ fI V2; i.e., the couple (xi,X2) satisfies the
required constraint (see Remark 1.1). Finally, by the above arguments we can pass to
the limit in (3.7) and get (1.16) solved by (xi, X2)^,divu in (V')2 a.e. in (0, T).

Finally, we aim to pass to the limit in (3.5) and obtain the abstract equation (1.15).
To this aim, we first consider the nonlinearities

SiT = X2t , uT)), S1 = F{0, xi, X2, u),

s2t =Zr(eTx'(9T)), s2 = ex'(d),
S3t — lT(0Ta'(0T)zT), S3 = 0c/(#)divu,

54t = lT(0Ta'(0T)X 2r), S4 = 0a\9)X 2, (4.29)

and note that by virtue of (2.3), (1.11), (1-20), and (1.19) they are uniformly bounded.
Hence, owing to (4.18)—(4.19), (4.5)-(4.6), and (4.8), in order to pass to the limit in V'
in (3.5), we observe that it suffices to prove that for any <fi £ L2(0,T; V), there holds

lT{SjT)<j) -► Sj(f) in L2{Q). (4.30)

For the sake of simplicity, let us detail only the case of SiT, since the others are mostly
similar. Owing to the continuous embedding H1(fi) L6(Q), and by virtue of (4.13)—
(4.15), (1.19)—(1.20) (cf. also (1.11), and (2.3)), the Lebesgue theorem can be applied to
prove that

F(6»t,ut,xit,X2t)</> ->■ F{9,vl,xi,X2)<I> in L2(Q),Vc/) e L2(0,T;F), (4.31)

as r \ 0, and the same convergence easily holds for 1TF(6T, uT, xir, X2r)- Indeed, by
arguing as in the deduction of (4.22)-(4.24) and recalling (1.20) and (1.19), owing to
(4.13) we deduce that 0ra"(0T) —> 9a"(0) and 0TX"(0T) —► 0X"(9) in LV(Q) for any p <
+00, as well as an analogous convergence is proved for zr —> divu (cf. (2.3) and (4.15)).
Hence, by taking, i.e., p = 6 and by use of (4.14), the generalized Young inequality
ensures that (4.31) holds. We can treat by similar arguments the other nonlinearities
and we can verify that (4.30) holds for Ir (SW), ^t{S3T), TT{SiT) as well. Finally, it
remains to verify that

2 2

^ Efe)2 in L2(0,T-,V). (4.32)
j=1 j=1

Towards this aim, we first note that, thanks to (4.2), we can deduce

2

WidtXjr) ||l=(Q) < c, (4.33)
j=1
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and consequently, we are allowed to infer that

(dtXjr)2 Wj in L2(Q), j = 1,2, (4.34)

for some subsequence. Thus, in order to show that Wj = (dtXj)2, j = 1,2, it suffices to
prove that

dtXjr dtXj in L2(Q), j = 1,2. (4.35)
Indeed, if (4.35) holds, one has

Jj dtX2jr ->■ JJ dtXjt (4-36)
while (4.34) implies

fJQdt^TV~* IIqWjv' <'4'3^
for any v 6 L2(Q). Thus, by taking v = 1 in (4.37) and by the uniqueness of the limit of
(4.36) we could finally identify Wj with dtXj• First, we observe that (4.6) yields

2 2

"l2(Q)>WdtXj\\2L2{Q) < liminf ^ \\dtx3 "2
j=i T j=i

and consequently (4.35) can be obtained just by verifying that
2 2

limsup^||atXjrHi2(Q) < 5ZH5t^Hi2(Q)' (4'38)
j=1 J=i

since the convergence of the norms combined with the weak convergence of the sequence
imply the required strong convergence (4.35). To this aim, we test (3.7) by (dtXir, dtX2r)>
integrate over (0,T), and then take the limsup as r \ 0. We have

2

limsup^ \\dtXjT\\h(Q)
t\.° j=i

= limsup ^-||V(5tXjr)||l2(Q) - Jo jn ^Xjr^idtXjr)

T \ T T \
- [ (ZjT, dtXjr)] - [ [ ^(Or)dtXiT- [ f a(eT)zTdtX2r J • (4.39)

Jo J Jo Jn Jo Jn )

We first note that, since (1.20), (1.19), (4.13)^(4.15), and (4.6) hold, we can infer that
(cf. also (4.23)-(4.24))

rT r
Ker)dtX It(dtXjr) - f j

T^°~i Jo Jn Jo Jq

~ f [ a(0T)zTdtX2T = Y1~ [ [ VXjV(Xjt)
Jo Jn =1 Jo Jn3 =

rT
[ [ H0)xit- [ [ at{0) divux2t- (4.40)

Jo Jn Jo Jn
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Moreover, owing to (4.6), by the weak lower semicontinuity of the norm, we have

2
hmsup^(—||V(<9iXjT)|||2(Q))

T\o j=1

2 2

■hminf^\\^(dtXjr)\\2L2{Q) < J2-\\V(dtXj)\\l2iQ), (4.41)
r\0

3 = 1 j=1

Finally, we have to treat the term Y^=i ~ Jo (tjrtdtXjr)- To this aim, we observe that
by definition of the subdifferential and owing to (3.2)—(3.3), we can write (cf. [3])

2 rx 2 n / '
X f (£jT,dtXjr) - ( a'-, ,
3 = 1 J0 j=1 i=1 \ /

2 N N

= - -T x> ̂ - w^rs^r1))
j=li=l i=l

= Ikdv2{X^,%2) ~ ^A'nv2(^i0.^20)

= lKnv2(Xir(T),X2T{T)) -/Jfcnv2(xio,X2o), (4.42)

for any r > 0. Hence, by the lower semicontinuity in V of the function Ixnv2 and due
to (4.10), we claim

2 .t 2 rT
lim sup - V / <£jr, OtXjr) = ~ liminf V / (^T, dtXjT)

t\o TV Jo

— ~ KnV2(Xlr(T), X2t{T)) - lKnV2(XW,X2o))
T\0

< ~lKnv2(Xi{T),X2{T)) + lKnv2(xw,X2o)- (4-43)

Now, by combining (4.40), (4.41), and (4.43), we get

lim sup E \\dtXjA\2L2(Q) < E(-[I VxMxjt)-\Wx,t)\\lHQ))
t\o .=1 ■ 1 y Jo J ft )

- f [ A(6»)xit - [ [ a(6»)divux2t
Jo in Jo Jn

_ -^XnK2(Xi(^)7 X2CO) + /ft-nv2(Xio, X20), (4.44)

and the right hand side of (4.44) is equal to
2

yi IIXjtlli,2(C))> (4.45)
j=i

as one easily verifies by testing (1.16) by (Xit,X2t) and then integrating in time (see also
the following remark).

Remark 4.1. The last result easily follows once it is proved that
2 rp

-lKnv2(Xi{T),X2{T)) + lKrv2(Xio> X20) - / (&>Xit), (4.46)
i=i -70
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and this can be obtained by extending the statement of Lemma 3.3, p. 73, in [4] to the
case of abstract subdifferential operators defined in the duality pairing between (V')2
and V2.
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