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GLOBAL SOLVABILITY OF THE DERIVATIVE

NONLINEAR SCHRÖDINGER EQUATION

JYH-HAO LEE

Abstract. The derivative nonlinear Schrödinger equation (DNLS)

iqt = qxx ± (q*q2)x,       <I = q(x,t), i = A77xr< ?*(z) _ Jffjt

was first derived by plasma physicists [9, 10]. This equation was used to in-

terpret the propagation of circular polarized nonlinear Alfvén waves in plasma.

Kaup and Newell obtained the soliton solutions of DNLS in 1978 [5]. The au-
thor obtained the local solvability of DNLS in his dissertation [6]. In this paper

we obtain global existence (in time /) of Schwartz class solutions of DNLS if

the Z.2-norm of the generic initial data q(x, 0) is bounded.

1. Inverse scattering for a Zakharov-Shabat system

In order to prove the local solvability of the derivative nonlinear Schrödinger

equation, the author [6] considered the following transformation:

(1.1) ut = iuxx + e(uu)x,       e = ±l   (DNLS).

Let q = uexp(f*00 -ieuu). Then q satisfies

(1-2) qt = (i/2)qxx - (e/2)q2qx + (i/4)q\q\\

Equation ( 1.2) is solvable by the spectral problem ^ = z2[J ,m] + zQm + Pm,

where Q = ( ¿. g ) and P = ß(ad J)~ ' Q ; here ad J(A) = [J, A].
At first we consider a more general case. By a potential here we mean a pair of

functions (Q,P), Q,P: R -► M2(C) = set of 2x2 complex matrices, Q is off-

diagonal, and the diagonal part of P equals g(ad J)~XQ, Q, Qx, P, Px G Lx.

We consider the following spectral problem: given z $ 2 = {z: Im(z2) = 0} ,

find m(,z): R — M2(C) with

m(-,z) bounded,        m(x,z)—>I    as*—>-oo,
(14) y     ' '
_         here/=(-0'0),/ = v^T.
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d 2
(1.3)     —m(x,z) = z [J,m(x,z)] + zQ(x)m(x,z) + P(x)m(x,z),
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108 JYH-HAO LEE

Let Í2+ = {z: Im(z2) > 0} and Q,_ = {z: Im(z2) < 0}. For a certain set

of potentials, called generic, the solution m has the following properties [6]:

For any z e I = {z: Ir

v(z) such that for all x

For any z G I = {z: Im(z2) = 0} , there is a unique matrix

XZ2J     ,     .     —XZ2J
A•$) m (x,z) = m  (x,z)exz   v(z)e

where m+(x,z) = limit of m on X from Í2+ and m~(x,z) =

limit of m on Ï from Í2    ;

(1.6)

m(x, •) has a finite number of poles at zx,z2, ... ,zN (which

do not depend on x ), for any z. there is a matrix v(z.) such

that

Res(m(x,•),z.) = lim m(x,z)eXZj v(z.)e~XZj   ;
J Z->Zj J

(1.7)
The map (Q,P)-> V = {v(z)\ z,,z2, ... ,zN;v(z,),

u(z2), ... ,v(zN)} is injective

We denote this map by sd i.e. sd(Q ,P) = v.

By a similar argument to [2], we can show the generic Schwartz class poten-

tials form an open and dense set in Schwartz class potentials, i.e. those potentials

for which every derivative is of rapid decrease. To make our exposition more

clear, from now on we assume (Q,P) is of Schwartz class. If (Q,P) is generic,

we call the associated function »:IuD-t ^„(Q tne scattering data, where

D = {zx ,z2, ... ,zN} . The scattering data satisfies the following constraints:

(1.8) det(^    £)-l,       „n = l;

(1.9) v22(z)¿0;

(1.10)
If z    is a pole, then  v(z.) = c-(°¿)   when  zy G Q+   and

v(zj) = cj(°x°0) when Zj G Q_ ;

The winding number of v22(z) equals ß+ - ß    , where ß+ is

,. ...        the number of z   in Q+ and ß~ is the number of z   in Í2_ ,

i.e. ß+ - ß~ = /zíi[arg(z;22)] and X is oriented such that Q+

is in the left side ;

(1.12)        v(z) = I is of Schwartz class in X.

Roughly speaking the smoothness of (Q,P) implies the decay of v(z) and

the decay of (Q,P) implies the smoothness of v(z). These are aspects of

Fourier-like theory, hence if (Q,P) is a Schwartz class generic potential, then

v(z) -I is of Schwartz class.
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GLOBAL SOLVABILITY 109

(1.13) Remark. Let (Q,P) be a potential of compact support. Let m0(x,z)

be the solution of the Volterra integral equation:

(1.14) m0(x,z) = I+fX  e{x-y)z2j(zQ(y) + P(y))m0(y,z)e{y-x)z2jdy.
J — oo

The dependence on the parameter z is holomorphic, so m0(x,-) is an en-

tire function, mQ(,z) is absolutely continuous, mQ(x,z) = I if x <c 0 and

m0(x, z) = exz2jS(z)e'xz2j if x > 0. Let

«■»-(Sfó.fcS)'
. .      /I    -S12(z)/S.,(z)\      . _

a(z)= yQ        12V J'   11V    J     forzei2+,

(1.16)

and

a(z) - I   -512(z)/S22(z)   ? I     for z e Q- ;

(1.17) m(x, z) = m0(x, z)exz   a(z)e xz   .

Then m(x,z) satisfies (1.3) and (1.4). The poles of m(x,-) in Q+ is the

zero set of Sxx(z) and the poles of m(x ,■) in Í2_ is the zero set of S22(z).

Since lim,,ooSxx(z) = limiz|_>00522(z) = 1, the set D = {z: Sxx(z) = 0 or

S22(z) = 0} is finite. If Z D X = 0 then (Q,P) is generic. For a generic

potential of compact support,

(118) v(z)=( l SX2(z)/Sxx(z) \

( ■ *> { >     \S2x(z)/S22(z)    l-S2x(z)Sx2(z)/(Sxx(z)S22(z))J '

v(zj) = -sx2(zj)/s'xx(zj)(°0 iy     z.€Q+,

v(zj) = -S2X(zj)/S'22(zJ)(°l    °oy        z,ef2_.

See [6].

Given a scattering data v satisfying ( 1.8)—( 1.12), the inverse problem

amounts to solving an analytic factorization problem (Riemann-Hilbert prob-

lem) with one parameter x , i.e. we want to find m(x, ■) that is meromorphic

on C\X such that

m+(x ,z) = m~(x, z)exz2jv(z)e~xz2j,       z G X,

„xz]j    i      \   —xz2J

(1.19)

(1.20) I Res(m(x,z),zj) = limz^Zjm(x,z)exz'Jv(zj)e~xz^

j = 1,2, ... , A; and m(x,z) —» I as |z| —► oo.

As shown in [6], the inverse problem is solvable if v(z) - I is small (i.e.

\v - I\\    < e for some small number e ). If v(z) - I is not small, we choose
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110 JYH-HAO lee

a piecewise rational function u with the following properties:

(i) Ujj = 1, u(z) is upper triangular in Q+ and

... lower triangular in fi_ respectively ;

(ii) u(z) —► I    as|z|—>co;

(iii) ||M-tz(M+r1-i||oo<e     [2,6].

We let vi = u~v(u+)~x since t>* - I is small, and vi also satisfies (1.8) and

(1.12). Hence we obtain an associated eigenfunction zn" ; we may look for m

in the form m(x, z) = r(x, z)m\x, z)exz Ju(z)e'xz J . Let

p

r(x,z) = I + J2(z - zk)~Xak(x).
k=\

The conditions (1.20) amount to a system of linear equations of the residues

ak(x) of r.

Let SD = set of functions v = (v ,zx ,z2, ... ,zN;v(zx), ... ,v(zN)) which

satisfy the conditions ( 1.8)—(1.12). The set of v G SD such that m is solvable

is open and dense in SD ; such v we call generic. Note that weSD is generic

if and only if there exists a potential (Q,P) such that sd(Q,P) = v. Let

m~ I + mx/z + m2/z -\-,

(1.22) Q = -[J,mx],       P = -Qmx-[J,m2].

Then ^ = z [J,m] + zQm + Pm , m(, z) bounded, and m(x,z) —* I as

x —* -oo. Symbolically we have

v^m^(Q,P),

(scattering data) —► (eigenfunction) —► (potential).

If Q = {gg'D , and the off-diagonal part of P = 0, then the scattering data

v has extra conditions:

(1.23) (v(ez))* = v(z),    (v(ezj))* = -v(zj),       e = ±l.

Let a be an automorphism on M2(C) defined by (acbd)a = (-c~d)- Since

Q" = -Q and P" = P we have

(1.24) va(-z) = v(z),       va(-z7) = -v(Zj).

Conversely if v(z) g SD and satisfies (1.23) and (1.24), and v is generic, then

the associated potential (Q,P) satisfies the following properties: Q = (£°. g),

i.e. Q* = eQ, the off-diagonal part of P = 0, and the diagonal part of P =
Q(adJ)-xQ.

If v(z ,t) satisfies the evolution equation

• dv(z,t)/dt=  zk~x(J,v(z,t)),

k is an odd positive integer;

{       ' I dv(zj,t)/dt = zkj-x(J,v(zj,t)),

Zj is fixed for each j,
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GLOBAL SOLVABILITY 111

and if v(z,0) is generic in SD, then v(z,t) is generic for t small (since

the set of the generic potentials is open in SD). The corresponding potential

(Q(x, t), P(x, t)) satisfies the evolution equation

(1.26) ß, = [/,Ak],       Pt = [(2,Afc] + [/,Afc+1],

where kk = Xk(Q,P) are computed by the recurrence formula dXk/dx -

[P,Xk] = [Q,Xk+x] + [J,Xk+2], k0 = J.
If v(z ,0) satisfies (1.23) and (1.24) and k = 5, then equation (1.26) is

reduced to

(1.27) ql^(i/2)qxx-(e/2)q2q*x + q\q\\

Note that Q = (£°- g) and (Q,Q(adJ)~xQ) is the associated potential with

respect to the scattering data v(z,t). Let u = qexp(/^oo ieqq*). Then u

satisfies

(1.28) ut = iuxx + e(u*u )x.

This is the derivative nonlinear Schrödinger equation (DNLS).

Let E = {zx,z2, ... , zN}, zx $ X and zx,z2, ... ,zN are distinct points.

Denote SD(is) = {v G SD: v is a function on X U E} .

Theorem A. Suppose (Q0, P0) is a generic Schwartz class potential and sup-

pose t -* v(,t) is a smooth map from [0,oo) to SD(E) such that v(,0) =

sd(Q0 ,PQ). Then there is a T > 0 and a unique smooth map

t^(Q(,t),P(-,t))

from [0, T) to Schwartz class potentials such that sd(Q(, t),P( ,t)) = v(,t),

tG[0,T).

Proof. Since the set of generic formal scattering data is open, v(,t) remains

generic over some nonempty interval [0, T).   The corresponding potentials

(Q(,t),P(-,t)) = sd~x(v(-,t)) are uniquely determined.   (Q(,t),P(,t)) is

smooth by our construction, see [2, 3, 6].

Theorem B. Suppose q(x, t) satisfies DNLS, i.e. qt = iqxx + e(\q\2q)x, e = ±1,

and t —► q(-,t) is smooth from [0 ,T) to a Schwartz class. Then

H \q(x,t)\2dx= f°° \q(x,0)\2dx
J—oo J—oo

i.e. the L   norm of q(, t) is invariant under DNLS.

Proof.   \q\2 = (qq*)t = qtq* + qq* = i(qxq* - q*q)x + 3e/2\q\x . Hence

d_
dx

j     \q(x,t)\2dx= (i(qxq* - qxq) + yMj = 0.

Theorem B'. Suppose q(x,t) satisfies (1.2), i.e. qt = (i/2)qxx - (s/2)q2q* +

(l/4)q\q\\4, and t ^ q(-,t) is smooth from [0,T) to a Schwartz class. Then

H \q(x,t)\2dx= f°° \q(x,0)\2dx.
J—oo J—oo
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112 JYH-HAOLEE

Proof. Let u = qe\p(f*^ ieqq*). Then u satisfies DNLS, hence
-oo

r-OO

f    \u(x,t)\2dx= [    \u(x,0)\2dx.
J— oo J— oo

Note that uu  = qq*, hence /^ \q(x, t)\2 dx = ¡™  \q(x, 0)|2 dx .

i

TheoremC. Let Q0 = (¿ft).  !f (Q0,Q0(*dJ)  XQ0) is a generic Schwartz

class potential, then there exists unique q(x,t), 0 < t < oo, such that

Q, = (i/zKx - (*P)<iVx + a/4)q\q\4,
q(x,0) = q0.

Theorem C'. If u0(x) is of Schwartz class, q0 = ^exp^^^ -ieuQu*0), Q0 =

(««o o0)- and (Qo'Qo^jy Q0) is generic (i.e. there exists v such that

sd(Q0,Q0(adJ)-xQ0) = v),

then there exists unique u(x, t), 0 < t < oo, such that

ut - iuxx + e(\ufu)x -       u(x ' °) = Mo(x)-

Proof. This follows from Theorem C.

2. Derivation of the evolution equation

Now we derive the evolution equation (1.26). We use the d idea of R. Beals

and R. R. Coifman [2, 3]. For fixed x the eigenfunction m(x, •) for a generic

potential can be considered as a matrix-valued tempered distribution on C.

dm/d~z is a tempered distribution supported on X U {zx, z2, ... , zN} .

(2.1)    Lemma. If f is in L°°(C) and df/d~z = ß vanishes rapidly at oo, then

f has an asymptotic expansion

f(z) -f0 + fl/z + f2/z2 + ■■■,       fk= [    -zk~X dp(z),
Jk>\

in the sense that

< CN\z\     dist(z, supp//)       [3].

ZV-l

m - E fr''
7=0

In particular if v(z) - I decays rapidly on X, the associated eigenfunction

m has an asymptotic expansion in z,

2
(2.2) m(x,z) ~ mQ + mx/z + m2/z  +■■■,       z—><x>,m0 = I.

Since dm/dx = z2[J, m] + zQm + pm , we see that

(2.3) (d/dx-p)mk = Qmk+x+[J,mk+2\,       fe = 0,1,2, —

Especially

(2.4) Q = -[J,mx],        P = -Qmx-[J,mA.
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GLOBAL SOLVABILITY 113

Now suppose that the evolution of the scattering data is given by

dv(z,t)/dt = zk~x[J,v(z,t)],

dv(zj,t)/dt = zkj-x[J,v(zj,t)],

and z is fixed for each j. Then m and Q, P also evolve in t. We denote

/-differentiation by a dot. Differentiating (2.4) with respect to the i-variable we

obtain

(2.6) Q = -W,mx],       P = -Qmx-Qmx-[J,m2].

— 1 2
Since m has an asymptotic expansion, we have mJm ~ J + Âl/z + À2/z +

■■■ , where kk = Xk Q p and mm     ~ fx/z + f2/z  -\-, where fk(x,t) =

¡zk~x[d(mm'x)/dz]. Then m = (mm~x)m ~ fx/z + (fxmx + f2)/z2 + ■ ■■ .

Hence

(2.7) rhx=fx,       m2 = fxmx+f2.

Substituting (2.7) into (2.6) we get

(2.8) Q = -[J,fx],      P = -[Q,fx]-[J,f2l

We see that d(mm~x)/d~z and zk~xd(mJm~x)/d~z are both supported on

X U {zx, z2, ■ ■ ■ , zN} . By the argument in [3],

(2.9) d(rhm~x)/dz = zk~xd(mJm~x)/d-z.

Hence /, = -Xk and f2 = -Ak+X.  (Q,P) evolves as

(2.10) Q = [J,Xk],      P = [Q,Ák] + [J,Xk+x].

2
3. Estimate of m in L -norm of the potential

As we show below, the technique used in [2, 6] to solve the inverse problem

reduces solvability at t = T to control m(x,t,z) as t —► T. Recall that the

equation for m is

(3.1) ^ = z2[/,m] + zßw + i>zn,

where Q = (£°. g) and P = Q(adJ)~xQ. Let m = e\p(¡700P)m. Then m

satisfies

/-.,» dm       2r,   .,     „ «
(3.2) -^ = z[J,m] + Qm,

where

Q = exp(-j*  Q(adJ)-xQ\Qexp(jX  Q(adjyxQ\.
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Since ß(ad /)    Q is purely imaginary,

\mii(x,z)\ = \mij(x,z)\;       \\Q\\2 = \\Q\\2;

lim mu(x,z)\ =   lim mu(x,z)
X—>oo X—>oo *v

Writing m instead of m, we may consider the following problem:

(3.3) ^m = z2[J,m]+(^   ^jm>

(3.4) m(-,z) bounded,       m(x,z)^I    as x —>i;

here J = ( "¿' °. ), i = v/^T. Taking the first column of m , we have

dx\m2x) \(2i)mX2)     \r   Oj\mJ'

i.e.

—r^- = qmx2,       mu(-oo)= 1, m12(-oo) = 0,
(3.5) ax

dm 2,
te=z (2i)mx2 + rmxx.

We are led to consider the following basic system of O.D.E.:

/i es dU dV . . / \       n n
(3.6) -j— = qv,    -j-+cv = ru,       u(-oo) = a, v(-oo) = 0, c> 0.

(3.7) Basic Lemma. Given q,r G L (-oo,oo), there are unique absolutely

continuous bounded functions u,v satisfying (3.6) and WuW^ + H^H^ < F =

F(\\q\\2,\\r\\2,\a\).

Proof. First we convert the equation (3.6) into an integral equation:

(3.8) u(x) = a+[    qv,    v(x) = Í    ec(y~x)ru,       c> 0.
J— oo J— oo

At first we look for the solution u, v , where u G L and v G L°° . Consider

the following recurrence formula:

(3.9) un = a+ j     qvn,    vn+x =        ec{y~x)run,       v0 G L2 arbitrary.
J— oo J—oo

We have

ll"n+.-"Jloo^(llíll2ll'-|l2/C)ll",-"n-ll¡oo;

ll"„+1-«JI<(lkll2IMl2^)K-"B-ill2-
Consider the following two cases:

Case 1. ||9||2||r||2/c < 1. Then {un} is a Cauchy sequence in L and {vn} is

a Cauchy sequence in L2 ; there exist u G L°° and v G L such that un —► u

in L°° , vn —► v in L   and

II" - «Olloo ^ ( VU HMI2H2/* - "olloo '
||«-V0|l2<(l/(l-Hill2lH2/C))IK-"oll2-
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GLOBAL SOLVABILITY 115

Taking the limits of un and vn in (3.9) we have

(3.10) u = a+        qvdy,       v=        e        rudy.
J— oo J— oo

Obviously u,v are absolutely continuous and u,v satisfy the O.D.E. (3.6).

Note that
,.  .      (ecx,       x<0,
h(x) = {

10, x>0,

is also in L2, hence IMI^ < (l/V/2c)lkll2llMlloo •

Case 2.   WqW^lrW^/c < oo . Let A be a positive integer satisfying

||<,||2||r||2/(Ac) < 1.

There exist a finite number of points 0 = x0,xx,x2, ... ,xN = oo such that

(fXj+' k|2)'/2 ^ Ikl^/^-  By Case 1, the solutions u,v exist up to the point

xx . Then consider the following equation with initial values at xx :

u = u(x.)+ /  qvdy,
(3.11) '      JXl

v = ec(-x+x>]v(xx) + f* ec(y-x)rudy,

where u(xx) and v(xx) are constants which depend only on a, \\q\\2 and ||r||2.

Since

a;kl2)     ||r||2/c<|k||2||r||2/(AC)<l,
'X,

again by Case 1, we may extend the solution u, v to the point x2. If we

continue, we obtain u, v, defined on the whole line and satisfying equation

(3.6), Uwll^ + llwll^ < F = F(\\q\\2, \\r\\2, \a\) < oo . We are done.

(3.12) Theorem. Assume Q = (0rq0) is of Schwartz class. If z is large enough

and 1/2 < | Re(z)|/| Im(z)| < 2, then there is a unique m(x, z) which satisfies

(3.3), (3.4), i.e.

d 2
-^—m = z [J, ml + Qm,
dx

Let

We have

m(-,z) bounded,       m(x,z)-+I    as x —► -oo.

m=(m"    m").

\m2x    m22J

K-,.(- ,z)\\oo<F = F(\\q\\2, \\r\\2, \d(z)\, \a(z)\),

where limJt_>+00 m22(x, z) = d(z) and hmx^+00 mxx(x,z) = a(z).

Proof. The existence of m(x,z) was proved in [6]. It suffices to estimate m
2 1

by the L -norm of q, r. We may assume Im(z ) > 0. The first column of m
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satisfies

mxx(x,z)=        zq(y)m2x(y,z)dy+l,

(3-13) F     -x  -2iz2
m2x(x,z)=        e(y z ]zr(y)mxx(y,z)dy.

J —oo

Multiplying by z on both sides of the second equation of (3.13), we have

(x,z)= /    q(zm2x(y,z))dy+ 1,
J — oo

/ \ fX      {y-x){-2iz2)   2   ,   . , . j
zm2x(x,z)=        e z r(y)mxx(y,z)dy.

J — oo

Let mxx = u and zm2x = v . If 1/2 < | Re(z)|/| Im(z)| < 2, we have the same

estimate for mxx and zm2x ; then

\\rriu(',z)\\„ + \\zm2x(.,z)\\„<F(\\q\\2,\\r\\2i

Hence \\mxx(,z)\\oo + \\m2x(,z)\\oo < f (||i||2,||r||2) if \z\ > 1. For the second

column of m we write the integral equation normalized at oo. Note that

lim^^ m22(x, z) = d(z) and lim^^ mx2(x ,z) = 0 (see [6, p. 33]),

m

(3.14)

(3.15)

m22(x

/■oo

, z) = d(z) - /    q(y)(zmx2(y, z)) dy,
J X

/•°°   , .. ■>.   .roo ,

zmx2(x,z) = -      e(y~        z)z2r(y)m22(y,z)dy.
J X

Then by a similar argument we have the estimate

IK2(-. Z)Hoc + HW22(- ' Z)Hoo £ ^(Il9ll2 ' Hrll2 - 1^(^)1)-

Note that lim, .^ocd(z) = 1 and lim, ,   ^^(z) = 1 .

(3.16) Remarks. The point of Theorem (3.12) is not the existence of m , which

was proved in [6]. As we show in [6],

limom(x,z) = ô(z)=(a{*)   d°{z)y,

lim  a(z) = 1, lim  d(z) = 1,
|z|-»oo khoo

m(, z) is bounded for |z| > A, where A depends only on d(z). The crucial

fact here is that in the case r = eq*, \\q\\2 and d(z) are invariant under the

DNLS evolution.

Proof of Theorem C. By local solvability, the solution q(t,x) exists for 0 <

t<T, T>0. Let <2=U°-o)> sd(Q,Q(adjyxQ) = v(,t). According to

Theorem (3.12), there is an open set Q = {z: 1/2 < | Im(z)|/Re(z)| < 2, |z| >

C,} such that

(3.17) ||m(x,z,il/)||<C2     for all xgR , zgQ,

and for {ty} some sequence converging to T. Since {v(-,t): 0 < t < T} is

bounded, we can choose the piecewise rational function  u(,t)  of (1.21) to
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depend smoothly on t and to have simple poles in a fixed finite set É inde-

pendent of /. Recall v" = u~v(u+)~ and m is the eigenfunction associated

to tz" :

(3.18) \\m\x,t,-)\\<C3     for|z|>C4.

We look for m(x ,t,-) of the form

(3.19) m(x,t,-) = r(x,t,-)m\x,t,-)exz   u(x,t,-)e~xz   ,

where r(x,t,-) is rational with simple poles on E l) E' and approaches I at

Z = 00 .
p

r(x,t,z) = I + Y^(z - zk)~lak(x,t),

k=\

where ak(x, t) satisfies some system of linear equations and depends smoothly

on x and t. Moreover, for each x and t these equations have at most one

solution, while the existence of a solution for all x is the necessary and sufficient

condition that v(,t) be generic. Now detw" = 1 and det(^2 Ju(z)e~xz J) =

1, so (3.17), (3.18), (3.19) give

\\r(x,tu,z)\\ < C5     for xgR , zgQ. , \z\ > C4.

Passing to a subsequence, we deduce that r(x,tv,-) —» r(x,T,•), where the

residues of r(x, T,-) solve the requisite linear equation at t = T. Therefore

v(,T) is generic. Since the set of generic data is open in SD, the solution

q(x, t) of the equation ( 1.20) exists for 0 < t < T + e . Obviously this implies

the global solvability of the equation (1.27).
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