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S U M M A R Y  
Methods of global spherical harmonic analysis of discrete data on a sphere are 
placed in a historical context. The paper concentrates on the loss of orthogonality in 
the direction of latitude, due to the transition from continuous to discretized 
functions. Special attention is paid to Neumann’s (1838) solution to this problem. By 
recasting the formulae of spherical harmonic analysis into matrix-vector notation, 
both least-squares solutions and quadrature methods are represented in a general 
framework of weighted least squares. It is also shown that the two-step formulation 
of global spherical harmonic computation was applied already by Neumann (1838) 
and Gauss (1839). Computational modifications to Neumann’s method are reviewed 
as well. 

Key words: global spherical harmonic analysis, least squares, Neumann quadrature, 
numerical integration. 

1 INTRODUCTION 

Since the early 1980s a growing number of spherical 
harmonic models of the earth’s gravity field have become 
available up to very high degrees and orders (Wenzel 1985; 
Rapp, Wang & Pavlis 1991). Expansions up to degree and 
order 180 or 360, the latter with more than 130000 
individual coefficients, are widely used for many purposes. 
This development has. been triggered by work of Rizos 
(1979), Colombo (1981), and Tscherning & Poder (1982). 
They showed that if in the case of global spherical harmonic 
synthesis (GSHS) proper care is taken in the sequence of 
summation over degree and order, the two can be treated 
independently. Application of efficient summation (Rizos 
1979), FIT algorithms and block structure (Colombo 1981) 
or Clenshaw summation (Tscherning & Poder 1982) then 
results in an enormous increase of computer efficiency. 
Algorithms for GSHS, based on these methods have been 
compared, e.g. by Tscherning, Rapp & Goad (1983). 
Analogously, in the case of global spherical harmonic 
analysis (GSHA), the integration in the direction of 
longitude is separated from the one in the direction of 
latitude. The resulting efficient algorithms, both for 
synthesis and for analysis, are thus based on a two-step 
formulation of global spherical harmonic computation 
(GSHC). 

* Now at: Technische Universitat Munchen, Institut fur Astronom- 
ische und Physikalische Geodasie, ArcisstraBe 21, D-80290 
Munchen, Germany. 

It is the objective of this paper to draw the attention to 
old German literature in which the ideas of a two-step 
formalism were first explained, some 150 years agot. These 
ideas evolved in a period of great mathematical flourishing: 
eminent mathematicians like Gauss and Neumann were 
engaged in global spherical harmonic computation. Apart 
from a purely mathematical interest, a great incentive came 
from the fact that global geomagnetic data became available 
(cf. Gauss 1839). Bearing in mind that all computations had 
to be done by hand, it seems only natural that algorithms in 
those days had to be efficient. Since the number of 
parameters in a spherical harmonic expansion goes with the 
square of its maximum degree, the need for such algorithms 
is still present nowadays, despite the availability of powerful 
computers. 

The efficiency of the methods that will be described stems 
from a suitable ordering of the degree and order 
summations in the spherical harmonic series formulation. In 
the next section this specific ordering will be called 
order-degree summation swap. Almost at the same time 
Neumann (1838) and Gauss (1839) developed such two-step 
GSHA formulations. A common first step consisted of a 
Fourier transformation along parallels. As will be shown 
later, this first step can be performed easily for discrete 
data, due to the orthogonality properties of the trigono- 
metric base functions. However, the two authors differ in 

t In this sense the words of the title should be understood. I t  is not 
intended to give a thorough review of past and present methods of 
global spherical harmonic analysis in this paper. 
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their treatment of the second analysis step: the computation 
of spherical harmonic coefficients from the obtained Fourier 
coefficients. A complication in this second step is the loss of 
orthogonality of Legendre functions at discrete points. 

Gauss (1839) approached the second step by a 
least-squares inversion of the linear relationship between 
spherical harmonic and Fourier coefficients. In this work an 
expansion of geomagnetic point data up to degree and order 
4 was performed. In the two-step formalism the maximum 
size of matrices to be inverted will then be 4, if zero-order 
terms are absent. It will be clear that this method was 
restricted to low maximum degree expansions in those days. 
More serious objections to Gauss’s method of least squares 
are the dependence of the final spherical harmonic 
coefficients on the choice of maximum expansion degree L, 
and mutual dependence between coefficients of varying 
degree for a given order, due to the non-orthogonality of 
discretized Legendre functions. 

Neumann’s (1838) starting point was the numerical 
evaluation of an integral. In an elegant way he devised 
certain quadrature weights which preserve orthogonality of 
the Legendre functions, thus leading to exact quadrature 
formulae. Basically two versions of Neumann’s method 
exist. In the first one, the number of parallels employed is 
roughly twice the maximum degree of expansion. Although 
this ratio is not so favourable, the distribution of the 
parallels may be chosen at will, for instance equi-angular. 
Neumann’s second method requires only L + 1 latitude 
circles, if L is the maximum degree. However, they must be 
situated in the roots of a certain Legendre polynomial. This 
second method appears to be equal to Gauss’s quadrature 
method (1814), as Neumann himself had indicated. It 
seems, though, that Gauss did not apply this quadrature to 
spherical harmonic analysis, but favoured the least-squares 
approach instead. In numerical analysis the method is more 
specifically known as Gauss-Legendre quadrature (Stroud 
& Secrest 1966). 

Unlike Gauss’s method of least squares, Neumann’s 
methods have not found widespread application. Prey 
(1922) developed the earth’s topography into a spherical 
harmonic series up to degree and order 16 using Neumann’s 
second method. This work was extended by Vening- 
Meinesz (1959) who developed the topography up to degree 
31. The actual computations are described in Hofsommer 
(1957). Other applications may be found in the atmospheric 
sciences, e.g. Ellsaesser (1966), where both the first and 
second method are treated, and used to analyse hemispheric 
pressure data. 

In geodesy only the second Neumann method is used or 
mentioned, though only implicitly, namely as Gauss- 
Legendre quadrature, cf. Payne (1971) or Colombo (1981). 
The non equi-angular distribution of parallels seems to be a 
major objection to the method. A geodetic reference to 
Neumann can be found in Pellinen (1966). For one reason 
or another the geodetic use of Gauss-Legendre quadrature 
was most popular in the former Eastern Block countries. 

This paper recalls the basic formulae of GSHC, after 
which most attention is paid to the problematic second 
analysis step. The problem arises, as mentioned before, 
from the loss of orthogonality of Legendre functions after 
discretization. This skewness, and its reparation by 
Neumann, is most clearly seen in terms of point data 

discretizations. Moreover, stochasticity of the data and too 
high signal frequencies would ruin Neumann’s quadrature 
methods. The scope of this paper is therefore limited to 
treating the rather academic question of GSHA of a 
point-gridded, non-stochastic function without signal beyond 
the Nyquist frequency. Although far from reality, these 
simplifications explain Neumann’s and Gauss’s ideas best, 
and do correspond to the underlying principles of GSHA. 

Subsequently, Gauss’s least-squares approach, approxim- 
ate quadrature and Neumann’s methods are treated. 
Furthermore, the equations of discrete GSHC are given in 
matrix-vector notation as well. As a result all three 
approaches fit into the general framework of a weighted 
least-squares formulation of GSHA. 

2 THEORETICAL BACKGROUND 

We start with recapitulating the necessary formulae of 
GSHS and GSHA, both for the continuous and the 
discretized cases. For the latter, the formulae are also 
presented in a compact matrix algebra formulation. 

2.1 Global spherical harmonic computation-continuous 

A square integrable function f(0, A) on a sphere (0 
colatitude, A longitude) can be developed into harmonic 
coefficients CIm and s,, using the GSHA: 

- 
cos mA “-1 Stm = & I j f (0 ,  A)e,,,(cos @)( sin mA ] da,  

U 

with do =sin 0 d@ dA. Vice versa, the function f ( @ , A )  can 
be reconstructed by the GSHS: 

f(6, A) = C C. P;,(cos e)(Clm cos mA + S,m sin mA). 
2 1  

I=O m = O  

(2) 

The overbars denote normalized quantities, where the 
following normalization factor has been adopted: 

(I - m)! 
(1 + m)!  ’ (2  - hm(,)(2f + 1)- 

with 

A major contribution of Rizos (1979) and Colombo (1981) 
in spherical harmonic computation consisted of the 
observation that the latitude and longitude information can 
be dealt with independently if the summation scheme is 
reordered: 

I s 0  m = O  m = O  I=m 

This summation swap leads to a two-step analysis and 
synthesis formulation, which is optimally suited to efficient 
computer programming. 
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Two-step synthesis+ontinuous 

Two-step analysis--continuous 

The reasons for the greater efficiency of the two-step 
formulation is twofold. First, eqs (3b) and (3c) can be 
treated by Fourier transformations over single parallels. 
Secondly, the equations may be evaluated for separate 
orders m, leading to block diagonal structures in the discrete 
case. Eqs (3a)-(3d) may be summarized in the following 
scheme: 

2.2 Global spherical harmonic computatiodscrete 

In reality, one has to deal with discretized function values, 
either point values or area means. Here, we restrict 
ourselves to the case where the function has been sampled 
at discrete points. The aliasing problem will be ignored, i.e. 
it is tacitly assumed that the function does not contain 
information above degree L. In Section 3 reference is made 
to more realistic situations. Also, the last section returns to 
this problem. First, one has to truncate the spectrum at a 
maximum degree and order, say L. Next the function 
f(0, A) must be sampled. Assuming an equi-angular 
discretization in longitudinal direction Ai = i AA, i = 
0, 1, . . . , 2 L  - 1, where 

2n n 
2L L '  

AA=-=-  

it can be shown that orthogonality is preserved. 

%,os mil cos kA dA = (1 + 6,,)n 6,, * 
2L-1 

C cos mA, cos kAi = (1 + 6,, + dmL)L a,,, 
i =O 

%"sin mA sin kA dA = (1 - 6,& a,, f* 

2L-1 

sin mAi sin klr, = (1 - a,, - 8,L)L h m k ,  
i s 0  

2L-1 

r c o s  mA sin kA dA = 0 +.+ 2 cos mAi sin kAi = 0. 
i=n 

So far, it has not yet been decided what the sampling in the 
direction of latitude should be. There is no way yet to 

establish rigorously orthogonality in the discrete case: 

\ ~ ~ / i r n ( ~ ) ~ / z m ( x )  = 2(2 - d m n )  ~ / l / z  c* 

C p/,m(xi>P/pn(xi> +2(2 - hmn) 8 / 1 / 2 7  
i = l  

N 

in which N denotes the number of parallels, not necessarily 
equal to L. The GSHC equations now reduce 
following set. 

Two-step synthesisdiscrete 

L 

f(O,, Aj) = C A,,,(@;) cosmA, + B,(Oi) sin mAj. 
m = O  

Two-step anaiysis-discrete 

= t o  be determined. 
S/m 

The coefficients Am(Oi) in the upper line in eq. (4c) have an 
index range m = 0, 1, . . . , L, whereas the index for the B, 
coefficients run from m = 1, . . . , L - 1. Since the distribu- 
tion of parallels has not been decided yet and since the 
problem of non-orthogonality of the bscretized Legendre 
functions has not been resolved, the -determination of the 
I?/,,,- and $,,,-coefficients remains an open question. It must 
be noted that the number of function values for each 
parallel equals the number of Am(Oi)- plus Bm(ei)-  
coefficients: (L + 1) + ( L  - 1) = 2L. 

A preliminary conclusion can be drawn on the m-limits to 
the sine terms. It is a known fact that B,(B,)-terms with 
m = 0, and consequently all zonals S/.n do not exist. 
However, the same holds true for the m = L-term. The 
Fourier coefficient BL(t?,) does not exist either, which leads 
to the conclusion that sLL is unestimable also. 

Because of the orthogonality properties of the sine and 
cosine functions and because of the periodicity of the 
function on each parallel, the forward and backward Fourier 
transformations can efficiently be performed by Fast Fourier 
Transforms (FFT). Eqs (4a)-(4d) may be summarized now 
in the following scheme: 

2.3 Matrix notation 

The discrete analysis and synthesis formulae are recast now 
into matrix-vector equations. This transition yields compact 
equations, which are helpful when comparing least squares 
with quadrature solutions. With xi = cos O i ,  we introduce 
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the following vectors and matrices: 

F = 2L X 2L Fourier matrix (cf. Strang 1986) 

with [F], = ei(rsx)'L, r, s = 0,  1, . . . , 2L - 1. 
In order to apply the Fourier matrix F properly one 

should also introduce a complex vector, say d, of length 2L 
composed of a + ib and a - ib. F has the property 

1 
2L 

F-'=-Ft FFt=2LI, 

with I the identity matrix. This relationship expresses again 
the orthogonality relations of the trigonometric functions. 
The matrix Ft denotes the Hermitean (complex conjugated 
and transposed) of F. 

Having introduced the above notation, we may now write 
the GSHC equations as follows. 

Synthesis 

a = Pc, b = Ps, a, b-+ d, 

f = Fd. 

Analysis 

d = F-'f, 

c = P-a, 

d-+ a, b, 

s = P-b, 

in which P- denotes some generalized inverse. It refers to 
the fact that the inversion of eq. (Sa) is still to be 
determined. It is underlined again that the Fourier 
transformations eqs (5b) and (Sc) apply to each parallel 
individually, and that the formulae involving the matrix P 
pertain to one specific order m. This splitting of information 
and unknowns, originating from the degree-order swap, is 
what makes the two-step method so powerful. 

The size of a single matrix P is N x (L - m + 1). In order 
to have an overdetermined systems (eq. Sa) one has to 
demand that the number of latitude circles (N) at least 
equals the maximum of (L - m + l), which occurs when 
m =O.  Thus, the only restriction on the sampling in the 

direction of latitude is N 2 L + 1. Except for this restriction, 
nothing has been said about the latitudinal sampling so far. 

3 LEAST SQUARES 

It has been shown that the sine and cosine functions retain 
their orthogonality, provided that an equidistant sampling is 
applied along each parallel. In the sequel therefore we are 
no longer concerned with the Fourier transformations, but 
concentrate on the 'Legendre transformation'. Basically, 
two approaches exist for solving the second analysis step. 
The first originated from Gauss (1839) and results- 
unsurprisingly-in a least-squares solution of the linear 
systems (eq. Sa), i.e.: 

c = (PTP)-'PTa, s = (PTP)-'PTb. (6) 

The maximum normal matrix size will be (L + 1) x (L + 1). 
A specific column out of P represents a discretized Legendre 
polynomial fim(cos Oi), i = 1, 2, . . . , N. The normal matrix 
PTP is composed of inner products between these columns. 
l'herefore, each normal matrix entry represents the level of 
(non-)orthogonality of discretized Legendre functions: 

N -  
[P~P], = C P,(COS O~)F,,,,(COS ei). 

i=  1 

Thus, orthogonality is shown to be equivalent to a diagonal 
normal matrix. Since orthogonality is lost PTP will not be 
diagonal. From a simple example with N=21 ,  L =  10, 
m = 0, using an equi-angular tli-grid (cf. Fig. l), it may be 
clear that PTP is even far from diagonal. The maximum 
diagonal value becomes about 45 instead of 2, whereas the 
off-diagonals exhibit substantial values. 

The two-step GSHA approach using least squares leads to 
non-diagonal normal matrices with a maximum size of only 
L X L. Even though matrices of this size, e.g. 360 x 360, do 
not present difficulties on present-day computers, one may 
want to avoid matrix inversions of this size. In this case one 
could approximate the normal matrix by a scaled identity 
matrix, say PTP = Il, thus ignoring non-orthogonality. The 
scale factor I is not necessarily equal to 2(2 - This 
approximation would lead to the solution c = A-'PTa, 
s = A-'PTb, or: 

(7) 

which can be considered as a very crude quadrature 
approximation to eq. (3d). 

A major reason for the widespread use of the 
least-squares method is its flexibility concerning data 
distribution. Eq. (2) may be regarded as an observation 
equation which could be used on a totally irregular data set 
in a one-step approach. Moreover, the flexibility in using 
data of different types is a great advantage of the 
least-squares method. It can, for instance, be used to 
combine satellite-derived models with terrestrial data (cf. 
the OSU91A model up to degree 50) (Rapp et al. 1991). But 
the most important advantage is the possibility of 
incorporating a stochastic model and a priori information 
(cf. Colombo 1981), leading to a least-squares collocation 
formulation. From a practical viewpoint Wenzel (1985) 
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1 

Figure 1. Normal matrix of least squares. N = 21, L = 10, m = 0. 

considers quadrature methods as non-optimal as compared diagonal is composed of the si weights. A weighted 
with least squares. least-squares solution to the linear systems eq. (5a) now 

becomes: 

4 APPROXIMATE QUADRATURE c = (PTSP)-'PTSa, s = (PTSP)-'PTSb. (10) 
Comparing eq. (7) with eq. (3d) we notice the absence of a 
sin 0 d0 term in the former. A direct discretization of eq. 
(3d) introduces such a term proportional to sin Oi into the 
solution, leading to the following approximate quadrature 
formula: 

with either one of the following possibilities 

J& 

si = - sin Oi 

or 

N 

sin Oi ,  
2 s. = 

' N  
C sin 6 k  
k=l 

(cf. Ellsaesser 1966). 

To a good approximation the normal matrix equals a scaled 
identity matrix, PTSP = 2(2 - 6,& resulting in: 

c iT $(1+ G,,)PTSa, s = $(1+ G,,)PTSb, (11) 

which is the matrix equivalent of eq. (8). Still the method of 
approximate quadrature suffers slightly from non- 
orthogonality. The lack of orthogonality of PTSP is 
displayed in Fig. 2, where twice the identify matrix has been 
subtracted from the normal matrix. Again nothing has been 
said about Oi-sampling. Its choice is still free, in principle, 
though the weights eq. (9a) suggest an equi-angular 
A 0  = n/N spacing already, which is used in Fig. 2 indeed. 

Thus, to each parallel Oi there corresponds a weight sir 
proportional to the sine of the colatitude. As a 
generalization to the numerical quadrature (eq. 8) one could 
consider quadrature weights, not only depending on the 
colatitude, but on degree 1 and order m as well. The weights 
can be adapted to accommodate block averaging and 
desmoothing, and to minimize sampling and estimation 
error. In fact this type of quadrature can strictly be derived 
from a least-squares collocation formulation. The reader is 
referred to Colombo (1981), Hajela (1984) or Gleason 
(1989). A further discussion on 'real world harmonic 
analysis' is found, e.g. in Pavlis (1988), where a comparison 
between least-squares methods and quadratures is made 
(see also Wenzel 1985). 

How good the approximate quadrature formula (8) is, 
may be assessed by writing down the equivalent matrix 
problem. Consider a diagonal weight matrix S, whose 

(9b) 5 NEUMANN'S EXACT METHODS 

In 1838 Newmann showed that exact orthogonality can be 
attained in the discrete case by devising certain weights wi. 
If stored in a diagonal weight matrix W, these weights lead 
to the following weighted least-squares solution: 

c = (PTWP)-'PTWa = $(I + 6,,)pTWa, 
s = (PTWP)-'PTWb E $(l  + 6,,)PTWb. 

In this case the normal matrix is exactly diagonal. 

(12) 

PTWP = 2(2 - 6,")l. (13) 

Therefore, we may say that the analysis problem eq. (4d) 
has been solved by eq. (12), leading to the following exact 
quadrature formula: 

In order to establish eq. (13), the Neumann weights wi 
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PTSP 

11 

Figure 2. Normal matrix of approximate quadrature minus twice the identity matrix. N = 21, L = 10, m = 0. 

must fulfil the following condition (cf. Neumann 1887): 
f - m  

N L 
n even, 

i = l  
0 , n odd, 

in which n runs from n = 0, 1, . . . , N - 1, and xi  denotes 
cos O j .  Though Neumann proves orthogonality himself, a 
very simple and elegant proof is given by Lense (1954). The 
product of two associated Legendre polynomials in x ,  
pl lm(x)  and p12,(x), will be a polynomial in x of degree 
1, + 1,. 

n =O 

Its integral can be developed as: 

N 

= C wi~ / lm(x i )p /~m(x i ) .  
i = l  

Thus, discrete orthogonality has been proven: 

N 

i = l  c wip/1m(xi>'/2m(xi> = 2(2 - 6mO) 6/1,2) (16) 

which is equivalent to the matrix identity eq. (13). The 
normal matrix PTWP is not displayed here since it does not 
show any deviation from 21. The computational aspects of 
Neumann's quadrature weights wi are treated in the 
following section. But first the &sampling question must be 
settled. 

1 

x3 

. . .  

... 

... 

Matrix X is a so-called Vandennonde matrix, known from 
Lagrangean interpolation, whose determinant has the 
analytic expression: 

det X = (x ,  - x I ) ( x 3  - x l ) ( x 3  - x,) - - - (x ,  - xl) 

. (xn - n,)(x, - x j )  . (XN - XN-1). 

It is clear that this determinant will only vanish when xi  = x i ,  
for i # j .  Thus, the vector w, containing the Neumann 
weights, is uniquely determined when parallels do not 
coincide. This is the only restriction to an arbitrary choice of 
the parallels. The number of them may be deduced from 
inspecting Lense's proof. We notice that the maximum 
power of x equals max (I, + 1,) = 2L. Therefore, since the 
matrix X is square, the number of latitude circles must be 
N = 2 L + 1 .  

In summary, the first Neumann method performs a 
GSHA up to degree and order L, which is exact if the 
function has been sampled on the following grid: 

Oi = random but distinct, 

A i = j A A ,  j = O ,  1 , . . .  ,2L-1 ,  

i = 1, 2, . . . , 2L + 1, 

n 
A A = - .  

L 

The meridians have an equi-angular AA spacing, whereas 
the parallels may be chosen freely without coinciding. One 
such choice could be an equi-angular A 0  spacing of course. 
The number of function values is roughly four times the 
number of spherical harmonic coefficients to be determined. 

5.1. First Neumann method 5.2 Second Neumann method 

The linear system eq. (15) may be written as the A special case of exact quadrature is achieved by restricting 
matrix-vector equation X w  = r, or: the @-grid. Neumann (1887) showed that if one chooses the 
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latitude circles to coincide with the zeros of the Legendre 
polynomial of degree L + 1, i.e. 

PL+l(xi)  = 0, i = 1, 2, . . . , L + 1 

the number of parallels can be reduced to N = L + 1. The 
order of precision of the numerical quadrature is doubled 
(cf. Lanczos 1956), and eq. (16) remains true with half the 
number of parallels as compared with the first method. The 
ratio of function values versus harmonic coefficients will 
roughly become two. In Section 2 it was noted that the 
number L + 1 is the minimum number of parallels, required 
for having an overdetermined system (eq. 5a). 

The specific 0-grid leads to the Gaussian quadrature* 
method, well known form numerical analysis (cf. Lanczos 
1956); Krylov 1962; Abramowitz & Stegun 1970, section 
25.4). As such it is also known in geodesy (cf. Payne 1971; 
Colombo 1981). In Payne (1971) the specific @-spacing is 
referred to as a Gauss grid. Summarizing Neumann's second 
method, an exact GSHA is performed up to degree L, 
making use of a Gauss-Neumann grid, defined by: 

P,+,(COS ei)  = 0, i = 1, 2, . . . , L + 1, 
Ai=jAA, j = O , l ,  . . . ,  2L-1, 

Jl. Ak =- 
L '  

6 COMPUTATIONAL ASPECTS OF 
NEUMANN'S QUADRATURE WEIGHTS 

For the computation of weights in the second Neumann's 
method, use can be made of the existing literature on Gauss 
quadrature. Nodes and corresponding quadrature weights 
have been tabulated (e.g. Krylov 1962; Stroud & Secrest 
1966). If the zeros of P L + l ( x )  are available-they only have 
to be computed once-the weights may be calculated for 
instance from: 

* L 

(cf. Krylov 1962), or 

The prime in the Krylov formula denotes the derivative with 
respect to x. Apart from these formulae, the wi may be 
calculated from the matrix methods, to be treated next. 
Further numerical aspects of finding nodes and weights can 
be found, e.g. in Press et al. (1992). 

As to the computation of weights in the first Neumann 
method, one will run into numerical problems in solving the 
linear system eq. (17). Suppose we have chosen a 
distribution of parallels which is symmetrical with respect to 
the equator, i.e. xi  = -x , , ,+~-~ ,  or 19~ = n - @ N + l - i ,  where 
N = 2L + 1. The distribution is not necessarily equi-angular. 
Prey (1922) has shown that the quadrature weights are 
symmetrical as well: wi = W , , , + ~ - ~ ' I ~  turns out that the rows 
with odd powers of xi may be removed, while the vector of 
unknowns w is reduced to the elements w l ,  . . . , w,, which 

*Gauss-Legendre quadrature to be more specific (cf. Stroud & 
Secrest 1966). 

^^ Conditioning of Vandermonde Matrix 

0 20 40 60 80 100 
number of parallels 

1 oa 

Figure 3. Conditioning of the linear system eq. (19) 

also implies that the corresponding columns are removed. 
Since X ~ + ~ = O ,  referring to the equator, the column 
corresponding to w , + ~  would have zero entries and is also 
removed. In order to keep a square matrix the first row is 
eliminated. These operations leave the following reduced 
linear system X'w' = r': 

This system may be solved either numerically by standard 
methods, or analytically by Lagrangean polynomials (cf. 
Lanczos 1956). The remaining weights w,+,, . , . , w2,+, 
come from the symmetry. Only the equator weight wL+, is 
treated separately. It comes from the removed first row: 

2L+ 1 

2 wi=2, 
i = l  

in which w L I l  is the only unknown. 
However, the system (eq. 19) is extremely unstable. This 

fact is demonstrated in Fig. 3, where the condition numbers 
of the matrix X', in the case of an equi-angular distribution, 
have been plotted against the number of parallels, which is 
also the size of the matrix. Prey (1922) reports that in order 
to achieve six-digit accuracy for w; the nodes xi must be 
given with 10 digits. Prey applied the system (eq. 19) with 
L = 16 to Neumann's second method, thus having effectively 
an 8 x 8 matrix X'. Test computations indicated that with 
double precision arithmetic L = 35 is somewhere the 
maximally attainable degree of expansion. In cases up to 
degree 360 for instance, applying eq. (19) is unthinkable. 

A simple way out of this situation is setting I, = rn = 0 and 
I, = n in eq. (16), yielding the linear system: 

i=  1 

or in the case of a distribution, symmetrical with respect to 
the equator: 

C 4 ( 2 - ~ , + l . , ) ~ , P Z , ( ~ i ) = 2 6 , ~ ,  
L+ 1 

n = ~ ,  I , .  . . , L. 
i =  1 
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- - cos 48, . . . COS49, 1 

W L  

In matrix notation one would have: 
... 
. . .  
. . .  

... 

0 , (20) 

0 .)I 
with w : + ~  = $w,+,. This system is stable, due to the use of 
orthogonal polynomials. The powers x l  have been 
transformed into Legendre functions, which corresponds to 
forming linear combinations of the rows. 

An alternative, which works even better in computational 
practice, is presented in Ellsaesser (1966), where the powers 
(cos 9j)n are transformed into cosines of multiple angles 
cos nBj instead. The result is 

wj cos n9, = -1;cos n6 sin 9 d6 = 
2L+1 

i = l  

with n = 0 ,  2 , .  . . , 2L for the upper line and n = 
1, 3, . . . , 2L - 1 for the lower line. In case of a symmetrical 
distribution it would be: 

In matrix notation we arrive at: 

-1 

(21) 
The conditioning of the matrices P,,(x,) and cos2n6, is 

displayed in Fig. 4. In the above figures an equi-angular grid 
without the poles has been assumed, i.e. O i = i ( 2 i -  1 ) A 8  
with i = 1, 2, . . . , 2L + 1 and 

n 
A 9  =----- 

2 L + 1 '  

If the latitudinal distribution is more irregular, the 
conditioning of matrices above may become much poorer. 

Conditioning of Legendre Matrix and multiple-angle-cosine Matrix 
looE 

lo5; 

lo4- 

lo3- 

2 102 

L 

3 .  

- .  r .  
7 7  

0 :  
multiple-angle-cosine 

l O ' F  

1OOf 1 
0 100 200 300 400 500 600 700 

number of parallels 

Figure 4. Conditioning of the linear systems eqs (20) and (21). 

7 DISCUSSION A N D  CONCLUSIONS 

7.1 A weighted least-squares framework of global 
spherical harmonic analysis 

Global spherical harmonic analysis can be formulated as a 
two-step procedure, which assumes a certain gridding of 
data already. For instance irregularly distributed data 
cannot be analysed this way. The first step consists of a 
Fourier transformation along parallels. The second step is 
treated by least-squares and numerical quadrature, both 
approximate and exact. The latter subdivided again in the 
first Neumann method and the second Neumann method, 
also known as Gauss-Legendre quadrature. For each 
method the spherical harmonic coefficients are represented 
both as quadrature formulae and as a least-squares solution, 
either with or without weighting (cf. Table 1). Thus, all 
methods fit into a general framework of weighted least 
squares. The formal distinction between least-squares and 
quadrature methods in GSHA disappears. 

Only specific weight matrices yield a diagonal normal 
matrix. The corresponding weights are the weights of exact 
quadrature. Consequently, other weight matrices will 
destroy orthogonality. Therefore, the incorporation of a 
stochastic model will not allow exact quadrature anymore. 

7.2 Number of obtainable spherical harmonic coefficients 

During the first step of discrete GSHA 2L Fourier 
coefficients A,(ei)  and B,(Oi) are retained for each latitude 
circle, which is equivalent to the number of data points, as 
shown in Section 2. The second step, though, does not show 
such a one-to-one relationship. The first Neumann method 
( N = 2 L +  1 )  requires a grid of ~ L x  ( 2 L +  1 )  function 
samples in order to perform a GSHA up to degree L. The 
overall ratio between data points and SH coefficients 
becomes roughly 4 for Neumann's first method. 

As to the second method, this ratio reduces to 2, due to 
the fact that roughly half the number of parallels is used 
(N = L + 1). This much more favourable ratio of 2 only 
requires the data points to be given on a so-called 
Gauss-grid which is quite close to an equi-angular one. The 
difference A$ between the equi-angular latitudes and the 
'Gauss latitudes' is nearly equal to $ /2L .  

Owing to the orthogonality properties of discretized sine 
functions it has been shown that B,(Oi) and B L ( g i )  Fourier 
coefficients cannot be determined. Therefore, not only the 
& coefficients are unestimable, but also SL,'. 

7.3 Practical situation 

It has been mentioned already that, in order to point out the 
ideas of Gauss and Neumann most clearly, our starting point 

Table 1. Summary of equation numbers. 

Matrix form Quadrature 

Least squares 6 7 

Approx. Quadr. 10/11 8 

Neumann Quadr. 12 14 
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Neumann weights - sine weights, N = 90,180,360,720 

'1' 
lo-'! 10 20 3b 40 50 60 i'0 80 20 

co-latitude (degrees) 

Figure 5. Logarithmic plot of the absolute differences between 
Neumann weights and sine weights, for the cases N = 90, 180, 360 
and 720 parallels. 

was a rather simple situation. The simplifications included 
assumptions on gridding (point data on some regular grid), 
band limitation (no signal beyond the Nyquist frequency) 
and stochasticity (no noise). These assumptions do not hold 
true in most practical situations. Data are mostly of 
area-mean type and corrupted with noise. Based on 
least-squares collocation, estimators can be found, which are 
optimal, in the sense of minimizing estimation and sampling 
errors, for more realistic situations. The basic reference for 
this is Colombo (1981). Hofsommer (1957) has shown 
furthermore that Neumann's methods may be extended to 
the use of block averages f (6, A). 

7.4 Comparison between the w, and s, weights 

Though the wj weights are determined in a purely numerical 
way, they do resemble a sine function, which is as they 
should be in the limit case. Compare them therefore with 
the sine weights in eq. (9b). These weights have the 
property that their sum equals 2, just like C j  wi = 2, which 
makes them slightly more suitable for comparison than eq. 
(9a). The logarithm of the abolute difference between wi 
and si is displayed in Fig. 5, for distributions of 90, 180, 360 
and 720 equi-angular parallels. 

7.5 Dual use of the name Gauss 

As a result of his enormous oeuvre, both in terms of 
quantity and quality, the name of Gauss has been used 
widely in mathematics, physics and earth sciences. This 
paper makes a twofold use of the name of Gauss. On the 
one hand there is the Gauss method of GSHA, which refers 
to the combination of a two-step approach and application 
of least squares to the second step of GSHA. On the other 
hand there is the Gauss quadrature, equivalent to the 
second Neumann method, which requires data distribution 
on a Gauss grid.  
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