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In the current study, Reduced Order Models (ROMs) targeting strate-
gies for experimental feedback §ow control are discussed. For practi-
cal reasons, such models should incorporate a range of §ow operating
conditions with a small number of degrees of freedom. Standard POD
Galerkin models are challenged by overoptimization at one operating
condition [1]. The extension of dynamic range with additional global §ow
stability modes is the ¦rst applied technique. Further side constraints for
control-oriented ROMs are taken into account by a ¢least-dimensional£
Galerkin approximation based on a novel technique for continuous mode
interpolation [2]. This interpolation preserves the model dimension of
a single state while covering several states by adjusting (interpolated)
modes. The resulting three-dimensional (3D) Galerkin model is pre-
sented for the transient §ow around NACA-0012 airfoil and shown to be
in a good agreement with the corresponding direct numerical simulation
(DNS).

1 INTRODUCTION

Computational Fluid Dynamics (CFD) is a mature tool used in design and im-
provement of performance of transport systems such as airplanes, trains, or cars.
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Development of high ¦delity CFD systems is accompanied by the clear conclusion
that parametric studies cannot rely only on increasing computer power or even
parallelization [3]. The design process opens myriads of versions to be analyzed.
Low ¦delity analysis and/or ROMs are presently the only realistic alternative.
Reduced order models are also necessary in the closed-loop §ow control. Model-
based §ow control requires online-capable feedback laws. In this paper, a focus
on a system reduction and the use of global §ow stability eigenmodes as the
key strategy to improve the §ow model dynamics is made. Traditionally, Proper
Orthogonal Decomposition (POD) modes, being the result of pure signal pro-
cessing, were used for ROMs. Poor performance of the models built with this
basis triggered several novel ideas and improvements [1, 4�10]. The successful
approaches incorporated more physical information about the modeled system.
The use of stability eigenmodes and continuous mode interpolation presented in
this paper is an example of this strategy.

2 EMPIRICAL GALERKIN MODEL

The standard Galerkin method [11] decomposes the velocity ¦eld into a base
§ow u0 and §uctuation u

′. The velocity ¦eld is approximated in the physical
domain Ÿ with the space-dependent expansion modes ui and time-dependent
Fourier coe©cients aj :

u[0..N ] = u0 +

N∑
j=1

ajuj , a0 ≡ 1 . (1)

The ansatz (1) can be used to derive a high-dimensional Finite Element model
(FEM) (computational Galerkin method) if expansion modes have local compact
support on grid cells (FEM hats). Low dimensionality and robustness, which is
our goal in designing the §ow model, requires a traditional Galerkin method that
is based on global expansion modes. The Galerkin system, resulting from pro-
jection of the Navier�Stokes equations onto the space spanned by the expansion
modes has the form:

d

dt
ai =

1

Re
>

N∑
j=0

lijaj +
N∑

j,k=0

qijkajak (2)

where
lij = (ui,△uj)Ÿ ; qijk = − (ui,∇ · (uj ⊗ uk))Ÿ .

The pressure term may be neglected in the case of absolutely unstable wake
§ows and arbitrarily large domains [12]. Equation (2) is a low-dimensional ana-
logue of DNS. The Reynolds-averaged Navier�Stokes (RANS) equivalent form
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together with Finite Time Thermodynamic (FTT) closure is described in detail
in [13].

3 GLOBAL FLOW STABILITY EIGENMODES

The incompressible Navier�Stokes equation

‘ui + ui,juj + p,i −
1

Re
ui,jj = 0

linearized for small disturbances, with the exponential anzatz for time depen-
dence, yields the generalized complex eigenvalue problem:

Figure 1 Streamlines of the most unstable modes corresponding to critical Reynolds
numbers at di¨erent angles of attack (a); and the evolution of the most unstable
eigenmodes with the growth of Reynolds number for α = 30◦ (b). Streamlines are
visualized in the ¦gure
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λ“ui + “uj �ui,j + �uj “ui,j + “p,i −
1

Re
“ui,jj = 0 ; “ui,i = 0 . (3)

After discretization, Eq. (3) takes the form:

Ax − λBx = 0

characterized by a very large dimension of the weakly-conditioned unsymmet-
rical matrices. Several papers deal with the solution of global §ow stability
problems, to mention, for example, the recent ones [14�16] and the review given
in [17]. In [18], the solution of a large global stability eigenvalue problem with
the unstructured 3D FEM is discussed.
Stability analysis is traditionally a tool for prediction of ampli¦cation or

damping of external disturbances present in all real §ows. Usually, this method
delivers two kinds of information: the physical modes (eigenmodes) being the
form of (spatial) disturbance development and eigenvalues, where the real and
imaginary parts are a measure of periodicity in time and ampli¦cation of the
§ow structure ¡ the growth rate.
The physical modes are of particular interest for §ow modeling. In Fig. 1,

the real part of the eigenvector is shown for the §ow around NACA-0012 airfoil
at di¨erent §ow conditions.

4 IMPROVEMENTS OF THE GALERKIN MODEL

4.1 Mean-Field Correction

The ROM obtained with the POD Galerkin method is highly e©cient and re-
solves the kinematics of the §ow nearly perfectly. At the same time, it is highly
fragile and sensitive to changes in the parameters or operating conditions. The
¦rst two POD modes capture about 95% of the perturbation energy; yet, the
Galerkin model based on these two modes is structurally unstable. The inclusion
of eight POD modes, capturing the ¦rst four harmonics of the attractor, su©ces
to achieve nearly perfect resolution and a structurally stable Galerkin system.
Yet, the correct prediction of the dynamics of the system with this model is lim-
ited to a small neighborhood of the attractor and to relatively small Reynolds
number perturbations. Stabilization of the Galerkin model can be obtained with
the shift mode [19] as suggested by mean-¦eld theory. The shift mode is a nor-
malized di¨erence u0 − us where u0 is the mean §ow solution and us is the
(unstable) steady solution.
The inclusion of the shift mode reduces model sensitivity to parameter varia-

tions and is an enabler for the low-dimensional representation of transient man-
ifolds, such as the one connecting the unstable steady solution to the attractor.
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Figure 2 Transients of Galerkin models for the §ow around a circular cylinder;
1 denotes traditional, 8 POD mode Galerkin model improvement due to the hybrid
model (2) and continuous mode interpolation (3 ¡ two interpolated modes) is seen

The dynamics of the minimum Galerkin Model with a shift mode is compared
with DNS in Fig. 2. The shift mode is the key enabler for construction of tran-
sient, control-oriented models.

4.2 Hybrid Model Employing Stability Modes

Further improvement of the model dynamics is obtained with the hybrid model
employing stability modes [20]. In this model, POD modes resolve the attractor
and the stability eigenmodes resolve the linearized dynamics. Thus, dynamic
transient and posttransient §ow behavior is accurately predicted. The concept
of the hybrid model reduces signi¦cantly the number of necessary degrees of free-
dom of the system. This approach is demonstrated for the benchmark problem
of the §ow around circular cylinder in [19]. The transients of the hybrid models
are compared with DNS in Fig. 2. The hybrid model combines the advantages
of both reduced models. It converges to the limit cycle preserving initially the
growth rate predicted by the global stability analysis.

4.3 Continuous Mode Interpolation

Further improvement in the design of the least-dimensional ROM §ow model is
the continuous mode interpolation technique applied for circular cylinder §ow
in [2]. The mode interpolation smoothly connects not only di¨erent operating
conditions, but also stability and POD modes (Fig. 3).
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Figure 3 Principle sketch of continuous mode interpolation: (a) transition between
stability eigenmodes and POD modes; and (b) streamlines of the intermediate states

In this technique, two eigenproblems A0 and A1, representing the terminal
states, are linearly interpolated in κ ∈ [0, 1]:

Aκ = A0 + κ(A1 − A0) .

In the case of POD modes, the matrices represent discretized Fredholm kernels
(autocorrelation function)

Aκ(x, y) = uκ
1 (x)⊗ u

κ
1 (y) + u

κ
2 (x)⊗ u

κ
2 (y) + . . .

of a Fredholm eigenproblem in the space domain:

∫

Ÿ

A(x, y)ui(y) dy = λiui(x) .

In the case of eigenmode interpolation, the matrices representing linearized
Navier�Stokes equations are utilized.
The eigenvectors of the interpolated eigenproblem (interpolated modes) uκ

can be used to model all the intermediate states between κ = 0 and 1. In
addition, the extrapolation of modes outside the design conditions is possible.
Interpolated modes enable ¢least-order£ Galerkin models, keeping the dimen-

sion from a single operating condition but resolving several states:
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‘aκ
i =

1

Re

N∑
j=0

lκija
κ
j +

N∑
j=0

N∑
k=0

qκ
ijkaκ

j aκ
k

where
‘κ = F (κ, aκ, t), aκ := (aκ

1 , a
κ
2 , . . . , a

κ
N ) .

These models are especially well suited for control design. The results show-
ing transients of circular cylinder §ow modeled with the use of continuous mode
interpolation are depicted in Fig. 2.

5 LEAST-ORDER GALERKIN MODEL

OF NACA-0012 AIRFOIL FLOW

The technique presented in the previous section is applied here for the laminar
§ow around a NACA-0012 airfoil (Fig. 4). More technical details of the approach
can be found in [21].
In the present study, a number of di¨erent mode bases are considered in the

construction of ROMs.
Empirical models use POD modes (Fig. 5) computed with the snapshot tech-

nique of Sirovich [22]. Here, the models based on the two and eight most energetic
POD modes are analyzed.
Another §ow model is designed with the stability eigenmodes, computed

using steady and time-averaged solutions as a base §ow (Fig. 6).
The last of the models presented in this paper is the least-dimensional model

of two modes and continuous mode interpolation. The mean-¦eld correction
(shift mode) is employed for all models presented here to avoid the structural
instability and fragility. The comparison of all models is shown in Figs. 7�9.

Figure 4 Flow around a NACA-0012 airfoil: (a) streamlines of the steady solution;
and (b) streamlines of the snapshot from the periodic (limit-cycle) §ow
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Figure 5 First 4 POD modes used in Galerkin modeling

Figure 6 The most dominant eigenmodes based on the steady solution (a) (λ
= −0.147 ± 0.720ı) and time-averaged solution (b) (λ = 0.018 ± 0.915ı). The right
and left ¦gures are the real and imaginary parts of the eigenvectors, respectively

It can be seen in Fig. 7 that POD modes allow the reconstruction of the
Navier�Stokes attractor (limit cycle), but they are unable to reproduce the dy-
namical properties of the transitional §ow. For the §ow states close to the
¦xed point (steady solution, small values of the shift-mode coe©cient), the ki-
netic energy of the §ow is overestimated ¡ especially, in the POD-2 Galerkin
model.

The models based on the two most unstable eigenmodes (Fig. 9b) reconstruct
the §ow states close to the ¦xed-point (steady solution) and the transition to the
limit cycle better than POD Galerkin models. On the other hand, the limit-cycle
turbulence kinetic energy (TKE) and shift-mode coe©cients of the periodic §ow
are signi¦cantly underestimated with these mode bases.
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Figure 7 The variation of TKE for di¨erent Galerkin models: 1 ¡ POD-8; 2 ¡
POD-2; 3 ¡ EigM-2; 4 ¡ EigS-2; 5 ¡ Hybrid-2-2; and 6 ¡ Interpolated ¡ compared
with DNS (7) as a function of time for transition from steady state to the limit cycle
oscillation

To take the advantage of both

Figure 8 Interpolation parameter κ as a
function of time for transition from steady
state to the limit cycle oscillation

mode bases, an interpolated model of
the §ow around a NACA-0012 airfoil
is used.
To parameterize the transition

from the unstable ¦xed-point (steady
solution) to the stable (limit-cycle os-
cillations) attractor, the interpo-
lation parameter κ is related to the
shift-mode amplitude (coe©cient);
κ = 0 represents the steady state and
dynamics described by the most sta-
ble stability eigenmodes, while κ = 1
is related to the limit-cycle dynamics
and POD modes.
Such a model preserves low dimensionality (4 equations for the shift-mode

amplitude, interpolated mode amplitudes, and κ) and provides high accuracy in
a wide range of operating conditions.

6 CONCLUDING REMARKS

In the present paper, the authors emphasized the necessity of ROMs of §ows
in closed loop §ow control as well as in the design process. Reduced order
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Figure 9 Shift-mode coe©cient as a function of TKE for POD-based models (a)
(1 ¡ POD-8 and 2 ¡ POD-2), eigenmode-based models (b) (1 ¡ EigS-2 and 2 ¡
EigM-2), and the interpolated model (c). Solid curves refer to DNS

model is able to deliver technically relevant answers in the fraction of the time
necessary for the full scale computations. Robust ROM of the §ow is also the
most important element of online-capable feedback §ow control.
The authors concentrate here on assuring the adequate dynamical properties

of the model. Traditional methods of ROM construction, based on the assembly
of POD modes, are dynamically fragile and overoptimized at single operating
conditions. Enrichment of the mode basis is one of the key techniques of im-
provement. The shift mode, providing the missing direction from the ¦xed point
to the limit cycle assures the convergence of the Reduced Order Galerkin Model.
Hybrid models, employing stability eigenmodes further improve the dynamics.
The construction of the least-dimensional §ow model, preserving accuracy in a
wide range of operating conditions, is possible with the continuous mode inter-
polation between POD and stability eigenmodes.
A key enabler in ROMs presented here and in §ow control is the global

stability analysis.
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