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IN A NONAUTONOMOUS GENOTYPE SELECTION MODEL
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Abstract. Consider the nonautonomous difference equation

yn+1=  1 „ = 01  (01)
1 Vn ^ Vn GXp(/3n(l ^i-Vn—i))

where k is a nonnegative integer, ao, cti,..., ak-i are nonnegative constants, a/,- is a

positive constant and {/3n} is a nonnegative sequence, which is used as a genotype se-

lection model. In this paper, we first establish some criteria for the positive equilibrium

of Eq. (0.1) to be globally asymptotically stable. Then some special cases of Eq. (0.1)

are investigated further and more global stability results are obtained. Our results also

extend and improve some known results in the literature.

1. Introduction. Our aim in this paper is to study the global stability of the nonau-

tonomous difference equation

•\k
jj=

1 - Vn + Vn exp(/?n(l - £i=0 aiVn-i))

y„exp(/3n(l ^2i=o aiyn-i)) n n , ^
Vn+l =    7~T~,  77 > 71 = 0,1,,.., (1.1)

(1.2)

where

j k € {0, 1, . . . }, Q0,Ql, , . . , Qfc-1 G [0, oo),

1 ak G (0,oo), and {(3n} is a nonnegative sequence.

When k = 0,ao = 2 and f3n = f3 (positive constant), Eq. (1.1) reduces to

_ Vn exp(/3(l - 2yn)) _
Vn+1 , . o W 0,1,..., (1*^)

1 -Vn+Vn exp(p(l - 2yn))

which was introduced by May [8] as an example of a map generated by a simple model

for frequency-dependent natural selection. Eq. (1.3) gives the change in gene frequency

between the nth generation and the next and the fitness function is exp(/3(l — 2y)). To
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increase the ecological realism, Grove et al. [1] introduced the delay in Eq. (1.3) and

considered the following equation:

Vn exp(/3(l — 2yn-k))
2/n+i =   : r^r, t vT > n = 0,1,... 1.4

1 -Vn+Vn exp(p(l - 2yn-k))

as a simple genotype selection model with one delay. The appearance of yn-k in the

selection coefficient reflects the fact that the environment at the present time depends

upon the activity of the population at some time in the past and that this in turn depends

upon the gene frequency at that time. Then, in a later paper [3], Grove et al. studied

the genotype selection model with several delays:

yn exp(/3(l - X^=o aiVn-i)) ni n
yn+1 =   k . n — 0,1,  (1.5)

1 - Vn + Vn exp(/3(l - aiVn-i))

The appearance of several delays in the model is incorporated with the phenomenon

that fitness today depends on some function of the various life stages or ages today,

which means the number of adults born 1, 2,..., k periods ago, each multiplied by the

probability of surviving to the present and by the magnitude of their effect if they do

not survive. For a discussion of the background of this model in detail, see [3].

Asymptotic behavior of positive solutions of Eqs. (1.3)—(1.5) has been studied by

several authors. For example, the local stability of the positive equilibrium solution

y = 1/2 of Eq. (1.3) was investigated by May in [8]; the oscillation and the stability and

the periodic character of positive solutions of Eq. (1.4) were investigated in [1] and [2]; the

oscillation and the stability of positive solutions of Eq. (1.5) were studied in [3]. Although

some good results about the asymptotic behavior of positive solutions of Eqs. (1.3) (1.5)

have been established, the discussion of the global stability of these equations is far from

completed and this motivates us to further study this topic. By noting that the effects

of a varying environment are important for evolutionary theory as the selective forces on

systems in a fluctuating environment differ from those in a stable environment and the

assumptions of variation of the parameters are a way of incorporating the variations in

the environment, we assume that the parameter (3 in (1.5) varies with n and so this leads

us to study the nonautonomous equation (1.1).

Consider Eq. (1.1) with initial conditions y-k, y~k+i, ■ ■ ■, Vo € [0,1] and set a =

TVo otj. When a < 1,0 and 1 are only equilibrium solutions, and when a > 1,0,1/a

and 1 are the only equilibrium solutions of Eq. (1.1). It is easy to see by induction that

y„ € [0,1] for all n > 0. Also, if yN = 0 for some TV > 0, then yn = 0 for all n > TV, and

if j/a' = 1 for some TV > 0, then yn = 1 for all n > TV. Hence, we will only consider the

solutions {yn} of Eq. (1.1) with the following initial conditions:

y~k,y~k+i,---,y-i e [0,l] and y0e(o,i). (1.6)

Then, clearly, yn £ (0,1) for all n > 0. In the following sections, we will always assume

that a > 1. We will establish a sufficient condition such that y = 1/a is globally

asymptotically stable in the sense that y is stable and attracts all positive solutions with

initial conditions of the form (1.6). We will also further discuss the globally asymptotic

stability of some special cases of Eq. (1.1). Our results will extend and improve some

results established in [1] and [3].
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2. Global stability of Equation (1.1). In this section, we study the global stability

of Eq. (1.1). By introducing the substitution

xn = ——— for 0 < yn < 1, n = —k, —k + 1,..., (2-1)
1 - Vn

Eq. (1.1) with initial conditions (1.6) becomes

/ k

xn+i = xn exp pn i-E
%n — i

n 1 "I" %r2=0

n = 0,1,..., (2.2)

with initial conditions

X-k, X-k+i, ■ ■ ■, x-i £ [0, oo) and io 6 (0,oo). (2.3)

Clearly, y is stable and attracts all positive solutions of Eq. (1.1) with initial conditions

of the form (1.6) if and only if the equilibrium x = of Eq. (2.2) is stable and attracts

all positive solutions of Eq. (2.2) with initial conditions of the form (2.3).

To establish our global stability result, we need the following two lemmas.

Lemma 1 ([9]). Consider the difference equation

xn+1=xnh(ri,xn,xn-i,...,xn-k), n = 0,1,..., (2.4)

where for each n,h £ C[[0, oo)fe+1, (0, oo)] and h is nonincreasing in each of its arguments.

Assume that x is the unique positive equilibrium of Eq. (2.4) and that

OO

jT h(n, x, x,..., x) = oo for 0 < x < x (2-5)

n=0

and
OO

| 'J h(n, x, x,..., x) — 0 for x < x < oo. (2-6)
n—0

Svippose also that there exists a nonincreasing function H e C[[0, oo), (0, oo)] such that

for n > 0,
n+fc

;T h(n, x, x,... ,x) < H (x) for 0 < x < x (2.7)
j=n

and
n+k

JT h(n, x, x,..., x) > H(x) for x < x < oo. (2-8)
j=n

Finally, assume that the solution of the equation

zn+i = xH(zn), n = 0,1,..., (2.9)

with zo — xH(0) tends to x as n tends to oo. Then every positive solution of Eq. (2.4)

tends to x as n tends to oo.

Lemma 2 ([4]). Consider the difference equation

1 — wr

1 + bw

1 — U)
wn+1 = exp ( a ——- ) , n = 0,l,..., (2.10)
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where a 6 (0, oo), b € [0, oo), and Uq G [0, oc). If

———- < 1, (2.11)
1 + b ~ y '

then the positive equilibrium w = 1 is a global attractor of all positive solutions of (2.10).

The following theorem is our main result in this section.

Theorem 1. Assume that (1.2) holds and that

oo n+k

pn — oo and /3? <  — for n > 0. (2.12)
a — I

n=0 j—n

Then the positive equilibrium y = 1/a of Eq. (1.1) is globally asymptotically stable.

Proof. From the above discussion, we see that it suffices to show that the equilibrium

solution x = of Eq. (2.2) is stable and attracts all positive solutions of Eq. (2.2).

First, we show that x is a global attractor of all positive solutions. Let

Pn ~ ^ Q' y~h(n, Uq, U\,..., Uk) = exp
■ n - + ui
2 = 0

Clearly, for each n,h £ C[[0, oo)fc+1, (0, oo)], h is nonincreasing in each of its arguments

and h satisfies (2.5) and (2.6) with x =

n+k

B = sup < (3j : n = 0,1,... > .

Observe that

n+k n-\-k / / k

h(j,x,...,x) = Yl exP (ft (1 -
X

XX - + X
j=n \ \ i=0 /

n+k
X

= n exp (ft (1 -
j=n

/ n+k ,

< exp ( B ( 1 — q — ) ) for 0 < x < x

and similarly,

n+k

j =n

Let

j ̂  h(j, x,..., x) > exp | B ^ 1 — a) ) f°r x < x < oo.

H(x) = exp ( B ( 1 — aY~^_— 11' x —
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Then (2.7) and (2.8) hold and so by Lemma 1, it suffices to show that every positive

solution of the equation

tends to its positive equilibrium ~z = x = To this end, let wn = (a — 1 )zn. Then

every positive solution of Eq. (2.13) tends to 2 if and only if every positive solution of

the equation

wn+i = exp ( ] (2.14)

V 1 +
tends to the equilibrium w — 1. By Lemma 2, we see that w is a global attractor of all

positive solutions of Eq. (2.14) if , ,Bt < 1, which is equivalent to (2.12). Hence, z is
1 '"a-l

a global attractor of Eq. (2.13) and so y is a global attractor of Eq. (1.1).

Next, we show that the equilibrium solution x = -^-j- of Eq. (2.2) is stable. To this

end, consider the sequence {zn} defined by (2.13) and zo = exp(B). From the above

discussion, we know that zn —> x as n —* oo. Hence, for any e > 0, there exists an N > 0

such that

|zn — x\<£ for all n > 2N. (2.15)

In addition, from the definition of {zn}, it is easy to see that

Z2n+1 < Z2(n+1) + 1 < X < Z2(n+1) < Z2n for 71 > 0. (2.16)

Then by the continuous dependence of solutions on the initial conditions, there exists

a positive number S such that if {£„} is a solution of Eq. (2.2) with initial conditions

satisfying

\xn — x\ < S, n = — k, — k + 1,..., 0, (2-17)

then

Z2N+1 < Xn < Z2n, n = 0,1,..., 2N + 1. (2.18)

Z2N+1 < Xn < Z2N, n > 2N + 2. (2.19)

Z2N+1 < X2N+2 < Z2N, 71 = 0, 1, . . . , 2N + 1. (2.20)

We assume that X2N+2 < %2N+i'i the proof for the case that x2n+2 > %2N+i is similar

and will be omitted. Clearly, if X2N+2 > x, then X2N+2 satisfies (2.20). Now, suppose

that X2N+2 < x. Let xn — xeWn. Then {wn} satisfies the equation

(a - l)(3n A - 1 ,
wn+1-wn + Va,  = 0- (2.21)

a ' a — 1 + eWn~'
i=0

By noting that X2N+2 < x and x2n+2 < X2N+1, we see that

w2n+2 £ 0 and W2N+2 S w2n+\- (2.22)

We claim that

First we show that



270 CHUANXI QIAN

Then it follows from (2.21) and (2.22) that

(a — l)/?2JV+i 1 ~~ eW2N+1~'

 a  Z. a _ 1 + en,2N + 1-, = - W2N+1 < o,
1=0

which implies that, there exists an m with 0 < m < k such that W2N+i-m > 0. Hence,

2N+1 / i\/0 k i wE(a — 1 )()j ^ 1 - eWj~t
 ~ / ai "• (2.23)

a a — 1 + ewi~i
j=2N+1— m i=0

Then by noting eWn = (a — l)a;n and (2.18), we see that

eWi < {a - 1)z2N, « = 0,1,..., 2N + 1.

Hence, it follows from (2.23) that

(« — l)/3j 1 — (o — 1)^2AT
W2N+2> 2_^   /

j=2N + l-m ~ ,=0 a-l + (a-l)Z2N

> (a — l)/3j 1 — (cv — 1)22W

Q? — 1 + (q — 1)22^
j=2N + l-k i=0 v ' Ziv

v~^ (a — l)/3j a 1 — (o: — l)^2iv

Q; Q — 1 + (a — 1)Z2/Vj=27V + l-fc j=0 < \ / ^iv

^ D I 1 Zw
> B \ 1 - a

1 + Z2JV /

which implies that

(a - 1)x2n+2 > exp ( B ( 1 - a Z2N
1 + Z2N

Hence,

X2N+2 > ~ r exp (B (l — a ~2N ) ) > z2N+1-
a - 1 V V 1 + z2n

Then by noting X2iv+2 < x2n+i and X2N+1 < ?2N, we see that (2.20) holds.

An easy induction and an argument similar to the one above, shows that (2.19) holds.

Finally, by noting (2.15), (2.16), (2.18), and (2.19), we see that

\xn — x\ < £ for all n > 2N

and so by the definition of stability, x is stable. The proof is complete. □

Remark 1. When /3n = (3 is a positive constant, Eq. (1.1) reduces to the autonomous

equation (1.5), and the condition (2.12) for the globally asymptotical stability becomes

13 - (fc + i)(ft - i)' <"4)

It has been shown in [3] that the equilibrium y = l/a of Eq. (1.5) is locally stable if

2a
Qo 7^ 0, a < 2qo, /3 <  ;

a — 1
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or

G?

Q;o — 0, (3 <
(a - l)Yli=1&ii

and y = 1/a is a global attractor of positive solutions if

f 4 or
k > 1 and /3 < mill <  , — —  , .

[ak + a0 k(a- l)(a-a0)J

Here, our condition (2.24) is not only different from the above conditions established in

[3], but also a sufficient condition for the equilibrium solution y = 1/a of Eq. (1.5) to be

globally asymptotically stable.

3. Global stability of Equation (1.1) with one delay and constant coef-

ficients. In this section, we further study the globally asymptotical stability of the

autonomous difference equation

1, P/3(l-ayn-k)
"n / o i \

Vn-\-1 . 8(1—av l.) ' \ /
i -yn + yne

which is a special case of Eq. (1.1) with k > 1. <»o ̂  n; ..••• — otk-i — 0, at = a, and

(3n = f3, a positive constant.

We need the following lemma in the proof of our result.

Lemma 3 ([7]). Consider the difference equation

Xn+l - xn+pnf(xn-k) =0, n = 0,1,..., (3.2)

where {pn} is a nonnegative sequence and / G C[i?, R] with xf(x) > 0 if x ^ 0. Assume

that

\f(x)\<\x\ ifxy^O (3.3)

and
o° n 3 1

£ Pi = oo and Pr< - + (3.4)

n—0 i=n—k

for all large n. Then every solution of Eq. (3.2) tends to zero as n —> cxd.

The following theorem is our main result in this section.

Theorem 2. Consider Eq. (3.1) and assume that

ji S a(k + 1) (2 + 2(fc + 1)) ' (3'5^

Then the positive equilibrium solution y — 1/a is globally asymptotically stable.

Proof. We first show that y is a global attractor of positive solutions of Eq. (3.1). By

using substitution (2.1), Eq. (3.1) becomes

xn+i = xn exp (d ^1 - a ^ J^n~k fc ̂ V n = 0.1  (3.6)
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Let xn = ~^jez". Then Eq. (3.6) reduces to

(a/3\ 4(a — 1) eZr,-k — 1
zn+1-zn+ l-f p   =0, 3.7

\ 4 / a a — 1 + ez"-k

which is in the form (3.2) with

f(r) = ~ — »°d ""ST-
a a — 1 + ex 4

To show that y is a global attractor, it suffices to show that every solution of Eq. (3.7)

tends to zero. Observing that xf(x) > 0 for i/O and

(■*■• - /(■'•))' - > 0 for x ± ln(a - 1),
(a — 1 + ex)1

we see that

\f(x)\<\x\ for i/O

and so (3.3) holds. Then by noting (3.5), we find that (3.4) holds also. Hence, all the

conditions assumed in Lemma 3 are satisfied and so every solution of Eq. (3.1) tends to

zero. Then it follows that Tj is a global attractor.

Next, we show that- y is stable also. Clearly, it suffices to show that the zero solution

of Eq. (3.7) is stable. To this end, observe that the linearized equation of (3.7) is

Q. — 1
wn+1 - wn H 3ir„. k = o. (3.8)

a

It is well known that (see [5], for example) the zero solution of the linear equation (3.8)

is asymptotically stable if and only if

2 a kit
"<^TTcos2tTT (3S>)

Hence, by linearized stability theory, if (3.9) holds, then the trivial solution of Eq. (3.7)

is locally asymptotically stable. Therefore, to complete the proof, we only need to show

that for any k > 1.

2a kn
■ cos —   >

q — 1 2k 1 cy(k 1)

that is,

a2 kn 1
cos —   >

3 1
+

4(a — 1) 2k + 1 2(k + 1)

To this end, first observe that

_2 2(k + 1)_

3 1- +
2 2(fc + l)

f a2 )
mf <    : a > 1 > = 1.

\ 4(a — 1) /

Hence, it would be sufficient to show that the inequality

7ik 1
cos — >

2k + 1 ~ 2{k - 1)

holds for any A- > 1. By noting

3 1- +

7T 7 1
cos — > -—

16 2(1 + 1)

2 2(fc + 1)

3
+

(3.10)

.2 2(1 + 1)
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and
2tt 5 1

cos — > — =
3 1- +
2 2(2 + 1) _5 18 2(2 + 1)

we see that (3.10) holds when k = 1 and k = 2, and so it suffices to show that the

following function inequality holds:

7TX 1
cos     >

2x -j- 1 2(x -t- 1)

Let t — jf+i- Then (3.11) becomes

3 1

2 + 2(x + 1)
x >3. (3.11)

7T — 2f
cos t >

2(7r — t)

3 1 / 7T — 2*

2 + 2 V 7r-t

37T 7T
— <t<
7 - 2

which can be rearranged in the form

47t2 — 137rt + 10t2 3ir n
cost>——• y 2'

Now, consider the functions

47T2 — 137ft + 10t2 37T 7T
0(f) = cost and ft(f) = ^ _  , y < f <-.

Observe that

n r \ . 77Tt — 47T2 37T 7T
g (f) = -cost < 0 and h (t) = _ < 0, Y<t<2'

We see that

s'(f) < 5' ^yj = -siny and /i'(t) > ft' (|) = for y < f <

Since sin37r/7 > 3/7r, it follows that g'(a;) < h'(x) on the interval (37t/7, 7t/2). Then by

noting g(7t/2) = h(n/2) = 0 also, we see that g(t) > h(t) for 3n/7 < t < n/2, that is,

(3.11) holds. The proof is complete. □

Remark 2. (1) By noting that Lemma 3 is about nonautonomous equations and

by using the same argument used in the proof of the above theorem, we may have the

following global stability result for the nonautonomous difference equation:

y ePn(l-ayn-k)

yn+1 = T  g M-au (3'12)
1 Un ~f" VnC ay^>

-0 Pn = 00 and for all large n,

[3 1
ai Cv

i=n — k
2 2{k + 1)

then y = 1/ct is a global attractor of all positive solutions of Eq. (3.12).

(2) When a = 2, Condition (3.5) reduces to

13 ~ tTT [I+ 2(fcTT)]' (3'13)
For this special case of Eq. (3.1), it has been shown in [1] that the equilibrium solution

y — 1/2 is globally asymptotically stable if one of the following conditions holds:

(a) k = 1 and 0 < (3 < 2;
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(b) k > 2 and 0 < (3 < 2/k.

Clearly, for the case that k > 2, our condition (3.13) is better than the above condition

established in [1],

(3) Although we believe that (3.9) is a necessary and sufficient condition for the

global stability of the equilibrium solution y = 1/a of Eq. (3.1), we cannot prove it at

this moment. However, the gap between condition (3.5) and (3.9) is not very big when

a is not very close to 1 and a is not very large. For instance, when a = 2 and k = 3,

2 a kir 37r
cos —  = 4 cos — « 0.89

q - 1 2k + 1 7

while

4 T3 1 1 2 T3 11
— 7T =T " + " ~ 0.81.

a(k + 1) 2 2(k + 1)_

3 1

2 + 8

4. Global stability of Equation (1.1) without delay. In this section, we further

study the global asymptotical stability of the special case of Eq. (1.1) without delay:

y e0n(i-<wn)
yn /(

i i 3 n_QU •) * (^*i)
1 -Vn +yne^"(L ayn>

We need the following result, which is extracted from [6].

Lemma 4 ([6]). Consider the difference equation

a-'n+i = f{n,x„), n = 0,1  (4.2)

where / : {0,1....} x [0, oo) —> [0, cx)), f(n, x) is continuous in x and /(ft, x) = x where

x is a positive constant. If there exists a positive definite and decrescent function V(n, x)

with respect to x such that

AV(ft, xn) = V(n + 1, /(ft, xn)) - V(n, xn) <0, n = 0,1,...,

then x is stable; furthermore, for any solution {xn } of Eq. (4.2) if there is a continuous

function uj(x) > 0 defined for x > 0 such that

AV(n, xn) < —w(xn), >i 0. I....,

then either {xn} is unbounded or it approaches the set

£={i£ [0, oo) : uj{x) = 0}.

The following theorem is our main result in this section.

Theorem 3. Assume that there exist positive constants b and (3 such that b < (3n < (3

for n > 0, and

1- -1) ,»-<!. (4.3)

Then the equilibrium solution y = 1/a is globally asymptotically stable.



NONAUTONOMOUS GENOTYPE SELECTION MODEL 275

Proof. By using the substitution (2.1), Eq. (4.1) becomes

Xn+1 = Xn exp ((3n- , (4.4)
V 1 + Xn J

and it suffices to show that the equilibrium solution x = of Eq. (4.4) is globally

asymptotically stable. To this end, let

V(n, x) = (x — x)2 for n > 0 and x > 0.

Then

A V(n,x„) = xr
I /Q ^ ^ ll t -.

I ft- 1 + J„ I " 1

, n 1 — (a — l)xn . _
xn exp pn —  + xn - 2x

1 + xn

(4.5)

By noting that the function exp(/3n 1 ^1°_a.1^) — 1 is decreasing with respect to x and is

zero at x, it is easy to see that

(xn - x)
1 - (a - l)xn

' Th^I ' ~

< (xn - x)

We claim that

(xn - x)

1 - (a - l)xT
exp b-

1 + xr.
< 0 for xn 7^ x. (4.6)

, I — (a — l)xn , _
Xn exp pn —  + xn - 2x

1 + xn

> (xn - x)

First, observe that

, A — (a — l)xn ,
Xn exp (3 —  ) +xn-2x

1 + xn
> 0 for xn 7^ x. (4.7)

, ^ 1 — (q — l)xn ,  
xn exp P —  +xn-2x

1 + xn

. 1 — (a — l)xn . _ _
> xn exp (3n —  ) +xn - 2x for xn < x

1 + Xn

and

, A — (a — l)xn ,  
xn exp (3 —  + xn - 2x

1 + xn

. 1 — (a — l)xn . _
< xn exp (3n    + xn - 2x for xn > x.

1 + xn

Hence, to show that (4.7) holds, it suffices to show that

(x„ - x)

To this end. let

, , 1 — (o — \)xn .   
xn exp (3 —  + xn - 2x

1 + Xn
> 0 for xn ^ x. (4.8

h(x) = a; exp ( f3 | —— ) + x — 2x for x > 0.
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Observe that

,// \ (a1 - (a - 0-r
h (x) = exp [3

I af3x

(l+.r
+ 1

1+x

and

af3((af3 — 2)x — 2)i n/ \ t rj 1h (x) = exp p — 
1+x (1 + x)J

If a(3 < 2, then h"(x) < 0 and so h'(.r) > /?.'(oo) = e. (a 1^/3 + 1 > 0; if a/3 > 2, then

/f"(y?) > 0 for x > ——-—^ and h"(x) <0 for x <
a/3-2 w a/3-2

and so

'■'w > h' (sib) ° 0expW -21+1 for 174 ̂ih~r

which, in view of (4.3), yields h'(x) > 0 for x ^ a}_2. Then, by noting h(x) = 0 also,

we see that (x — x)h,(x) > 0 for x ^ x, which implies that (4.8) holds. Hence, (4.7) is

true. Finally, by noting (4.6) and (4.7), it follows from (4.5) that

AV(n,x„) = -—- " ,Axn - x)
1 - (a - 1 ).r„

""I-3- 1+I„ I'1

x (.r„ - x)
I ^ 1 . rt—

xn exp pn —  +xn -2x
1 + xn

<-^(xn-x)
(;X„ -xY

X (;T„ - x)

< 0 for xn 7^ x.

( I-(a-l)xn\
exP b n-  ~ 1

,'l-(a-l)xn\
xn exp ( (3 ——  I + xn - 2x

1 ~\~ Xn J

(4.9)

Let

u(x) = -

From (4.9) we see that

, 1 - (a - 1)« , ,

p' lTB '~
. _1 — (a — l)x .

xexp (3  + x — 2x
1 • x

Al'(/),.;•„) < -u>(x„) < 0

and

E = {x e [0, oo),lj(x) = 0} = {lr}.

Also, A(n,xn) < 0 yields

|\ x < r?, = 0,1,...

which clearly implies that every solution {xn} of Eq. (4.4) is bounded. Therefore, by

Lemma 4, the equilibrium solution x = of Eq. (4.4) is stable and every positive

solution of the equation tends to x, that is, x is globally asymptotically stable. Then, it

follows that the equilibrium solution y = ^ of Eq. (4.1) is globally asymptotically stable.

The proof is complete. □
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Remark 3. When /?„ = /? is a positive constant, Eq. (4.1) reduces to the autonomous

difference equation
n p0(i—c*yn)

Vn + l =  — ^ r. (4.10)
1 -yn + VneM-aVn)

It has been shown in [3] that if a > 1, a/2 and

/?<-, (4.11)
a

then the equilibrium y = \/a of Eq. (4.10) is globally asymptotically stable. From

our condition (4.3) we see that f3 < 2 is a sufficient condition for y to be globally

asymptotically stable. While for the case that (3 > 2, (4.3) is equivalent to

4

° - /3(1 — e2~P)'

It is easy to check that if /3 < 2 + In 2, then > § and so (4.3) is better than

(4.11) in this case.
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