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Abstract The triple-deck equations for the steady subsonic flow past a convex corner are solved numerically
using a novel technique based on Chebychev collocation in the direction normal to the body combined with
finite differences in the direction along the flow. The resulting set of nonlinear algebraic equations are solved
with Newton linearization and using the GMRES method for the solution of the linear system of equations.
The stability of the computed steady flows is then examined using global stability analysis. It is found that for
small corner angles, the Tollmien–Schlichting modes are globally unstable and these persist to larger corner
angles. Multiple steady state solutions also exist beyond a critical corner angle but these are globally unstable
because of the presence of the Tollmien–Schlichting modes.
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1 Introduction

There are many practical applications such as in the flow past aerofoils where it is important to understand the
nature of the boundary layer flow past obstacles and changes in local geometry. In many cases the boundary
layer separates in the vicinity of the obstacle and the separated flow is prone to many instability mechanisms.
In designing laminar flow aerofoils it is important to understand when such instabilities arise and how they
can be controlled.

There are many major difficulties in studying these types of flows. In particular the Reynolds number is
very large and using numerical techniques, one needs to be able to resolve the very thin boundary layers and
shear layers which are present when working with the full Navier–Stokes equations. Theoretical studies based
on using a high Reynolds number approximation are criticized on the grounds that the flow is usually turbulent
at the Reynolds numbers when the theory might be said to be applicable. Another obstacle, as first pointed out
by [1], is that the mean flow in these applications is truly non-parallel and therefore a local analysis based on
the Orr–Sommerfeld equation is inadequate. A stability analysis of such a flow requires either a full numerical
approach or a self-consistent analytically based approach. In [2] it is suggested that a high-frequency analysis
could overcome some of these difficulties.

In the current work, we have chosen to investigate the separated subsonic flow past convex corners gov-
erned by the triple-deck equations. Asymptotic analysis of the Navier–Stokes equations in the limit that the
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Reynolds number is large is described by triple-deck theory for such flows, see [3,4]. This approach avoids
one of the difficulties mentioned above in that with a proper choice of scales, instead of working with the full
Navier–Stokes equations, one has a reduced set of equations but which nevertheless can capture some of the
essential physics, at least in the thin boundary layer and shear layer regions, see also [2].

The main objectives of the current work are to solve the steady triple-deck equations and compute the
separated flows for a range of corner angles, and then analyze the stability of the computed flows. Since the
mean flow is non-parallel the stability analysis is based on searching for global modes with perturbations
proportional to e−λt and solving a two-dimensional partial differential eigenvalue problem.

In Sect. 2, we discuss the problem formulation and give a brief description of the numerical techniques
used. This is followed by a discussion of the main results in Sect. 3, and our conclusions are given in Sect. 4.

2 Governing equations and numerical techniques

Consider the flow of a compressible fluid flowing past a corner on the body contour, which locally may be
thought of as being made of two flat plates inclined at an angle α∗, see Fig. 1. We take Cartesian coordi-
nates (x∗, y∗) (dimensional quantities will be denoted by an asterisk) with the oncoming flow aligned with
the x∗-axis. The oncoming fluid velocity far upstream is U∗∞ in the x∗-direction, with free-stream pressure
p∗∞. The Reynolds number Re = U∗∞ρ∗∞L∗/µ∗∞ is large with L∗ being a characteristic length scale and ρ∗∞
the free-stream density, µ∗∞ the free-stream viscosity. We will assume that the corner angle is small of order
O(Re−1/4).

In the vicinity of the corner the interaction between the boundary layer and the external flow is described by
triple-deck theory, and in the lower-deck of thickness O(Re−5/8) and lateral extent O(Re−3/8), the solution
properties may be represented as, see [3,4],
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In the above t∗ is the time, and we have taken the Chapman viscosity law with C∞ being the Chapman
constant given by

(
C∞ = µ∗

wT ∗∞/µ∗∞T ∗
w

)
, and T ′

w = T ∗
w/T ∗∞ is the ratio of the wall temperature to free-stream

temperature. Also β = |1 − M2∞| where M∞ (<1) is the free-stream Mach number and τ = ∂UB/∂y is the
value of the wall shear of the oncoming boundary layer flow immediately upstream of the interaction region.
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Fig. 1 Schematic of the triple-deck region near the corner
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Instead of a sharp corner it is more convenient to work with the wall shape described by the equation
y = f (x) where

f (x) = 1

2
α

(
x +

√
x2 + r2

)
,

with r = 0.1, and α being the scaled angle parameter.
After substitution of the above into the Navier–Stokes equations and setting Re → ∞ leads to the unsteady

triple-deck equations:
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p(x, y, t) = P(x, t) = − 1

π

∞∫
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− A′(s, t)

s − x
ds. (2c)

These need to be solved with the boundary conditions

u = v = 0 at y = f (x), (3a)

u → y + A(x, t) + · · · as y → ∞, (3b)

u → y as x → −∞ (3c)

P(x, t) → −α

π
log |x | as |x | → ∞. (3d)

Here (u, v) represent the scaled streamwise and normal velocity components, P is the pressure, and A is a
scaled displacement function. The only parameter left in the problem is the scaled angle parameter α appearing
in the reduced wall shape f (x).

2.1 Global stability analysis

The solution of the steady version of the boundary-value problem (2) gives the basic flow state

(u, v) = (UB(x, y), VB(x, y)), P = PB(x), A = AB(x)

for a given value of the parameter α. In order to perform the stability analysis we look for global modes of the
form

(u(x, y, t), v(x, y, t)) = (UB(x, y), VB(x, y)) + δ(ũ(x, y), ṽ(x, y))e−λt ,

P(x, t) = PB(x) + δ P̃(x)e−λt , A(x, t) = AB(x) + δ Ã(x)e−λt ,

where δ is taken to be small. After substituting into (2, 3) and linearizing the equations for small δ gives rise
to a set of linearized stability equations for (ũ, ṽ, P̃, Ã) given by

∂ ũ
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ũ → Ã as y → ∞, (4c)

and homogeneous boundary conditions. The system of Eqs. 4 constitutes a two-dimensional partial differential
eigenvalue problem and non-trivial solutions exist only for certain eigenvalues λ.
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2.2 Numerical methods

The steady equations were solved using a hybrid discretization technique in which we used second-order finite
differences in the x-direction and Chebychev collocation in the y-direction, as for example described in [5,6].
The Hilbert integral for the pressure was handled using the same techniques as described in [7]. The nonlinear
discrete equations are solved using Newton iteration. One consequence of the discretization of the Hilbert
integral, however, is that the linear systems of equations generated no longer have the block-pentadiagonal
form as in [5]. Thus, the direct solver as used in [5,6] was replaced by an iterative method using GMRES [8],
but with the block pentadiagonal solver as the preconditioner.

For the eigenvalue problem (4) the same discretization techniques were used. The resulting discrete problem
then takes the form

JU = λBU, (5)

where U denotes the vector of unknowns and the coefficient matrix J is the Jacobian matrix of the linearized
steady operator, with entries dependent on the basic flow. The matrix B arises from the unsteady part of the
operator and B is a singular diagonal matrix with the non-zero entries arising from (4b). The generalized
eigenvalue problem (5) was solved using ARPACK [9].

Further details of the numerical techniques used may be found in [10].

3 Results and discussion

The numerical techniques described above are novel for the solution of the steady triple-deck equations and
thus were extensively tested and the results obtained compared with those available from other studies. In gen-
eral the agreement with previous results, such as [11–13] is excellent for small corner angles, but there exist
some minor differences for larger angles, which may be attributed to various factors such as the difference in
numerical techniques used and also the grid sizes used here are much finer compared to those used in previous
studies.

In the discussion of the results we focus attention on the case of convex corners with α negative as this
case has some additional features not found in the concave corner case.

3.1 Basic flow results, convex corner

Results for the basic flow for varying corner angles from α = −1 to −5 are shown in Fig. 2. Ahead of the
corner the flow is strongly attached but the skin friction drops rapidly after the corner. The pressure also drops
rapidly ahead of the corner but recovers downstream. The drop in pressure is more pronounced for decreasing
corner angle. Figure 2 would suggest that beyond a critical angle, the skin friction becomes negative and there
is incipient separation. However, Korolev [14] was the first to notice that the subsonic triple-deck flow past
a convex corner has multiple solutions. The solutions shown in Fig. 2 are those on a branch with either no
separation or a short separation bubble. In Fig. 3 we have shown a plot of the bubble separation length (defined
by the region for which τB(x) = ∂UB/∂y(y = 0)< 0) versus angle α and it is clear that there is a second
solution branch with a long separation bubble. Our results indicate that there is a turning point bifurcation
at α = −5.58, with separation on the lower branch occurring at α = −5.07 whilst in [7] the corresponding
critical values are α = −5.9 for the turning point and α = −5.2 for separation. We also find (in agreement
with [7]) only one turning point bifurcation in the range of angles shown in Fig. 3 in contrast to [14] where
multiple bifurcation points are shown, although [14] used a sharp corner in his computations. Figure 3 suggests
that another turning point bifurcation may also exist but because of the large gradients and extended separated
flow region it was not possible to extend our computations beyond those shown.

In Figs. 4 and 5 we compare the displacement function, pressure and skin friction for the multiple solutions
of the two branches for α = −5.5 and α = −4.5. For the former there is a short separation bubble for the
solution on the lower branch and a larger separated bubble on the upper-branch. For the α = −4.5 case only
the upper-branch solution has a separated flow. For the longer separated bubbles the pressure and skin friction
plots show a plateau effect in the reversed flow region, before an abrupt recovery closer to reattachment.



Global stability of separated flows

-1

-5

x

A
B

(x
)

403020100-10-20-30-40-50

4.5

4

3.5

3

2.5

2

1.5

1

0.5

0

(a)

-1

-5

x

P B
(x

)

403020100-10-20-30-40-50

7

6

5

4

3

2

1

0

-1

-2

(b)

-1

-5

x

τ B
(x

)

403020100-10-20-30-40-50

4.5

4

3.5

3

2.5

2

1.5

1

0.5

0

(c)

Fig. 2 Plots of the a displacement function AB(x), b pressure PB(x) and c skin friction τB(x) = ∂UB/∂y(y = 0) for varying
corner angles from α = −1 to α = −5 in steps of −1
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Fig. 3 A plot of the separation length of the bubble versus corner angle

3.2 Global stability results

The linear stability of the basic flow was examined using the method based on global stability analysis.
It is known that for the flat plate case with α = 0 the subsonic triple-deck flow is linearly unstable to
Tollmien–Schlichting (TS) disturbances of the form ei(kx−ωt), see [1,2]. In fact for α = 0 the basic flow given
by UB = y, VB = 0, PB = 0, AB = 0 satisfies the Eqs. 2 exactly and therefore it is possible to investigate
linear stability properties using a normal mode decomposition in both time and space of the form ei(kx−ωt).
For non-zero α the basic flow is no longer parallel and such a normal mode decomposition cannot be made.

In Fig. 6 we have shown the real and imaginary parts of the eigenvalue spectrum as calculated from the
global stability analysis for the flat plate case α = 0. Clearly the flat plate flow is globally unstable. In com-
puting the eigenfunctions, it was noticed that the perturbations had a growing wave like form spatially, and for
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Fig. 4 Plots of the a displacement function AB(x), b pressure PB(x) and c skin friction τB(x) = ∂UB/∂y(y = 0) for α = −5.5.
The dashed line indicates the solution with the shorter separated bubble
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Fig. 5 Plots of the a displacement function AB(x), b pressure PB(x) and c skin friction τB(x) = ∂UB/∂y(y = 0) for α = −4.5.
The dashed line indicates the solution on the lower branch with no separation

this reason the grid size convergence properties were improved by modifying the global stability operator to
have a downstream condition of the form

d2 p̃

dx2 = −γ 2 p̃. (6)
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Fig. 6 a The eigenvalue spectrum for the flat plate with α = 0 with N = 50 and M = 5001. b A comparison of the results from
the global stability calculations (symbols) for α = 0 with the analytic results (solid line) from Eq. (7)
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Fig. 7 a Eigenfunctions for the flat plate with α = 0 showing a the pressure p̃, b the displacement Ã, and the perturbation skin
friction τ̃ = ∂ ũ

∂y (x, y = 0)

for the pressure. Here the factor γ was unknown at the outset but was computed iteratively. Similar conditions
have been used by [15] for linear stability investigations for the flow over a flat plate.

In Fig. 6a the most unstable eigenvalue is given by λ = −1.21805 ± i8.35077 using a grid of N =
80, M = 5001 points. The eigenfunctions corresponding to the most unstable mode are shown in Fig. 7. The
plots suggest that the unstable wave is not only growing in time but also spatially as well.

For the flat plate it is possible to calculate the dispersion relations for perturbations proportional to eikx−λt ,
and assuming that k is real one obtains the dispersion relation,

(ik)
1
3

k2

|k| = Ai′(ξ0)∫ ∞
ξ0

Ai(ξ)dξ
, ξ0 = −(ik)−2/3λ (7)

where we take a branch cut such that −3π/2 < arg(k) < π/2. The properties of (7) are discussed in many
places, see for example [16,17]. For a given k there is a continuous spectrum of modes λ = λ(k) as can be
seen also from the properties of (7) for small k when λ ∼ −(ik)2/3a′

n where a′
n is a zero of the derivative of

the Airy function Ai′(z). A numerical solution of (7) for the most unstable branch of eigenvalues is compared
with the results of the global stability analysis in Fig. 6b and this demonstrates that the unstable global modes
are TS modes.

Of interest is the change in the spectrum with increasing corner angle α and Fig. 8 shows the spectrum for
different values of α. We can see that the TS modes persist for non-zero values of α. It is interesting that in
the vicinity of the origin, the spectrum remains almost independent of α which suggests that the dispersion
relation (7) may be used to describe the behaviour of the eigenvalues for non-zero α. Figure 8 shows that the
most unstable flat plate mode is stabilized for increasing α but the stability computations for non-zero α also
picked up more unstable modes with large imaginary parts of λ, as seen in Fig. 8 for α = 2 and α = 3. The
modes with large imaginary parts are also present for α = 0 but are only seen when a sufficiently fine grid in
the x-direction is used. The presence of these modes would suggest that time simulations with the linearized
unsteady equations for both zero and non-zero α, would be severely affected by high frequency oscillatory
motion growing fast with increasing time.

Consider next the stability of the multiple solutions discussed earlier. Taken in isolation, the bifurcation
diagram Fig. 3 with a single turning point would suggest that one branch of solutions is stable and the other
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Table 1 Converged eigenvalues for the short bubble solution and long bubble solutions

Angle Eigenvalue Angle Eigenvalue

Short bubble solution
α = −5.5 −0.047 α = −5.0 −0.076
α = −5.4 −0.062 α = −4.9 −0.075
α = −5.3 −0.070 α = −4.7 −0.073
α = −5.2 −0.074 α = −4.6 −0.073
α = −5.1 −0.076 α = −4.5 −0.072

Long bubble solutions
α = −5.5 0.057 α = −5.0 0.949
α = −5.4 0.089 α = −4.9 0.950
α = −5.3 0.946 α = −4.7 0.952
α = −5.2 0.947 α = −4.6 0.953
α = −5.1 0.948 α = −4.5 0.954

branch is unstable. The presence of the turning point is confirmed by the change in the eigenvalue spectrum
in Table 1, where we have shown the values of the real eigenvalue for the two solutions as α changes near the
turning point. This eigenvalue moves towards the origin along the real axis as the turning point is approached.
However in Fig. 9 the full spectrum for the two solutions shows that even though a consideration of the real
eigenvalue changing signs might suggest that the short bubble branch is stable and the long bubble branch
unstable, both solutions are unstable because of the presence of the TS modes.

4 Conclusions

A new numerical method based on a hybrid discretization scheme and using GMRES iteration with a block
pentadiagonal preconditioner, has been developed for the solution of the triple-deck equations for subsonic
flow over corners. This has been successfully used to compute large-scale separated flows and multiple solu-
tions have been found. In general the results agree well with previous work although there exist differences in
the values of α corresponding to the turning point and the incipience of the separation on the lower solution
branch.

The stability of the computed basic flows has been examined by investigating perturbations of the form
e−λt g(x, y) and solving a two-dimensional partial differential eigenvalue problem for the eigenfunctions g
and eigenvalues λ. It is found that the globally unstable modes for small corner angle are Tollmien–Schlicting
modes and our results are in excellent agreement with analytical results for the flat plate case. For non-zero
corner angle, the basic flow is non-parallel and the analytical results no longer hold. It is found that as the corner
angle is decreased from zero, the dominant TS modes are stabilized for the lower branch solution. In should
be noticed that due to the scalings (1) the growth rate is of order Re1/4 and frequencies of order Re−1/4 and
also given the short spatial scales, numerical simulations with the full Navier–Stokes equations are unlikely to
be able to pick up these globally unstable modes unless very fine grids in time and space are used.
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The turning point bifurcation is also confirmed via the eigenvalue spectrum which shows a real eigen-
value changing sign as we move from one solution branch to another. However, the presence of other more
unstable modes shows that both multiple solution branches are unstable, a result which is particularly important
in the context of marginal separation theory.

Finally, the presence of modes in the spectrum with large imaginary parts suggests difficulties in performing
numerical simulations of the linearized unsteady triple-deck equations with the same discretization techniques.
The presence of these modes is likely to lead to small scale highly oscillatory modes growing rapidly in time
with the difficulties being compounded with increasing spatial grid refinement. Similar points have been made
by [18] concerning the interactive boundary layer equations.
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