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Abstract

Second-order priors on the smoothness of 3D surfaces

are a better model of typical scenes than first-order priors.

However, stereo reconstruction using global inference algo-

rithms, such as graph-cuts, has not been able to incorporate

second-order priors because the triple cliques needed to ex-

press them yield intractable (non-submodular) optimization

problems.

This paper shows that inference with triple cliques can

be effectively optimized. Our optimization strategy is a de-

velopment of recent extensions to α-expansion, based on the

“QPBO” algorithm [5, 14, 26]. The strategy is to repeat-

edly merge proposal depth maps using a novel extension of

QPBO. Proposal depth maps can come from any source, for

example fronto-parallel planes as in α-expansion, or indeed

any existing stereo algorithm, with arbitrary parameter set-

tings.

Experimental results demonstrate the usefulness of the

second-order prior and the efficacy of our optimization

framework. An implementation of our stereo framework is

available online [34].

1. Introduction

Multiple-view dense stereo has made considerable

progress in recent years, in part because the problem can be

cast in an energy minimization framework for which there

exist inference algorithms that can efficiently find good (if

not always global) minima. Algorithms based on graph

cuts, in particular, can incorporate visibility reasoning as

well as smoothness priors into the estimation of depth maps.

However, the smoothness priors used in graph-cut based

estimates have to date been first-order priors, which favor

low-curvature fronto-parallel surfaces—indeed, the prior is

maximized by fronto-parallel planes. Even in man-made

scenes, this is far from accurate, as illustrated in figure 1,

and leads to inaccurate depth estimates. It has long been

known [3, 13, 30] that a second order smoothness prior can

better model the real world, but it has not yet been possible

to combine visibility reasoning and second-order smooth-

ness in an optimization framework which finds good op-

(a) Reference image. (b) First-order prior.

(c) Li & Zucker’s result. (d) Our result.
Figure 1. Second-order smoothness priors. (a) A reference im-

age for which we wish to produce a dense depth map. (b)–(d) The

disparity (inverse depth) maps produced by (b) first-order prior,

(c) second-order prior of Li and Zucker [23] and (d) second-order

prior with visibility, optimized as in this paper.

tima.

The main contribution of this paper is to introduce an ef-

fective optimization strategy for stereo reconstruction with

triple cliques. This means that visibility reasoning and

second-order priors can be combined for the first time. We

show that this algorithm produces excellent results both on

the Middlebury test set [27] and on real-world examples

with curved surfaces.

1.1. Background

Second order smoothness priors for stereo reconstruction

have a long history. Grimson [13] and Terzopoulos [30]

both proposed second order priors for stereo in the early

1980s, in the form of the thin plate model. This was ex-

tended to the piecewise second order “weak plate” model

by Blake and Zisserman [3], and recently Ishikawa and
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Geiger [16] have argued that second order priors may be

closer to those that the human visual system appears to

use. Second order priors penalize large second derivatives

of depth (or disparity). When expressed as an energy min-

imization problem, the resulting energy has almost invari-

ably been minimized by what Scharstein et al. [27] describe

as “local methods”: gradient descent [28] or PDE-based

techniques such as level sets [11]. However, local meth-

ods struggle with (a) the long-range interactions associated

with occlusion reasoning and (b) weak or multi-modal data

likelihoods.

The introduction of “global” methods for energy mini-

mization gave a considerable improvement in stereo recon-

struction performance. Methods such as graph cuts [8, 20,

31] can find strong (although not global) optima of ener-

gies with long-range interactions. However, these methods

have not previously incorporated second-order smoothness

terms. This is despite the fact that the graph constructions

necessary to include these terms are known [21]: the triple

cliques which represent the second order terms are decom-

posed into several pairwise cliques and auxiliary nodes are

added. Boykov and Veksler [7] say that “the allowed form

of these triple cliques is very limited”, but the construction

is valid for any energy—the limitation is that the resulting

graph is non-submodular, meaning that efficient methods of

finding the global optimum were not known. In this paper

we adapt a newly introduced optimizer [26], the “QPBO”

method of Boros, Hammer and co-workers [5, 14], to com-

pute good optima of the energy. Although these are not

guaranteed to be global optima, our experiments show that

by careful parametrization of the problem, good local op-

tima can be found reliably.

Previous stereo algorithms have implemented approx-

imations to second order smoothness priors. Ogale and

Aloimonos [25] propose a “slanted scanline” algorithm, in

which straight, 3d line segments are fitted to 2d image scan-

lines using an optimization method. This approach mod-

els visibility using an explicit uniqueness constraint, but the

method is limited to image pairs, and the between-scanline

optimization is local. Li and Zucker [23] introduce priors

on slanted and curved surfaces, encouraging the second and

third derivatives of depth to be zero. This novelly allows

for curved surfaces in the solution, as shown in figure 1(c),

and significantly improves on the fronto-parallel assump-

tion on scenes where that assumption is violated. However

their algorithm precomputes local surface normals and in

fact optimizes a first-order prior on the normals, rather than

a second-order prior on the disparities. Indeed, they dis-

cuss the global optimization of a second order prior, and

conclude that this “makes the problem computationally in-

feasible”.

A related class of methods is “segment-based” stereo.

Early examples of this technique were proposed by Birch-

field and Tomasi [2] and Tao et al. [29]. While their

two approaches differ somewhat, both enforce the con-

straint that segmented regions of the image be planar, a

trait common to the sequence of algorithms that succeeded

Tao’s [4, 15, 17, 35], which have shown excellent results

on the “Middlebury ” test set [27]. They all share the

same three stage process—produce an over-segmentation

of the reference image, generate a set of planar hypothe-

ses for each segment, and optimize over the hypotheses—

differing only in their implementation of each stage. Lin

and Tomasi [24] explicitly minimize an energy including

a second order prior, but are restricted to a local gradient-

based optimization strategy where segmentation and depth

estimation are interleaved. In many of these segment-based

methods the assumption of the local planarity of scenes is

not a general smoothness prior, but a hard constraint, which

does not permit curved surfaces even when the data sup-

ports this. In contrast, we show that the method proposed

here is an effective regularizer over both planar and curved

surfaces.

2. Problem statement

Before describing this paper’s main contribution, let us

define the stereo problem, and the energy formulation that

we propose to minimize.

The input is a set of N + 1 images {Ii}
N
i=0. The goal is

to determine the dense disparity map, D, of one reference

view, say I0. A 2D vector, x, denotes a pixel location in the

reference view, the color of which is written as I0(x), and

the corresponding disparity is D(x). We are also given pro-

jection functions {πi(x, d) : R
2 7→ R

2}N
i=1, where πi(x, d)

is the projection into image i of the 3D point corresponding

to disparity (1/depth) d in front of pixel x in the reference

view. For a rectified stereo pair, N = 1 and only π1 is

required, with the simple definition π1(x, d) = x + [d, 0].
The abbreviation Iπ

i (x, d) = Ii(πi(x, d)) will be used

to reduce clutter, and may be read as “the color of the pixel

corresponding to x in image i if the disparity at x is d”.

The energy function to be minimized is a function of the

disparity map E(D), and is the sum of two terms: photo-

consistency Ephoto, which incorporates geometrical visibil-

ity reasoning, and smoothness Esmooth, as follows.

E(D) = Ephoto(D) + Esmooth(D). (1)

The components of the energy shall now be described.

2.1. Data term

The data term in this paper is a standard photoconsis-

tency term of the form

Ephoto(D) =
∑

x

N
∑

i=1

f
(

Iπ
i (x, D(x)) − I0(x), V i

x

)

(2)



where V i
x

is a visibility flag, to be discussed below, indicat-

ing whether the 3D point defined by (x, D(x)) is visible in

image i. Given V i
x

, the consistency metric f is defined as

f(∆I, V ) =

{

ρd(∆I) if V = 1

ν if V = 0
(3)

Here ν is the penalty cost paid by occluded pixels, and ρd is

a robust measure of color difference, defined by

ρd(I) = − log
(

1 + exp(−‖I‖2/σd)
)

, (4)

where σd is set from the noise level in the sequence.

The visibility flag V i
x

adds nonlocal terms to the energy,

making global optimization of this energy difficult, even be-

fore priors are incorporated. It is more correctly written

Vi(x,D), indicating the dependence on many entries of the

disparity map D. We use the asymmetrical occlusion model

of Wei and Quan [31], which reduces the complexity of the

symmetrical multi-view occlusion model introduced in [20]

from O(N) to O(1). This model adds pairwise terms to

the energy, between nodes which are on the same epipolar

lines. However the approximations made in [31] in order to

ensure submodularity are unnecessary, given our optimiza-

tion framework. As shall be seen in §3, optimization of the

continuous E(D) is expressed as a sequence of binary sub-

problems. It then becomes valuable to compute the decom-

position into pairwise terms independently for each binary

subproblem. This confers the advantage that the that the

number of potentially occluding pixels is relatively small

for each such subproblem, so the cost of including visibility

is relatively low.

2.2. Surface smoothness

The smoothness prior places a cost, ρs(·), on the smooth-

ness S(·) of a neighborhood, N , of pixels. In addition, a

per-neighborhood conditional random field (CRF) weight

W (N ), as discussed in §4, will be applied. Esmooth is the

sum of smoothness costs over a defined set of pixel neigh-

borhoods, N, thus

Esmooth(D) =
∑

N∈N

W (N )ρs(S(N ,D)). (5)

with ρs(s) = min(σs, |s|), the truncated linear kernel.

Second-order priors are defined on three-pixel neighbor-

hoods, and approximate the second derivative of disparity,

thus:

S({p,q, r},D) = D(p) − 2D(q) + D(r) (6)

where the neighborhoods, N = {p,q, r}, are from the set

of all 3 × 1 and 1 × 3 patches in the reference image. This

function increases monotonically as the neighborhood di-

verges from collinearity, in contrast to the first-order prior

traditionally used, S({p,q},D) = D(p) − D(q), which

increases monotonically as the neighborhood diverges from

fronto-parallel.

3. Optimization

The above defines E(D) as a function of a real-valued

disparity image D. In this section we describe how this en-

ergy is minimized, following recent generalizations of α-

expansion [22, 26, 33]. In order to optimize the energy

over the real-valued space, we reduce it to a sequence of

binary problems as follows. Suppose we have a current

estimate of the disparity, Dt, and a proposal depth map

Dp. In the α-expansion method, for example, the proposal

depth at each step is a fronto-parallel plane [8]; in this paper

we shall use more complex proposals (see §3.3). The goal

is to optimally combine (“fuse”) the proposal and current

depth maps to generate a new depth map Dt+1 for which

the energy E(Dt+1) is lower than Dt. This fusion move is

achieved by taking each pixel in Dt+1 from one of (Dt,D
p),

as controlled by a binary indicator image B with elements

B(x):

Db(B) = (1 − B) · Dt + B · Dp, (7)

where dot indicates elementwise multiplication. Thus, B
may be read as “copy the disparity from the proposal Dp(p)
if B(p) = 1, otherwise keep the current estimate Dt”. Then

the energy E(D) is a function only of the indicator im-

age B, so we may define

Dt+1 = Db

(

argmin
B

E(Db(B))

)

(8)

This boolean optimization problem is then represented as

a graph-cut problem, as described in §3.2 below. This

will in general lead to a non-submodular graph, but we

can use Quadratic Pseudo-Boolean Optimization (QPBO)

[5, 14, 26], which is able to optimize non-submodular en-

ergies. Unlike the submodular case, where the global mini-

mum B is guaranteed, QPBO returns a solution B and an as-

sociated mask M with the guarantee that at pixels x where

M(x) = 1, the value b(x) is at the value it would have at

the global minimum,1 but pixels where M(x) = 0 have “un-

labeled” values. By forcing B(x) = 0 at those pixels, we

ensure that E(Dt+1) ≤ E(Dt) (a result of the “autarky”

property of QPBO [26, page 2]), thus guaranteeing not to

increase the energy with each proposal.

Although in principle one could optimize our energy just

using the above algorithm, in practice convergence would

be slow, as the the number of unlabeled pixels at each fusion

step may be high. In the next two sections we discuss three

1More correctly, a global optimum as there may be several labelings

with the same energy



important procedures which can be used to greatly improve

the performance of the algorithm: (1) a variety of alterna-

tive fusion moves; (2) the graph construction which allows

each binary subproblem to be effectively solved; and (3) the

selection of proposal depth maps.

3.1. Alternative fusion strategies

The fusion move described above states how to choose

values for the binary labeling B at pixels unlabeled by

QPBO. A number of alternatives are possible, as outlined

below. In each case we use the labels 0 and 1 to represent

the current and proposed solution, Dt and Dp, respectively.

Many of these alternatives have appeared before in the lit-

erature, but we introduce two new strategies which give no-

ticeable improvements in our results, and may prove useful

in other contexts.

QPBO-F. Fix to current [33]: fix unlabeled nodes to 0, the

current best labeling.

QPBO-L. Lowest energy label [22]: fix unlabeled nodes

collectively to whichever of 0 or 1 gives the lowest energy.

QPBOP. Probe: probe the graph, as described in [6, 26], in

order to find the labels of more nodes, that form part of an

optimal solution.

QPBOI-F. Fix to current and improve: fix unlabeled nodes

to 0, and transform this labeling using QPBOI, as described

in [26].

QPBO-R. Lowest cost label per region (new approach,

based on the “optimal splice” technique of [32]): split un-

labeled nodes into strongly connected regions (SCRs), as

per [1]. For each SCR, independently select the labeling,

0 or 1, which gives the lowest total energy for cliques con-

nected to that region.

QPBOI-R. Improve lowest cost label per region (new ap-

proach): Label nodes as per QPBO-R, then use QPBOI to

transform this labeling.

In §5.1 we empirically compare the various fusion strate-

gies in the context of our problem.

3.2. Graph construction

As mentioned above, the conversion of the large-clique

energy E(D) into an equivalent pairwise representation

is delayed until the binary optimization stage. Figure 2

demonstrates the construction of the graph used in each bi-

nary optimization, for a 1 × 3 pixel image. The graph con-

tains only pairwise terms represented by the lines in the fig-

ure, linking the nodes. The black lines represent the data

costs of equation (3), giving 2nN edges for an n pixel ref-

erence image. The blue lines are infinite edge costs which

enforce the visibility constraint of the same equation, as per

[31]; the line shown indicates that one (or both) of the dis-

parity labels for pixel p occludes pixel r at disparity d0 in

I1. The list of pixel occlusion interactions is computed prior

p q r

V1(p,d0)

aux
V1(p,d1) VN(p,d1)

VN(p,d0) V1(r,d0)

V1(r,d1) VN(r,d1)

VN(r,d0)

Figure 2. Graph construction. A graphical representation of the

energy graph we construct for a 3×1 pixel image. Ovals represent

nodes of the graph, and lines (edges) represent pairwise energy

terms. Nodes p, q and r are binary variables encoding the dispar-

ities, (d0, d1), of those pixels. The nodes V1(p, d0), etc. encode

whether (by way of example) pixel p is visible at disparity label 0

(i.e. disparity d0) in I1; note that some of these nodes have been

excluded for clarity. Black lines represent the data costs, blue lines

the visibility constraint, and red lines the smoothness prior.

to solving the graph, and, while the list length is variable, it

tends to be around nN edges.

The six red lines, which represent the smoothness costs

of equation (5) for the only complete neighborhood, N =
{p,q, r}, show how one triple clique is decomposed into

six pairwise cliques, and an extra, latent node (labeled aux),

using the decomposition described in [21]; note again that

while the decomposition was originally given with regard

to submodular graphs, it holds for any triple clique.

Graph complexity With the addition of a fourth pixel, s,

to create a 1 × 4 pixel image, the neighborhood {q, r, s}
will share the edge qr with {p,q, r}; therefore, generally,

the total number of edges for a bidirectional, second-order

smoothness prior, ignoring boundary effects, is 10n, up

from 2n for a first-order prior. It can therefore be seen that

the use of a second, rather than first, order prior increases

the graph size (number of edges) by a factor of approxi-

mately (10 + 3N)/(2 + 3N)—around 160% larger with

two input images (N = 1), but only 60% larger with 5 in-

put images. A similar analysis on the degree (number of

incident edges) of each pixel node shows an increase of a

factor of (12 + 3N)/(4 + 3N), or about 114% higher for

two images.

3.3. Proposal generation

The final component of the algorithm to be defined is the

choice of proposals. In previous work [22, 33], the propos-

als have just been fronto-parallel planes (denoted “Same-

Uni” below). As shown in [8], repeated fusion of these

proposals leads to a strong local optimum in the submod-

ular case. In the non-submodular case, the nature of these

proposal disparity maps has a large effect on the generated

disparity map, as we show empirically in §5. We use the

following schemes for generating the jth proposal disparity



map Dp
j :

SameUni Draw dj from a uniform distribution, and set

Dp
j(x) = dj for all x.

SegPln Uses the ad-hoc approach of segmentation-based

methods [17, 35] to generate a set of piecewise-planar pro-

posals, which are then cycled through continuously. In this

implementation, demonstrated in figure 3, the first stage of

proposal generation involves a local window matching pro-

cess [27] to generate an approximate (very noisy) disparity

map. We then use two different image segmentation algo-

rithms, one color-based [10], and one texture-based [12],

and 14 sets of parameters in total, to generate segmentations

of I0, ranging from highly under-segmented to highly over-

segmented. For each segment in each segmentation we use

LO-RANSAC [9] to find the plane that produces the great-

est number of inlying correspondences from the first stage

(given a suitable distance threshold), and set all the pixels

in the segment to lie on that plane.

Smooth Dp
j(x) = (Dj(x + ∆) + Dj(x − ∆))/2, where

∆ = [0, 1] when j is odd, and ∆ = [1, 0] when j is even.

These proposal methods represent the different ap-

proaches used by the main types of stereo algorithms: the

fronto-parallel proposals of SameUni are essentially those

used at each iteration of an α-expansion-based stereo algo-

rithm (except drawn from a continuous, rather than discrete,

space); SegPln proposals are those used by segment-based

algorithms; Smooth proposals, generated by a smoothing

operation on the current disparity map, can be viewed

as a proxy for local methods such as gradient descent.

With QPBO-based fusion, we gain the benefits of all

these algorithms—indeed, any stereo algorithm available—

without affecting the global optimum. For example, the

SegPln proposals, the main workhorse of our algorithm, are

produced with a range of algorithms and parameter settings;

in general we expect these disparity maps to be correct in

some parts of the image, and for some parameter settings,

but that no settings can be found for which any algorithm

works best. By fusing the proposals in a well-defined en-

ergy minimization framework, the parameter sensitivity of

these methods is turned into an advantage: we can select

the best parts from each proposal, at the pixel (as opposed

to segment) level.

4. Implementation

Some further implementation notes will allow the reader

to more accurately replicate our method.

We normalize the range of disparities searched over for a

particular image sequence to [0, 1] prior to the evaluation of

Esmooth, in order to make our objective function invariant to

image baseline, camera calibration and depth of field. The

Figure 3. SegPln proposal generation. Top row: I0, and 3 of its

14 segmentations. Bottom row: approximate disparity map from

window matching, and 3 SegPln proposals generated by fitting

planes to each segment in the above segmentations.

initial depth map, D0, is set to D0(x) = rand[0, 1] for each

x independently.

Optimization is halted either when a maximum num-

ber of iterations, tmax, is reached, or when the average de-

crease in energy over the last 20 iterations drops below some

threshold, δEthresh, whichever occurs first.

We use Kolmogorov’s [19] implementations of QPBO,

QPBOP and QPBOI. Both QPBOP and QPBOI methods

make use of tree-recycling [18] for a fast implementation;

the number of graph solves is at most linear in the number

of unlabeled nodes for QPBOI, but exponential for QPBOP,

though it should be noted that QPBOP labels nodes opti-

mally, rather than approximately, as with QPBOI.

CRF weights The CRF weights W (·) are set to encour-

age disparity edges to align with edges in the reference im-

age I0. We generate a single mean-shift segmentation of

the reference image ([10], hs = 4 and hr = 5), and as-

sign one of two weights to each neighborhood, depending

on whether or not it overlaps a segmentation boundary. Pre-

cisely, if L is the map which assigns to each pixel its seg-

mentation label, then

W (N ) =

{

λh if L(p) = L(q) ∀ p,q ∈ N

λl otherwise.
(9)

Parameters We use the same parameter settings for all

examples, i.e. ν = 0.01, σd = 30C, λl = 9N, λh =
108N, σs = 0.02, where C is the number of color chan-

nels per input image. These settings were obtained by vi-

sual evaluation of a small number of Middlebury images

(although it must be emphasised that they were not chosen

with any reference to the Middlebury evaluation score). The

order of the prior was found not to change the relative per-

formance of parameter sets significantly.

5. Experiments

In this section we describe the experiments we carried

out in evaluating the efficacy of QPBO in optimizing our



non-submodular energy, the trade-offs of each of the QPBO

labeling methods, the effect of using different disparity pro-

posals, and comparing our method, with its second-order

prior, to the same method with a first-order prior, and other,

competing approaches to stereo.

The optimization method used in each experiment is

characterized by the order of the prior (“1op” for first-order

prior, etc.), the set of proposals, the fusion strategy and the

convergence criterion used to stop the optimization, e.g.

“2op, SameUni, QPBOI-R, δEthresh = 0.01%”, or “1op,

SegPln, QPBOP, tmax = 200”.

5.1. Unlabeled nodes

The proportion of pixels that are labeled by QPBO has a

direct impact on the quality of the solution found—trivially,

if no nodes are labeled then (using QPBO-F) the final solu-

tion will be the same as the initial solution. We therefore ran

experiments on the 4 Middlebury test sequences to evaluate

what proportion of pixels were labeled, and which of the fu-

sion strategies performed best at fixing these pixels. The re-

sults of these experiments are shown in figure 6. Figure 6(a)

indicates that using SegPln proposals with a second-order

prior generates the most unlabeled nodes for our chosen

smoothness parameters, at 15% on average; we therefore

used these settings to compare fusion strategies. Figure 6(b)

shows that QPBOP rapidly becomes several orders of mag-

nitude slower as the number of unlabeled pixels rises, while

other methods roughly double in time over the same range;

of these there is only fractional difference in speed, though

order of fastest to slowest is consistently QPBO-F, QPBO-

L, QPBO-R, QPBOI-F, QPBOI-R. In terms of energy re-

duction performance, QPBOP, which gives an optimal so-

lution, performs best, while QPBO-F, with the simplest la-

beling strategy, performs worst. Figure 6(a) shows how the

other strategies perform relative to these two, and indicates

that QPBOI-R achieves the largest energy reduction. Con-

sidering the trade-off between time and efficacy, we found

QPBOI-R to be the most suitable method for our problem,

and used this in all further experiments.

5.2. Proposals

We applied all our proposal sets separately to each of

our test sequences, with both first and second order pri-

ors, using QPBOI-R, δEthresh = 0.01%. However, as the

Smooth proposal only performs well when applying it to an

approximately correct disparity map, we prefixed the pro-

posal set with the disparity maps generated using the other

two proposal schemes, and repeated the set every six itera-

tions, calling this set “Smooth*”.

Figure 4 shows the results on the Middlebury “Venus”

sequence. It can be seen that the fronto-parallel SameUni

proposals generate generally piecewise-fronto-parallel so-

lutions with both priors, while the piecewise-planar SegPln

1
o

p
2

o
p

SameUni SegPln Smooth*

Figure 4. Effect of proposals. Output of our stereo method on

the Venus sequence, using first and second order priors with our 3

proposal strategies.
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Figure 5. Multiple, arbitrary views. Top left: I0 for the “Plant &

toy” sequence, which has arbitrary input views. Bottom left: Out-

put disparity using “2op, Smooth*, QPBOI-R, δEthresh = 0.01%”,

for N = 2. Right: Graph of fusion (QPBO only) and iteration

(including image graph construction) times as a function of N .

proposals generate piecewise-planar solutions, but with the

first-order prior tending to favor more fronto-parallel sur-

faces over the correct solution. When these solutions are

combined in the Smooth* proposal set, the first-order prior

favors the SameUni solution, while the second-order prior

favors the SegPln solution.

5.3. Second vs first order

We used the Middlebury stereo evaluation framework to

compare the accuracy of results using first and second or-

der priors. In order to remove biasing caused by proposal

schemes (seen in the previous section) we only compare

priors using Smooth* proposals (and QPBOI-R, δEthresh =
0.01%). Figure 7(a) shows the relative performance of the

two priors, in terms of average rank in the Middlebury per-

formance table. The graph shows that, not only does the

second-order prior perform better at all error thresholds, but

also that its performance improves more than the first order

prior at the high-accuracy thresholds, relative to other al-

gorithms, indicating improved subpixel accuracy. This ef-
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Figure 7. Middlebury performance. (a) A graph of average rank on the Middlebury stereo evaluation, against disparity error threshold,

for both first and second order priors. (b)–(d) Output disparity using “2op, Smooth*, QPBOI-R, δEthresh = 0.01%”, for the Middlebury

“Tsukuba”, “Teddy” and “Cones” sequences respectively. (e) Top: Output disparity using the same method as (d), but with no visibility

constraint (i.e. Vi(x) = 1 ∀x). Bottom: Visibility map for I1 of “Cones”—pixels deemed occluded according to the following disparity

maps are painted (covering the previous color) in the following order: disparity map above, red; (d), blue; ground truth, black.

fect can be explained by the fact that non-fronto-parallel

planes, as well as curved surfaces, are better modeled by

the second-order prior, as demonstrated in figure 8.

Figure 7(e) highlights the benefits of a visibility con-

straint (comparing numbers of red and blue pixels)—by re-

ducing the number of falsely occluded pixels, it essentially

encourages uniqueness of correspondences between input

images. As unique correspondence is a constraint on real-

world scenes, incorporating such a constraint in a stereo

framework produces better results.

5.4. Multiple & arbitrary views

The formulation of our objective function allows for any

number of input images to be used, and for those images to

have arbitrary viewpoints. Figure 5 shows results for such a

dataset—the “Plant & toy” sequence from [33]. We found

little or no qualitative improvement between N = 2 (three

views) and N > 2, something we believe can be attributed

to the fact that three views are sufficient (in this case) to en-

sure that each pixel of I0 is visible in at least one other view.

However, should more views be required, figure 5(right),

shows that, in practice, the time per fusion iteration (with

and without graph construction overheads such as image

sampling and visibility computation) rises linearly with N .

6. Conclusion

This paper has shown that second-order smoothness pri-

ors can be incorporated into graph-cut based stereo recon-

struction. This was not previously possible, because the

non-submodular energies led to infeasibly complex opti-

mizations. Previous stereo algorithms using second-order

priors were limited by local optimizers. In particular,

the combination of second-order priors with simultaneous

global visibility reasoning was not possible. The paper’s

main contribution is a framework for optimizing the re-

sulting objective function. We have demonstrated that this

method produces depth maps that accurately reconstruct the

scene at a subpixel level. The algorithm can be equally ap-

plied to multi-view stereo with arbitrary camera viewpoints,

and does so at a computational cost linear in N .

An interesting feature of the optimization strategy, and

in particular the “SegPln” proposals, is that it can make

use of existing algorithms, which may sometimes be rather

ad-hoc, and combine their results in a principled way. We

expect this property to offer considerable opportunities for

improvement of the basic method in terms of the quality

of optima discovered, and the speed at which they can be

found.



Figure 8. Curved surfaces. Left to right: I0 for the Middlebury “Cloth3” sequence, ground truth (discretized) disparity surface (3-d view

of disparity map), disparity surfaces generated using Smooth* proposals and 1op and 2op respectively. (Spurious pixels have been fixed to

the back-plane, for improved visualization.)
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