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GLOBAL STRUCTURAL STABILITY OF
A SADDLE NODE BIFURACTION

BY
CLARK ROBINSON(')

Abstract. S. Newhouse, J. Palis, and F. Takens have recently proved the
global structural stability of a one parameter unfolding of a saddle node
when the nonwandering set is finite and transversality conditions are
satisfied. (The diffeomorphism is Morse-Smale except for the saddle node.)
Using their local unfolding of a saddle node and our method of compatible
families of unstable disks (instead of the more restrictive method of compa-
tible systems of unstable tubular families), we are able to extend one of their
results to the case where the nonwandering set is infinite. We assume that a
saddle node is introduced away from the rest of the nonwandering set,
which is hyperbolic (Axiom A), and that a (strong) transversality condition
is satisfied.

1. Statement of the theorem. We consider M a compact manifold without
boundary, and I** [-1,1]. We consider C one parameter families of
diffeomorphisms, i.e. a C function f: I X M -* M such that for each pE I,
/,(•) *■ /(/*> • ): M -» M is a diffeomorphism. We denote the set of such C
one parameter families of diffeomorphisms with the C by Of. We let
Diff(M) be the C diffeomorphisms on M. For /, g G 6¡f, we say that g is
semiconjugate to f near p = 0, if there is an a > 0 and continuous functions
h:[-a,a]X M-* M and injective k:[-a,a]-*R with k(0) = 0 such that
haf*(x) *■ ÄfcoAiW f°r all pE[-a,a] and x G M. If AM is one to one for
each p G [- a, a], we say that g is conjugate to f near p — 0. An / G tff is
called structurally stable near p = 0 if there is a neighborhood 91 of / such
that, for g G 91, g is conjugate to/ near p = 0 (and the a is independent of
g)-

A point x G M is a periodic point of / G Diff(M) if f(x) = x for some
n > 1. For / G Diff(M), let Q(f) c M be the nonwandering set of /, i.e.,
x G fl(/) if for every neighborhood U of x we have l/nU{/n(t/):«>l}
¥> 0. For U cM, let 0(U,f) = U {f"(U): n G Z).

For/ G DÛT (M), we say a periodic point p of period n is a saddle node if 1
is an eigenvalue of Df(p) of multiplicity one and all the other eigenvalues
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156 CLARK ROBINSON

have absolute value different from 1. Then there is a splitting of the tangent
space at p, TpM = E¡¡ © E'p © Epc and a X < 1 and C > 0 such that for
i >0

Tf'v = v   for c G £/,
|r/n,t;|< ca'|o|  foroGf:;,

|r/-nít>|< CX'|t>|    for« G £/.
Here Tfni is the induced map on tangent vectors (derivative). By changing
the metric we can take C — 1. The strong stable manifold of p are the points
that go to p at an exponential rate,

W (p,f) ={yEM: d{r (p),fni (y)) < d(p,y)[(X + l)/2]'

for / sufficiently large}.

W"(p,f) has dimension equal to dim Ep. We can extend Wss(p,f) to a
foliation of a neighborhood of p. See §4 where we use methods related to
those of [2, Theorem 6]. We call this the strong stable foliation in a neigh-
borhood of p. Similarly we have the strong unstable manifold, Wm(p,f), and
the strong unstable foliation. There is also an invariant manifold W^p,/)
tangent to Ep called the center manifold.

For/ G 6Dr, we say/adds a saddle nodep at u = 0 if p is a saddle node of
/o and there is a neighborhood U of p in M and a > 0 such that, for
p E [- a, 0), fp has no periodic points in U and, for p G (0, a], f^ has two
hyperbolic periodic points in U. We are assuming this is a generic bifurcation
as given in [1], [14], or [4].

An/ G Diff (M) has a hyperbolic structure on A c M (satisfies Axiom A)
if (Ab) the periodic points of/are dense in A and (Aa) there are continuous
subbundles E" and E' of TM\A and constants 0 < X < 1 and C > 0 such
that TM\A - £" © E' and for « > 0

|r/Btj| < CX"|o|   for v E Es,       \Tf-"v\ < CX"|t>|   for v E Eu.

It follows that Eu and E' are invariant under Tf. A Riemannian metric on M
is called adapted if we can take C = 1 above. They always exist [7]. We will
always be using aC" adapted metric below. Let d be the associated distance
onM.

The stable manifold of x G M is the set of points

W (x,f) - {y G A/: </(/" (x),/" (y)) ^0 as n -* oo}.

The u/u/aô/e manifold of x is IT"(x,/) - W'(x,f~x). We write

**?(*>/) = {y e »"(*,/): d(f(x),f(y)) < rforn > 0}.
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GLOBAL STRUCTURAL STABILITY OF A SADDLE NODE BIFURCATION 157

Similarly Wru(x, /). For A c M and o = u, s we let W(A) -
U {W(x,f): x G A}. If Diffr(M) has a hyperbolic structure on fi(/), then
M = W'(Ü(f)) ** W(ü(f)). Also W'(x,f) and Wu(x,f) are then injective
by immersed submanifolds for all points x E M. See [7] or [13]. If / G
Diff(M) has a saddle node/? and fl(/) - €(p,f) has a hyperbolic structure
then it is still true that M - W(Q(f)) but W'(p,f) is a manifold with
boundary W" (p,f), the strong stable manifold.

Assume / adds a saddle node p at p ** 0 and ß(/o) — 6(p,/a) has a
hyperbolic structure. Then there is a decomposition of the nonwandering set
Q(f) ■ 8, u • • • U 84 where the ÏÏ, are pairwise disjoint and each fí(. is
cloaed, invariant by/0, and transitive. We say/0 has the no cycle property if it
is possible to number the fl, so that if Ifr"(ß/,/0) n W(Q¡,f¿)=A0 then
J < '"•

A diffeomorphism/ G Diffr(A/) such that fl(/) has a hyperbolic structure
is said to satisfy the strong transversality condition if W'(x,f) and W(x,f)
intersect transversally at x for all points x G M. A diffeomorphism / G
Diff^M) with a saddle nodep and with B(/) - Q(p,f) having a hyperbolic
structure is said (in this paper) to satisfy the strong transversality condition if
rV'(x,f) and W(x,f) intersect transversally at x for all x G M and further
that W'(x,f) are transverse to the strong unstable foliation near p and
W"(x,f) are transverse to the strong stable foliation near p. If / G eDr adds a
saddle node at p = 0 and /0 satisfies the strong transversality condition and
no cycle property then for p near 0, ß(f) has a hyperbolic structure and f^
satisfies the strong transversality condition. This fact is implicit in our proof
below. Also see [5].

For / G <&, we use the induced parameterized metric (distance) on M
which for p G / is given by

dfll(x,y) = sup{¿(/;(x),/;(.y)): n E Z).

This is similar to the df metric introduced by Robbin and used in [11].

Theorem. Assume f E 6Ùa0 adds a saddle node p at p ** 0. Also assume
ß(/o) — 6 ÍP> fo) nas a hyperbolic structure, and /„ satisfies the strong transver-
sality condition and no cycle condition. Then f is structurally stable near p**0.

An example where this theorem applies but that of [6] does not can be
constructed by adding a saddle node to the horseshoe on the two spheres
[13]. The original diffeomorphism has a sink, a source and a horseshoe. The
saddle nodep is added near the sink in such a manner that the "hooks" from
the horseshoe still go to the sink q.
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158 CLARK ROBINSON

For a more complete introduction to global dynamical systems see [13], [7],
or [10]. For a more complete discussion of the various types of stability for
one parameter families of diffeomorphisms see [6]. For an introduction to the
various types of global bifurcation see [4] and [5]. In §2, we sketch the proof
of structural stability using compatible families of unstable disks indicating
the changes necessary. For more details see [11]. For an introduction to this
method see [12].

The main technique from analysis that we use is that of strong unstable
manifolds. We need a result of the following type. Let V c M be an
invariant compact C1 manifold for / and have a splitting TM\ V = E" © TV
© Ec such that Ec may have a weak expansion but Eu is much more
expanding than other directions. Then there is a C1 manifold through V
tangent to E" called the strong unstable, Wm(V, F). See [2, Theorem 6.1].
Moreover if g is Cx near / and if we assume g has an invariant manifold V
that is C1 near V, then WU(V', g) is C1 near Wu(V,f). We do not know a
reference for this last part of the theorem. Actually we need the theorem in
the Lipschitz category with uniformities instead of compactness. Therefore we
prove these results in §4. Certainly the theory of stable and unstable
manifolds is very old, going back to Hadamard and Perron. The reader
might check [15, Chapter 7] for a more complete history.

2. Global aspects of the proof. In this section we sketch the proof of
structural stability using compatible families of unstable disks given in [11],
and indicate the changes necessary. See [11] for more details or [12] for an
introduction to this method.

We are given f E tyr such that / adds a saddle node, p, at p = 0,
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ß(/o) "" ®(P>fo) nas a hyperbolic structure, and/0 satisfies the strong trans-
versality condition. Also assume /0 satisfies the no cycle property, so ß(/) —
ß, u • • • U ß* where the ß, are pairwise disjoint and each fi(. is closed,
invariant by/0, and transitive (/0 has a dense orbit.) Each ß, is called a basic
set. Since/o satisfies the strong transversality condition, it is possible to index
the ß,- so that if W"(Qj,f0) n Ws(%,f0) * 0 then/ < i. The saddle node is
one of the basic sets, ilq = ®(p,f0).

For g E fyr near /, we are given by [6] a conjugacy on the local center
manifold of p for/ to that of p' for g, A,: WiCoc(0,p,/)-> WfJ^a,p',g) and
k: [-a, a] -+[-a', a'] such that hx(p,fll(x)) = g(k(p),hx¡l(x)). Here
WioÁ >P>f) IS two dimensional including the parameter direction. We
reparameterize g so we can take k(p) — p and «7 = 0 in the rest of the proof.

By compatible families of unstable disks we mean that there are neigh-
borhoods U¡ of ß,. and families {D?(p, x, g): x E ©(¿V,,/,,)} for 1 < i < K
such that

(0) for/and x G W"($t,f¿ we have D,"(p, x,f) c W(x,f¿;
(1) D"(p, x, g) is a Cx disk near x with dimension equal dim E" for y E Q,

and the disk depends continuously on x and p in the C ' topology;
(2) (invariance)g^D^p, x, g) d D^pJ^x), g);
(3) (compatibility) if i < j and x G 6(1/,,/,) n Wy,/M) then D^(p, x, g)

3Dj"(p,x,g);
(4) the family {Di"(p, x, g): x G U¡) is «t^ Lipschitz with uniform Lipschitz

constant over U, (as explained in § §3-4);
(5) the family for g, {Z>(u(p, x, g): x E U¡), is both C° and d/ft Lipschitz

near the family for/, {D¡u(p, x,f): x G U,), for g near/ ;
(6) the dj Lipschitz jet of the family for / varies uniformly continuously

along fibers. (This is a technical point explained in [11] to make the
induction work.)

We construct the families of unstable disks for g near /and p near 0 as in
[11, §5]. We use induction on k, proving that conditions (ly-{6) are satisfied
for 1 < 1, / < k. When k — 1, ß, is a repellor (unstable manifolds form a
neighborhood but Q¡ is not necessarily a point). We can construct the disks
on a neighborhood Ux by the generalized unstable manifold theorem [11,
Theorem 3.1 and 3.2]. Assuming (l)-(6) are satisfied up to k - 1, we
constant over U¡ (as explained in §§3-4);

We take a neighborhood Uk of Slk and differentiable subbundles of
TM\Uk, Ef and Eg1, such that £^|ßA approximates Eu\Qk and £¿"|fl*
approximates E'\Qk. By taking Uk small enough f satisfies hyperbolic
estimates with respect to the splitting TM\Uk = Eku*® Eff. (Actually we
need to take continuous extensions and then approximate them by
differentiable subbundles later in the construction. The reader can consult
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160 CLARK ROBINSON

[11, §5].) We take a fundamental domain F'k of W(Qk),

F>k = closure{ W¡ (fi*) - fW¡ (fi,)}.

We take Vk' a neighborhood of Fk that is disjoint from fi¿ (a fundamental
neighborhood). Using a procedure introduced by Palis [8] or [9] we can
construct disks Dk(p,x,g) for x G Vk that satisfy conditions (\)-((>), [II,
Lemma 5.3]. The generalized unstable manifold theorem [11, Theorems 3.1
and 3.2] says that these disks extend to a neighborhood Uk of Q¿ and satisfy
(1H6).

We continue by induction on k until k ** q and we are at the saddle node,
8,= 6(p,/o). We want to construct disks whose dimension equals the
dimension of the strong unstable manifold of p. We cannot just construct
unstable disks on a fundamental neighborhood Vq and extend these to a
neighborhood of Q? because the strong unstable manifold theorem does not
give permanence under a small perturbation. In the next section we show how
to use the conjugacy on the local center manifold constructed in [6] to
construct a point through which the (strong) unstable disk passes. Picking this
point correctly gives permanence for g near /. Specifying this point is like
specifying the component of the unstable disks in the center direction. The
assumption that the unstable manifolds of fi, for / < q are transverse to the
strong stable foliation in a neighborhood of fi? implies we are free to specify
this component in the center direction and still get disks that are compatible
with the earlier families.

For k> q, the proof of the induction step is as in [11]. The assumption,
that the stable manifolds of fi,- for i > q are transverse to the strong unstable
foliation in a neighborhood of fi?, implies that the unstable disks Dq(p, x,f)
are transverse to the stable manifolds of fi,.

Once we have constructed all the unstable disks, we reverse the process and
look at the mapf~x x g~x on the unstable disks,

U{x} x D»(p,x,g)     " i*       U {x} X D?(p,x,g)
i 4
u, !C f;%

The map is a contraction on fibers even for i = q. Therefore we can use [11,
Theorems 3.1 and 3.2] to get an invariant section exactly as in [11, §6]. We
start constructing an invariant section on UK and continue back by induction.
We get AM for p E [- a, a] and a > 0 small enough such that hj^ = g^A,, and
AM is dfu Lipschitz near the identity. Then [11, Lemma 6.2] proves AM is
one-to-one. Therefore h^ is a conjugacy.
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3. Geometric aspects of the construction near the saddle node. From the
results of [6], we know that there is a conjugacy, A,, C° near the identity from
the local center manifold off to the local center manifold of g,

hl:Wl%c{0,p,f)^Wx^(0,p',g)
with hx(p, x) = (p, A1(J(x)). Herep' is the saddle node for g. Note, W£c is two
dimensional because it includes the parameter direction. Also remember we
have already adjusted the parameterization of g in §2, so A, preserves p.

We want to use A, on WXoc(p,f) to construct a function A3 defined on a
neighborhood Uq of 0(p,/o). We first construct a strong unstable foliation for
both / and g (tubular families). We use these foliations to extend A, to a
conjugacy

hi-Wx™(0,p,f)^WxZ(0,p',g).
Next we construct a strong stable foliation for/and g in a neighborhood of
p. Then we let A3(l(x) be the point where the appropriate leaf (using h2) of the
strong stable foliation of g intersects the unstable disk Df(p, x, g) if i < q
and x G ©(t^/u). Then we construct compatible (strong) unstable disks for g
such that

h3lt(x)ED^(p,x,g)   and   D« ( u, x, g) c ¿Y ( u, x, g)
if i < «7 and x G 6(1^,/,,). The condition that h3jl(x) E Dq(p, x, q) replaces
the usual condition in constructing strong unstable manifolds that the leaf
goes through x, e.g., x G Dq(p, x,f) for the unperturbed/. Notice that the
construction of A3 is similar to methods in [6] using tubular families. How-
ever, we need to prove we can make everything df¡í Lipschitz.

We now proceed to fill in more details of the above construction, but we
leave the necessary analysis to prove A3 and Dq are dfli Lipschitz until §4. We
let Uq be a neighborhood of p in M such that we have the estimates on Uq for
/M used in §4.

Using the standard methods of the strong unstable manifold theory, we can
construct continuous families of C ' disks

{Bm(p,x,f):(p,x)EW{oc(0,p,f)}
and

{Bm(p,y,g):(p,y)EWc(0,p',g)}

where v G Bm(p,y,g). These continuous foliations of the center unstable
manifolds Wx™(0,p,f) and WxZ(0,p',g) are called tubular families in the
terminology of Palis [8] or [9]. These disks are not necessarily compatible with
the earlier unstable disk families. Let m": Wxc£.(0,p,f)-*Wxcx(0,p,f) be the
projection along the fibers Buu(p,x,f). Let Duu(p, x, g) c
Bm(hxttu(p, x), g) be a disk near x. For g = / we get x G Duu(p, x,f). By
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162 CLARK ROBINSON

construction the disks Dm(p,x,g) are C° near the disks Dm(p,x,f).
Let

Pfr{x,y) - sup{¿(/; (x),/; (y)): /; (x),/; (y) G (7, for i between 0 and n}

and
PgM>y) = suP{disHix), g¡!(y)): g¡(x), gl(y) G Uq for i between 0 and /»}.
We claim the disk family {£>""( u, x, g)} is p^ Lipschitz near the family
{^'"'(p.x,/)}. In §4 we prove that the family {Bm(hx(p,x),g): (p,x) E
^(0,P,/)} is oh Lipschitz near the family {Bm(p, x,f): (p, x) E
WXoc(0,p,f)} using the fact that A, is p/(1 Lipschitz near the identity. This
means that there are functions wf, wg: WXoc(0,p, f) X Ep -* Epc x Ep such
that Wj - wg is Lipschitz small with the usual norm on Epc X E* and
max{p/(1(x, y), \v - v'\) on the domain where (p, x, v), (p, y, o') G
WXoc{0,p,f) X £/. We also prove in Lemma 7 of §4 that there is a uniform
bound given by

max{p/(l(x,y), |t> - c'|} < Cpfltix + v + wf(x, a),y + v' + wf(y, v')).
Letting z = x + v + wp(x, v) and z' = y + v' + wf(y, v'), we have ir"z = x,
wV - y and maxíp^íw^, tr"z'), \v - v'\) < Cpfli(z, z'). This proves the
family {Duu(p, z, g)) is p/(l Lipschitz near the family {Dm(p, z,f)).

Next we want an invariant section of U (x) X Dm(p,x,g) under the map
f~l X g~x. Since/-1 is not overflowing on W^.(0,p,f), we first construct a
section for

x G F™ = closure[ WZ (0,p,f) - rxWx% (0,p,/)]
and then extend this section to all of WZ(0,p,f) by the generalized stable
manifold theorem. As in [11] we get a section h2 that is pfli Lipschitz near the
identity.

We then construct strong stable foliations

{5»(p,x,/):(p,x)G^(0,p,/)}
and

{B»(p,x,g):(p,x)EWxZ(0,p',g)}.

Let irs: t/?-» Wcu(0,p,f) be projection along the fibers B"(p, x,f). Let
D"(p, x, g) c B"(h2trs(p, x), g) be a disk near (p, x). As above the family
{D"(p, x, g)} is p/(l Lipschitz near the family {D"( p, x,f)).

For (p, x) in a fundamental neighborhood F' we can pick A30(p, x) G
Da(p,x,g) and also so A30(p,x) G D?(p,x,g) if (p,x) G ©(tV,,/^ and
/ < q. This A30 is p/(1 Lipschitz near the identity. Using the map

/ X g: U (p, x) X Da (p, x, g)-* U(p, x) x D" (u, x, g),
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we can extend A30 to a section A3 with A3(u, x) G D"(p, x, g) for (u, x) G
Uq. This section is pf¡t Lipschitz near the identity. See [11].

We then construct the compatible family of (strong) unstable disks,
{Dq(p, x, g)}, such that h3(p, x) E Dq(p, x, g), and these disks are compa-
tible with the families {D"(p, x, g)) for i < q. We first do this over the
fundamental neighborhood F' and then extend to Uq using the methods of
§4. The family {Dq(p, x, g)} is pjfL Lipschitz and so d^ Lipschitz near the
family {¿\"(fi> x,f)). This completes the construction of the unstable disk
family near the saddle node.

IVxcJ0,p',g) is Pfll Lipschitz

4. Analytic lemmas.

Lemma 1. The conjugacy A,: WxcJf),p,f)-
near the identity.

Proof. Take local coordinates at (0,p). Adjust the diffeomorphism g so
that (0,p') = (0,p). This can be done by a small translation. Let V be a
neighborhood in R2 of (0,p).

The   conjugacy   A,   is   constructed   so   it   is   differentiable   on   Fx -
clos\xre{fWxcoc(0,p,f)- W¡<¿(0,p,f)}, a wedge F2 for p > 0, and F3 -
closnre{f-xWxcoc(0,p,f) -  Wxcoc(0, p, /)} n {u > 0}.   Let   F4 -
{/-1^iCoc(0>.P>/) - W&P,p,f)} n { p < 0). Then [6] prove that if there are
constants 0 < C, < C2 < oo such that for x, y E Fx and f(x),f(y) E F4
then C, < |/"(x) - /"(v)|/|x - y\ < C2 and similarly for g. This gives

\hj"(x) - hxf"(y)\ = Ig'Vx) - g\(y)\ < C2\hx(x) - hx(y)\
< C2C|x - v| < C2CCx-x\f"{x)-f(y)\

where C is given by the differentiability on Fx. Therefore A, is Lipschitz on
Ft. There is a bound on the number of iterates from any point in W^iO,/»,/)
- V to Fx, F2, F3, or F4. Therefore A, is Lipschitz outside of V. For x,y E V
there is an rj such that if x,y E Fx,fn(x),f(y) E Kthen |g"A,(x) - g"hx(y)\
< iî|A,(x) - A,(y)\. Then

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



164 CLARK ROBINSON

\Kfn(x) - hxf(y)\ =|g"A,(x) - g%(t)\ < V\hx(x) - hx(y)\

<VC\x-y\<riCpf(f(x),r(y)).
Therefore A, is p Lipschitz for p < 0. A similar argument applies to other
regions of V.   Q.E.D.

We treat the case when p is a fixed point. A periodic point is an easy
generalization. We also omit writing the parameter p although this adds no
real complication. We take local coordinates at p, defined on U. We define
F:U X D"^f(U)X R" by F(x,y) = (f(x),f(x + v) - f(x)). We will
construct strong unstable disks when there is a p Lipschitz conjugacy A,:
WMP'f)-* WUp', g)- We define G by

G(x, v) = (/(x), g(A,(x) + v) - A,/(x)).

Remember A,/(x) = gA,(x) so G preserves the zero section. (This is a
different definition of G than in [11]. It is used because of the special nature
of strong unstable manifolds.)

Using the local coordinates we let ir": TU-+ Ep be projection onto the
unstable component (along ££ + E' to E" and then translate to Ep). We let
iic: TU-* Ep X Ep be the other projection. We use the letter c to emphasize
this direction is not necessarily a contracting direction. We have
\\(Dfix)\E^-l\\ < K < 1 and \\Df(x)\E; X ££|| < Xc where \ < X,"».

As in [11] we construct differentiable disks for points x G Fc =
closure{fWxcoc(p, f) — WXoc(p, /)}. These can be given by a section
w0: E"(r)\Fe-> TU, where Eu(r) is the disk bundle of radius r. We then
consider trial sections (or trial disks) w: E"(r)\ t/-» TU such that w = w0 on
the domain of w0. More specifically, we let 2 = {w: £"(/•)-» TU(r)\w = w0
on domain w0, Liih(w) < L0, ̂ (w; vx) < L0\vx\, w(0) = 0). Here

Ltibiw) m sup{|ircw(x, v) - irfw(x,y)|/|tJ - y\: x G U)

and
4or(w; vk) = lim sup{|7rfiv(x, v) - itcw(y, v)\/\x - y\: y -» x}.

We use the norm on 2 given by

IMI - sup{|77c>v(x, t>)|/|t>|: v * 0, (x, v) E Eu(r)\U).

This makes 2 a complete metric space. We look at the graph transform by F
on 2, F#. Working in the differentiable category, Fenichel in [2, Theorem 6]
shows F# is a contraction. We repeat the analysis here in Lemmas 2, and 3,
because we rely heavily on Lemma 2 later to show the disks are p Lipschitz
close.

Lemma 2. Let w E 2 and H = (Fuw)~ ' : E" -> E". Then

\ttuH(x, v) - m"H(y, v)\ < e'\it"H(x, u)\Pf(x,y)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



GLOBAL STRUCTURAL STABILITY OF A SADDLE NODE BIFURCATION     165

where e' is small. The same estimate holds if H = (Guw)~l. (Here Fu: TU-*
E". For notation see [11].)

Proof. Let H(x, v) = (m, z) andH(y, v) = (q, t). Then
0 - m"Fuw(m, z) - iruFuw(q, t)

= {*»A£z - v"A?t} - {(vuAu - v"Fu)w(m,z)

- (*UAU- *vFu)(m,t,*cw(q,t))}

- {*uFuw(q, t) - <nuFu(m, t, wew(q, /))}.

So
0 >\ituA™z - muA™t\

- \(iruAu - truFu)w(m, z) - (muAu - ttuFu)(m, t, trcw(q, t))\

- \nuFuw(q, t) - ir"Fu(m, t, n<w(q, t))\

> W^DI* -1\
-LrA(iruAu - <nuFu){\z - t\ + \new(m,z) - vcw(q,z)\

+ \ncw(q,z)-<trcw(q,t)\}

-sup{\\DxDtib(v»Fu)\\}d(q,m){\t\ + \„<w(q,t)\}

> V'l* - '|-«# - t\ + L0\z\d(m, q) + L0\z - t\)

-sup{\\DxDiib(„"Fu)\\}d(q,m){\t\ + LQ\t\}

>\z- t\{Kl - £ - £¿0} - d(m, q)\z\{eLQ - e(l + ¿0)K|/|^|}.

Here Dx is the derivative with respect to the coordinate in U and DRb is the
fiber derivative along Tm U. We also made a change of scale of the norm on
the fibers so that sup{||¿>,¿>f¡bi7uFw||} < e. Using the fact that z = iruH(x, v),
t ** truH(y, v), m = /~'(x), and q =/~'(v), and solving for \z — t\ **
\it"h(x, v) - TTuh(y, v)\ we get

|*"/f(x,c)-ir"/i(v,c)|

<d(rx(x),f-x(y))\v"H(X,v)\

■ {V1 - £ - £^o}"'{£ - «0 + ¿o)|'| H"'}
<9(x,y)\nuH(x,v)\t'.

We can make e' small by making e small.
To check for H = (Guw)~x the only difference is the term
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\ituGuw(q, t) - ituGuw(m, t, <rrcw(q, t))\

<\g(hx(q) + a) - ghx(q) - g(hx(m) + a) + ghx(m)\
where a - (t, •ircw(q, t)). But this is

<|ö| sup \\Dg(hx(q) + b)- Dg(hx(m) + b)\\
\b\<\a\

<H|Ai(i)-*i(«)| sup \\D2g(x + b)\\.
\b\<\a\

The \a\ - \(t, v*w{q, t))\ < \t\ + KM?, t)\, and
|*i(?) - *i0»)| <\hx(a) - q - hx(m) + m\ + \q - m\

< epf(q, m) + d(q, m)

< (1 + e)pf(q, m).

Lemma 3. The graph transform preserves 2.

Proof. From the estimates in [11, §3], we only need to show that

K(F#W)(x, v) - tt'(F#w)(y, o)| < d(x,y)\v\L0.

\F,wH(x,v)-FswH(y,v)\

<\Fsw(f-x(x), v»H(x, v)) - F,w(rl (y), *uH(x, v))\

+ \F,w(f-x (y), n"H(x, v)) - F,w(f-l(y)), m"H(y, v)\

< L(Fi)L,\n"H(x,v)\d(<f-x(x),f-x(y))

+ Ltih(F,)Lnh(w)\n"H(x, v) - *"H(y, v)\

<(XC + e)L0\7r"H(x, v)\d(f-x(x),rx(y))

+ (Xc + e)LoB'\iru(x,v)\p(x,y)

<(\ + e)LA(l - K^0)-l\v\p(x,y)(\ + e')

< (Lc + e)X„[(l - X.eLor'O + e')]L0\v\d(x,y).

We know (X, + e)X„ < 1 and if e and e' are small enough then the term
[ ] < 1. Therefore F preserves the sections of this Lipschitz type.   Q.E.D.

This part of the proof is fairly standard. We have shown there are strong
unstable disks for F through x and strong unstable disks for G through A,(x).
What we need now to show is that these disks are p Lipschitz close. We do
this using Lipschitz jets exactly as we did in [11]. (This is based on the
methods in [3].) We use the notation of [11]. We need only show (QF)# and
(5t7)# are contractions (Lemma 4), the invariant section of (5F)#, aF, is
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uniformly continuous on fibers (Lemma 5), and that \\0F)#oF - 0G)#aF\\
is small with the new norm we use here (Lemma 6).

Lemma 4. Let ($F)# and 0G)# be the graph transforms on Lipschitz jets as
defined in [11]. Then both are contractions with respect to the norm that divides
the horizontal Lipschitz constant by \v\.

Proof. We look at the case for ($F)#. It is enough to look at the
horizontal direction because the vertical direction is contained in [11,
Theorem 3.1]. Let w¡ be the representatives of o¡ and A, the right inverse of
F     °   W:

\{(SF)max}(x,v)- {(S£)#a2}(*><0L

\FcwxHx (y, v) - Fcw2H2(y, v) - FcwxHt (x, v) + Fcw2H2(x,v)\= lim sup-¡-¡-7-:-
,-.* \v\p(x,y)

\FewxHx(y,v)-Fcw2H2(y,v)\
« hm sup-r-r--r-

y->* mp(x,y)

^   r     /«. *u lW'H' (* V) ~ W*H* ̂ ")'< Lfib(FJhmsuP-r-r-^-

, ,r.„-      \wiHi (y>v) - w*Hi iy> ")l    iwíffi iy<v) ~ wiHi iy' v)\
< Z.fib(F,)hmSUp -r-r-.-r-  + -r-r--r-f,bV "   y^S \v\p(x,y) IMx.y)

First,
\wxHx (y, v) - w2Hx (y, o)|

hm sup-r-r----

ki^i {y> ») - ^2^1 (y> ») - w\H\ ix> o) + w2#i (*< v)\— hm sup-

< lim sup

\»\pix>y)

IO, - w2)(f-y, V«HX (y, v)) - (wx - w2)(f~'x, *'HX (y, v))\
\v\p{x>y)

IO», - w2)(/-U, »•#, (y, v)) - (w, - w2)(f'lx, it"Hx (x, v))\

< lim sup

\v\p(x,y)

A.or(w. - «V VHX (y, v))d(f~*(y),/-'(*))
\°\p{x>y)

W»! - w2)K"7/, (y, v) - m'Hx (x, e)|

< lim sup

\»\p{x>y)

1*1 ~ °2\*or\«UHx(y,v)\d(r*(y),f-\x))
\v\p(x>y)

t    kl - glUg'^l (*. v)\p(x,y)e'
\v\p(x>y)

< l»l - «iLA + «) + 1*1 - °2lßb(\, + *Y-
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Next,

\»2Hi(y,v)-w2H2(y,v)\
lim sup-7-r--

/-« mp(x,y)
\^Hx(y,v)-^H2(y,v)\

< ¿fib(w2)"m SUP-

<  Ltib(Wl)^m S"P

Wp(x,y)
WHlFuw2h2(y, v) - rruhlFuwlH2(y, v)\

\v\p(x,y)

|»"(F. - 4>2//2(>-, o) - »"(F. - ^)w,i/2(y, c)|
■ lim sup -

|c|p(x,y)

<¿f¡b(w2)¿fib(//,)Lfib(F1,-^)

hr,W^ira0r,e)-«VliraO,e)|
•lim sup-rr-;—*- Mp(*..v)

<LRb(w2)Ltib(Hl)Liib(Fu-Au)

\""(»>2 - "O^CV, O) - W"(W2 - W,)//2(X, l))|
•lllTi SUp-r-r—-

\v\p(x,y)

<Liib(w2)Ltib(Hl)Lnb(Fu-AH)

\ir"(w2 - wt)H2(y, v) - *"(w2 - *,)(/-'*, **H2(y, v))\
lim sup Mp(x,y)

v'(w2 - w,)(/-'x, iruH2(y, v)) - ■n"(w2 - wx)H2(x, c)|

\»\p(x,y)

<Ltib(w2)LRb(Hx)Ltib(Fu-Au)

fa- °iU''«2iy.t>Mr,yJ-lx)
' lim sup \Mx>y)

¿«bK - wx)\<n"H2(y, v) - *«H2(x, v)\
\v\p(x,y)

< ¿»(i*K»('i )Ltib(Fu - Am)\a2 - a,|{(X +e) + (K + e)e'}

< ¿o\(l - eX¿0)-'e|a2 - a,|(\, + e)(l + e').
Therefore
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|{(ÍF)#a,}(x,c)-{(aF)#a2}(x,ü)|hor

< 1*2 - *ilv\, + £){1 + e' + eLoX(l - 8Lo)"l(l + e')}.
The last term is about one and (X„ + e) < 1 so we have a contraction.

Lemma 5. The Lipschitzjet oF is uniformly continuous on fibers.

Proof. As in [11], it is enough to show that 3 F is uniformly continuous on
fibers. The calculations are much like those, but we need to use the new
norm on the horizontal directions as we have done above. We leave the
estimates to the reader.

Lemma 6. \{0F)*°F)(x,y) - {0G)#oF)(x,y)\Xlor goes to zero as g goes to

Proof. Let o, - {FuwF)-x{x, v), v2 - (GuwG)-x(x,y), aF(vt) - /„,(*,(•)
- tVi»,)), af(o2) = JV2(w2(-) - 7rVc(o2)), Hx - (Fuwxyx, H2 =
iG*wi) x>Pi ■ wF(vx), andp2 = w0^. Then

\{(SF)»oF}(x,y) - {<JG)..'}(*/>L
\FcwlHl (x',y) - />,//, (x,y) - Gew2H2{x',y) + Gcw2H2(x,y)\

- hm sup-,  , , ,—;-

Í !*>,//, (s',,y) - Few,[H2(x',y) - v2 + v,]\
< hmsup< -.,,,—-

|  \Fcw,[H2(x\y) - t;2 + C|] - Fc[w2H2(x',y) - p2 + p,]\

\y\p(x', x)

|   \Fc[w2H2(x',y) -Pl+pt]- Fcw2H2(x',y) - Fc(p>) + F,(ft)|
\y\p(x', x).

.  \Fe»tH2(x;y) - Fc(p2) - Gew2H2(x\y) + Cc(p2)| \
\y\p(*'. x)

The first term is less than

.   /rx.    ,    vr          |//,(x',y) - /f2(x',y) - J/,(x,y) + /f2(x,y)|¿»«^(ir.Jtai sup-W&)-.
This term goes to zero using calculations like those in Lemma 4 above and in
[11].

The second term is less than
,    ,„„.          Wi[H2(x',y)-v2+vl]-wJH2(x;y)-wiHt(x,y) + w1H1(x,y)\
Lto(Ft)hm sup-r^r^-.

This is bounded by terms involving the horizontal term

\oF(vx) - <Tf(Ü2)|hor|7r"i/2(x,y)|p(/-1x',/-1x)
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and the fiber term
W"i - w2)|^"//2(x', v) - iruH2(x,y)\

in the numerator. Then \oF(vx) - oF(v2)\ goes to zero uniformly.
The third term is less than

uvii.           >>     vtWv          \^H2(x',y)-w2H2(x,y)\L(FC(- +Px - p2) - Fc(-))hm sup-rj^p^j-.

The first factor goes to zero and the second factor is bounded.
The fourth and last term is less than

f \w2H2(x',y) - w2(/-'x', n«H2(x,y))\
L(FC - CJlimsupj-^^-

\w2(f-xx',n"H2(x,y)) - w2H2(x,y)\ ]

+ \y\pix',x) J
\tiuH2(x',y)-mt'H2(x,y)\

< L(FC - Gc)Ltib(w2)hmsup-\y^C7)-

r/E,      „xl  F,   N1   ,.          h"H2(x,y)\p(f-xx',f-xx)
+ L(FC - G2)|a>2)|horhmsup-r-g-^-■

The factor L(FC - Gc) goes to zero and the other factors are bounded.

Lemma 7. There is a constant C such that

max{pfli(x, x'), \v - v'\) < Cpfl¡(x + v + w}(x, v), x' + y' + wf(x', v'))

for all x, x', v, v'.

Proof. If it: Wx£(0,p,f)^ WXoc(0,p,f) is a trial projection (associated
with a trial disk family w), then we can form the transform (f#tr)z **
firf~x(z). If pJv,(itz, irz') < Apfli(z, z') for all z, z', then

Pf>((f*«)z> (f#*V) = P}li{M-\z),M-x (z')) = 9j^f-x (z), itf~x(z'))

<Apflt(f-x(z),f-x(z')) = Apfll(z,z').

Therefore f# preserves projections of bounded pj Lipschitz size. Therefore
the fixed point w0 is of bounded py Lipschitz size. By setting z ** x + v +
Wj(x, v) and z' = x' + v' + Hy(x', t/) we get that

Pfrix, x') < Apfll(x + v + wfix, v), x' + v' + Wjix1, v')).
Also
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|© - t/| < |x - x'| + |o - o'l + \wf{x, v) - Wj{x', v')\

< 3x/2d(x + v + wf{x, v), x' + v' + wf{x', v'))

< 31/2Ap//l(x + v + wj{x, v), x' + v' + wf{x\ v')).
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