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ABSTRACT: The paradigmatic disordered protein tau plays an important role in
neuronal function and neurodegenerative diseases. To disentangle the factors
controlling the balance between functional and disease-associated conformational
states, we build a structural ensemble of the tau K18 fragment containing the four
pseudorepeat domains involved in both microtubule binding and amyloid fibril
formation. We assemble 129-residue-long tau K18 chains with atomic detail from an
extensive fragment library constructed with molecular dynamics simulations. We
introduce a reweighted hierarchical chain growth (RHCG) algorithm that integrates
experimental data reporting on the local structure into the assembly process in a
systematic manner. By combining Bayesian ensemble refinement with importance sampling, we obtain well-defined ensembles and
overcome the problem of exponentially varying weights in the integrative modeling of long-chain polymeric molecules. The resulting
tau K18 ensembles capture nuclear magnetic resonance (NMR) chemical shift and J-coupling measurements. Without further fitting,
we achieve very good agreement with measurements of NMR residual dipolar couplings. The good agreement with experimental
measures of global structure such as single-molecule Förster resonance energy transfer (FRET) efficiencies is improved further by
ensemble refinement. By comparing wild-type and mutant ensembles, we show that pathogenic single-point P301L, P301S, and
P301T mutations shift the population from the turn-like conformations of the functional microtubule-bound state to the extended
conformations of disease-associated tau fibrils. RHCG thus provides us with an atomically detailed view of the population
equilibrium between functional and aggregation-prone states of tau K18, and demonstrates that global structural characteristics of
this intrinsically disordered protein emerge from its local structure.
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■ INTRODUCTION

Intrinsically disordered proteins (IDPs) are enriched in the
proteomes of higher eukaryotes, where they perform essential
functions.1−3 In healthy neurons, the paradigmatic IDP tau
binds and stabilizes microtubules.1 In diseased neurons, tau
loses the ability to bind to microtubules and forms the toxic
aggregates associated with Alzheimer’s and other neuro-
degenerative diseases.2 Hyperphosphorylation of tau correlates
with the progression of Alzheimer’s disease. Tau has recently
been shown to form biomolecular condensates.3−6 Dysregula-
tion of the formation of biomolecular condensates by
mutations7 and aberrant post-translational modifications such
as phosphorylation4,7 may underlie the pathogenicity of tau.
Some tau mutations, e.g., P301L and P301S, show drastic
effects in patients and are used in mouse models of
tauopathies.8,9 The conformational dynamics of tau around
P301 may play a direct role in modulating the aggregation of
tau in disease,10−12 as studied also by molecular dynamics
(MD) simulations of tau fragments.12 Efforts to gain a clearer
picture of the local conformational dynamics of tau promise a
deeper understanding of its roles in health and disease.

The challenges in resolving structural ensembles of IDPs ask
for an integrative approach.13 Important progress in dealing
with the high flexibility of disordered biomolecules has been
made using nuclear magnetic resonance (NMR) spectrosco-
py,14−17 solution X-ray scattering (SAXS),18 and single-
molecule Förster resonance energy transfer (FRET).19−23 To
harness the full power of these experiments and interpret the
data in detail, the construction of ensembles of structures24−32

has proved to be a powerful strategy, especially for the
interpretation of NMR experiments and the combination of
multiple experimental methods.31,33,34 For instance, Borgia et
al.32 combined data from single-molecule FRET, SAXS,
dynamic light scattering, and fluorescence correlation spec-
troscopy with MD simulations to characterize the ensembles of
a marginally stable spectrin domain and the IDP ACTR over a
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broad range of solution conditions. Gomes and co-workers35

recently described an ensemble of the disordered N-terminal
region of the Sic protein, obtained by integrating different
combinations of SAXS, single-molecule FRET and NMR
experiments using the ENSEMBLE approach.36

Structural ensembles obtained from computational modeling
can be combined with experimental data by using Bayesian and
maximum entropy ensemble refinement methods.29,37−45 The
Bayesian formulation accounts naturally for uncertainties in the
measurements, the model used to generate the ensemble, and
the calculation of observables from the ensemble members.39

Input ensembles46 are obtained, e.g., from MD simula-
tions44,47−49 or chain growth,26,28,50−53 and are then minimally
modified to account for the experimental observations.
However, for long protein or nucleic acid chains, it is difficult
to create initial ensembles that have sufficient overlap with the
final ensemble for reliable ensemble refinement. For
experimental data that report on the local structure along the
chain of a disordered protein, we expect that cumulative
systematic errors in the MD force field will cause the summed
squared error χ2 between model and experiment to grow
linearly with the length of the chain. As a consequence, the
overlap between input and final ensemble deteriorates
exponentially as the chain grows in length. Consequently, for
long IDPs, only a few chains will tend to dominate the
ensemble after refinement, with the rest of the large ensemble
being mostly irrelevant.
The problem of poor overlap between the initial and final

ensemble can be overcome by applying a bias already in the
generation of the initial ensemble, e.g., by imposing restraints
directly on observables or related quantities in the initial MD
simulations. The use of chemical shifts and other NMR data in
the structural modeling of flexible systems has a long and
productive history. Approaches based on fragment selection
proved particularly powerful.54−56 Protocols have been
developed that combine biased fragment choice with
corrections to remove the biases introduced.42 In an early
combination of biased chain growth with Bayesian weighting
applied to tau K18,28 overlapping peptide fragments were
stitched together. Fragment selection was biased to double the
radius of gyration in an otherwise overly compact ensemble.
Steric clashes were resolved by energy minimization in implicit
solvent, and high-energy structures were randomly removed in
a pruning step. Excellent agreement with NMR observables27

could be achieved by adjusting the weights of the ensemble
members. However, formal and practical questions are raised:
how does one incorporate experimental data already during
chain growth without compromising the Bayesian framework
of ensemble refinement, where such information would
normally be used a posteriori? And how does one ensure
that the final ensemble is well-defined and fully reproducible?
We will show here that in a Bayesian formulation any bias in

ensemble generation can be accounted for fully and
quantitatively in a final global refinement step by exploiting
the direct connection of ensemble refinement to traditional
free energy calculations.39 Meaningful input ensembles can
thus be generated without sacrificing the rigor and
reproducibility of the ensemble refinement procedure.
We propose reweighted hierarchical chain growth (RHCG)

as a general method to integrate data reporting on local
structure into models of disordered and flexible polymeric
molecules such as disordered proteins or nucleic acids. Protein
chains are assembled from fragment structures, as obtained

here from MD simulations. As in hierarchical chain growth
(HCG),52 chains with steric clashes are consistently removed
in such a way that the resulting ensemble does not depend on
arbitrary choices such as the direction of chain growth, N-to-C
versus C-to-N. In RHCG, fragment choice is biased according
to experiments reporting on the local structure. In a final
reweighting step, any resulting bias is then removed. RHCG is
thus a form of importance sampling.
Using RHCG, we arrive at an integrative model of tau K18

with atomic detail. Tau K18 contains the four pseudorepeat
domains R1-R4 involved both in functional binding to
microtubules57 and in forming amyloid fibrils.10,12 NMR
chemical shift data that report on local structure are
incorporated already during chain growth. Electrostatic58 and
other interactions between regions distant in sequence can
impact the global structure of IDPs. Deviations from random
coil behavior can emerge also from local residual structure.29

For tau K18, it is not clear a priori how its local and global
structure are shaped. We show that the RHCG ensembles also
capture the global structure of tau K18, as probed by NMR,
RDC, single-molecule FRET, and SAXS measurement. The
global structure of tau K18 is thus determined to a significant
degree by its local structure.
By comparing wild-type (WT) and mutant sequences, we

provide a molecular view of possible differences between tau in
a healthy cell and tau with pathogenic mutations. Our
modeling of tau K18 reveals turns as in microtubule-bound
states and extended structures as in tau fibrils. We found that
pathogenic single-point P301 mutations shift the equilibrium
from the former to the latter, emphasizing the close connection
between functional forms of tau in solution and the fibrillar
structures in tau-associated pathologies.

■ THEORY

Bayesian Ensemble Refinement of Polymeric Molecules

We combine molecular simulations with ensemble refinement
to create ensembles of proteins or nucleic acids that faithfully
reflect the distribution of conformations in experiment. To
create an initial ensemble, we adapt the hierarchical chain
growth (HCG) method introduced recently,52 as described in
detail below. We then use Bayesian Inference of Ensembles
(BioEn)39 to adjust the weights of the individual ensemble
members according to the experimental data, e.g., NMR
chemical shifts.
BioEn ensemble refinement minimally adjusts the vector w =

(w1, ..., wC) of normalized weights of individual chains c = 1, ...,
C in the ensemble to match the experimental data. We define a
posterior P(w|data, I) as a function of the weights w,

| ∝ | |w w wP I P I P I( data, ) ( ) (data , ),0 (1)

with P0 (w|I) being the prior and P (data|w, I) being the
likelihood. Here, I denotes background information, e.g., that
we model polymeric molecules with internal structure. The
BioEn maximum-entropy prior38 is given by

∏θ| ∝ − =
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θ is a hyperparameter that controls the strength of the entropy
regularization and thus expresses our confidence in the initial
ensemble of chains.39 SKL is the Kullback−Leibler (KL)
divergence
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which reports how close the normalized refined weights wc are
to the normalized reference weights wc
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Assuming Gaussian uncorrelated errors, the likelihood is
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The first sum is over the different experimental observations i
= 1, ..., Mdata with measured values Yi, and the second sum is
over the ensemble members c = 1, ..., C. For each chain c and
observable i, we use a forward model to compute individual
observations yi

c. The error σi
2 is the sum of the squared

standard errors of the measurements Yi and the forward
calculations yi

c.
In applications of BioEn to long biopolymers, small but

systematic weight corrections at the monomer level can add up
to large corrections overall. For NMR chemical shifts, for
instance, the sum over i in eq 4 corresponds to a sum over
residues. As a result, the χ2 statistic is extensive; i.e., it tends to
grow linearly with the length of the chain. Reweighting of
assembled chains thus becomes progressively more challenging
as the length of the chain grows (i.e., for chains with more
fragments). The reason is that it becomes progressively
unlikely that all fragments in an assembled chain occupy the
relevant subspace with proper weight. As a result, chains will
contribute with very uneven weights after BioEn reweighting.
In other words, a few chains will dominate, and the rest of the
large ensemble will be more or less irrelevant.

Reweighted Hierarchical Chain Growth

We address the problem of poor overlap between initial and
final ensemble by using importance sampling. In MD
simulations of complete biopolymer chains, bias potentials
could be introduced, acting for instance on the torsion angles
to better match NMR chemical shifts or J-couplings. Here, we
focus instead on fragment-based chain growth. The key idea is
to grow chains by using fragment libraries that have already
been biased to enrich the ensemble with members of high
weight, and then to correct for this biased choice of fragments
in a final reweighting step. If the bias weights were chosen
perfectly, the final step would give each chain equal weight.
In RHCG, we adapt HCG52 to assemble polymer chains

from fragments. At each of the N positions, fragments are
picked at random from a fragment library and then combined
by superimposition of residues at their termini with the
equivalent residues in the adjacent fragments. Any models with
steric clashes are discarded. In HCG, all fragments have equal
weight; in RHCG, the fragments in the library {in

f }n=1,...,N
f=1,...,F (with

F being the number of fragments created at position n) are
picked according to a weight wn

f normalized to Σf=1
F wn

f = 1 for
all n. These weights have to be chosen appropriately, as
described below, and constitute our initial guess as to how
likely a particular fragment is in the final reweighted ensemble
of chains. The probability p[f c] for a particular chain c to be
created in this way is given by the product of weights for each
of its fragments,

∏[ ] ≡ [ ] =
=

fp p f f w, ...,c c

N

c

n

N

n
f

1
1

n
c

(5)

where f n
c ∈ {1,...,F} is the index of fragment n in chain c.

Here, we construct the fragment libraries from MD
simulations of short overlapping blocked peptides. Alter-
natively, fragment libraries can be constructed from MD
simulations of full-length chains that are then broken up into
overlapping segments and reassembled by chain growth. A
similar approach has recently been used to explore the
flexibility of the SARS-CoV-2 spike stalk.59 Fragment libraries
can also be built from experimentally resolved structures with
appropriately defined weights.
We used NMR chemical shifts to bias the fragment choice.

The weights of the fragments wn
f were determined with BioEn

applied to the fragment library at position n with a confidence
parameter θf. This confidence parameter was chosen to
produce nearly uniform weights wc of the assembled chains
after a global BioEn reweighting (Figure S1C). Importantly,
there is no issue of circularity because the bias applied during
chain growth is fully accounted for, as described in the
following section.

BioEn Reweighting of Assembled Chains

After the biased assembly of an ensemble of chains, we use
BioEn39,40 to correct for the bias in chain growth and to
reweight the entire ensemble globally. To correct for the bias
in chain assembly, chain c enters the global BioEn refinement
with a relative weight proportional to the reciprocal of the bias

probability, ∝ [ ]fw p1/c
c0 , with which its fragments were

selected. Normalization of these relative weights gives us
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or, expressed more compactly in terms of reciprocal weight
factors,
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where the sum extends over the C chains of the ensemble. To
the ensemble with these initial weights, we then apply BioEn
reweighting, using as a reference experimental data reporting
on local or global structural properties.

Chain Growth with Nonbonded Interactions beyond Steric
Repulsion

Fragment assembly can, in principle, be extended to account
for nonbonded interactions beyond steric repulsion to account,
e.g., for electrostatic interactions between fragments.60 This
can be accomplished by using a free energy function G( f1

c ,..,f N
c )

that describes the interfragment interactions in chain c and can
be calculated from an implicit solvent model or, by free energy
calculations, from explicit solvent models. Chains c assembled
from fragments f1

c,...,f N
c are then weighted by an additional

factor exp[−βG( f1
c,..,f N

c )] with 1/β = kBT and kB being the
Boltzmann constant and T being the absolute temperature. In
the Bayesian formulation, the normalized reference weight of
chain c in an ensemble of C chains then becomes

=
∑

β

β

−

=
−
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G f f
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C G f f
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(8)
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To sample efficiently from this distribution, one can again use
importance sampling by performing hierarchical assembly52

with biased fragment selection. If, as above, wn
f is the bias

weight factor to choose fragment f at position n, then eq 7
becomes

∑=
[ ]

[ ]

β

β
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f

fw
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p

1 e

ec j

C c G f f

j G f f0
1
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c
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c

j
N
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1

1 (9)

Here, we use only excluded volume interactions, which
amounts to exp(−βG) = 1 for chains without interfragment
steric clashes and exp(−βG) = 0 with clashes.

Assessment of Importance Sampling

In ideal importance sampling, we would grow chains of equal
relative importance. Global BioEn reweighting would then give
each member of the resulting ensemble equal weight, wc = 1/C.
We use the KL divergence of the BioEn-optimized weights wc

from ideal importance sampling to assess the effectiveness of
our bias in chain growth:

∑ ∑= =
= =

S w
w

C
w Cwln

1/
ln( )

c

C

c
c

c

C

c cKL
bias

1 1 (10)

If SKL
bias ≲ 1, the overlap between the ensembles produced by

biased chain growth and after BioEn refinement is large;
conversely, if SKL

bias ≫ 1, the chain growth protocol should be
optimized. We use SKL

bias also to choose the confidence
parameter θf quantifying the strength of the bias in fragment
choice during RHCG. As illustrated in Figure S1C, SKL

bias as a
measure of weight uniformity is minimal for a range of θf
values given a confidence parameter θ in the global BioEn
ensemble reweighting.

■ METHODS

Hierarchical and Reweighted Hierarchical Chain Growth

We generated structural ensembles of tau K18 (residues 244−372)
using HCG52 and RHCG. (RHCG software can be downloaded free
of charge at https://github.com/bio-phys/hierarchical-chain-growth.)
Tau structures were assembled from 43 pentamer fragments with two
residues overlap between subsequent fragments. All fragments had
their N and C termini capped by acetyl and N-methyl groups,
respectively. The first (N-terminal) fragment started from the last
residue outside tau K18, which was then removed in chain assembly.
Fragment structures were sampled in all-atom replica exchange
molecular dynamics (REMD) with explicit solvent. For each
fragment, we used 24 replicas spanning a temperature range of
278−420 K. Each pentamer fragment was simulated for 100 ns as in
our previous study.52 We used structures from the T = 278 K
ensemble to assemble tau K18 chains, which corresponds to the
temperature of the NMR experiments.27 To investigate the effect of
point mutations at the P301 position, we also sampled fragments with
P301 and mutations P301L, P301S and P301T. We repeated fragment
simulations for WT P301, P301L, P301S, and P301T fragments with
residue 301 at the central position of their respective fragments
instead of the second position of its respective pentamer. Since we
lack detailed chemical shift information, the P301X mutant chains
were assembled with HCG, not RHCG. We note that in all fragment
REMD simulations P301 was sampled exclusively as trans isomer.
We biased the fragment selection in RHCG according to Cα

chemical shifts measured by NMR. At each fragment position n, we
performed independent BioEn reweighting39,40 using the chemical
shift data reported for the nonterminal residues in this fragment
(Supporting Information (SI) text). A large confidence parameter of
θf = 10 ensured improved consistency of the chemical shifts (with the
average χ2 across fragments dropping from 0.856 to 0.688) with

minimal weight changes (SKL
BioEn = 0.004 on average). These local

BioEn calculations gave us fragment weight factors wn
f . In numerical

tests on comparably small ensembles of 104 chains and with θ = 5
fixed for the global BioEn ensemble reweighting, we found that SKL

BioEn

was minimal for θf = 5 to 10 (Figure S1C).
We then used RHCG to build ensembles of between 2000 and 106

WT tau K18 models from the reweighted fragment libraries. For
reference, we also constructed unbiased ensembles of WT tau using
HCG52 with unweighted fragment libraries. HCG was also used to
construct tau K18 ensembles of P301 mutants. If not specified
otherwise, the results shown are for ensembles of C = 50 000 chains.
Following the procedure described in ref 52, we assembled 10000
representatives at each hierarchy level below the final assembly level
to sample a high diversity of possible local conformations. At the final
level, full-length models were assembled from this pool. The assembly
process was trivially parallelized by using different random number
seeds. In a final step, the RHCG ensembles were reweighted using
BioEn to correct for the biased fragment choice while retaining
consistency with the NMR chemical shift data. In this global BioEn
reweighting step, the confidence parameter was set to θ = 5 according
to an L-curve analysis (SI text and Figure S1A). The resulting
ensembles were structurally diverse and, among 50 000 HCG and
RHCG structures, did not contain any knots (SI text).

Calculation of Experimental Observables

NMR Secondary Chemical Shifts and J Couplings. For
comparison with NMR experiments, we calculated chemical shifts
from fragments and full-length structures using SPARTA+.61 We
subtracted random-coil shifts calculated using POTENCI62 to
compare to secondary chemical shifts ΔC. We computed 3JHNHα
couplings with the Karplus parameters by Vögeli et al.63 with the
mdtraj Python library.64

NMR Residual Dipolar Couplings. RDCs were calculated from
the ensembles of full-length structures with PALES65,66 in the steric
alignment mode. Even for random flight polymers, the presence of an
ordering medium modeled as a hard surface induces nonzero RDCs.67

The value DHN
(r) for a particular residue r was calculated by computing

the alignment of each chain c in the ensemble with PALES and then
taking the average over all structures

∑= ⟨ ϑ ⟩
=

D
D

C
P (cos( ))r

c

C

c
r

HN
( ) HN

max

1

2
( )

(11)

where DHN
max = 21.7 kHz for an idealized amide bond length of 1.04

Å,68 ϑc
(r) is the angle between the amide bond vector of residue r in

chain c, the external magnetic field, P2(x) = (3x2 − 1)/2 is the second-
order Legendre polynomial, and ⟨...⟩ denotes an average over the
orientations of the chain biased by the alignment.

Small-Angle X-ray Scattering. We used FoXS69 to calculate
SAXS intensity profiles for the tau K18 structures in an ensemble and
then calculated the weighted average over the ensemble. In the FoXS
calculations, we took the solvation shell into account by setting c2 = 3.
The excluded-volume parameter was set to the default value of c1 = 1.
Geometric RG values were computed using the MDAnalysis
library.70,71 To compare measured scattering intensities to those
predicted for the weighted ensemble, Isim(q), we first estimated an
intensity scale factor a and a constant for background correction b by
performing least-squares fitting of

= +I q aI q b( ) ( )sim (12)

to the SAXS intensities with q being the scattering vector. For a
regime unaffected by aggregation, q > 0.012 Å−1, the best fit to
experiment was achieved with the coefficients a = 1.1 × 10−11 and b =
3.8 × 10−5. For q < 0.012 Å−1, we took possible mild aggregation into
account by approximating the scattering intensity including possible
aggregates as

= + + −I q aI q b c q R( ) ( ) exp( /3)sim
2

a
2

(13)

By least-squares fitting with fixed a and b, we find an aggregate
intensity of c = 0.001 56 and an aggregate size of Ra = 234 Å. The fit
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to the combined model is shown in Figure S2. An earlier set of
scattering data18 is restricted to q > 0.03 Å−1.
Comparison to Single-Molecule FRET Experiments. We

compared Cα−Cα distances extracted from FRET experiments using
the SAW-ν polymer model72 to RHCG models. To quantify the effect
of the fluorescent dyes on the distance distribution, we performed
additional calculations in which we adapted the RHCG method to
add dyes73 during chain growth (SI text and Figure S3).

Comparison to NMR Paramagnetic Relaxation
Enhancement Measurements

NMR paramagnetic relaxation enhancement (PRE) measurements on
tau K18 have been previously reported.74 We computed PREs for the
tau K18 ensembles using the PREdict75 Python library (https://
github.com/KULL-Centre/DEERpredict). PREdict adds explicit spin
labels to the chains modeled with a rotamer library. The PRE is
calculated in the fast-exchange limit with respect to both spin-label

and chain dynamics. Details of the PRE calculation are given in the SI
text.

Experiments

Single-Molecule FRET Experiments. For the single-molecule
FRET experiments, tau K18 was labeled with Alexa Fluor 488 and
CF660R at its naturally occurring cysteine residues, C291 and C322
(SI text). The labeled tau K18 was diluted to a concentration of 100
pM in 50 mM sodium phosphate buffer, pH 6.8, 1 mM DTT, 0.001%
Tween 20 or 20 mM HEPES, 5 mM KCl, 10 mM MgCl2, pH 7.4, 1
mM DTT, 0.001% Tween 20. The experiments were performed at
295 K on a MicroTime 200 confocal single-molecule instrument
(Pico-Quant, Berlin, Germany) as described in detail in the SI text.
The SAW-ν model was used to analyze the single-molecule FRET
data to extract distances and the polymer properties of tau K1872 (SI
text).

Small-Angle X-ray Scattering Experiments. SAXS data were
collected at 298 K from monodisperse samples of K18 ranging from

Figure 1. The RHCG ensemble reproduces global structural features of tau K18. (A) Comparison of experimental (gray) and predicted (blue)
1H−15N RDCs, which were not used in the construction of the RHCG ensemble (see Table S1 for the amino acid sequence of tau K18). (B)
Scatter plot of calculated and measured RDCs. (C) Backbone traces of 30 members of the RHCG ensemble. Zoom-ins show superpositions of 10
representative structures of a turn at position L284-S285 (top) and an extended segment at position Q276-I277 (bottom) with negative and
positive RDCs, respectively, as highlighted by shading in panel (A). (D) Comparison of calculated (blue) and experimental SAXS scattering
intensity profiles (gray symbols) and from ref 18 (orange dashed line). See Figure S2 for a plot of the low-q regime. Inset: Distribution of RG in the
RHCG ensemble. Vertical dashed lines indicate the average RG from RHCG (blue) and experiment18 (gray; ± SEM shown by shading). (E)
Distribution of Cα−Cα distance inferred from FRET experiments using the SAW-ν model72 (gray), RHCG (blue), and RHCG* (orange). Root-
mean-square distances are indicated as (dashed) vertical lines.
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50 to 67 μM in 20 mM Hepes, 5 mM KCl, 10 mM MgCl2, 1 mM
DTT at pH 7.4. Scattering profiles were analyzed with standard
procedures using ATSAS.76 SAXS measurements were performed at
DESY (Hamburg, Germany) and Diamond Light Source (Oxford,
UK) stations.

■ RESULTS AND DISCUSSION

RHCG Produces a Diverse Ensemble of Tau K18 Chains

During chain assembly, we applied a gentle bias on the
fragment choice by using fragment weights from BioEn
reweighting against Cα chemical shifts. To correct for the
bias, the assembled chains were then reweighted with BioEn,
again using the chemical shift data as experimental reference.
In this global BioEn reweighting step, the chains were given
near-uniform weights wc with SKL

bias ≪ 1 (Figure S1B). By
comparison, the BioEn weights of the HCG ensemble created
without bias are less uniform. The resulting ensemble of tau
K18 is comprised of highly diverse structures with atomic
detail (Figure 1C). The typical Cα root-mean-square distance
(RMSD) between two chains is about 26 Å (Figure S4 and SI
text), and backbone dihedral angles are broadly sampled
(Figure S5).

RHCG Models of Tau K18 Capture the Average Local
Structure of Tau as Reported by NMR

Chemical shifts are accurate reporters of local structure and
secondary structure.16,17,27,29,61,77 Overall, we found that the
Cα chemical shifts calculated for the RHCG ensemble of tau
K18 are close to random coil values, with secondary chemical
shifts ΔC mostly close to zero. Despite the residual amplitude
typically being smaller than the error of ≈1 ppm61 in the
forward chemical shift calculation, the models capture
important features of the variation of experimental secondary
chemical shifts along the tau K18 amino acid sequence, such as
a drop in secondary chemical shift going from L285 to V300.
HCG without reweighting of the fragment library under-
estimates the populations of extended and β-strand like
structures and overestimates the helical-like conformations.
Going from HCG to RHCG, the average residual drops from
0.35 to 0.27 ppm and Pearson’s r for the secondary chemical
shifts ΔC of the Cα atoms increases from 0.28 to 0.41. RHCG
lowers in particular positive ΔC values, e.g., at the S420
position (Figure S6A,B). In light of the considerable
uncertainties in the forward calculation (≈1 ppm) and the
small ΔC amplitudes, a lower θ value resulting in an even
tighter fit was not justified (Figure S1A).
We also calculated NMR 3JHNHα couplings, which report

primarily on the ϕ-dihedral angles of the protein backbone.
The couplings calculated for our models agree well with the

NMR experimental data27 (Figure S7). Also in terms of 3JHNHα

couplings, which were not used in the RHCG procedure,
RHCG somewhat improves the representation of the local
structures over HCG, as reflected by the increase of Pearson’s r
from 0.59 to 0.62. The root-mean-squared error dropped from
0.47 Hz (HCG) to 0.41 Hz (RHCG). For reference, the
uncertainty of the calculated 3JHNHα couplings has been
estimated at ∼0.9 Hz.78 We do not expect a more significant
improvement because the 3JHNHα coupling is sensitive primarily
to the ϕ backbone torsion, whereas the Cα chemical shift used
in RHCG is particularly sensitive to the ψ backbone torsion.
Indeed, even for a simple Ala pentapeptide we found small but
systematic differences between a state-of-the-art force field and
3JHNHα couplings.40 Overall we conclude that reweighting in
fragment assembly alleviates the small but systematic
deviations caused by small imbalances in state-of-the-art
force fields used to generate fragment libraries. As a result,
the local structure of the tau K18 chains produced by RHCG is
more consistent with NMR chemical shift and J-coupling
experiments.

The RHCG Ensemble of Tau K18 Reproduces the
Experimental NMR Residual Dipolar Couplings

We calculated the RDCs for the assembled tau K18 chain using
the steric alignment mode of PALES,66 and then averaged the
RDC values over the ensemble with the respective weight of
the chain. The measured27 and calculated RDCs agree
remarkably well and capture both the signature as a function
of position along the chain (Figure 1A) and the magnitude at
individual residue positions (Figure 1B). Without further
fitting, we obtained Pearson r correlation coefficients of 0.73
for RHCG and 0.70 for HCG for tau K18 ensembles of 50 000
models. This consistency not only validates the ensemble but
also gives direct insights into the interpretation of the RDCs
measured for IDPs. RDCs inform on how restricted a chain is
locally, with larger absolute RDCs expected for more restricted
segments than for fully flexible segments.15 The RDC DHN

∝⟨P2(cos(θ))⟩ reports on the relative orientation of an amide
bond vector with respect to the magnetic field. Changes in the
sign of the measured RDCs have been interpreted as changes
in the direction of the protein backbone.27 Our conformational
ensemble reproduces the four changes in the sign of DHN

found in experiments.27 Importantly, as highlighted for the
region centered on L284-S385 in Figure 1C, our structures on
average trace a turn in the region where the sign changes, as
indicated by a shortened distance across the four-residue
segments (Figure S8). By contrast, in regions such as Q276-
I277, where the sign of DHN does not change, our structures do
not show a preference in the chain direction and scatter around

Figure 2. Large ensembles are required to capture NMR RDC measurements. (A) Distribution of 1H−15N RDC values for L285 in RHCG
ensembles of different size, as calculated by PALES66 without rescaling. (B) Average 1H−15N RDC for L285 in dependence of the ensemble size for
HCG (dark green squares) and RHCG (blue circles). Error bars indicate ± SEM. (C) Ensemble-size dependence of Pearson r correlation
coefficient between tau K18 1H−15N RDC measurements27 and calculations from RHCG (blue circles) and HCG (green squares), respectively.
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an average straight chain (Figure 1C). We note that simple
polymeric models that ignore amino acid chemistry and the
correlations between subsequent residues tend not to capture
the trends in the experimental RDCs, as previously
noted.15,27,79

Residual Dipolar Coupling Calculations Require Large
Ensemble Sizes

The need for large ensembles has been highlighted before.26

Building large ensembles relies on the possibility to quickly
generate statistically independent atomically detailed models of
IDPs. The RDC values predicted for particular residues in our
models are widely and asymmetrically distributed with a range
of about ±25 Hz (Figure 2A). By contrast, the experimental
average is roughly in the range of −5 to 10 Hz (Figure 1A). As
a result, RDCs calculated from small ensembles are biased
(Figure 2B). We found that relatively large ensembles of
≥10 000 tau K18 chains are needed to get converged RDC
values (Figure 2B). We found in particular that Pearson’s r
correlation coefficient improved with increasing ensemble size.
The ensemble-size dependence is similar for RHCG and HCG,
even if the RHCG ensemble consistently performs somewhat
better than the HCG ensemble (Figures 1D, 2B,C, and S9).

RDCs from Short Chain Segments

In the modeling of RDCs of IDRs, it is frequently assumed that
ensembles of short peptide segments of about 15 amino acids
contain sufficient structural information to calculate RDCs.80,81

We tested this assumption by cutting overlapping 15-mer
segments out of the BioEn ensemble of full-length tau K18 and
then calculating the average RDCs for their central 9 amino
acids using a steric alignment.66 We found that the RDCs
calculated for the full ensemble and for the 15-mer segments
are highly correlated (r = 0.91; Figure S10). Compared to the
NMR RDCs, the correlation coefficient for segments (r =
0.61) is nearly as good as for full-length chains (r = 0.73). In
line with earlier findings,81 we conclude that comparably short
peptide segments can indeed be used to model the RDCs of
long IDRs such as tau.
This finding also makes it possible to use RDC data during

chain growth in RHCG. RDCs can be precalculated either
directly for fragments of sufficient length or for a library of
segments that have been assembled by chain growth. With the
precalculated RDCs, subsequent chain growth can be biased to
improve the overlap between the initial and BioEn-optimized
ensembles of chains. Here, for tau K18, including RDCs in
chain growth proved unnecessary because they were predicted
accurately without any bias.

The RHCG Ensemble Captures the Extension of Tau K18 in
Solution

The RHCG ensemble also captures the size and shape of tau
K18 in solution as probed by SAXS measurements (Figure
1D). The mean scattering profiles calculated from our tau K18
models agree well with the experimental scattering profiles
(Figure 1D), taking possible unspecific aggregation in the low
q regime into account. The computed root-mean-square radius
of gyration of approximately 39 Å coincides with the
experimentally determined RG of 38 ± 3 Å.18 The RHCG
ensemble (⟨Rh⟩ = 34 Å) is also consistent with the
hydrodynamic radius Rh 34 ± 6 Å, as reported by dynamic
light scattering (DLS).74 Rh was computed from the RHCG
ensemble using an empirical approach.82,83

Our RHCG ensemble agrees quite well with previously
reported NMR paramagnetic relaxation enhancement (PRE)
measurements74 (Figure S11), which were not used in the
generation of our ensembles. Spin-label dynamics were
modeled with a rotamer-library approach.75 The overall shapes
of the experimental profiles measured for four different spin-
labels74 were captured without any refinement.46 However, a
fully quantitative comparison is challenging because of the
sensitive dependence of the PRE on infrequent close contacts
between proton and spin-label in the fast-exchange regime. As
a result, the calculated PRE profiles are noisy and, without
weight adjustments, tend to underestimate the actual PRE for
residues and labels close in sequence. The good agreement
with SAXS, dynamic light scattering, and NMR measurements
suggests that the RHCG ensemble captures the global
conformational properties of tau K18 in solution quite well
without further refinement. However, BioEn reweighting of the
spin-label rotamers46 used to calculated the PRE and possibly
also the chains should address some of the challenges in
calculating PREs of disordered proteins.

Structure of tau K18 as Assessed by Single-Molecule FRET

Comparison to single-molecule FRET experiments suggests
that our RHCG models are somewhat too extended (Figure
1E), with longer Cα−Cα distances in the RHCG ensemble than
those extracted from the FRET experiments.45 This initial
analysis of the FRET data with a commonly used polymer
model72 provides a valuable check on the validity of more
involved comparisons with explicit representations of
dyes.45,73,84 In a BioEn calculation, we found that already a
small adjustment of the RHCG chain weights suffices to match
the mean distance deduced from FRET perfectly (RHCG* in
Figure S3D and Table S2). The resulting RHCG* ensemble
agrees as well with experiment as the RHCG ensemble in
terms of the SAXS measurements, and slightly worse in terms
of NMR RDC and PRE measurements (Figure S12 and Table
S2). The Kullback−Leibler divergence of SKL ≈ 0.2
corresponds to a change of the underlying MD simulation
potential energy function of SKLkBT = ∫ dx p(opt)(x)[U(opt)(x) −
U(x)] ≈ 0.5 kJ/mol on average.39 Conversely, this sensitivity
also highlights the intricacies of the free energy landscape of
disordered proteins, where subtle shifts in the energetics result
in appreciable changes in conformation.85

We explored possible effects of the fluorescent dyes by
generating RHCG models with dyes attached. For these
models, we calculated the mean FRET efficiency and
compared it directly to the experimental measurement (Figure
S3C). We found that an even smaller force field correction of
0.35 kJ/mol on average39 would be sufficient to achieve full
consistency of the ensemble means (Figure S3D). Reweighting
according to the FRET data changes the RG from 39.4 Å
(RHCG) to 37.4 Å (RHCG*), and with explicit dye models
from 40.1 Å (RHCG+dyes) to 39.1 Å (RHCG+dyes*),
respectively.
The scaling exponent of 0.56 inferred from the SAW-ν

model72 is close to the value of an excluded-volume chain. The
tau K18 segment is thus more extended than most moderately
charged disordered IDPs.21 Interestingly, the transfer efficiency
and average distance between the Cys residues of tau K18 from
single-molecule FRET are virtually independent of salt
concentration (Figure S3C), indicating that the rather
pronounced expansion of this segment is not caused by charge
repulsion. The FRET experiments are thus in line with our
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Figure 3. RHCG ensembles feature the extended conformations seen in high-resolution structures of tau fibrils. (A,B) 275VQIINK280 and (C,D)
306VQIVYK311 hexapeptide motifs are compared to their experimental structures in tau fibrils. (A,C) Five RHCG structures (Cα RMSD < 0.5 Å)
from RHCG are superimposed on the respective experimental structure (gray, PDB: 5V5B and 2ON9). (B) Cumulative distribution of RMSD to
experimental structure. For reference, the gray line shows the distributions obtained for the RMSD between 50 000 randomly chosen six amino-acid
segments in our model ensembles and the motifs in 5V5B. (D) Cumulative distribution of RMSD to experimental structure. For reference, the gray
line shows the distribution of the RMSD between randomly chosen six amino-acid segments and the hexapeptide motif in the fibril (PDB: 2ON9).

Figure 4. Tau P301 mutations favor more extended local structures. (A) Cumulative distributions of the minimum Cα RMSD of 300VPGGG304 to
the closest representative of the NMR ensemble of microtubule-bound structures.57 Results are shown for the RHCG ensembles of WT tau K18
and for the HCG ensemble of the P301L, P301S, and P301T variants. (B) Five representative structures of 300VPGGG304 from RHCG (oxygen:
red; nitrogen: blue; carbon: cyan; Cα RMSD < 0.5 Å) are superimposed on a representative of the NMR structural ensemble (gray sticks, PDB:
2MZ7, structure 17). Tubes indicate the amino acid backbone. The O(300)−N(303) hydrogen bond is indicated by the blue dashed line. (C)
Cumulative distributions of O(V300)−N(G303) distances for WT tau K18 from RHCG compared to P301L, P301S, and P301T tau K18 variants
from HCG. (D) Representative local structures of WT tau K18. (E) Representative local structures of the P301L variant. (F) Local structures of
P301S. (G) Local structures of P301T. In (D)−(G), the structures were aligned on residues 300 and 301. Tubes indicate the backbone. Side-chain
heavy atoms, amide nitrogen, and Cα of residue 301 are shown as sticks (oxygen: red; nitrogen: blue; carbon: cyan).
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modeling, which highlights that local structural preferences
along the chain rather than long-range charge−charge
interactions primarily shape the ensemble of tau K18.

Aggregation-Prone Extended Structures Feature
Prominently in the Solution Ensemble of Tau K18

Interestingly, a small but significant fraction of our atomically
detailed models feature conformations of the two aggregation-
prone hexapeptide motifs10 as seen in the high-resolution
structures of tau fibrils.86,87 Chain growth thus captures
biologically important structural features. For the first
hexapeptide motif 275VQIINK280, we found that about 9% of
the models are within 1 Å Cα RMSD of a tau fragment fibril
structure (PDB: 5V5B87) (Figure 3A,C). A similar fraction of
the tau K18 population has local structures matching that of a
fibril from a corticobasal degeneration (CBD) patient sample88

(PDB: 6TJO). The fraction of our ensemble that closely
matches the experimental structures (Figures 3B and S13) is
clearly larger than what would be expected for a random six
amino acid segment. For the second hexapeptide motif
306VQIVYK311, we also found that about 8% of the models
are within 1.0 Å Cα RMSD of the X-ray structure (PDB:
2ON986) (Figure 3B,D), about 2.5 times more than what
would be expected for random hexapeptide segments. We
found similar consistency for the second hexapeptide motif
with the structures of tau fibrils (Figure S13), as formed in
Alzheimer’s disease (PDB: 5O3O,89 5O3T,89 6HRE,90

6HRF90), CBD (6TJO,88 6VI391), Pick’s disease (6GX592),
and chronic traumatic encephalopathy (6NWP93). Experi-
ments on tau K18 in solution suggest that these motifs should
be partially in extended conformations, consistent with our
ensemble.16,27

The Solution Ensemble Contains the Functional
Conformations of Tau in Complex with Microtubules

We found that a considerable fraction of WT tau K18 adopts
locally compact turn-like structures (Figure 4A−C). Similar
turn-like structures have been resolved by NMR transfer
NOESY experiments probing the conformations of micro-
tubule-bound tau,57 with an O(300)−N(303) distance below 4
Å in 18 out of the 20 structures in the NMR ensemble (PDB:
2MZ7; see Figure 4B). In the WT RHCG ensemble, 15% of
structures of the 300VPGGG304 segment are within 1 Å Cα

RMSD of the closest representative of the NMR ensemble
(Figure 4A). This indicates that tau samples the turn-like
structures of the microtubule-bound form also free in solution.

Chain Growth Captures the Effect of Mutations Toward
Aggregation-Prone Structures

The PGG motifs at the end of each repeat favor turn-like
structures.94 We expect that mutations of the prolines shift the
local structure away from turns. To test the effect of mutations
at the 301 position, we considered the frontotemporal
dementia with Parkinsonism-linked to chromosome 17
(FTDP-17) mutations P301L, P301S and P301T. Mutations
of P301 have been shown to strongly promote tau
aggregation9,10 and are used in mouse models of tauopathies.8,9

In our hierarchical modeling, the P301L, P301S, and P301T
variants consistently form more extended structures than WT
(Figure 4C,D), both in ensembles of full-length tau K18
(Figure 4C,E,F,G) and in fragment MD simulations (Figure
S14). This loss of turn-like structures is indicated by a more
than 2-fold reduction in the fraction of O−N distances < 4 Å
between V300 and G303. The P301L mutation has been

studied in detail by NMR and biophysical experiments.11 The
shift from turns to extended structures in our P301L ensemble
is in line with smaller 15N chemical shift values for K298,
H299, and V300 in P301L tau K18.11

The shift from turns to extended structures rationalizes the
enhanced aggregation propensity of tau P301L in vitro10,12

because extended structures predominate in fibrils. Locally
more extended structures in the mutant proteins facilitate
intermolecular contacts between tau chains and subsequent
assembly and aggregation via intermolecular β-sheets. The shift
to extended structures seen here also explains why P301L tau
binds less strongly to microtubules.11,95 In a population-shift
mechanism, P301L, P301S, and P301T mutations thus appear
to decrease the fraction of tau with locally compact turn
structures, which are competent to bind to microtubules and to
increase the fraction of aggregation-prone extended structures
(Figures 5 and S11). The combination of these two effects may

render P301 mutations deleterious both with respect to a loss
in function and an increased tendency to form disease-
associated fibrils.
According to chemical shift mapping, the P301L/P301S/

P301T mutations do not significantly alter the overall structure
of tau.11 Whereas the tendency to form aggregation-prone
extended structures at position 301 more than doubles (see
Figure 4), the absolute increase in the extended population is
small (<15%) and confined locally to the turn region. The
change in the calculated radius of gyration compared to WT is
small, ∼0.2 Å, and thus within the uncertainty of both
calculations and measurements. The same limitation applies to
the mean Cα−Cα distances of the fluorophore labeled residues,
which change by only ∼0.1−0.3 Å.

■ CONCLUSIONS

We showed that reweighted hierarchical chain growth captures
both the local and the global structures of tau K18. Locally,
NMR Cα chemical shifts were reproduced within the expected

Figure 5. P301 mutations shift the balance from functional to
aggregation-prone conformations. Turn conformations (bottom) are
required for functional microtubule binding (left), whereas extended
conformations (top) are associated with aggregation and the
formation of pathogenic fibrils (right). In the wild-type ensemble
(P301; bottom), turn-like structures predominate. By contrast,
extended structures are significantly populated in the mutant
ensemble (P301L; top). The zoom-ins on the right show
representative backbone traces around amino acid 301 as tubes.
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uncertainties without any fitting. The agreement was improved
further with only a gentle Bayesian ensemble refinement
against NMR chemical shift data. Globally, the tau K18 chains
assembled in this way reproduced SAXS, FRET, and NMR
RDC measurements and thus captured the overall shape,
dimension, and changes in orientation. In addition, the FRET
experiments showed that the extension of tau K18 is insensitive
to varying salt concentration unlike other disordered
proteins.58 The global structure of tau K18 thus emerged
from its local structure in the sense that the ensembles of
global chain structures built by combining short peptide
fragments capture the measured global structural properties
with good accuracy.
Fragment assembly and coil models have proved highly

success fu l in the model ing of disordered pro-
teins.24−26,28,36,52,60,79 The quality of the ensemble models
can be improved even further by integrating experimental
data.26,35 In BioEn,39,40 the data enter through a χ2 term. The
summed squared error χ2 of the models often grows roughly
linearly with chain length, e.g., because of systematic errors in
the force field used to generate the fragment models. As a
result, the relative weights of the assembled chains in a refined
ensemble will vary widely. The overlap between the ensemble
of assembled chains and the final ensemble, as measured by
exp(−SKL), then decreases exponentially with increasing chain
length, and ensemble refinement becomes increasingly
inefficient.
Reweighted hierarchical chain growth is an importance

sampling procedure designed to address this problem by
producing evenly weighted ensembles. By applying a bias
already during chain assembly, we ensure that the assembled
chains have near-uniform weights in the final ensemble. A
poorly designed importance sampling scheme would produce
ensembles with an uneven weight distribution, as indicated by
a high value of SKL

bias in eq 10. By using hierarchical chain
growth52 and correcting for any bias in the assembly process in
a formally rigorous manner using a form of Bayesian ensemble
refinement, BioEn,39 we ensure further that the final ensemble
is well-defined and independent of arbitrary choices in the
assembly process, such as the strength of the bias in fragment
selection or the direction of chain growth.
In practice, RHCG may only be a starting point for further

investigations and improvements. For instance, representative
structures can be used as seeds for MD simulations of the full-
length protein.52 By drawing conformations according to the
BioEn weights, one can systematically select subensembles that
are consistent with the available experimental data. If
BioEn39,40 indicates that entire regions of configuration space
require large changes in weights, up or down, one may need to
bias chain growth accordingly or may have to use different or
improved simulation force fields.96

The tau K18 ensembles obtained by reweighted hierarchical
chain growth revealed how patient-associated mutations shift
the balance from protein function to disease. In modeling the
effect of mutations, we took advantage of a chemically
informed description79,97−104 of the disordered tau protein.
We found that, already free in solution, the microtubule-
interacting regions of tau K18 populate local structures as
observed in the microtubule-bound state by NMR. Also
consistent with conformational selection, we found that a
comparable fraction of free tau K18 chains exhibits local
structures as observed in pathogenic tau fibrils. We could
further show that the disease-associated mutations P301L,

P301S, and P301T shift the balance away from the
microtubule-bound local turn structures toward the fibril-
associated extended structures (Figure 5). Such shifts can have
dramatic effects on the kinetics of aggregation105 by lowering
the barrier to nucleation. Indeed, a shift to extended structures
was recently reported to be associated with fibril formation in
tau condensates.106 The emergence of global structure from
local structure thus extends beyond chain shape, dimension,
and orientation to the competition between tau’s role as
microtubule-bound regulator of cellular transport and as fibril-
forming driver of neuropathologies.
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