
MATHEMATICS OF COMPUTATION
Volume 69, Number 229, Pages 159–176
S 0025-5718(99)01131-X
Article electronically published on March 10, 1999

GLOBAL SUPERCONVERGENCE
FOR MAXWELL’S EQUATIONS

QUN LIN AND NINGNING YAN

Abstract. In this paper, the global superconvergence is analysed on two
schemes (a mixed finite element scheme and a finite element scheme) for
Maxwell’s equations in R3. Such a supercovergence analysis is achieved by
means of the technique of integral identity (which has been used in the super-
covergence analysis for many other equations and schemes) on a rectangular
mesh, and then are generalized into more general domains and problems with
the variable coefficients. Besides being more direct, our analysis generalizes
the results of Monk.

1. Introduction

1) Problem. Let Ω be a bounded polygonal domain in R3 with the boundary
Γ := ∂Ω and the unit outward normal n. Let ε(x) and µ(x) denote the dielectric
constant and the magnetic permeability of the material in Ω, respectively. Let
σ(x) denote the conductivity of the medium. Then, if E(x,t) and H(x,t) denote,
respectively, the electric and magnetic fields, Maxwell’s equations [2] state that

εEt + σE−5×H = −J in Ω× (0, T ),

µHt +5×E = 0 in Ω× (0, T ),
(1.1)

where J = J(x, t) is a known function specifying the applied current. For simplicity,
in this paper we shall assume a perfect conducting boundary condition on Ω so that

n×E = 0 on ∂Ω× (0, T ).(1.2)

In addition, the initial conditions must be specified so that

E(x, 0) = E0(x), H(x, 0) = H0(x), ∀x ∈ Ω,(1.3)

where E0 and H0 are given functions. The coefficients ε, µ and σ are bounded, and
there exist constants εmin and µmin such that

0 < εmin ≤ ε(x), 0 < µmin ≤ µ(x), ∀x ∈ Ω.

Furthermore, the conductivity σ is a nonnegative function on Ω̄.
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2) Monk’s results. P. Monk (see [7] and [8]) described a mixed finite element
scheme and a finite element scheme, respectively, for Maxwell’s equations, and
provided error estimates for smooth solutions as follows:

‖H−Hh‖0 + ‖E−Eh‖0 = O(hk), for mixed FEM,(1.4)

‖ 5 ×(E−Eh)‖0 + ‖Et −Eh
t ‖0 = O(hk), for FEM,(1.5)

where k is the order of the finite element space, and Eh and Hh are mixed finite
element solutions or finite element solutions of E and H, respectively.

Moreover, for the equation (1.1) with ε = µ = 1, σ = 0 and the mixed finite
element scheme, Monk (see [11]) provided the superconvergence estimate

E−Eh|‖+ ‖|Hh|‖W = O(hk+1),(1.6)

where ‖| · |‖ and ‖| · |‖W are special mesh dependent discrete norms (see [11] for
details).

3) Our results. In this paper, it is shown that when the finite element meshes are
structural and the solutions are smooth sufficiently, global superconvergence can
be achieved, i.e. the standard error estimates (1.4) and (1.5) can be improved to

‖H−Π2hHh‖0 + ‖E−Π2hEh‖0 = O(hk+1),(1.7)

‖ 5 ×(E−Π3hEh)‖0 + ‖(E−Π2hEh)t‖0 = O(hk+1),(1.8)

where Π2h and Π3h are the interpolation postprocess operators, which will be de-
scribed in Section 5.

4) The relationship between above results. Comparing (1.6) and (1.7), it is
easy to see that our superconvergence result (1.7) is very close to Monk’s result
(1.6), but differs in some respects:

a) Because we used the technique of accurate integral identities, the proof of the
superconvergence is more direct and easier. In particular, the results of supercon-
vergence can be extended to the problem with variable coefficients ε, µ, σ and a
general domain with almost cubic meshes (see Section 6 for details).

b) Our error estimates show that the finite element solution is superconvergent
to the interpolant in L2 norm, whereas in [11] superconvergence is proved in a
special mesh dependent norm.

c) By means of the interpolation postprocessing technique, global superconver-
gence is provided on the whole domain, not on special points, lines or faces as usual
(see [11], [3], . . . ).

We would like to point out that the technique of the accurate integral identities
used in this paper has been used to achieve global superconvergence for standard
finite element methods, mixed finite element methods, nonconforming finite ele-
ment methods, for differential equations, integral-differential equations, integral
equations, for elliptic problems, parabolic problems, hyperbolic problems, Stokes
problems, · · · (cf. [5], [6], . . . ). It has been shown that this technique (accurate
integral identities) and the symmetric technique of A.H. Schatz, I.H. Sloan, and
L.B. Wahlbin (see [13], [14]) are powerful tools for achieving superconvergence. We
would like to mention here that the accurate integral identities technique combined
with the symmetric technique gives an improved superconvergence estimate.
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Throughout the paper, we shall assume that E and H are sufficiently smooth;
the requirement for the smoothness will be shown by the norms in the cases.

The plan of the paper is as follows. In Section 2, we shall describe the notations
to be used in this paper, and the mixed finite element scheme, the finite element
scheme for Maxwell’s equations and their error estimates shown in [7] and [8]. In
Section 3, two lemmas about integral identities with high accuracy will be shown,
which are the basis of our paper. Based on the lemmas in Section 3, the superclose
analysis is achieved in Section 4. In Section 5, global superconvergence is derived
from superclose estimates by using the interpolation postprocess. In Section 6,
the results in Sections 3–5 are extended to problems with variable coefficients and
general domains.

2. Preliminary notations and discrete schemes

Let us start by defining some notations. We denote the standard Sobolev space
by

Wm,p(Ω) = {v ∈ Lp(Ω); ∂αv ∈ Lp(Ω), ∀|α| ≤ m},
equipped with the standard norm

‖v‖m,p = (
∑

α|≤m

∫
Ω

|∂αv|p) 1
p .

When p = 2, we drop the subscript p from the norm and denote the space Wm,2(Ω)
by Hm(Ω), and

H1
0 (Ω) = {v ∈ H1(Ω); v = 0 on Γ}.

In addition, let (·, ·) denote the [L2(Ω)]3 inner product.
In our analysis for Maxwell’s equations, there are two important spaces of func-

tions:
H(curl; Ω) = {v ∈ [L2(Ω)]3; 5× v ∈ [L2(Ω)]3},
H0(curl; Ω) = {v ∈ H(curl; Ω); n× v = 0 on Γ},

equipped with the norm

‖v‖Hc = (‖v‖2
0 + ‖ 5 ×v‖2

0)
1
2 .

To approximate (1.1)-(1.3), we use finite element spaces Uh ⊂ [L2(Ω)]3 and
V h ⊂ H(curl; Ω). In addition, V h

0 ⊂ H0(curl; Ω). Then, two discrete schemes
presented in [7] and [8] are described as follows.

1) A mixed finite element scheme. Multiply equation (1.1) by test functions
Φ ∈ [L2(Ω)]3 and Ψ ∈ H(curl; Ω) and integrate over Ω. Integrating the curl term
in the second equation of (1.1) by parts (also using (1.2)), we can obtain the weak
form for (1.1)-(1.3) as follows:

(εEt,Φ) + (σE,Φ)− (5×H,Φ) = −(J,Φ), ∀Φ ∈ [L2(Ω)]3,

(µHt,Ψ) + (E,5×Ψ) = 0, ∀Ψ ∈ H(curl; Ω),

E(x, 0) = E0(x), H(x, 0) = H0(x).

(2.1)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



162 QUN LIN AND NINGNING YAN

Then, a mixed finite element scheme is to find Eh ∈ Uh, Hh ∈ V h such that

(εEh
t ,Φ) + (σEh,Φ)− (5×Hh,Φ) = −(J,Φ), ∀Φ ∈ Uh,

(µHh
t ,Ψ) + (Eh,5×Ψ) = 0, ∀Ψ ∈ V h,

Eh(0) = EI
0, Hh(0) = HI

0.

(2.2)

where EI
0 ∈ Uh and HI

0 ∈ V h are interpolations of E0 and H0, respectively.
The existence and uniqueness for the above equations have been shown in [7]

with the error estimate

‖(H−Hh)(t)‖0 + ‖(E−Eh)(t)‖0

≤ Chk[‖H(0)‖k+1 + ‖E(0)‖k + (
∫ t

0

(‖Ht‖2
k + ‖H‖2

k+1 + ‖Et‖2
k + ‖E‖2

k)dt)
1
2 ],

(2.3)

where k is the order of the mixed finite element space.

2) A finite element scheme. Another approach to approximating (1.1) is to
derive a second-order hyperbolic problem for E(x, t). By taking the time derivate
of the first equation and using the second equation in (1.1), we obtain the following
electric field equation:

εEtt + σEt +5× (
1
µ
5×E) = G in Ω× (0, T ),(2.4)

where G(x, t) = −Jt(x, t). Also using (1.1) and (1.3) we obtain the initial condition

Et(x, 0) = Et0(x) ≡ 1
ε(x)

[J(x, 0) +5×H0(x) − σ(x)E0(x)].(2.5)

Multiplying (2.4) by a test function Φ ∈ H0(curl; Ω) and integrating the curl term
by parts, we obtain the weak form for (2.4) as follows:

(εEtt,Φ) + (σEt,Φ) + (
1
µ
5×E,5× Φ) = (G,Φ), ∀Φ ∈ H0(curl; Ω),

(2.6)

subject to the initial conditions

E(0) = E0 and Et(0) = Et0.(2.7)

The finite element scheme is to find Eh ∈ V h
0 , such that

(εEh
tt,Φ) + (σEh

t ,Φ) + (
1
µ
5×Eh,5× Φ) = (G,Φ), ∀Φ ∈ V h

0 ,(2.8)

subject to the initial conditions

Eh(0) = EI
0 and Eh

t (0) = EI
t0,(2.9)

where EI
0 and EI

t0 are interpolations of E0 and Et0, respectively.
The existence and uniqueness for (2.6) and (2.8) have been shown in [8] with the

error estimate

‖(E−Eh)(t)‖Hc + ‖(E−Eh)t(t)‖0

≤ C(‖(E−Eh)(0)‖Hc + ‖(E−Eh)t(0)‖0(2.10)

+ hk( max
0≤s≤t

‖Et(s)‖k+1 +
∫ t

0

‖Ett‖k+1ds)),

where k is the order of the finite element spaces.
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3. Two fundamental lemmas

In order to concentrate our attention on the primary idea, in this and the next
section we shall assume that Ω is a cubic domain. Let Th be a cubic mesh on Ω
with the largest size h, and let the mixed finite element space ([12]) be

Uh = {Φ ∈ [L2(Ω)]3; Φ|e ∈ Qk,k−1,k−1 ×Qk−1,k,k−1 ×Qk−1,k−1,k, ∀e ∈ Th},
V h = {Ψ ∈ H(curl; Ω); Ψ|e ∈ Qk−1,k,k ×Qk,k−1,k ×Qk,k,k−1, ∀e ∈ Th},

where Qi,j,k is a space of polynomials whose degrees for x, y, z are less than or
equal to i, j, k, respectively.

In addition, define EI ∈ Uh and HI ∈ V h to be the interpolations of E and H
satisfying ∫

e

(E−EI) · Φ = 0, ∀Φ ∈ Uh,

and ∫
li

(H−HI) · tqdl = 0, ∀q ∈ Pk, i = 1, · · · , 12,∫
σi

((H−HI)× n) · qdσ = 0, ∀q ∈ Qk−2,k−1 ×Qk−1,k−2, i = 1, · · · , 6,∫
e

(H−HI) · q = 0, ∀q ∈ Qk−1,k−2,k−2 ×Qk−2,k−1,k−2 ×Qk−2,k−2,k−1,

where li, σi are edges and surfaces of the element e, t, n are tangent vector and
normal vector, respectively, and Pk is a polynomial function space of order k.

On the cubic element e = [xe −he, xe +he]× [ye− ke, ye + ke]× [ze− de, ze + de],
define

A(x) =
(x− xe)2 − h2

e

2
, B(y) =

(y − ye)2 − k2
e

2
, D(z) =

(z − ze)2 − d2
e

2
.

Then, we can obtain some integral identities with high accuracy by means of the
functions A(x), B(y), D(z) and the interpolation conditions.

Lemma 3.1.∫
Ω

5× (H−HI) · Φ = O(hk+1)‖H‖k+2‖Φ‖0, ∀Φ ∈ Uh.(3.1)

Proof. Let w = H−HI , and w = (w1, w2, w3), Φ = (φ1, φ2, φ3); then

(5×w)1φ1 = (∂yw3 − ∂zw2)φ1,(3.2)

where ∂y = ∂
∂y , ∂z = ∂

∂z , φ1 ∈ Qk,k−1,k−1.
When k = 1 and φ1 ∈ Q1,0,0 we have

φ1 = φ1(xe, y, z) + (x − xe)∂xφ1.(3.3)
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By the interpolation conditions of HI and noting that A(x) = 0 when x = xe ± he,

∫
e

∂yw3 = (
∫

τ2

−
∫

τ1

)w3dxdz = (
∫

τ2

−
∫

τ1

)A′′(x)w3dxdz

= (
∫

l3

−
∫

l4

−
∫

l1

+
∫

l2

)A′(x)w3dz − (
∫

τ2

−
∫

τ1

)A′(x)∂xw3dxdz

= 0− (
∫

l3

−
∫

l4

−
∫

l1

+
∫

l2

)A(x)∂xw3dz + (
∫

τ2

−
∫

τ1

)A(x)∂2
xw3dxdz

= 0 +
∫

e

A(x)∂2
x∂yH3,

(3.4)

where τ1, τ2, l1, · · · , l4 are surfaces and edges of the element e (see Figure 1).
In a similar way, it can be proved that∫

e

∂yw3(x− xe) =
1
6

∫
e

(A2(x))′′′∂yw3 =
1
6

∫
e

(A2(x))′∂2
x∂yH3.(3.5)

Note that
φ1(xe, y, z) = φ1 − (x − xe)∂xφ1.

By (3.3)-(3.5) and the inverse inequality [1], it can be proved that∫
e

∂yw3φ1 =
∫

e

(A(x)φ1(xe, y, z) +
1
6
(A2(x))′∂xφ1)∂2

x∂yw3

=
∫

e

A(x)(φ1 − 2
3
(x− xe)∂xφ1)∂2

x∂yH3

= O(h2)‖H3‖3,e‖φ1‖0,e.

Similarly, we can obtain the same results for
∫

e
∂zw2φ1 and

∫
e
(5×w)iφi, i = 2, 3.

Hence, (3.1) is proved for k = 1.
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When k ≥ 2,

φ1 =
k−2∑
i=1

(x− xe)i

i!
∂i

xφ1(xe, y, z) +
(x− xe)k−1

(k − 1)!
∂k−1

x φ1(xe, y, z)

+
(x− xe)k

k!
∂k

xφ1.

(3.6)

By the interpolation conditions for HI ,

∫
e

∂yw3

k−2∑
i=0

(x − xe)i

i!
∂i

xφ1(xe, y, z)

= (
∫

τ2

−
∫

τ1

)w3

k−2∑
i=0

(x− xe)i

i!
∂i

xφ1(xe, y, z)dxdz

−
∫

e

w3

k−2∑
i=0

(x− xe)i

i!
∂i

x∂yφ1(xe, y, z) = 0.

(3.7)

Note that

(x− xe)k−1

(k − 1)!
=

2k

(2k)!
(Ak(x))(k+1) + F (x),(3.8)

where (Ak(x))(k+1) is a derivative of order k + 1 for Ak(x), F (x) ∈ Pk−3. We can
obtain that

∫
e

∂yw3
(x− xe)k−1

(k − 1)!
∂k−1

x φ1(xe, y, z)

=
2k

(2k)!

∫
e

(Ak(x))(k+1)∂yw3∂
k−1
x φ1(xe, y, z)

+
∫

e

F (x)∂yw3∂
k−1
x φ1(xe, y, z)

=
2k

(2k)!
(
∫

τ3

−
∫

τ4

)(Ak(x))(k)∂yw3∂
k−1
x φ1(xe, y, z)dydz

−− 2k

(2k)!

∫
e

(Ak(x))(k)∂x∂yw3∂
k−1
x φ1(xe, y, z) + 0

=
2k

(2k)!
(
∫

l3

−
∫

l1

−
∫

l4

+
∫

l2

)(Ak(x))(k)w3∂
k−1
x φ1(xe, y, z)dz

− 2k

(2k)!
(
∫

τ3

−
∫

τ4

)(Ak(x))(k)w3∂
k−1
x ∂yφ1(xe, y, z)dydz

− (−2)k

(2k)!

∫
e

Ak(x)∂k+1
x ∂yH3∂

k−1
x φ1(xe, y, z)

= 0 + 0 +O(h2k)‖H3‖k+2,e‖φ1‖k−1,e

= O(hk+1)‖H3‖k+2,e‖φ1‖0,e.

(3.9)
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In the same way,

∫
e

∂yw3
(x− xe)k

k!
∂k

xφ1 =
(−2)k+1

(2k + 2)!

∫
e

(Ak+1(x))′∂k+1
x ∂yH3∂

k
xφ1

= O(hk+1)‖H3‖k+2,e‖φ1‖0,e.

(3.10)

So, by (3.6)-(3.10), ∫
Ω

∂yw3φ1 = O(hk+1)‖H3‖k+1‖φ1‖0.

In the same way, we can prove the samilar results for the terms
∫

e
∂zw2φ1 and∫

e
(5×w)iφi, i = 2, 3, for k ≥ 2. Hence, the proof of Lemma 3.1 is completed.

Lemma 3.2. ∫
Ω

(H−HI)Ψ = O(hk+1)‖H‖k+1‖Ψ‖0, ∀Ψ ∈ V h.(3.11)

Proof. Let w = H−HI . When k = 1 and ψ3 ∈ Q1,1,0, we have

ψ3 = ψ3(xe, ye, z) + (x− xe)∂xψ3(x, ye, z) + (y − ye)∂yψ3(xe, y, z)

+(x− xe)(y − ye)∂x∂yψ3.

(3.12)

In the similar way as for Lemma 3.1, it is easy to show that

∫
e

w3 = −
∫

e

A′(x)B′(y)∂x∂yw3 +
∫

e

A(x)∂2
xH3 +

∫
e

B(y)∂2
yH3,

(3.13)

∫
e

(x− xe)w3 = −h
2
e

3

∫
e

B′(y)∂x∂yw3 +
1
6

∫
e

(A2(x))′∂2
xH3,(3.14)

∫
e

(y − ye)w3 = −k
2
e

3

∫
e

A′(x)∂x∂yw3 +
1
6

∫
e

(B2(y))′∂2
yH3,(3.15)

∫
e

(x − xe)(y − ye)w3 =
∫

e

A(x)B(y)∂x∂yw3.(3.16)
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By (3.12)-(3.16), and note that ‖∂x∂yw3‖0 ≤ C‖H3‖2,

∫
e

w3ψ3 = O(h2)‖H3‖2,e‖ψ3‖0,e.

Similar results can be proved for
∫

e
wiψi, i = 1, 2. Hence, (3.11) follows for k = 1.

When k ≥ 2,

ψ3 =
k−2∑
i=0

k−2∑
j=0

(x − xe)i

i!
(y − ye)j

j!
∂i

x∂
j
yψ3(xe, ye, z)

+
(x− xe)k−1

(k − 1)!

k−2∑
j=0

(y − ye)j

j!
∂k−1

x ∂j
yψ3(xe, ye, z)

+
(x− xe)k

k!

k−2∑
j=0

(y − ye)j

j!
∂k

x∂
j
yψ3(xe, ye, z)

+
(y − ye)k−1

(k − 1)!

k−2∑
i=0

(x− xe)i

i!
∂i

x∂
k−1
y ψ3(xe, ye, z)

+
(y − ye)k

k!

k−2∑
i=0

(x− xe)i

i!
∂i

x∂
k
yψ3(xe, ye, z)

+
(x− xe)k−1

(k − 1)!
(y − ye)k−1

(k − 1)!
∂k−1

x ∂k−1
y ψ3(xe, ye, z)

+
(x− xe)k

k!
(y − ye)k−1

(k − 1)!
∂k

x∂
k−1
y ψ3(xe, ye, z)

+
(x− xe)k−1

(k − 1)!
(y − ye)k

k!
∂k−1

x ∂k
yψ3(xe, ye, z)

+
(x− xe)k

k!
(y − ye)k

k!
∂k

x∂
k
yψ3(xe, ye, z).

(3.17)

By the definition of interpolation for HI ,

(w3,

k−2∑
i=0

k−2∑
j=0

(x − xe)i

i!
(y − ye)j

j!
∂i

x∂
j
yψ3(xe, ye, z)) = 0.(3.18)
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From (3.8) and (3.18), integrating by parts, it can be proved that

∫
e

w3
(x− xe)k−1

(k − 1)!

k−2∑
j=0

(y − ye)j

j!
∂k−1

x ∂j
yψ3(xe, ye, z)

=
∫

e

w3
2k

(2k)!
(Ak(x))(k+1)

k−2∑
j=0

(y − ye)j

j!
∂k−1

x ∂j
yψ3(xe, ye, z) + 0

= (
∫

τ3

−
∫

τ4

)w3
2k

(2k)!
(Ak(x))(k)

k−2∑
j=0

(y − ye)j

j!
∂k−1

x ∂j
yψ3(xe, ye, z)dydz

−
∫

e

∂xw3
2k

(2k)!
(Ak(x))(k)

k−2∑
j=0

(y − ye)j

j!
∂k−1

x ∂j
yψ3(xe, ye, z)

= 0− (−2)k

(2k)!

∫
e

∂k+1
x H3A

k(x)
k−2∑
j=0

(y − ye)j

j!
∂k−1

x ∂j
yψ3(xe, ye, z)

= O(h2k)‖H3‖k+1,e‖ψ3‖k−1,e = O(hk+1)‖H3‖k+1,e‖ψ3‖0,e.

(3.19)

In the same way,

∫
e

w3
(x− xe)k

k!

k−2∑
j=0

(y − ye)j

j!
∂k

x∂
j
yψ3(xe, ye, z)

= O(hk+1)‖H3‖k+1,e‖ψ3‖0,e,

(3.20)

∫
e

w3
(y − ye)k−1

(k − 1)!

k−2∑
i=0

(x− xe)i

i!
∂i

x∂
k−1
y ψ3(xe, ye, z)

= O(hk+1)‖H3‖k+1,e‖ψ3‖0,e,

(3.21)

∫
e

w3
(y − ye)k

k!

k−2∑
i=0

(x− xe)i

i!
∂i

x∂
k
yψ3(xe, ye, z)

= O(hk+1)‖H3‖k+1,e‖ψ3‖0,e.

(3.22)
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For the sixth term in the right of (3.17), when k = 2,

∫
e

w3
(x− xe)k−1

(k − 1)!
(y − ye)k−1

(k − 1)!
∂k−1

x ∂k−1
y ψ3(xe, ye, z)

=
∫

e

w3(x− xe)(y − ye)∂x∂yψ3(xe, ye, z)

=
1
6

∫
e

(A2(x))′′′(y − ye)w3∂x∂yψ3(xe, ye, z)

= −1
6

∫
e

(A2(x))′′(y − ye)∂xw3∂x∂yψ3(xe, ye, z)

+
1
6
(
∫

τ3

−
∫

τ4

)(A2(x))′′
1
6
(B2(y))′′′w3∂x∂yψ3(xe, ye, z)dydz

= −1
6

∫
e

A2(x)(y − ye)∂3
xw3∂x∂yψ3(xe, ye, z)

− 1
6
h2

e

3
(
∫

τ3

−
∫

τ4

)(B2(y))′′∂yw3∂x∂yψ3(xe, ye, z)dydz

+
1
6
h2

e

3
(
∫

l3

−
∫

l1

−
∫

l4

+
∫

l2

)(B2(y))′′w3∂x∂yψ3(xe, ye, z)dz

= −1
6

∫
e

A2(x)(y − ye)∂3
xH3∂x∂yψ3(xe, ye, z)

+
h2

e

18

∫
e

(B2(y))′∂x∂
2
yw3∂x∂yψ3(xe, ye, z) + 0

= O(h5)‖H3‖3,e‖ψ3‖2,e = O(h3)‖H3‖3,e‖ψ3‖0,e.

(3.23)

Note that

(x− xe)k−1

(k − 1)!
=

2k−1

(2k − 2)!
(Ak−1(x))(k−1) + F̃ (x), F̃ (x) ∈ Pk−3.

Hence, when k ≥ 3, k − 3 ≥ 0, by (3.19),

∫
e

w3
(x− xe)k−1

(k − 1)!
(y − ye)k−1

(k − 1)!
∂k−1

x ∂k−1
y ψ3(xe, ye, z)

=
22k−2

((2k − 2)!)2

∫
e

(Ak−1(x))(k−1)(Bk−1(y))(k−1)w3

× ∂k−1
x ∂k−1

y ψ3(xe, ye, z) +O(hk+1)‖H3‖k+1,e‖ψ3‖0,e

=
(−1)k+122k−2

((2k − 2)!)2

∫
e

Ak−1(x)(Bk−1(y))(k−3)∂k−1
x ∂2

yw3

× ∂k−1
x ∂k−1

y ψ3(xe, ye, z) +O(hk+1)‖H3‖k+1,e‖ψ3‖0,e

= O(h3k−1)‖H3‖k+1,e‖ψ3‖2k−2,e +O(hk+1)‖H3‖k+1,e‖ψ3‖0,e

= O(hk+1)‖H3‖k+1,e‖ψ3‖0,e.

(3.24)
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In the same way, when k ≥ 2,

∫
e

w3
(x− xe)k

k!
(y − ye)k−1

(k − 1)!
∂k

x∂
k−1
y ψ3(xe, ye, z)

=
(−1)k+122k−1

(2k − 2)!(2k)!

∫
e

Ak(x)(Bk−1(y))(k−2)∂k
x∂yw3∂

k
x∂

k−1
y ψ3(xe, ye, z)

+O(hk+1)‖H3‖k+1,e‖ψ3‖0,e

= O(hk+1)‖H3‖k+1,e‖ψ3‖0,e.

(3.25)

Similarly,

∫
e

w3
(x− xe)k−1

(k − 1)!
(y − ye)k

k!
∂k−1

x ∂k
yψ3(xe, ye, z) = O(hk+1)‖H3‖k+1,e‖ψ3‖0,e,

(3.26)

∫
e

w3
(x− xe)k

k!
(y − ye)k

k!
∂k

x∂
k
yψ3(xe, ye, z) = O(hk+1)‖H3‖k+1,e‖ψ3‖0,e.

(3.27)

So, by (3.17)-(3.27), ∫
Ω

w3ψ3 = O(hk+1)‖H3‖k+1‖ψ3‖0.

Similar results can be proved for
∫

ewiψi, i = 1, 2, when k ≥ 2. Hence (3.11) follows.

4. Superclose estimates

Now, based on the lemmas in Section 3, we can get the principal results in this
paper. In this section, we will assume that ε = µ = 1 and σ = 0 for equation (1.1).

Theorem 4.1. Let E, H, Eh, Hh be the solutions of (2.1) and (2.2), respectively,
and EI ∈ Uh, HI ∈ V h be the interpolations of E and H. Then

‖Eh −EI‖0 + ‖Hh −HI‖0 = O(hk+1)(
∫ t

0

(‖H‖2
k+2 + ‖Ht‖2

k+1)ds)
1
2 .

(4.1)

Proof. Let ξ = Eh −EI , η = Hh −HI ; then by (2.1) and (2.2),
1
2
d

dt
(‖ξ‖2

0 + ‖η‖2
0) = (ξt, ξ) + (ηt, η)

= (ξt, ξ)− (5× η, ξ) + (ηt, η) + (ξ,5× η)

= ((E−EI)t, ξ)− (5× (H−HI), ξ)

+ ((H−HI)t, η) + ((E−EI),5× η).

(4.2)

Note that ξ ∈ Uh, η ∈ V h, 5× η ∈ Uh. By the interpolation difinition for EI ,

((E−EI)t, ξ) = 0,(4.3)

(E−EI ,5× η) = 0.(4.4)
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Then, by (4.2)-(4.4) and Lemmata 3.1 and 3.2,

1
2
d

dt
(‖ξ‖2

0 + ‖η‖2
0) = O(hk+1)(‖H‖k+2‖ξ‖0 + ‖Ht‖k+1‖η‖0).(4.5)

Note that ξ(0) = η(0) = 0. Integrate (4.5) with respect to t. Then (4.1) follows by
the Schwarz inequality and Gronwell inequalities.

Theorem 4.2. Let E, Eh the solutions of (2.6) and (2.8), respectively, and EI ∈
V h

0 the interpolation of E. Then

‖(Eh −EI)t‖0 + ‖ 5 ×(Eh −EI)‖0

= O(hk+1)(‖E‖k+2 + (
∫ t

0

(‖Ett‖2
k+1 + ‖Et‖2

k+2)ds)
1
2 ).

(4.6)

Proof. Let ξ = Eh −EI . Then, by (2.6) and (2.8),

1
2
d

dt
(‖ξt‖2

0 + ‖ 5 ×ξ‖2
0) = (ξtt, ξt) + (5× ξ,5× ξt)

= ((E−EI)tt, ξt) + (5× (E−EI),5× ξt)
(4.7)

Because ξ(0) = ξt(0) = 0, integrating (4.7) for t and integrating by parts, we can
prove that

‖ξt‖2
0 + ‖ 5 ×ξ‖2

0 = 2
∫ t

0

((E−EI)tt, ξt)ds

+2(5× (E−EI),5× ξ)− 2
∫ t

0

(5× (E−EI)t,5× ξ)ds.

Note that ξ ∈ V h, 5 × ξ ∈ Uh. Then by Lemmata 3.1 and 3.2 and the Schwarz
inequality,

‖ξt‖2
0 + ‖ 5 ×ξ‖2

0 = O(h2k+2)
∫ t

0

(‖Ett‖2
k+1 + ‖Et‖2

k+2)ds

+
∫ t

0

(‖ξt‖2
0 + ‖ 5 ×ξ‖2

0)ds+O(h2k+2)‖E‖2
k+2 +

1
2
‖ 5 ×ξ‖2

0.

Hence, (4.6) follows by the Gronwell inequality.
Thus we have achieved the superclose estimates

‖Eh − EI‖0 + ‖Hh −HI‖0 = O(hk+1),

‖(Eh −EI)t‖0 + ‖ 5 ×(Eh −EI)‖0 = O(hk+1).

5. Global superconvergence

In order to achieve global superconvergence, we now define a postprocess oper-
ator Π2h as follows.

For the first component of w ∈ Uh, define Π2hw1|ê ∈ Qk,2k−1,2k−1(ê) such that∫
ei

(Π2hw1 − w1)q = 0, ∀q ∈ Qk,k−1,k−1(ei), i = 1, · · · , 4,

where ê =
⋃4

i=1 ei (see Figure 2). In the similar way, we can define the interpolation
postprocess operator Π2h for the second and the third components of w ∈ Uh.
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Figure 3

For the first component of v ∈ V h, define Π2hv1|ě ∈ Q2k−1,k,k(ě) such that∫
li

(Π2hv1 − v1)qdx = 0, ∀q ∈ Pk−1(li), i = 1, · · · , 8,∫
τi

(Π2hv1 − v1)qdxdy = 0, ∀q ∈ Qk−1,k−2(τi), i = 1, · · · , 4,∫
τj

(Π2hv1 − v1)qdxdz = 0, ∀q ∈ Qk−1,k−2(τj), j = 1, · · · , 4,∫
ei

(Π2hv1 − v1)qdxdydz = 0, ∀q ∈ Qk−1,k−2,k−2(ei), i = 1, 2,

where ě = e1
⋃
e2 (see Figure 3), li are edges parallel to the x axis, τi, τj are

surfaces perpendicular to the z axis or y axis, respectively. We can also define Π2h

for the second and third components of v ∈ V h similarly.
For the above interpolation postprocess operator Π2h, it is easy to see that for

w, v∈ [Hk+1]3,

‖Π2h w-w‖0 ≤ Chk+1‖w‖k+1, ‖Π2hv − v‖0 ≤ Chk+1‖v‖k+1,

(5.1)

Π2hw = Π2hwI , Π2hv = Π2hvI ,(5.2)
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where wI ∈ Uh, vI ∈ V h are interpolations of w and v. In addition, for w ∈ Uh,
v ∈ V h,

‖Π2hw‖0 ≤ C‖w‖0, ‖Π2hv‖0 ≤ C‖v‖0.(5.3)

Based on the above interpolation postprocess operator Π2h and its properties
(5.1)-(5.3), we can achieve global superconvergence as follows.

Theorem 5.1. Under the conditions of Theorems 4.1 and 4.2,

‖Π2hEh −E‖0 + ‖Π2hHh −H‖0 = O(hk+1)(‖E‖k+1 + ‖H‖k+1

+ (
∫ t

0

(‖H‖2
k+2 + ‖Ht‖2

k+1)ds)
1
2 ),

(5.4)

‖Π2hEh
t −Et‖0 = O(hk+1)(‖E‖k+2 + (

∫ t

0

(‖Ett‖2
k+1 + ‖Et‖2

k+2)ds)
1
2 ).

(5.5)

Proof. By (5.2)

Π2hEh −E = Π2hEh −Π2hEI + Π2hE−E.

Then, by (5.1), (5.3) and Theorem 4.1,

‖Π2hEh −E‖0 ≤ C‖Eh −EI‖0 +O(hk+1)‖E‖k+1

= O(hk+1)(‖E‖k+1 + (
∫ t

0

(‖H‖2
k+2 + ‖Ht‖2

k+1)ds)
1
2 ).

(5.6)

Similarly,

‖Π2hHh −H‖0 = O(hk+1)(‖H‖k+1 + (
∫ t

0

(‖H‖2
k+2 + ‖Ht‖2

k+1)ds)
1
2 ).

(5.7)

Hence, (5.4) follows from (5.6) and (5.7). Similarly, (5.5) can be proved from (5.1)-
(5.3) and Theorem 4.2.

In order to achieve global superconvergence for 5×E in (2.8), we shall construct
the interpolation postprocess operator Π3h with higher order on the larger element.
For the first component of v ∈ V h we have Π3hv1|ẽ ∈ Q3k−1,2k,2k(ẽ) such that∫

li

(Π3hv1 − v1)qdx = 0, ∀q ∈ Pk−1(li), i = 1, · · · , 27,∫
τi

(Π3hv1 − v1)qdxdy = 0, ∀q ∈ Qk−1,k−2(τi), i = 1, · · · , 18,∫
τj

(Π3hv1 − v1)qdxdz = 0, ∀q ∈ Qk−1,k−2(τj), j = 1, · · · , 18,∫
ei

(Π3hv1 − v1)qdxdydz = 0, ∀q ∈ Qk−1,k−2,k−2(ei), i = 1, · · · , 12,

where ẽ =
⋃12

i=1 ei (see Figure 4), li are edges parallel to the x axis, τi, τj are
surfaces perpendicular to the z axis or y axis, respectively. Π3h for the second or
the third components of v ∈ V h can be defined similarly.

For Π3h, it is easy to see that (5.2) follows, and

‖Π3hv − v‖1 = O(hk+1)‖v‖k+2,(5.8)
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‖ 5 ×(Π3hv)‖0 ≤ C‖ 5 ×v‖0, ∀v ∈ V h.(5.9)

Hence, as we did for Theorem 5.1, it is easy to prove that

‖ 5 ×(Π3hEh −E)‖0 = O(hk+1)(‖E‖k+2 + (
∫ t

0

(‖Ett‖2
k+1 + ‖Et‖2

k+2)ds)
1
2 ).

(5.10)

When k ≥ 2, then 2k − 1 ≥ k + 1 and Qk+1,k+1,k+1 ⊂ Q2k−1,2k,2k. Hence, we
can use 8 elements to construct Π̃2h satisfying (5.2), (5.8), (5.9), and so (5.10).

6. Generalization

Let us consider (1.1) with the variable coefficients ε ∈ C1(Ω), σ ∈ C1(Ω) and
µ ∈ C1(Ω). Introduce the approximations of ε, σ, µ satisfying

ε̄|e =

∫
e ε

|e| , σ̄|e =

∫
e σ

|e| , µ̄|e =

∫
e µ

|e| ,

where |e| is the area of e. Then, because EI is the L2-projection of E on Uh, it is
easy to see that

(ε(E−E)I
t ,Φ) = ((ε− ε̄)(E−EI)t,Φ) = O(h)‖ε‖1,∞‖(E−EI)t‖0‖Φ‖0

= O(hk+1)‖Et‖k‖Φ‖0, ∀Φ ∈ Uh.

(6.1)

Similarly,

(σ(E − EI),Φ) = O(hk+1)‖E‖k‖Φ‖0, ∀Φ ∈ Uh.(6.2)

By Lemma 3.2, ∀Ψ ∈ V h,

(µ(H−HI)t,Ψ)

= (µ̄(H −HI)t,Ψ) + ((µ− µ̄)(H −HI)t,Ψ)

= O(hk+1)‖‖(H −I)t‖0‖Ψ‖0

= O(hk+1)‖Ht‖k+1‖Ψ‖0.

(6.3)

Hence, as in Theorem 4.1, it can be proved that if Th is a cubic mesh, and E, H
are smooth enough, then

‖Eh −EI‖0,ε + ‖Hh −HI‖0,µ = O(hk+1),(6.4)
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where
‖w‖0,g = (

∫
Ω

gw2)
1
2 ,

g ≥ gmin > 0, Eh, Hh are the solutions of (2.2) with variable coefficients, EI ∈ Uh,
HI ∈ V h are the interpolations of E and H, E, H are the solutions of (1.1). The
similar result for the finite element equation (2.8) with the variable coefficients can
be proved similarly. Based on the above results, the global supercovergence as in
Theorem 5.1 can be achieved.

When Ω is not a cubic domain, we cannot construct the cubic mesh on Ω. In
order to achieve the superconvergence as in Sections 3, 4, and 5, we construct an
almost cubic mesh on Ω as follows.

First, make a cubic domain Ω̂ such that Ω ⊂ Ω̂; then construct a cubic mash T̂h

on Ω̂. Let
Ω1 =

⋃
ê⊂Ω

ê, Ω2 =
⋃

ê∩∂Ω6=∅
ê,

where ê is the element of T̂h. Let e be ê in Ω1, and when ê ⊂ Ω2, let ê be divided
into two parts:

ê = e ∪ et, e ∩ et = ∅, e ⊂ Ω, et ∩ Ω = ∅.
Then the almost cubic mesh is

Th = (
⋃

e⊂Ω1

e) ∪ (
⋃

e⊂Ω\Ω1

e).

For the above almost cubic mesh, it is easy to see that e is a cubic element in
Ω1 and meas(Ω \ Ω1) = O(h). Hence, by (5.3), ∀Ψ ∈ V h,

(µ(H−HI)t,Ψ) =
∫

Ω1

µ(H−HI)tΨ +
∫

Ω\Ω1

µ(H−HI)tΨ

= O(hk+1)‖Ht‖k‖Ψ‖0 +O(1)‖(H−HI)t‖0,Ω\Ω1‖Ψ‖0,Ω\Ω1

= O(hk+1)‖Ht‖k‖Ψ‖0 +O(hk)‖Ht‖k,Ω\Ω1‖Ψ‖0,Ω\Ω1

= O(hk+1)‖Ht‖k‖Ψ‖0 +O(hk)‖Ht‖k,∞,Ω\Ω1(meas(Ω \ Ω1))
1
2 ‖Ψ‖0,Ω\Ω1

= O(hk+ 1
2 )‖Ht‖k,∞‖Ψ‖0.

Similarly, on the almost cubic meshes,

(5× (H−HI),Φ) = O(hk+ 1
2 )‖Φ‖0, ∀Φ ∈ Uh.

And, as in (6.1),

(ε(E−EI)t,Φ) = O(hk+1)‖Et‖k‖Φ‖0, ∀Φ ∈ Uh,

(σ(E −EI),Φ) = O(hk+1)‖E‖k‖Φ‖0, ∀Φ ∈ Uh,

(E−EI ,5×Ψ) = 0, ∀Ψ ∈ V h.

Then, it can be proved that on the almost cubic meshes,

‖Eh −EI‖0,ε + ‖Hh −HI‖0,µ = O(hk+ 1
2 ),

where Eh, Hh are the solutions of (2.2), EI , HI are the interpolations of E, H, E
and H are the solutions of (2.1). Then, global superconvergence with orderO(hk+ 1

2 )
can be achieved on the almost cubic meshes. Similar results can be achieved for
the finite element equation (2.8).
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