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[1] The acquisition of new global elevation data from the Lunar Orbiter Laser Altimeter,
carried on the Lunar Reconnaissance Orbiter, permits quantification of the surface
roughness properties of the Moon at unprecedented scales and resolution. We map lunar
surface roughness using a range of parameters: median absolute slope, both directional
(along‐track) and bidirectional (in two dimensions); median differential slope; and Hurst
exponent, over baselines ranging from ∼17 m to ∼2.7 km. We find that the lunar highlands
and the mare plains show vastly different roughness properties, with subtler variations
within mare and highlands. Most of the surface exhibits fractal‐like behavior, with a single
or two different Hurst exponents over the given baseline range; when a transition exists,
it typically occurs near the 1 km baseline, indicating a significant characteristic spatial
scale for competing surface processes. The Hurst exponent is high within the lunar
highlands, with a median value of 0.95, and lower in the maria (with a median value
of 0.76). The median differential slope is a powerful tool for discriminating between
roughness units and is useful in characterizing, among other things, the ejecta surrounding
large basins, particularly Orientale, as well as the ray systems surrounding young,
Copernican‐age craters. In addition, it allows a quantitative exploration on mare surfaces
of the evolution of surface roughness with age.
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1. Introduction

[2] As signatures of surface evolution processes acting
over geologic time, surface slopes and slope distributions
provide important clues to the morphologic history of a plan-
etary surface in terms of both formation and modification
mechanisms. Moreover, the comparison of surface regions
based on quantitative measures of roughness and its scale
dependence is a powerful tool for interpreting the relation-
ships between geologic and topographic units and their
origins and has been successfully employed for various
planetary bodies, including Earth [e.g., Morris et al., 2008;
Neumann and Forsyth, 1995; Smith and Jordan, 1988], Mars
[e.g., Aharonson et al., 2001; Orosei et al., 2003; Kreslavsky
and Head, 2000], and Venus [e.g., Sharpton and Head,
1985]. Attempts to study surface roughness on the Moon

have spanned the decades between the Apollo era and the
present [Daniels, 1963; Moore and Tyler, 1973; Yokota
et al., 2008], yet to date no comprehensive study of sur-
face slopes and slope distributions has been possible at high
resolution and across many scales.
[3] The Lunar Orbiter Laser Altimeter (LOLA) began col-

lecting data in late June 2009, after the successful entry into
orbit of the Lunar Reconnaissance Orbiter (LRO) [Smith
et al., 2010a; Zuber et al., 2010]. With a ground track con-
figuration consisting of five illuminated spots on the sur-
face arranged in a cross pattern (Figure 1), LOLA allows for
determination of slopes at multiple baselines, both between
pairs of spots within each laser shot and between sequential
shots. The high vertical precision (10 cm), accuracy (∼1 m),
and high density (∼57 m along‐track spacing) of LOLA mea-
surements permit an unprecedented opportunity for quantita-
tive morphologic characterization of the lunar surface relevant
to current and past surface processes as well as to future
lunar landing site selection. For comparison, the Mars Orbital
Laser Altimiter operated with a vertical precision of ∼1.5 m,
a spatial accuracy of ∼100 m (including pointing errors), and
an along‐track spacing of ∼300 m [Smith et al., 2001].

2. Topography Data

[4] LRO maintains a nearly circular, 50 km polar orbit
that scans all longitudes of the Moon each month. We use
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3180 tracks from the commissioning and mapping mission
phases, acquired from 17 September 2009 to 9 March 2010,
to compute and analyze a variety of parameters describing
surface slopes and roughness. The data were processed to
remove anomalous points (due to instrumental effects such
as noise) and are spaced ∼57 m apart along track and on
average ∼3.8 km across track at the equator and closer at the
poles. Additional data have narrowed the cross‐track spac-
ing to ∼1.8 km at the equator [Smith et al., 2010b].

3. Global Surface Roughness of the Moon

[5] Quantitative measures of surface roughness have been
defined in the literature in a number of ways. Here we inves-
tigate several measures of surface roughness, both in the
interest of robustness in characterizing roughness units and to

facilitate comparison with the literature. For one‐dimensional
slopes, we examine the RMS slope, the median absolute
slope, and the median differential slope for a variety of hori-
zontal scales, as well as the Hurst exponent, which describes
how slopes scale with baseline (where the baseline is the
horizontal length scale over which the slope is measured). In
addition, LOLA’s five‐spot pattern allows for the calcula-
tion of two‐dimensional slopes by fitting a plane to a set of
three points along the track, resulting in the magnitude and
direction of steepest descent.

3.1. RMS and Median Slopes

[6] The RMS slope is routinely calculated for the statis-
tical analysis of topography because radar reflection scatter
is often parameterized with this metric. In one dimension,
it is defined as the RMS difference in height, Dz, between
each pair of points (also known as the deviation, n) divided
by the distance between them, Dx:

s Dxð Þ ¼
� Dxð Þ

Dx
¼

1

Dx

D

z xið Þ � z xi�1ð Þ½ �2
E1

2

; ð1Þ

where the angle brackets indicate the mean. However,
because the RMS slope depends on the square of the devi-
ation, this parameter is quite sensitive to outliers; this poses
a significant problem because the slope‐frequency distri-
bution for natural surfaces is often non‐Gaussian with strong
tails. The median absolute slope is a more robust measure
of typical slopes, as it is less affected by long tails in the
distribution.
[7] To find the RMS and median slope in the along‐track

direction, point‐to‐point slopes were calculated for each track,
stored at the midpoint, and averaged according to (1) within
0.5° (∼15 km) sliding windows, each spaced 0.25° (∼7.5 km)
apart. The LOLA lasers have a firing frequency of 28 Hz,
corresponding to a shot density of approximately 540 shots
per degree down track, or roughly 270 shots per window at
best. However, owing to noise and instrument performance
issues, missing points are not uncommon. Since the RMS
slope is sensitive to the number of points, N, included in
each window, uneven N across the surface can introduce var-
iations in the RMS slope map that are not due to real rough-
ness features. To minimize this bias, windows were only
considered valid if more than 250 measurements contributed to
the average in that location. The median absolute (unsigned)
slope is far less sensitive to the number of points in each bin.
Given LOLA’s ground spot pattern, the smallest baseline
available for slope calculations is about 25 m, the distance
on the surface from the center spot to any of the four corners
(Figure 1).
[8] One‐dimensional slopes calculated along profile under-

estimate the true gradient of the surface wherever the
direction of steepest descent diverges from the along‐track
direction. At the smallest scales, this ambiguity can be
resolved by computing the slopes in two dimensions from
multiple points within each laser shot. We use vector geom-
etry to compute the plane passing through three spots,
recording the magnitude and azimuth of the slope. One such
triangle appears as a shaded region in Figure 1. The effec-
tive baseline of the slope is taken to be the square root of the
area of the triangle. The slope values are then binned as

Figure 1. Plan view of two consecutive LOLA shots with
spot numbers labeled. The shot‐to‐shot distance is ∼57 m,
and the smallest point‐to‐point baseline available is ∼25 m.
An example of a triangle used to calculate bidirectional
slopes is shaded in blue. Red circles indicate the illuminated
footprint of each laser spot, while green circles represent the
field of view of each detector.
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before, and the median reported for 0.5° overlapping win-
dows spaced 0.25° apart.
[9] A map of the median bidirectional slope at the ∼17 m

scale is shown in Figure 2. Note that while the results are
reported in units of degrees, the statistics are computed in
gradient units (m/m). The maria are easily distinguishable
from the highlands as smooth regions with median slopes
≤3°, while the steepest median slopes (≥10°) occur within
crater walls and the blocky ejecta blankets surrounding
major impact basins and young rayed craters. The multiring
structure of the Orientale impact basin is clearly visible in
surface slopes at this scale, along with the topographically
expressed secondary crater chains emerging radially from
the continuous ejecta deposit. The floor of the South Pole‐
Aitken basin appears as a region of subdued slope; a sam-
pling of the basin floor (excluding mare deposits, which

would contribute their own roughness signature) has a
median slope of 5.8°, nearly 2° lower than the median value
for the highlands, 7.5°, although the distributions overlap
(see Table 1). Within the nearside mare plains, large‐scale
flow fronts and wrinkle ridges are delineated by subtle var-
iations in slope, particularly evident within the Imbrium,
Serenetatis, and Crisium basins (Figure 3). Slopes rapidly
transition between the two major highland and mare rough-
ness units at their boundaries, where mare basalts are often
tilted and deformed [e.g., Solomon and Head, 1980] and have
only partially embayed the surrounding rougher terrain.
[10] For isotropic topography, a relationship exists between

point‐to‐point and bidirectional slope distributions: given a
one‐dimensional slope distribution, the equivalent distribu-
tion of two‐dimensional slopes can be found by applying a
statistical correction. The probability distribution functions

Figure 2. Median bidirectional slope map at the ∼17 m effective baseline. Slopes are calculated by fit-
ting a plane between three elevation data points. Median slopes are reported for 0.5° windows spaced
0.25° apart. (a) The north pole, shown from 45°N and (b) the south pole from 45°S, both in a stereo-
graphic projection. (c) Cylindrical equidistant projection of the latitudes from 70°S to 70°N.
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of the 1‐D slopes, F(p), and 2‐D slopes, F(s), are related by
[Aharonson and Schorghofer, 2006]

F ¼

Z

∞

pj j

F sð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 � p2
p ds: ð2Þ

In practice, this integral equation may be discretized and
inverted. Figure 4 is a global comparison of our measured
slopes in one and two dimensions and the adjusted point‐to‐
point slope histogram. We find moderately good agreement
between measured bidirectional slopes and those predicted
from the 1‐D slope distribution, although the 2‐D measured
slopes are slightly steeper than predicted from the 1‐D
distribution, typically by 25%. We can place constraints on
two factors that contribute to this discrepancy. Anisotropy in

our slope measurements occurs when triangles with high
aspect ratios are used for plane fitting. LRO’s orbital con-
figuration creates a preferred direction for the long axis of
these triangles, and because slopes are generally shallower
at longer baselines, the azimuthal distribution is skewed to
favor the perpendicular to the down‐track direction. To
minimize this effect, we included only triangles with low
aspect ratios, using spots 1, 3, and 4. While some anisotropy
remains, this consideration improves the agreement by
nearly a factor of 2. Part of the discrepancy is also due to the
fact that comparing slopes at similar baselines is rendered
difficult by instrument constraints. The minimum baseline
for point‐to‐point slopes (∼25 m) is larger than the effective
baseline of our preferred triangles (∼17 m). As a result,
bidirectional slopes have a tendency to be larger than their

Figure 3. Median bidirectional slope, as described in Figure 2, with a color stretch designed to
emphasize the subtle variations in slope within the lunar maria. Large‐scale flow fronts and tectonic
features such as wrinkle ridges appear as long, continuous regions of slopes higher than the surrounding
plains and are most evident within the Imbrium, Crisium, and Serenetatis basins.

Table 1. Statistical Estimators of Surface Roughness Properties for Major Lunar Geographic Regionsa

Highlands Maria
South Pole‐Aitken

Basin: All
South Pole‐Aitken

Basin: Floor South Pole North Pole

Median slope at the ∼17 m
effective baseline (deg)

7.5−4.2
+12.3 2.0−1.0

+4.1 7.2−3.0
+12.0 5.8−3.0

+10.5 7.6−4.2
+12.4 6.9−3.8

+11.5

Median Hurst exponent 0.95−0.92
+0.97 0.76−0.63

+0.85 0.95−0.93
+0.97 0.94−0.91

+0.97 0.95−0.92
+0.97 0.94−0.91

+0.96

Median breakover scale (km) 0.98−0.74
+1.13 0.53−0.24

+0.97 1.01−0.81
+1.14 1.01−0.82

+1.15 1.01−0.79
+1.15 0.97−0.73

+1.12

Typical deviogram shape(s) Monofractal,
bilinear

Complex Monofractal,
bilinear

Monofractal,
bilinear,
complex

Monofractal,
bilinear

Monofractal,
bilinear,
complex

aThe median value is reported along with the 25% and 75% percentile points as a measure of the width of each distribution.
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1‐D counterparts, where a component of this difference is
due solely to the mismatch in baselines. A slightly better
agreement can be obtained by using a local Hurst exponent
(defined in section 3.3) to scale the slope distribution to a
common horizontal baseline. However, this demands addi-
tional assumptions and the improvement is not large.

3.2. Median Differential Slope

[11] The median differential slope is a measure introduced
by Kreslavsky and Head [2000] to disentangle small‐ and
large‐scale contributions to surface roughness. For the
baseline of interest, L, it isolates roughness features on the
order of L by subtracting the point‐to‐point slope at twice
the given baseline:

sd ¼
zL
2

� z�L
2

L
�
zL � z�L

2L
: ð3Þ

The resulting value, sd, is a measure of slopes at a certain
scale with respect to longer‐wavelength features.
[12] As with the RMS and median bidirectional slopes,

median differential slopes were calculated in 0.5° windows
spaced 0.25° apart, and only those windows with more than
250 measurements were retained. Following the work of
Kreslavsky and Head [2000], differential slopes at a given
baseline were calculated according to (3) by subtracting
slopes calculated at two different baselines. Practically, this

involves calculating the position of each slope midpoint
along the track length and interpolating the slope midpoints
at the longer baseline to the points occupied by the smaller‐
baseline slope profile to accomplish the subtraction at the
correct location. This method ensures that the two slope
profiles are always aligned correctly, thereby avoiding errors
in the value of the differential slope calculated. This pro-
cedure is identical to the detrending process described in
section 3.3 and illustrated in Figure 6, except that the ratio of
baselines is always 2.
[13] Differential slopes were calculated in this manner for

all baselines ranging from one shot spacing apart (∼57 m) to
25 shot spacings apart (∼1.4 km). Only profiles involving a
single laser spot were considered for the calculation, so that
the slopes over multiple baselines would be computed along
the same direction. Figure 5 shows a composite color map
of the lunar surface which presents roughness at three dif-
ferent scales, ∼560 m (10 shot spacings) in the red channel,
∼220 m (4 shot spacings) in green, and ∼57 m (1 shot
spacing) in blue. Variations in the roughness properties
across the surface are apparent and substantial, showing
intriguing characteristic signatures for several terrain types.
The lunar maria are roughest at the smallest scale and
smoother at large scales, making them easily distinguishable
by their blue tones in the composite image. A comparison of
mare ages [Hiesinger et al., 2010] with Figure 5 shows that
flows of different ages have different roughness signatures;
the youngest (e.g., those within Oceanus Procellarum and

Figure 4. Global slope histograms for the Moon. The red (dashed) line shows the distribution of mea-
sured point‐to‐point slopes at the 25 m baseline. This distribution is recalculated to the green (solid) line
using the method of Aharonson and Schorghofer [2006] to predict bidirectional slopes from the one‐
dimensional slope histogram. Measured bidirectional slopes at the ∼17 m scale are shown in blue (dot‐
dashed line). All distributions are normalized such that the integral of the probability density function is
equal to 1. Assuming that the topography is indeed isotropic, the remaining discrepancy in the measured
and derived distributions is due to the geometry of the triangles used to measure 2‐D slopes and to the
mismatch in scales over which the slopes are measured in each case. Both effects are constrained by
LRO’s orbital configuration and instrument limitations.
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Mare Imbrium) are rough only at the smallest scale, while
successively older flows (e.g., Mare Tranquilitatis and Mare
Marginis) increase in roughness at larger scales. At the
smallest scale, roughness remains approximately constant
with age, potentially indicating that saturation on small scales
occurs on relatively short timescales. In the composite map,
these age variations correspond to a transition in color from
deep blue to blue‐green. The ejecta surrounding major basins
(particularly around Orientale, but also older basins) are
roughest at the longest scale, causing these regions to appear
orange or red. Young, Copernican‐age craters appear white
because they are bright in all channels; the least modified
features on the Moon, they are rough at all scales. Moreover,
the ray systems related to these craters, so evident in albedo
maps but not obviously expressed as topographic relief, are
roughest at the intermediate scale, probably reflecting crater

chains and clusters that often populate crater rays [e.g.,
Oberbeck, 1975; Pieters et al., 1985]. As a result, they are
clearly expressed as star‐shaped yellow to orange halos
surrounding each feature (Figure 6). Other, subtler variations,
not obviously related to a single geologic feature, occur
across much of the surface. The region spanning latitudes
30°S to 60°N and longitudes 160°E to 240°E, representing a
large uninterrupted stretch of lunar highlands, appears rel-
atively bright and with a mottled appearance, consistent with
an old surface saturated with craters at many different scales.
The South Pole‐Aitken basin is somewhat redder than its
surroundings, except for the patches of mare within super-
imposed craters.
[14] As a diagnostic tool for distinguishing unique rough-

ness units, the median differential slope is a useful measure
of surface roughness. However, because it involves measur-

Figure 5. Composite color map of median differential slope. Differential slopes at three different base-
lines were calculated according to (2). The blue channel corresponds to roughness at the smallest scale
considered, one shot spacing, or ∼57 m. Green represents roughness at the ∼220 m baseline, and red
the ∼560 m baseline. Map projections are the same as in Figure 2.
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ing small‐scale roughness with respect to long‐wavelength
roughness features, it can be more difficult to interpret physi-
cally as a slope characteristic. For this reason, the median
absolute slope at a given scale is a more intuitive parameter.

3.3. Hurst Exponent

[15] Topography is often considered a nonstationary ran-
dom field with self‐affine fractal‐like properties [Turcotte,
1997]. Self‐affinity implies a scaling behavior such that an
increase of factor r in the horizontal length scale corre-
sponds to an increase in the vertical length scale of rH,
where H is known as the Hurst exponent and falls between 0
and 1 for real surfaces [e.g., Turcotte, 1997; Orosei et al.,
2003]. The Hurst exponent is directly related to both the
fractal dimension of the surface, D = 1 + d − H, and the
slope of the power spectrum, b = 2H + d, where in each case
d is the number of spatial dimensions: 1 for a profile or 2 for
a surface [Schroeder, 1991].

[16] The Hurst exponent describes the power law behavior
of surface slopes when they are scaled to different horizontal
baselines:

s Dxð Þ ¼ s0
Dx

Dx0

� �H�1

¼
� Dxð Þ

Dx
: ð4Þ

Written as such, it is clear that the deviation n(Dx) / (Dx)H.
H can thus be estimated as the slope of a best‐fit line to
log[n(Dx)] versus log(Dx) [Orosei et al., 2003].
[17] We calculate the RMS deviation for a range of

baselines from ∼57 m to ∼2.7 km (1 to 50 shot spacings) and
analyze the deviogram, or structure function, n(Dx). As
in the previous calculations, the deviation values were cal-
culated along track in overlapping windows. However,
Shepard et al. [2001] showed that errors can be introduced
when the range over which the Hurst exponent is fit exceeds
10% of the topographic profile length (the window size).

Figure 6. Lunar far‐side crater Jackson and its ray system, centered at 19°E and 22.4°N, shown in
(a) the 750 nm Clementine albedo map [e.g., McEwen and Robinson, 1997], (b) the median differen-
tial slope map, as in Figure 5, and (c) the topography [Smith et al., 2010b]. Rays of young, Copernican‐
age craters are clearly expressed as streaks of high albedo relative to the background. Though they do not
add obvious relief to the topography, the rays are distinctly rougher at the ∼220 m and ∼560 m baselines
compared to the highlands, making them appear yellow to orange in the composite roughness map.

Figure 7. Method of detrending slope data. Slopes measured at the ∼30 km baseline (in blue) are sub-
tracted from ∼1.2 km slopes (red), leaving a detrended slope profile behind (green) and avoiding large‐
scale tilts in the topography.
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Figure 8. Hurst exponent map. For each 0.5° pixel, the Hurst exponent is computed as the slope of the
best fit line to the deviogram, over the baseline range beginning at one shot spacing (∼57 m) and extend-
ing to the breakover point for that location, Dx0. The color scale was chosen to emphasize the dynamic
range of the variations from 0.8 to 1, although substantially smaller H is common in the maria. Map pro-
jections are the same as in Figure 2.
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Therefore, we use 1° (30 km) windows for this calculation,
spaced 0.5° (15 km) apart. We use only shot‐to‐shot profiles
of laser spot 3, selected for its consistency.
[18] To remove roughness features on the order of our

window size, we detrend each deviogram at the 30 km scale.
This process deemphasizes large‐scale roughness features
in favor of small‐scale features of more interest to this study,
and it avoids biases due to long‐wavelength trends that are
undersampled within each window [Shepard et al., 2001].
Figure 7 shows how the detrending is accomplished. Slopes
measured at the 30 km baseline are subtracted from small‐
scale slopes, leaving a slope profile with a mean near zero
within the window. Slopes at scales less than 3 km are only
slightly affected by the detrending process, except where
long‐wavelength slopes are high, for example, those near
mountain ranges.
[19] In some cases, the deviograms are well characterized

by a single log‐log slope (exponent), but many others tran-
sition to a different slope at a certain length scale. This
behavior is well documented in the literature for other
planetary surfaces [e.g., Shepard et al., 2001; Morris et al.,
2008] and is often attributed to surface processes acting at
small and large scales. For the Hurst exponent fit within
each window along the track, we use baselines ranging from
one shot spacing (∼57 m) to the breakover scale (the point
where the deviogram diverges from a straight line, Dx0) for
that location. Figure 8 is a map of the Hurst exponent cal-
culated in this way. Although the baseline range used in this
map varies over the surface, this method avoids including
fits to nonlinear sections of each deviogram and thus pre-
sents a more accurate estimate of the Hurst exponent at the
smallest available scales.
[20] The highest Hurst exponents on the Moon are found

in the highlands within crater walls and the rims and ejecta
of large basins, and in these regions values above 0.95 are
not uncommon. This result is surprising, given that typical
Hurst exponents for topographic surfaces on the Earth and
Mars are lower, between 0.7 and 0.9 [Kreslavsky and Head,
2000; Orosei et al., 2003; Morris et al., 2008]. A Hurst
exponent of 1 implies self‐similar topography, meaning the
roughness at small scales is exactly replicated at large scales.
The high values observed for the lunar highlands may be

related to the density of impact craters in these regions and
the absence of competing morphologic processes to trans-
port fine material downhill. Hurst exponents within the lunar
maria are lower than those within the highlands, with a
median value of 0.76, indicating smoother topography at
large scales relative to small scales.
[21] To classify deviogram shapes, we use a method sim-

ilar to that of Main et al. [1999] that establishes whether a
given deviogram is best fit by one line or by two, or whether

Figure 9. Observed deviogram shapes. Though many deviograms are monofractal over the baseline
range explored (from 1 to 50 shot spacings, or ∼57 m to ∼2.7 km), most are bilinear, breaking over to
a shallower slope at a certain breakover baseline. Many others exhibit complex behavior that is not well
characterized by a line over a given portion of the baseline range.

Figure 10. Abundance of deviogram shapes by surface
area, sorted by region. The most common deviogram shape
is bilinear (∼59%), with monofractal (∼17%) and complex
(∼24%) making up the remaining area. The highlands are
almost entirely bilinear and monofractal, while the maria
contain primarily complex deviograms.
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the deviogram is poorly fit by any linear model. We com-
pute the least squares fits in each case and compare the sums
of the residuals, adding a penalty when additional param-
eters are introduced into the fit (i.e., three parameters are
required for a line, five for two lines). This method classifies
each deviogram by its shape (Figure 9) and yields the rel-
evant slope(s) of the deviogram, an estimate of the break-
over baseline, Dx0, and confidence intervals on all of the
above.
[22] Figure 10 shows the distribution of deviogram shapes

across the surface of the Moon and how they partition among
major topographic regions. Polygons defining the lunar
maria were taken from the U.S. Geological Survey series of
geologic maps of the Moon [Wilhelms and McCauley, 1971;
Wilhelms and El‐Baz, 1977; Scott et al., 1977; Lucchitta,
1977; Stuart‐Alexander, 1978; Wilhelms et al., 1979] and
used to select data within the mare plains. The rim of the
South Pole‐Aitken basin was defined using the best‐fit ellipse
from the work of Garrick‐Bethell and Zuber [2009]. The
polar regions included latitudes from 60° to the pole, exclud-
ing patches of mare basalts and the South Pole‐Aitken basin
region. All areas falling outside these regions were desig-
nated highlands. By surface area, most deviograms are best
characterized by two lines (∼59%), with the remainder of the
surface nearly evenly divided between monofractal (∼17%)
and complex (∼24%) deviogram shapes, in which the slope
changes continuously and rapidly with baseline, often alter-
nating sign. Complex deviograms are mainly found in the
lunar maria, whereas the highlands exhibit primarily mono-
fractal or bifractal behavior. Other geographic regions, includ-

ing the north and south poles and the South Pole‐Aitken
basin, behave much like the lunar highlands. This parti-
tioning indicates a profound difference in character between
the two major units; on the one hand, highland deviograms
behave as nearly self‐similar fractals, whereas mare topog-
raphy diverges from fractal behavior altogether at the break-
over point.
[23] Within areas that adhere to fractal behavior, the

baseline at which the breakover occurs, Dx0, is a significant
parameter constrained by the two‐line fit to the deviogram
because it has a physical meaning related to the surface
processes that contribute to the evolution of the Moon’s
topography. Formation and modification mechanisms act over
a range of scales and may have distinct Hurst exponents.
The breakover point is thus an estimate of the scale at which
surface processes acting at longer scales are overtaken by
those acting on smaller scales. In other words, it represents
the baseline at which competing surface processes are equal
contributors to the topography.
[24] Figure 11 is a stacked histogram showing the dis-

tribution of breakover points for all deviograms and their
locations within the major geographic regions. Within the
maria, breakover points are broadly distributed, reflecting
the complex nature of the deviograms found there. All other
regions, however, have a strong peak at ∼1 km, suggesting a
significant transition between surface processes acting
above and below this scale. Impact cratering and mare basalt
emplacement are most likely responsible for many of the
key differences between the lunar highlands and the maria.
Other processes that may have contributed to the observed

Figure 11. Breakover point histogram, sorted by region. Whereas the maria exhibit a broad range of
breakover points, reflecting the complexity of deviograms in these regions, the other regions have a
strongly peaked distribution of breakover points near 1 km. This characteristic baseline indicates a tran-
sition between two surface processes and may tell us about the Moon’s surface history.

ROSENBURG ET AL.: LUNAR SURFACE SLOPES AND ROUGHNESS E02001E02001

10 of 11



roughness properties remain to be identified and quantified,
but likely candidates for exploration include mass wasting,
perhaps due to seismic shaking, ejecta mantling, and
micrometeorite gardening.

4. Conclusions

[25] New altimetry data from LOLA allow a unique
opportunity to quantify the surface roughness properties of
the Moon. We find that topography within the highlands and
the mare plains exhibits substantially different behaviors,
while other geographic regions show more subtle variations.
Table 1 presents a summary of the most important rough-
ness characteristics for each major region. For each
parameter, the median is reported, as it best reflects a typical
value for the region, along with the 25% and 75% percentile
points, which indicate the shoulders of each distribution and
hence provide an estimate of the width. We find that most of
the surface is characterized by fractal‐like behavior with
either one or two Hurst exponents over the baseline range
covered, from ∼57 m to ∼2.7 km, with a strong tendency to
break over near the 1 km scale. The Hurst exponent is
generally high in the lunar highlands, reflecting nearly self‐
similar topography in these regions. Within the maria,
however, deviograms transition from fractal at small scales
to complex at a range of breakover points, and the Hurst
exponent is both lower and more diverse.
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