
Global Symbolic Maps From Local Navigation

David P. Miller zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Jet Propulsion Laboratory

MS 301-440, 4800 Oak Grove Drive

Pasadena, CA 91109

(818) 354-9390, dmiller@ai.jpl.nasa.gov

Abstract

In order to navigate autonomously, most robot sys-

tems are provided with some sort of global terrain map.

To make storage practical, these maps usually have a

high-level symbolic representation of the terrain. The

robot’s symbolic map is then used to plan a local path.

This paper describes a system which uses the reverse

(and perhaps more natural) process. This system pro-

cesses local sensor data in such a way as to allow ef-

ficient, reactive local navigation. A byproduct of this

navigation process is an abstraction of the terrain in-

formation which forms a global symbolic terrain map of

the terrain through which the robot has passed. Since

this map is in the same format as that used by the

local navigation system, the map is easy for the sys-

tem to use, augment, or correct. Compared with the

data from which the maps are created, the maps are

very space efficient, and can be modified, or used for

navigation in real-time. Experiments with this system,

both in simulation, and with a real robot operating in

natural terrain, are described.

Introduction

Traditional robot systems often follow the architec-

ture shown in Figure 1 when performing navigation.

The data from the world model flows strictly outward.

The entire sense-plan-act cycle is often only performed

once, and an entire path is planned for the robot to

achieve its next goal. This architecture makes several

assumptions which we have found during experimenta-

tion, are not often valid [Miller89, Gat90, MillergOb].

In particular, such systems assume that the global map

is correct and inviolate, and that the robot has suffi-

cient knowledge and accuracy, and the world is suffi-

ciently predictable, that the robot can execute a com-

plicated path open loop. Such assumptions are seldom

justified.

Most work to correct these assumptions has con-

centrated either on the global map making, or on the

robot’s path execution. The reactive approach to mo-

bile robots [Brooks86, Conne1187, Arkin89, MillerSOa,

Payton are examples of the latter. Examples of the

former include [Davis86, Elfes87]. Both,of these sys-

750 SENSING AND REACTION

Marc G. Slack

MITRE Corporation

7537 Colshire

McLean, VA 22102

(703) 883-5518

Fhe Worlr
. . ..I.......

Figure 1: Traditional Robot Planning Architecture

terns describe the process of global map formation, but

neither address how their maps can be used for naviga-

tion; Davis assumes an idealized human vision sensor,

while Elfes’ system requires very large amounts of stor-

age.

Proponents of the reactive approach state that no

global map is necessary, that in fact it is detrimental to

successful navigation in many cases. Their argument

generally follows the lines that such a map is never

completely accurate, and therefore simply propagates

incorrect information forever. Their work has empir-

ically demonstrated that no global map is necessary

to safely move about locally in the world [Brooks88,

Miller90al.

However, most actual applications of mobile robots

demand that the robot do more than move about. De-

livery, inspection, and even exploration tasks usually

require that the robot be able to go to a specific place

in the world, or at least move in a specific direction. To

do these efficiently, some sort of map is very helpful.

While we believe that the reactive approach is both

necessary and sufficient to handle immediate local nav-

From: AAAI-91 Proceedings. Copyright ©1991, AAAI (www.aaai.org). All rights reserved.

igation, a global map is necessary to allow a robot to

move efficiently when its goal lies beyond its sensory

horizon [MillergOb, Andress881.

However, it is necessary to have the right global map.

The map must be in a form that is useful for local

navigation. The robot’s sensors are usually adequate

to keep it from bumping into an obstacle, but are in-

adequate for deciding which way the robot should go

around the obstacle. One direction may lead to a dead-

end, requiring significant backtracking. This is the in-

formation that the robot must be able to quickly ex-

tract from the global map. For these reasons the map

must be space efficient, easy to retrieve, must be easily

updated (so that it remains useful), and should be in-

terpretable by other systems, including humans (while

this is not strictly necessary, it makes experimentation

easier and the results more meaningful).

This paper presents a local navigation system based

on navigation templates or NaTs. These templates are

used to abstractly represent the goals, obstacles, way-

points etc. in the robots world. Each template has a

gradient field. These fields can be quickly combined

to calculate the robots correct trajectory for its cur-

rent position. One of the unique features of the NaT

navigation system, is that once the NaTs are created

from the sensor data, they make a compact and easy

to use representation for building global maps. Since

the NaTs are used for calculating the local path of

the robot, they are inherently useful for longer range

path planning as well. The remainder of the paper

describes NaTs, experiments we have performed with

this system, and the value of the global map that we

get virtually for free while doing local navigation.

Navigkion with Na

The general problem of navigation involves reasoning

about both global and local issues. Global navigation

deals with planning a route that avoids major obsta-

cles, and efficiently leads to the goal. The direction to

travel around a major obstacle is a global issue. At

the local level a navigation system must be intimately

connected to the physical world and reason about the

robots physical relationship to the objects in the world

as those objects relate to the current navigation task.

Navigation Templates are primitive building blocks

for constructing highly flexible navigation plans which

capture the essence of the navigation situation (i.e., the

task and relevant environmental constraints). There

are two types of Navigation Templates: those which are

used to characterize the basic local navigation task be-

ing pursued, and those used to model known environ-

mental constraints and characterize the relationship of

the constraints to the navigation task. Once a naviga-

tion plan has been built from a set of Navigation Tem-

plates, a powerful heuristic is employed to isolate the

currently critical aspects of the plan and quickly (a few

times a second) generate guidance for the robots low

level control system. As time passes and/or the robot

moves t,hrough the world, causing changes in the robots

perception of the world, the navigation plan must be

incrementally updated in order to remain useful. The

fact that Navigation Templates do not depend upon

one another allows them to be quickly translated, ro-

tated, scaled, inserted and/or deleted from the naviga-

tion plan without affecting the other templates. Thus,

a Navigation-Template-based navigation plan can be

quickly modified in order to remain synchronized with

the robots perception of the world.

Substrate NaTs

Substrate Navigation Templates (or s-NaTs) describe a

particular navigation task or goal. Each s-NaT defines

a gradient field indicating at every position in space

the direction of travel that best serves the navigation

task being represented. For example, if the current

navigation task is to move up a hill, then the gradient

would, at every position, be directed to the top of the

hill. It is important to note that the substrate is de-

fined independently of the environmental constraints

which limit the robot’s ability to follow the substrate’s

gradient field. As a result, the gradient field of an s-

NaT is just as likely to direct the robot through a wall

as it is to direct the robot to avoid walls. While it

is possible to create an s-NaT with almost any gradi-

ent field, this work has identified three types of s-NaTs

which can be used to characterize a large class of nav-

igation tasks: direction s-NaTs, position s-NaTs, and

trajectory s-NaTs.

Figure 2: Substrate NaTs

A direction s-NaT is used to describe navigation

tasks such as “head west”, “move across the room”, or

“walk through the field” , in which lateral deviations

with respect to the direction are permitted. The gra-

dient field for a direction s-NaT is trivially defined at

every location to point in the objective direction (see

Figure 2). To describe tasks such as “go over to the

car” or “move to the rock”, a position s-NaT is used.

The gradient field for a position s-NaT is defined at

every position to point toward the objective position

(see Figure 2). The final type of s-NaT is a trajec-

tory s-NaT, where the gradient converges to an objec-

tive trajectory through space. This s-NaT is useful for

characterizing navigation tasks such as: “proceed up

this hall” , “follow this path”, or “drive in this lane ”

(see Figure 2).

MILLER & SLACK 751

Modifier NaTs

S-NaTs provide a basic scheme for accomplishing a

navigation task in the form of a gradient field. Because

the world is full of obstacles that place restrictions on

the robot’s ability to move through the world, the s-

NaT’s basic scheme for accomplishing a particular nav-

igation task will need revision in order to accommo-

date environmental constraints. Modifier navigation

templates (or m-NaTs) are used to model environmen-

tal constraints as they relate to the current navigation

plan. An m-NaT can be created for any convex ge-

ometric object; concave objects are represented using

multiple m-NaTs. For example, a trajectory s-NaT can

be used to provide a basic scheme for moving across a

field, while m-NaTs would be used to model the re-

lationship between relevant environmental constraints,

such boulders and trees, and the navigation task. To-

gether the s-NaT and the m-NaTs are used to construct

a navigation plan.

Central to building a navigation plan is the notion

that there are two ways to move around an obstacle:

clockwise and counter-clockwise. Thus, each of the m-

NaTs has an associated spin, indicating in which direc-

tion around the obstacle the navigation plan dictates

the robot proceed. Determining the spin of an m-NaT

is typically accomplished through a simple analysis of

the way that the obstacle relates to the robot and the

current s-NaT.

Trajectory Calculations

S-NaTs are used to characterize a navigation task and

to provide a basic scheme for accomplishing that task

(i.e., its gradient field). M-NaTs are used to model

environmental constraints as well as their relationship

to the navigation task (i.e., their spin). Together an s-

NaT and a number of m-NaTs are used to construct a

rough navigation plan for accomplishing a given navi-

gation task. The resulting gradient is intended to serve

as run-time guidance for the robot’s low- level control

loop. To transform the qualitative NaT-based plan

for accomplishing a task into quantitative guidance for

the robot’s actuators a transformation function is pro-

vided. The transformation function calculates the pre-

ferred direction of travel from a position which satisfies

the constraints imposed by the NaTs. Details of the

trajectory calculation are given in [Slack90]. Figure 3

shows a simulated run of a robot following the result

of the trajectory calculation as applied to the shown

NaT-based plan. Note that the trajectory computation

was only performed at the robot’s location, and that

the additional vectors are included only for illustrative

purposes.

Extracting Terrain Features

To form the basis for local navigation the robot must

transform the vast amount of incoming sensor data

into a symbolic representation of its local surroundings.

752 SENSING AND REACTION

Figure 3: Simulated Run Through NaT Field

The robot is provided with a sparsely filled and dynam-

ically changing height map of its local surroundings.

From this data relevant local features are extracted.

Because the local features are linked to a global posi-

tion in the world, as the robot moves, and more fea-

tures come into view, the robot’s global perception of

the world is incrementally increased.

Although some information is lost, the resulting

global map is a highly compact representation of the

robot’s sensor readings and serves as the robot’s mem-

ory of the terrain through which the robot has passed.

Compaction of the robot’s sensor input allows the

robot to remember vast portions of the space through

which it has traversed (thousands of kilometers), as

opposed to the relatively small amount which could be

remembered if such compaction were not performed

(tens to hundreds of meters). In addition to these

benefits, the global map supports the navigation sys-

tem’s need for a symbolic understanding of the terrain.

Global navigation is supported by the global map, in

the event that the robot must return to a portion of

the terrain through which it has already passed.

Local navigation is supported by the global map, in

the event that local features which become occluded

from the robot’s sensors can be accessed and paths

which may lead to the robot into a dead end can be

avoided. The robot’s sensor data is generated by trans-

forming the range data acquired by the stereo vision

system into unevenly spaced position and elevation

data. This information is then stuffed into a terrain

grid where the cells of the grid contain quantities, such

as the elevation, slope, and roughness [Wilcox87].

Terrain features are extracted from the terrain grid

by running a filtering function over selected portions

of the terrain grid (see Figure 4). The result of the

filtering function is stored in the observation slot of

the feature so that the value can be accessed by the

navigation system at a later time. Because of the way

filters work, there will usually be several terrain fea-

tures associated with each feature in the real world.

Figure 4: Extracting Terrain Features

These features need t,o be merged. There are several

reasons for merging overlapping terrain features. Some

are related computational or space efficiency require-

ments. Another is that these features are eventually

used to form m-NaTs. Overlapping m-NaTs all have

to have the same spin, or else the robot will not be

able to derive a coherent trajectory. Events are sim-

plified by merging features into a single feature (and

a single resultant m-NaT) when the features overlap

heavily (see Figure 5).

oulder Feature#4

Centef at the
average point

B oulber Feature #3

Figure 5: Combining Terrain Features Figure 6: Start of the Arroyo Run

Experimental System

The system described above has been extensively

tested in simulation, and several runs have been done

using the JPL Planetary Rover Navigation Testbed.

The testbed is a six-wheeled, three-bodied high-

mobility vehicle. All actuators and joints are instru-

mented and the vehicle has a precision gyro-compass,

and a pan-tilt head with several video-ca.meras. All

computation and power are onboard. The vehicle

masses a little more than a ton. All experiments were

run in the Arroyo outside of JPL. The terrain there

consists of rough sand and dirt with ridges, rock out-

croppings, bushes, and scattered boulders.

During the experiments, the robot was given a goal

to get to that was some distance away (typically one-

hundred meters). The goal was specified by absolute

coordinates. The rovers position and orientation were

also provided to the robot in the same coordinate sys-

tem. The robot would then operate in a completely

autonomous mode. There was a single datalink back

to the support vehicle so that data could be logged.

The robot started out by taking a visual stereo

panorama of the terrain in front of it. The range map

was converted into a height map [Matthiesgl]. A filter

which overlayed a slightly inclined ground plane over

the absolute value of the height data was used to ex-

tract significant terrain features. Overlapping features

were combined and turned into m-NaTs. The goal was

modeled by an objective position s-NaT. The m-NaTs

were spun depending on the robot’s orientation, and

the NaT’s position relative to a line between the robot

and the goal. The immediate trajectory was calculated

and the robot would move in that direction. Approx-

imately every two meters, the robot would take and

process new images, and recalculate its trajectory di-

rection.

Figure 6 shows the robot after its first two me-

ter move. The goal is in the lower left-hand cor-

ner. A small group of rocks was spotted by the ini-

tial panorama off to the robot’s left. Figure 7 shows

the robot after it has traversed approximately thirty

meters. To the robot’s immediate right is a NaT spun

clockwise. Ahead of the robot about eight meters is

a NaT spun in the opposite direction. Several terrain

features that the robot has seen on its way have had

MILLER & SLACK 753

their NaTs despun. These objects are too far behind

the robot to influence its trajectory calculation. By

limiting the range that NaTs can influence the trajec-

tory calculation we ensure that the calculation can be

performed quickly. Should the robot’s travels bring

these objects back across its path, they will be respun

in whatever is the appropriate direction for the robot’s

current task.

Figure 7: Thirty Meters into the Run

An object observed by the vision system has a lim-

ited lifetime. If the same area of space is viewed a sec-

ond time, then the object will quickly be removed from

the global map. Therefore, if a person walks across the

robot’s path, the robot will attempt to avoid the per-

son, but it will not mark the person’s location indelibly

in its memory. If the robot views terrain features over-

lapping the same spot several times, then those object

will be toggled to permanent status, they can then only

be removed by being observed not to be there several

times. In all observations (whether positive or nega-

tive) a terrain feature does not have to appear in ex-

actly the same spot several times. It is only necessary

that the feature’s “center of mass” overlap the previ-

ous feature. In these ways, the system is resistant to

sensor noise and sensor errors.

Using the Global Map

The system described above was created primarily to

get a robot from one location to another through pre-

viously unknown terrain. Yet even in this situation, a

global map has proved very helpful.

Global Maps for Traverse Effieieney and

Safety

The map allows the system to remember the terrain

features it has just passed. Because of the position

of the camera on the robot, iy cannot see the ground

754 SENSING AND REACTION

closer than two meters in front of the robot. The global

map keeps the robot from turning into boulders which

are along side of it, but out of sight.

We have also performed a set of simulated speed

runs with multiple goals [GatSl]. In these situations,

the robot takes images, extracts features and modifies

its plan while on the move. As the robot goes from goal

to goal, it often crosses near previously viewed terrain.

If an obstacle forces the vehicle to make a sharp turn,

then it must be able to get terrain data outside of its

field of view. By using the data in the global map,

the robot can often avoid having to image areas which

might otherwise require imaging. This allows the robot

to stay in constant motion, rather than stopping due to

the computational expense of large amounts of image

processing. The robot only has to image the area that

it is actually passing through, and can rely on previous

imaging to cover immediately adjacent areas (which

are necessary to ensure safe navigation).

Maintaining Maps Over Long Traverses

Each of our experiments have involved on the order

of a hundred meters of travel. During traverses of

this length, dead-reckoning from the robot’s wheel en-

coders has proven sufficient to keep the terrain features

lined up correctly in the global map. However, a global

map’s greatest value occurs when traverses are much

larger (and the potential penalties for making a wrong

turn are also much greater). In traverses much greater

than a hundred meters, dead-reckoning will be insuffi-

cient to keep reality coordinated with the global map.

The terrain features are linked into the global map

by the position at which they occur (in the global

terrain grid). It is assumed that an occasional ter-

rain matching process is performed that matches the

robot’s position into the global map. After the initial

terrain matching, other methods such as dead reckon-

ing and feature matching can be used to maintain the

robot’s position in global coordinates. The original ter-

rain matching can either be performed by the sensing

system using a match on terrain grids [Wilcox87], or

by matching landmark features using a method simi-

lar to that described in [Davis86]. In the latter, the

global terrain grid would be preprocessed, and have

terrain features extracted. The pattern of these fea-

tures would be compared to the pattern of features

extracted form the locally observed terrain grids. The

robot’s position would be determined by coordinating

the two patterns of features. Because of the great re-

duction of points which must be matched, as compared

with the raw terrain elevation maps, matches at this

symbolic level require significantly less computation.

It is important to realize that the positioning of ter-

rain features in the global map would not be exact. If

terrain matching is not done often enough, or is not ac-

curate enough, or if the robot covers a large stretch of

relatively featureless terrain, it is possible for features

to be misplaced. Rather than placing the features into

the map with global coordinates, they should be linked

together with uncertainty bounds that can be updated

with new observations [McDermott84, Davis861. How-

ever, to do so would lose much of the computational

advantage that is gained by using the symbolic infor-

mation (in featureless landscapes this problem arises

with most any other matching scheme short of a globa.

positioning system). When tying feature positions to

global coordinates, the system gets the computational

advantage of reduced sensing, and quick insertion and

access of features. However, only major features should

be put into the map - to reduce the possibility of an

inconsistent positioning.

A final concern about maintaining a global map is

space efficiency. The maps for this system require little

storage. The terrain features, once combined, are just

a few data slots each. Most of these slots are needed

only for performing terrain matching, and are not nec-

essary for forming the NaTs. For strictly navigational

purposes, those fields can be deleted. While very space

efficient, these maps are not an appropriate structure

for storing truly huge areas filled with features. For

global maps of areas on the order of square kilometers,

multiple maps organized in some hierarchical structure

such as a quadtree may be more appropriate.

Conclusions

The NaT-based local navigation system has proven

quick and reliable for navigation through outdoor ter-

rain. As a side effect of this system, a global obstacle

map is created which can aid in long range planning.

By extracting the global map from the local naviga-

tion system, we ensure that the data in the map is

timely. The robot can also be assured that critical data

marked in the map is accurate; that what is marked

as an open space was an open space at the time that

the robot passed through it, because the robot did in

fact pass through it. Global maps are especially use-

ful in terrain with dead-ends or costly detours. The

map that is produced is exactly the kind of map that

can be efficiently used by the local-navigation system.

The map is easy to update, and with occasional terrain

matching, can be kept quite accurate.

Acknowledgments. The authors wish to thank

Steve Chien, Rajiv Desai, Jim Firby, Erann Gat, John

Loch, and Larry Matthies who provided useful com-

ments on earlier drafts of this paper and/or imple-

mented parts of the system described above. This work

was carried out at the Jet Propulsion Laboratory - Cal-

ifornia Institute of Technology under a contract from

NASA.

References

[Andress88] Andress, K., M., Kak, A., C., Evidence Ac-

cumulation & Flow of Control in a Hierarchical Spatial

Reasoning System, in the AI Magazine, Volume 9, Issue

2, Summer, 1988, or Technical Report 88-9, School of

Electrical Engineering, Purdue University, 1988.

[h-l&89] Arkin, R., C., Three-Dimensional Motor

Schema Based Navigation, in the Proceedings of the

NASA Conference on Space Telerobotics, JPL Publica-

tion 87-7, Pasadena, California, Jan 31 - Feb 2, 1989.

[lBrook&Ba] Brooks, R., A., A Robust Layered Con-

trol System for a Mobile Robot, in the IEEE Journal

of Robotics and Automation, Volume RA-2, Number 1,

pp. 14-23, March 1986.

[Brooks881 Brooks, R., A., A Robot that Walks: Emer-

gent Behaviors from a Carefully Evolved Network, MIT

Technical Report, September, 1988.

[Connell Connell, J., H., Creature Design with the

Subsumption Architecture, in the Proceedings of the In-

ternational Joint Conference on Artificial Intelligence,

Milano, Italy, 1987.

[Davis861 Davis, E., Representing and Acquiring Geo-

graphic Knowledge, Morgan Kaufmann, 1986.

[Elfes87] Elfes, A., Sonar-based Real-World Mapping

and Navigation, in the IEEE Journal of Robotics and

Automation, Volume RA-3, Number 3, pp. 249-265,

June 1987.

[Gat90] Gat, E., Slack, M., G., Firby, R., J., Miller, D.,

P., Path Planning and Execution Monitoring for a Plan-

etary Rover, in the Proceedings of the 1990 IEEE Con-

ference on Robotics and Automation, 1990.

[Gatgl] Gat, E., Reliable Goal-Directed Reactive Con-

trol of an Autonomous Mobile Robot, Virginia Tech De-

partment of Computer Science, Ph.D. May 1991.

[Matthiesgl] Larry Matthies, Stereo vision for planetary

rovers: stochastic modeling to near real-time implemen-

tation, JPL D-8131, January 1991.

[McDermott84] McDermott, D. V., Davis, E., Planning

and Execution Routes Through Uncertain Territory, Ar-

tificial intelligence, Volume 22, pp. 107-156, 1984.

[Miller891 M’ll 1 er, D.P., Execution Monitoring for a Mo-

bile Robot System, in the Proceedings of the 1989 SPIE

Conference on Intelligent Control and Adaptive Systems,

vol 1196, pp. 36-43, Philadelphia, PA, November 1989.

[Miller9Oa] Ml1 1 er, D.P., Rover Navigation Through Be-

havior Modification, in The Proceedings of the Space

Operations Automation and Robotics Workshop, NASA,

Albuquerque, NM, June 1990.

[MillerSOb] Mill er, D.P. & Gat, E., Exploiting Known

Topologies to Navigate with Low-Computation Sensing,

in The Proceedings of Sensor Fusion III, SPIE 1990 Cam-

bridge Symposium, Cambridge, MA, November 1990.

[Payton88] Payton, D., W., Internalized Plans: A Rep-

resentation for Action Resources, in the Proceedings of

the Workshop on Representation and Learning in an Au-

tonomous Agent, Lagos, Portugal, November, 1988.

[Slack901 Slack, M.G., Situationally Driven Local Navi-

gation for Mobile Robots, Virginia Tech Department of

Computer Science, Ph.D. May 1990.

[VVilcox8’7] Wilcox, W., H., Gennery, D., B., Mishkin,

A., H., Cooper, B., C., Lawton, T., B., Lay, N., K., Katz-

mann, S., P., A Vision System for Mars Rover, in the

Proceedings of SPIE’s 7th Conference on Mobile Robots

II, Volume 852, 1987.

MILLER & SLACK 755

