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Abstract 

In order to navigate autonomously, most robot sys- 

tems are provided with some sort of global terrain map. 

To make storage practical, these maps usually have a 

high-level symbolic representation of the terrain. The 

robot’s symbolic map is then used to plan a local path. 

This paper describes a system which uses the reverse 

(and perhaps more natural) process. This system pro- 

cesses local sensor data in such a way as to allow ef- 

ficient, reactive local navigation. A byproduct of this 

navigation process is an abstraction of the terrain in- 

formation which forms a global symbolic terrain map of 

the terrain through which the robot has passed. Since 

this map is in the same format as that used by the 

local navigation system, the map is easy for the sys- 

tem to use, augment, or correct. Compared with the 

data from which the maps are created, the maps are 

very space efficient, and can be modified, or used for 

navigation in real-time. Experiments with this system, 

both in simulation, and with a real robot operating in 

natural terrain, are described. 

Introduction 

Traditional robot systems often follow the architec- 

ture shown in Figure 1 when performing navigation. 

The data from the world model flows strictly outward. 

The entire sense-plan-act cycle is often only performed 

once, and an entire path is planned for the robot to 

achieve its next goal. This architecture makes several 

assumptions which we have found during experimenta- 

tion, are not often valid [Miller89, Gat90, MillergOb]. 

In particular, such systems assume that the global map 

is correct and inviolate, and that the robot has suffi- 

cient knowledge and accuracy, and the world is suffi- 

ciently predictable, that the robot can execute a com- 

plicated path open loop. Such assumptions are seldom 

justified. 

Most work to correct these assumptions has con- 

centrated either on the global map making, or on the 

robot’s path execution. The reactive approach to mo- 

bile robots [Brooks86, Conne1187, Arkin89, MillerSOa, 

Payton are examples of the latter. Examples of the 

former include [Davis86, Elfes87]. Both,of these sys- 
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Figure 1: Traditional Robot Planning Architecture 

terns describe the process of global map formation, but 

neither address how their maps can be used for naviga- 

tion; Davis assumes an idealized human vision sensor, 

while Elfes’ system requires very large amounts of stor- 

age. 

Proponents of the reactive approach state that no 

global map is necessary, that in fact it is detrimental to 

successful navigation in many cases. Their argument 

generally follows the lines that such a map is never 

completely accurate, and therefore simply propagates 

incorrect information forever. Their work has empir- 

ically demonstrated that no global map is necessary 

to safely move about locally in the world [Brooks88, 

Miller90al. 

However, most actual applications of mobile robots 

demand that the robot do more than move about. De- 

livery, inspection, and even exploration tasks usually 

require that the robot be able to go to a specific place 

in the world, or at least move in a specific direction. To 

do these efficiently, some sort of map is very helpful. 

While we believe that the reactive approach is both 

necessary and sufficient to handle immediate local nav- 
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igation, a global map is necessary to allow a robot to 

move efficiently when its goal lies beyond its sensory 

horizon [MillergOb, Andress881. 

However, it is necessary to have the right global map. 

The map must be in a form that is useful for local 

navigation. The robot’s sensors are usually adequate 

to keep it from bumping into an obstacle, but are in- 

adequate for deciding which way the robot should go 

around the obstacle. One direction may lead to a dead- 

end, requiring significant backtracking. This is the in- 

formation that the robot must be able to quickly ex- 

tract from the global map. For these reasons the map 

must be space efficient, easy to retrieve, must be easily 

updated (so that it remains useful), and should be in- 

terpretable by other systems, including humans (while 

this is not strictly necessary, it makes experimentation 

easier and the results more meaningful). 

This paper presents a local navigation system based 

on navigation templates or NaTs. These templates are 

used to abstractly represent the goals, obstacles, way- 

points etc. in the robots world. Each template has a 

gradient field. These fields can be quickly combined 

to calculate the robots correct trajectory for its cur- 

rent position. One of the unique features of the NaT 

navigation system, is that once the NaTs are created 

from the sensor data, they make a compact and easy 

to use representation for building global maps. Since 

the NaTs are used for calculating the local path of 

the robot, they are inherently useful for longer range 

path planning as well. The remainder of the paper 

describes NaTs, experiments we have performed with 

this system, and the value of the global map that we 

get virtually for free while doing local navigation. 

Navigkion with Na 

The general problem of navigation involves reasoning 

about both global and local issues. Global navigation 

deals with planning a route that avoids major obsta- 

cles, and efficiently leads to the goal. The direction to 

travel around a major obstacle is a global issue. At 

the local level a navigation system must be intimately 

connected to the physical world and reason about the 

robots physical relationship to the objects in the world 

as those objects relate to the current navigation task. 

Navigation Templates are primitive building blocks 

for constructing highly flexible navigation plans which 

capture the essence of the navigation situation (i.e., the 

task and relevant environmental constraints). There 

are two types of Navigation Templates: those which are 

used to characterize the basic local navigation task be- 

ing pursued, and those used to model known environ- 

mental constraints and characterize the relationship of 

the constraints to the navigation task. Once a naviga- 

tion plan has been built from a set of Navigation Tem- 

plates, a powerful heuristic is employed to isolate the 

currently critical aspects of the plan and quickly (a few 

times a second) generate guidance for the robots low 

level control system. As time passes and/or the robot 

moves t,hrough the world, causing changes in the robots 

perception of the world, the navigation plan must be 

incrementally updated in order to remain useful. The 

fact that Navigation Templates do not depend upon 

one another allows them to be quickly translated, ro- 

tated, scaled, inserted and/or deleted from the naviga- 

tion plan without affecting the other templates. Thus, 

a Navigation-Template-based navigation plan can be 

quickly modified in order to remain synchronized with 

the robots perception of the world. 

Substrate NaTs 

Substrate Navigation Templates (or s-NaTs) describe a 

particular navigation task or goal. Each s-NaT defines 

a gradient field indicating at every position in space 

the direction of travel that best serves the navigation 

task being represented. For example, if the current 

navigation task is to move up a hill, then the gradient 

would, at every position, be directed to the top of the 

hill. It is important to note that the substrate is de- 

fined independently of the environmental constraints 

which limit the robot’s ability to follow the substrate’s 

gradient field. As a result, the gradient field of an s- 

NaT is just as likely to direct the robot through a wall 

as it is to direct the robot to avoid walls. While it 

is possible to create an s-NaT with almost any gradi- 

ent field, this work has identified three types of s-NaTs 

which can be used to characterize a large class of nav- 

igation tasks: direction s-NaTs, position s-NaTs, and 

trajectory s-NaTs. 

Figure 2: Substrate NaTs 

A direction s-NaT is used to describe navigation 

tasks such as “head west”, “move across the room”, or 

“walk through the field” , in which lateral deviations 

with respect to the direction are permitted. The gra- 

dient field for a direction s-NaT is trivially defined at 

every location to point in the objective direction (see 

Figure 2). To describe tasks such as “go over to the 

car” or “move to the rock”, a position s-NaT is used. 

The gradient field for a position s-NaT is defined at 

every position to point toward the objective position 

(see Figure 2). The final type of s-NaT is a trajec- 

tory s-NaT, where the gradient converges to an objec- 

tive trajectory through space. This s-NaT is useful for 

characterizing navigation tasks such as: “proceed up 

this hall”  , “follow this path”, or “drive in this lane ” 

(see Figure 2). 
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Modifier NaTs 

S-NaTs provide a basic scheme for accomplishing a 

navigation task in the form of a gradient field. Because 

the world is full of obstacles that place restrictions on 

the robot’s ability to move through the world, the s- 

NaT’s basic scheme for accomplishing a particular nav- 

igation task will need revision in order to accommo- 

date environmental constraints. Modifier navigation 

templates (or m-NaTs) are used to model environmen- 

tal constraints as they relate to the current navigation 

plan. An m-NaT can be created for any convex ge- 

ometric object; concave objects are represented using 

multiple m-NaTs. For example, a trajectory s-NaT can 

be used to provide a basic scheme for moving across a 

field, while m-NaTs would be used to model the re- 

lationship between relevant environmental constraints, 

such boulders and trees, and the navigation task. To- 

gether the s-NaT and the m-NaTs are used to construct 

a navigation plan. 

Central to building a navigation plan is the notion 

that there are two ways to move around an obstacle: 

clockwise and counter-clockwise. Thus, each of the m- 

NaTs has an associated spin, indicating in which direc- 

tion around the obstacle the navigation plan dictates 

the robot proceed. Determining the spin of an m-NaT 

is typically accomplished through a simple analysis of 

the way that the obstacle relates to the robot and the 

current s-NaT. 

Trajectory Calculations 

S-NaTs are used to characterize a navigation task and 

to provide a basic scheme for accomplishing that task 

( i.e., its gradient field). M-NaTs are used to model 

environmental constraints as well as their relationship 

to the navigation task (i.e., their spin). Together an s- 

NaT and a number of m-NaTs are used to construct a 

rough navigation plan for accomplishing a given navi- 

gation task. The resulting gradient is intended to serve 

as run-time guidance for the robot’s low- level control 

loop. To transform the qualitative NaT-based plan 

for accomplishing a task into quantitative guidance for 

the robot’s actuators a transformation function is pro- 

vided. The transformation function calculates the pre- 

ferred direction of travel from a position which satisfies 

the constraints imposed by the NaTs. Details of the 

trajectory calculation are given in [Slack90]. Figure 3 

shows a simulated run of a robot following the result 

of the trajectory calculation as applied to the shown 

NaT-based plan. Note that the trajectory computation 

was only performed at the robot’s location, and that 

the additional vectors are included only for illustrative 

purposes. 

Extracting Terrain Features 

To form the basis for local navigation the robot must 

transform the vast amount of incoming sensor data 

into a symbolic representation of its local surroundings. 
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Figure 3: Simulated Run Through NaT Field 

The robot is provided with a sparsely filled and dynam- 

ically changing height map of its local surroundings. 

From this data relevant local features are extracted. 

Because the local features are linked to a global posi- 

tion in the world, as the robot moves, and more fea- 

tures come into view, the robot’s global perception of 

the world is incrementally increased. 

Although some information is lost, the resulting 

global map is a highly compact representation of the 

robot’s sensor readings and serves as the robot’s mem- 

ory of the terrain through which the robot has passed. 

Compaction of the robot’s sensor input allows the 

robot to remember vast portions of the space through 

which it has traversed (thousands of kilometers), as 

opposed to the relatively small amount which could be 

remembered if such compaction were not performed 

(tens to hundreds of meters). In addition to these 

benefits, the global map supports the navigation sys- 

tem’s need for a symbolic understanding of the terrain. 

Global navigation is supported by the global map, in 

the event that the robot must return to a portion of 

the terrain through which it has already passed. 

Local navigation is supported by the global map, in 

the event that local features which become occluded 

from the robot’s sensors can be accessed and paths 

which may lead to the robot into a dead end can be 

avoided. The robot’s sensor data is generated by trans- 

forming the range data acquired by the stereo vision 

system into unevenly spaced position and elevation 

data. This information is then stuffed into a terrain 

grid where the cells of the grid contain quantities, such 

as the elevation, slope, and roughness [Wilcox87]. 

Terrain features are extracted from the terrain grid 

by running a filtering function over selected portions 

of the terrain grid (see Figure 4). The result of the 

filtering function is stored in the observation slot of 

the feature so that the value can be accessed by the 

navigation system at a later time. Because of the way 

filters work, there will usually be several terrain fea- 

tures associated with each feature in the real world. 



Figure 4: Extracting Terrain Features 

These features need t,o be merged. There are several 

reasons for merging overlapping terrain features. Some 

are related computational or space efficiency require- 

ments. Another is that these features are eventually 

used to form m-NaTs. Overlapping m-NaTs all have 

to have the same spin, or else the robot will not be 

able to derive a coherent trajectory. Events are sim- 

plified by merging features into a single feature (and 

a single resultant m-NaT) when the features overlap 

heavily (see Figure 5). 
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B oulber Feature #3 

Figure 5: Combining Terrain Features Figure 6: Start of the Arroyo Run 

Experimental System 

The system described above has been extensively 

tested in simulation, and several runs have been done 

using the JPL Planetary Rover Navigation Testbed. 

The testbed is a six-wheeled, three-bodied high- 

mobility vehicle. All actuators and joints are instru- 

mented and the vehicle has a precision gyro-compass, 

and a pan-tilt head with several video-ca.meras. All 

computation and power are onboard. The vehicle 

masses a little more than a ton. All experiments were 

run in the Arroyo outside of JPL. The terrain there 

consists of rough sand and dirt with ridges, rock out- 

croppings, bushes, and scattered boulders. 

During the experiments, the robot was given a goal 

to get to that was some distance away (typically one- 

hundred meters). The goal was specified by absolute 

coordinates. The rovers position and orientation were 

also provided to the robot in the same coordinate sys- 

tem. The robot would then operate in a completely 

autonomous mode. There was a single datalink back 

to the support vehicle so that data could be logged. 

The robot started out by taking a visual stereo 

panorama of the terrain in front of it. The range map 

was converted into a height map [Matthiesgl]. A filter 

which overlayed a slightly inclined ground plane over 

the absolute value of the height data was used to ex- 

tract significant terrain features. Overlapping features 

were combined and turned into m-NaTs. The goal was 

modeled by an objective position s-NaT. The m-NaTs 

were spun depending on the robot’s orientation, and 

the NaT’s position relative to a line between the robot 

and the goal. The immediate trajectory was calculated 

and the robot would move in that direction. Approx- 

imately every two meters, the robot would take and 

process new images, and recalculate its trajectory di- 

rection. 

Figure 6 shows the robot after its first two me- 

ter move. The goal is in the lower left-hand cor- 

ner. A small group of rocks was spotted by the ini- 

tial panorama off to the robot’s left. Figure 7 shows 

the robot after it has traversed approximately thirty 

meters. To the robot’s immediate right is a NaT spun 

clockwise. Ahead of the robot about eight meters is 

a NaT spun in the opposite direction. Several terrain 

features that the robot has seen on its way have had 
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their NaTs despun. These objects are too far behind 

the robot to influence its trajectory calculation. By 

limiting the range that NaTs can influence the trajec- 

tory calculation we ensure that the calculation can be 

performed quickly. Should the robot’s travels bring 

these objects back across its path, they will be respun 

in whatever is the appropriate direction for the robot’s 

current task. 

Figure 7: Thirty Meters into the Run 

An object observed by the vision system has a lim- 

ited lifetime. If the same area of space is viewed a sec- 

ond time, then the object will quickly be removed from 

the global map. Therefore, if a person walks across the 

robot’s path, the robot will attempt to avoid the per- 

son, but it will not mark the person’s location indelibly 

in its memory. If the robot views terrain features over- 

lapping the same spot several times, then those object 

will be toggled to permanent status, they can then only 

be removed by being observed not to be there several 

times. In all observations (whether positive or nega- 

tive) a terrain feature does not have to appear in ex- 

actly the same spot several times. It is only necessary 

that the feature’s “center of mass”  overlap the previ- 

ous feature. In these ways, the system is resistant to 

sensor noise and sensor errors. 

Using the Global Map 

The system described above was created primarily to 

get a robot from one location to another through pre- 

viously unknown terrain. Yet even in this situation, a 

global map has proved very helpful. 

Global Maps for Traverse Effieieney and 

Safety 

The map allows the system to remember the terrain 

features it has just passed. Because of the position 

of the camera on the robot, iy cannot see the ground 
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closer than two meters in front of the robot. The global 

map keeps the robot from turning into boulders which 

are along side of it, but out of sight. 

We have also performed a set of simulated speed 

runs with multiple goals [GatSl]. In these situations, 

the robot takes images, extracts features and modifies 

its plan while on the move. As the robot goes from goal 

to goal, it often crosses near previously viewed terrain. 

If an obstacle forces the vehicle to make a sharp turn, 

then it must be able to get terrain data outside of its 

field of view. By using the data in the global map, 

the robot can often avoid having to image areas which 

might otherwise require imaging. This allows the robot 

to stay in constant motion, rather than stopping due to 

the computational expense of large amounts of image 

processing. The robot only has to image the area that 

it is actually passing through, and can rely on previous 

imaging to cover immediately adjacent areas (which 

are necessary to ensure safe navigation). 

Maintaining Maps Over Long Traverses 

Each of our experiments have involved on the order 

of a hundred meters of travel. During traverses of 

this length, dead-reckoning from the robot’s wheel en- 

coders has proven sufficient to keep the terrain features 

lined up correctly in the global map. However, a global 

map’s greatest value occurs when traverses are much 

larger (and the potential penalties for making a wrong 

turn are also much greater). In traverses much greater 

than a hundred meters, dead-reckoning will be insuffi- 

cient to keep reality coordinated with the global map. 

The terrain features are linked into the global map 

by the position at which they occur (in the global 

terrain grid). It is assumed that an occasional ter- 

rain matching process is performed that matches the 

robot’s position into the global map. After the initial 

terrain matching, other methods such as dead reckon- 

ing and feature matching can be used to maintain the 

robot’s position in global coordinates. The original ter- 

rain matching can either be performed by the sensing 

system using a match on terrain grids [Wilcox87], or 

by matching landmark features using a method simi- 

lar to that described in [Davis86]. In the latter, the 

global terrain grid would be preprocessed, and have 

terrain features extracted. The pattern of these fea- 

tures would be compared to the pattern of features 

extracted form the locally observed terrain grids. The 

robot’s position would be determined by coordinating 

the two patterns of features. Because of the great re- 

duction of points which must be matched, as compared 

with the raw terrain elevation maps, matches at this 

symbolic level require significantly less computation. 

It is important to realize that the positioning of ter- 

rain features in the global map would not be exact. If 

terrain matching is not done often enough, or is not ac- 

curate enough, or if the robot covers a large stretch of 

relatively featureless terrain, it is possible for features 

to be misplaced. Rather than placing the features into 



the map with global coordinates, they should be linked 

together with uncertainty bounds that can be updated 

with new observations [McDermott84, Davis861. How- 

ever, to do so would lose much of the computational 

advantage that is gained by using the symbolic infor- 

mation (in featureless landscapes this problem arises 

with most any other matching scheme short of a globa. 

positioning system). When tying feature positions to 

global coordinates, the system gets the computational 

advantage of reduced sensing, and quick insertion and 

access of features. However, only major features should 

be put into the map - to reduce the possibility of an 

inconsistent positioning. 

A final concern about maintaining a global map is 

space efficiency. The maps for this system require little 

storage. The terrain features, once combined, are just 

a few data slots each. Most of these slots are needed 

only for performing terrain matching, and are not nec- 

essary for forming the NaTs. For strictly navigational 

purposes, those fields can be deleted. While very space 

efficient, these maps are not an appropriate structure 

for storing truly huge areas filled with features. For 

global maps of areas on the order of square kilometers, 

multiple maps organized in some hierarchical structure 

such as a quadtree may be more appropriate. 

Conclusions 

The NaT-based local navigation system has proven 

quick and reliable for navigation through outdoor ter- 

rain. As a side effect of this system, a global obstacle 

map is created which can aid in long range planning. 

By extracting the global map from the local naviga- 

tion system, we ensure that the data in the map is 

timely. The robot can also be assured that critical data 

marked in the map is accurate; that what is marked 

as an open space was an open space at the time that 

the robot passed through it, because the robot did in 

fact pass through it. Global maps are especially use- 

ful in terrain with dead-ends or costly detours. The 

map that is produced is exactly the kind of map that 

can be efficiently used by the local-navigation system. 

The map is easy to update, and with occasional terrain 

matching, can be kept quite accurate. 
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