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Abstract This paper is concerned with the delay-
dependent synchronization criterion for stochastic
complex networks with time delays. Firstly, expecta-
tions of stochastic cross terms containing the Itô in-
tegral are investigated by utilizing stochastic analysis
techniques. In fact, in order to obtain less conserva-
tive delay-dependent conditions for stochastic delay
systems including stochastic complex (or neural) net-
works with time delays, how to deal with expectations
of these stochastic cross terms is an important prob-
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lem, and expectations of these stochastic terms were
not dealt with properly in many existing results. Then,
based on the investigation of expectations of stochas-
tic cross terms, this paper proposes a novel delay-
dependent synchronization criterion for stochastic de-
layed complex networks. In the derivation process, the
mathematical development avoids bounding stochastic
cross terms. Thus, the method leads to a simple crite-
rion and shows less conservatism. Finally, a numerical
example is provided to demonstrate the effectiveness
of the proposed approach.

Keywords Complex networks · Stochastic systems ·
Delay · Synchronization · Delay-dependent criterion

1 Introduction

As is known to all, complex dynamical networks
(CDNs) widely exist in the real world, including food-
webs, ecosystems, metabolic pathways, the Internet,
the world wide web, social networks, and global eco-
nomic markets [1, 2]. Since the discoveries of the
small-world feature [3] and the scale-free feature [4]
of complex networks, the analysis and the control of
the dynamical behaviors in complex networks have at-
tracted a great deal of attention. As a significant col-
lective behavior, the studies on synchronization phe-
nomena of complex dynamical networks have been
extensively investigated in [5–11]. Recently, it has
now been well realized that in spreading information
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through complex networks, there always exist time de-
lays caused by the finite speed of information trans-
mission and the limit of bandwidth, which may de-
crease the quality of the system and even lead to os-
cillation, divergence, and instability. Accordingly, the
synchronization problems for many delayed complex
dynamic networks have received many researchers’ in-
terests; see, e.g., [12–17].

In real-time systems, complex networks are of-
ten subject to stochastic disturbances. For example,
the signal transfer in a real complex network could
be perturbed randomly from the release of proba-
bilistic causes such as neurotransmitters and packet
dropouts [21]. Hence, in order to reflect more realistic
dynamical behaviors, many researchers recently be-
gan to study complex networks with stochastic distur-
bances, and many results for the synchronization prob-
lems of stochastic complex networks with or without
time delays are reported in [18–22] and the references
therein. For instance, the synchronization problems of
discrete-time stochastic complex networks with de-
lays were discussed in [18, 19]. As to the continuous
case, Cao et al. [22] designed an adaptive feedback
controller to solve the synchronization problem for
an array of linearly stochastically coupled networks
with time delays. Wang et al. [21] investigated the
delay-dependent synchronization criterion for contin-
uous stochastic complex networks with time-delays.
And as a special class of stochastic delayed complex
networks, stochastic neural networks with delays have
been widely studied in [23–25].

On the other hand, for stochastic complex (or neu-
ral) networks with time delays, a very active research
topic is to obtain the delay-dependent conditions. The
reason is that the delay-dependent condition makes
use of the information on the size of time delays,
and the delay-dependent condition is generally less
conservative than the delay-independent one [29–31].
However, when we used the existing effective meth-
ods, such as the model transformation method [29, 30]
and the free-weighting-matrix method [31], to give the
delay-dependent condition for stochastic delay sys-
tems including stochastic complex (or neural) net-
works with time delays, one important question will
appear: How do we deal with the expectations of
stochastic cross terms containing the Itô integral? Let
us give an example to illustrate it. Considering the fol-
lowing stochastic functional differential equation:

dx(t) = f (t, xt ) dt + g(t, xt ) dw(t) (1)

on t ≥ 0 with the initial data x0 = ξ ∈ L2
F0

([−h,0];
Rn) and h is the time delay of (1). Since the Newton–
Leibniz is not tenable in the stochastic case [32] and
(1) is just a symbolic expression, we must use the cor-
responding stochastic integral equation

x(t) = ξ(0)+
∫ t

0
f (s, xs) ds +

∫ t

0
g(s, xs) dw(s) (2)

to obtain the delay-dependent condition. Then there
will appear the following stochastic cross-terms:

x(t)T M

∫ t

t−h

g(s, xs) dw(s),

x(t − h)T N

∫ t

t−h

g(s, xs) dw(s),

(∫ t

t−h

f (s, xs) ds

)T

L

∫ t

t−h

g(s, xs) dw(s).

It is still very difficult to calculate the expectations of
these stochastic cross terms up until now. The results
in [23–25] resorted to bounding techniques, which
obviously can bring the conservatism. Some papers
such as [21, 26–28] considered that the expectations
of these stochastic terms are all equal to zero. How-
ever, these results are not still given by strict mathe-
matical proofs, and we can find examples to illustrate
that expectations of some stochastic cross terms are
not equal to zero in Remark 1. Therefore, in order to
obtain the delay-dependent synchronization criterion
with less conservatism for stochastic delayed complex
networks, there is a strong need to investigate the ex-
pectations of stochastic cross terms containing the Itô
integral to avoid the mistake in [21] first.

Motivated by the above discussions, this paper
aims to investigate the delay-dependent synchro-
nization criterion for stochastic complex networks
with time delays. The main contributions of this
paper are summarized as follows: (1) Expectations
of stochastic cross terms containing the Itô inte-
gral are investigated by stochastic analysis tech-
niques in Lemma 2. We prove that the expectation of
x(t − h)T N

∫ t

t−h
g(s, xs) dw(s) is equal to zero, and

expectations of other stochastic cross terms are not.
(2) Based on this lemma, this paper establishes a
delay-dependent synchronization criterion that guar-
antees the globally asymptotically mean-square syn-
chronization of stochastic delayed complex networks.
In the derivation process, the mathematical develop-
ment avoids bounding stochastic cross terms. Thus,
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the method leads to a simple criterion with less con-
servatism, and a numerical example is provided to
demonstrate the effectiveness of the proposed ap-
proach.

Notation: Throughout the paper, unless otherwise
specified, we will employ the following notation. Let
(Ω, F , {Ft }t≥0,P) be a complete probability space
with a natural filtration {Ft }t≥0 and E (·) be the ex-
pectation operator with respect to the probability mea-
sure. If A is a vector or matrix, its transpose is denoted
by AT . If P is a square matrix, P > 0 (P < 0) means
that is a symmetric positive (negative) definite ma-
trix of appropriate dimensions while P ≥ 0 (P ≤ 0)
is a symmetric positive (negative) semidefinite matrix.
I stands for the identity matrix of appropriate dimen-
sions. Denote by λmin(·) the minimum eigenvalue of
a given matrix. Let | · | denote the Euclidean norm of
a vector and its induced norm of a matrix. Unless ex-
plicitly specified, matrices are assumed to have real
entries and compatible dimensions. L2(Ω) denotes
the space of all random variables X with E |X|2 < ∞;
it is a Banach space with norm ‖X‖2 = (E |X|2)1/2.
Let h > 0 and C([−h,0]; Rn) denote the family
of all continuous Rn-valued functions ϕ on [−h,0]
with the norm ‖ϕ‖ = sup{|ϕ(θ)| : −h ≤ θ ≤ 0}. Let
L2

F0
([−h,0]; Rn) be the family of all F0-measurable

C([−h,0]; Rn)-valued random variables φ such that
E (‖φ‖2) < ∞, and L2([a, b]; Rn) be the family of
all Rn-valued Ft -adapted processes {f (t)}a≤t≤b such
that

∫ b

a
|f (t)|2 dt < ∞ a.s. Let M2([a, b]; Rn) be

the family of processes {f (t)}a≤t≤b in L2([a, b]; Rn)

such that E (
∫ b

a
|f (t)|2 dt) < ∞, and M2([a, b]) is the

1-dimension case of M2([a, b]; Rn).

2 Problem formulation and preliminaries

Consider the following complex dynamical networks
consisting of N identical nodes with stochastic pertur-
bations:

dxi(t) =
[
Axi(t) + Bf

(
xi(t)

) + Cf
(
xi(t − h)

)

+
N∑

j=1

gijΓ xj (t) +
N∑

j=1

hijΥ xj (t − h)

]
dt

+ σi

(
t, xi(t), xi(t − h)

)
dw(t),

i = 1,2, . . . ,N (3)

where xi(t) = [xi1(t), xi2(t), . . . , xin(t)]T ∈ Rn is the
state vector of the ith network at time t ; the scalar
h > 0 denotes the time delay; A denotes a known
connection matrix, B and C denote, respectively, the
connection weight matrix and the delayed connec-
tion weight matrix; Γ,Υ ∈ Rn×n are matrices de-
scribing the inner-coupling between the subsystems
at time t and t − h, respectively; G = (gij )N×N

and H = (hij )N×N are the out-coupling configura-
tion matrices representing the coupling strength and
the topological structure of the complex networks.
σi(·, ·, ·) : R × Rn × Rn → Rn is the noise intensity
function vector and w(t) is a scalar standard Brow-
nian motion defined on a complete probability space
(Ω, F , {Ft }t≥0,P) with a natural filtration {Ft }t≥0.
And f (xi(t)) = (f1(xi1(t)), . . . , fn(xin(t)))

T is an
unknown but sector-bounded nonlinear function.

The initial conditions associated with system (3)
are given by

xi(s) = ϕi(s),−h ≤ s ≤ 0, i = 1,2, . . . ,N, (4)

where ϕi(s) ∈ L2
F0

([−h,0]; Rn).
Let

x(t) = (
x1(t)

T , . . . , xN(t)T
)T

,

F
(
x(t)

) = (
f

(
x1(t)

)T
, . . . , f

(
xN(t)

)T )T
,

F
(
x(t − h)

) = (
f

(
x1(t − h)

)T
, . . . , f

(
xN(t − h)

)T )T
,

σ (t) = (
σ1

(
t, x1(t), x1(t − h)

)T
,

. . . , σN

(
t, xN(t), xN(t − h)

)T )T
.

With the Kronecker product “⊗” for matrices, system
(3) can be rearranged as

dx(t) = [
(IN ⊗ A + G ⊗ Γ )x(t)

+ (H ⊗ Υ )x(t − h) + (IN ⊗ B)F
(
x(t)

)
+ (IN ⊗ C)F

(
x(t − h)

)]
dt + σ(t) dw(t).

(5)

Throughout this paper, the following assumptions,
definitions, and propositions are needed to prove our
main results.

Definition 1 [33] Let {η(t)}a≤t≤b is a stochastic pro-
cess and belongs to M2([a, b]), then its Itô integral
(from a to b) is defined by
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∫ b

a

η(t) dw(t) = lim
n→∞

∫ b

a

ηn(t) dw(t)

(
lim in L2(Ω)

)
,

where {ηn(t)}a≤t≤b (n = 1,2, . . .) are the step stochas-
tic processes and belong to M2([a, b]) such that

lim
n→∞ E

(∫ b

a

∣∣η(t) − ηn(t)
∣∣2

dt

)
= 0.

Definition 2 [21] The stochastic delayed complex
network (3) is globally asymptotically synchronized in
the mean square if, for all ϕi,ϕj ∈ L2

F0
([−h,0]; Rn).

The following holds:

lim
t→∞ E

{|xi(t, ϕi)−xj (t, ϕj )|2
} = 0, 1 ≤ i < j ≤ N.

Definition 3 [32] Let {Ft }t∈T be an increasing fam-
ily of σ -algebras of subset of Ω . A stochastic process
{Xt }t∈T is said to be adapted to {Ft }t∈T if for each t ,
the random variable Xt is Ft -measurable.

Assumption 1 For ∀x, y ∈ Rn, the nonlinear func-
tion f (·) is assumed to satisfy the following condition:

(
f (x) − f (y) − U(x − y)

)T

× (
f (x) − f (y) − V (x − y)

) ≤ 0, (6)

where U and V are real constant matrices with V −U

being symmetric and positive definite.

Assumption 2 The outer-coupling configuration ma-
trices of the complex networks (3) satisfy

gij = gji ≥ 0, hij = hji ≥ 0 (i 
= j),

gii = −
N∑

j=1,j 
=i

gij , hii = −
N∑

j=1,j 
=i

hij ,

i, j = 1,2, . . . ,N.

Assumption 3 The noise intensity function vector σi :
R × Rn × Rn → Rn satisfies the Lipschitz condition,
i.e., there exist constant matrices W1 and W2 of appro-
priate dimensions such that

∣∣σi(t, x1, y1) − σj (t, x2, y2)
∣∣2

≤ ∣∣W1(x1 − x2)
∣∣2 + ∣∣W2(y1 − y2)

∣∣2 (7)

for all i, j = 1,2, . . . ,N and x1, y1, x2, y2 ∈ Rn.

Proposition 1 [33] Let {h(t)}a≤t≤b is a stochastic
process and belong to M2([a, b]), then

E
(∫ b

a

h(t) dw(t)

)
= 0.

Proposition 2 [13] The Kronecker product has the
following properties:

(αA) ⊗ B = A ⊗ (αB),

(A + B) ⊗ C = A ⊗ C + B ⊗ C,

(A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD),

(A ⊗ B)T = AT ⊗ BT .

Proposition 3 [17] Let U = (αij )n×n, P ∈ Rm×m,
x = (xT

1 , xT
2 , . . . , xT

n )T , y = (yT
1 , yT

2 , . . . , yT
n )T ,

where xi = (xi1, xi2, . . . , xim)T ∈ Rm, yi = (yi1, yi2,

. . . , yim)T ∈ Rm (i = 1,2, . . . , n). If U = U T and each
row sum of U is equal to zero, then

xT (U ⊗ P)y = −
∑

1≤i<j≤n

αij (xi − xj )
T P (yi − yj ).

(8)

3 Main results

Then we give the following lemmas which will be used
in the proof of our main results.

Lemma 1 If ζ is a bounded and Fa-measurable ran-
dom variable and {η(t)}a≤t≤b is a stochastic process
which belongs to ∈ M2([a, b]), then

∫ b

a

ζη(t) dw(t) = ζ

∫ b

a

η(t) dw(t). (9)

Proof Since ζ is a bounded and Fa-measurable ran-
dom variable, it is easily to verify {ζη(t)}a≤t≤b ∈
M2([a, b]).

Step 1: If {η(t)}a≤t≤b is a step stochastic process,
then we let without loss of generality,

η(t) =
n∑

i=1

χi−11[ti−1,ti )(t),
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where t0 = a, tn = b,χi−1 is Fti−1 -measurable and
E (χ2

i−1) < ∞. In this case,

∫ b

a

ζη(t) dw(t) =
n∑

i=1

ζχi−1
(
w(ti) − w(ti−1)

)

= ζ

n∑
i=1

χi−1
(
w(ti) − w(ti−1)

)

= ζ

∫ b

a

η(t) dw(t). (10)

Step 2: If {η(t)}a≤t≤b ∈ M2([a, b]) is not a step
stochastic process, then by Definition 1, we can know
that there exists a sequence of step stochastic pro-
cesses in M2([a, b]): {η1(t)}a≤t≤b, {η2(t)}a≤t≤b, . . . ,

{ηn(t)}a≤t≤b, . . . such that

∫ b

a

η(t) dw(t) = lim
n→∞

∫ b

a

ηn(t) dw(t)

(
lim in L2(Ω)

)
, (11)

where {η(t)}a≤t≤b, {ηn(t)}a≤t≤b satisfies

lim
n→∞ E

(∫ b

a

|η(t) − ηn(t)|2 dt

)
= 0. (12)

Since ζ is bounded, and by Definition 1 and (11)–(12),
it is easy to prove that

∫ b

a

ζη(t) dw(t) = lim
n→∞

∫ b

a

ζηn(t) dw(t)

(
lim in L2(Ω)

)
, (13)

ζ

∫ b

a

η(t) dw(t) = lim
n→∞ ζ

∫ b

a

ηn(t) dw(t)

(
lim in L2(Ω)

)
. (14)

From Step 1, we know that for each step stochastic
process {ηn(t)}a≤t≤b , we have

∫ b

a

ζηn(t) dw(t) = ζ

∫ b

a

ηn(t) dw(t). (15)

Therefore, it is easy to know

lim
n→∞

∫ b

a

ζηn(t) dw(t) = lim
n→∞ ζ

∫ b

a

ηn(t) dw(t)

(
lim in L2(Ω)

)
. (16)

Then, we can see that by (13), (14), and (16)

∫ b

a

ζη(t) dw(t) = ζ

∫ b

a

η(t) dw(t). (17)

This completes the proof. �

Lemma 2 Considering the following stochastic delay
differential equation:

dx(t) = f (t, xt ) dt + g(t, xt ) dw(t), (18)

on t ≥ 0 with the initial data x0 = ξ ∈ L2
F0

([−h,0];
Rn), where h > 0 is the time delay in (18). f (·, ·)
and g(·, ·) satisfy the local Lipschitz condition and the
linear growth condition. Let x(t) to be the solution
of (18), N is a any compatible dimension matrix, we
have

E
(

x(t − h)T N

[∫ t

t−h

g(s, xs) dw(s)

])
= 0, t ≥ h.

(19)

Proof Since f (·, ·) and g(·, ·) satisfy the local Lip-
schitz condition and the linear growth condition,
it is easy to verify that, for ∀T > 0, the stochas-
tic delay differential equation has a unique contin-
uous solution on [−h,T ] denoted by {x(t)}−h≤t≤T ,
that is adapted to {Ft }−h≤t≤T and {x(t)}−h≤t≤T ∈
M2([−h,T ]). Therefore, we can easily know that
for t ≥ h, x(t − h) is a bounded random variable and
x(t −h) is Ft−h-measurable from Definition 3. There-
fore, by Lemma 1, it is easy to obtain

x(t − h)T N

[∫ t

t−h

g(s, xs) dw(s)

]

=
∫ t

t−h

x(t − h)T Ng(s, xs) dw(s), t ≥ h. (20)

From Proposition 1, we can prove (19). �

Remark 1 Lemma 1 has proved

E
(

x(t − h)T N

[∫ t

t−h

g(s, xs) dw(s)

])
= 0, t ≥ h.

However, for any compatible dimension matrix N, it
cannot prove

E
(

x(t)T N

[∫ t

t−h

g(s, xs) dw(s)

])
= 0,
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E
((∫ t

t−h

f (s, xs) ds

)T

N

[∫ t

t−h

g(s, xs) dw(s)

])
= 0,

t ≥ h.

For example, considering the following stochastic
equation:

dx(t) = dw(t), (21)

which has a one solution x(t) = w(t). However, we
can easily verify that

E
(

x(t)T N

∫ t

t−h

g(s, xs) dw(s)

)

= E
(

w(t)N

∫ t

t−h

dw(s)

)
= Nh 
= 0, ∀N 
= 0.

(22)

Then we can also consider the following one-dimen-
sion Langevin equation [32]:

dx(t) = f (t, xt ) dt + g(t, xt ) dw(t), x(0) = ξ,

where f (t, xt ) = −x(t), g(t, xt ) = 1. Obviously, it has
a solution

x(t) = e−(t−u)x(u) +
∫ t

u

e−(t−s) dw(s), u ≤ t,

(23)

or

x(t) = e−t x(0) +
∫ t

0
e−(t−s) dw(s). (24)

Then by (23), we can see that

E
(

x(t)N

∫ t

t−h

g(s, xs) dw(s)

)

= E
((

e−hx(t − h) +
∫ t

t−h

e−(t−s) dw(s)

)

× N

[∫ t

t−h

dw(s)

])

= e−hE
(

x(t − h)N

[∫ t

t−h

dw(s)

])

+ E
(∫ t

t−h

e−(t−s) dw(s)N

∫ t

t−h

dw(s)

)

= 0 + N

∫ t

t−h

E
(
e−(t−s)

)
ds

= N − Ne−h 
= 0, ∀N 
= 0. (25)

and

E
(∫ t

t−h

f (s, xs) dsN

[∫ t

t−h

g(s, xs) dw(s)

])

= E
((

x(t) − x(t − h) −
∫ t

t−h

g(s, xs) dw(s)

)

× N

[∫ t

t−h

g(s, xs) dw(s)

])

= E
(

x(t)N

∫ t

t−h

g(s, xs) dw(s)

)

− E
(

x(t − h)N

∫ t

t−h

g(s, xs) dw(s)

)

− E
(∫ t

t−h

g(s, xs) dw(s)N

∫ t

t−h

g(s, xs) dw(s)

)

= N
(
1 − e−h

) − 0 − N

∫ t

t−h

ds

= N
(
1 − e−h − h

) 
= 0, ∀N 
= 0. (26)

Recently, some papers such as [21, 26–28] consid-
ered that the expectations of these stochastic terms
are all equal to zero. However, this is not the case.
From above examples and Lemma 2, we can see that
x(t −h)T N

∫ t

t−h
g(s, xs) dw(s) is the only one, whose

expectation is equal to zero.

Now, we are in the position to present our main re-
sults for the synchronization criterion of the delayed
complex networks with stochastic perturbations.

Theorem 1 Under the Assumptions 1–3, the dynamic
system (3) is globally asymptotically synchronized in
the mean square if there exist matrices P > 0, Q > 0,
R > 0, Z > 0, S and scalars ε > 0, λ > 0 such that the
following LMIs hold for all 1 ≤ i < j ≤ N

P < λI, (27)

Ξ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Ξ11 0 Ξ13 PC Ξ15 0
∗ Ξ22 0 0 Ξ25 Ξ26

∗ ∗ Ξ33 0 BT ST 0
∗ ∗ ∗ −R CT ST 0
∗ ∗ ∗ ∗ hZ − S − ST 0
∗ ∗ ∗ ∗ ∗ −hZ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

< 0, (28)
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where

Ξ11 = PA + AT P − NgijPΓ − NgijΓ
T P

+ λWT
1 W1 + Q − εUT V − εV T U,

Ξ13 = PB + εUT + εV T ,

Ξ15 = AT ST − NgijΓ
T ST ,

Ξ22 = −NhijPΥ − NhijΥ
T P + λWT

2 W2 − Q,

Ξ25 = −NhijΥ
T ST ,

Ξ26 = −hNhijΥ
T P,

Ξ33 = R − 2εI.

Proof First, set

y(t) = (IN ⊗ A + G ⊗ Γ )x(t) + (H ⊗ Υ )x(t − h)

+ (IN ⊗ B)F
(
x(t)

) + (IN ⊗ C)F
(
x(t − h)

)
,

(29)

then (3) can be rewritten as

dx(t) = y(t) dt + σ(t) dw(t). (30)

Integrating the system equation of (30) on both sides
from t − h to t , we can have

x(t) − x(t − h) =
∫ t

t−h

y(s) ds +
∫ t

t−h

σ (s) dw(s).

(31)

Consider the following Lyapunov functional for the
systems (30):

V (xt , t) = x(t)T (U ⊗ P)x(t)

+
∫ t

t−h

x(s)T (U ⊗ Q)x(s) ds

+
∫ 0

−h

∫ t

t+θ

y(s)T (U ⊗ Z)y(s)dsdθ

+
∫ t

t−h

F
(
x(s)

)T
(U ⊗ R)F

(
x(s)

)
ds,

t ≥ h, (32)

where

U =

⎛
⎜⎜⎝

N − 1 −1 · · · −1
−1 N − 1 · · · −1
· · · · · · · · · · · ·
−1 −1 · · · N − 1

⎞
⎟⎟⎠ .

Then, by Itô’s formula, the stochastic differential
dV (xt , t) can be obtained

dV (xt , t) = LV (xt , t) dt

+ 2x(t)T (U ⊗ P)σ(t) dw(t),

where

LV (xt , t)

= 2x(t)T (U ⊗ P)y(t) + σ(t)T (U ⊗ P)σ(t)

+ x(t)T (U ⊗ Q)x(t)

− x(t − h)T (U ⊗ Q)x(t − h)

+ F
(
x(t)

)T
(U ⊗ R)F

(
x(t)

)

− F
(
x(t − h)

)T
(U ⊗ R)F

(
x(t − h)

)

+ hy(t)T (U ⊗ Z)y(t)

−
∫ t

t−h

[
y(s)T (U ⊗ Z)y(s)

]
ds. (33)

By (31), we have

2x(t)T (U ⊗ P)y(t)

= 2x(t)T (U ⊗ P)
[
(IN ⊗ A + G ⊗ Γ )x(t)

+ (IN ⊗ B)F
(
x(t)

) + (IN ⊗ C)F
(
x(t − h)

)]

+ 2x(t)T (U ⊗ P)(H ⊗ Υ )x(t − h)

= 2x(t)T (U ⊗ P)
[
(IN ⊗ A + G ⊗ Γ )x(t)

+ (IN ⊗ B)F
(
x(t)

) + (IN ⊗ C)F
(
x(t − h)

)]

+ 2

[
x(t − h) +

∫ t

t−h

y(s) ds

+
∫ t

t−h

σ (s) dw(s)

]T

(U ⊗ P)(H ⊗ Υ )x(t − h).

(34)

Using Lemma 2, we can obtain

E
[
2x(t)T (U ⊗ P)y(t)

]

= E
[

2x(t)T (U ⊗ P)
(
(IN ⊗ A + G ⊗ Γ )x(t)

+ (IN ⊗ B)F
(
x(t)

) + (IN ⊗ C)F
(
x(t − h)

))
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+ 2

(
x(t − h) +

∫ t

t−h

y(s) ds

)T

× (U ⊗ P)(H ⊗ Υ )x(t − h)

]
. (35)

By (29), we can have that for any matrices S,

2y(t)T (U ⊗ S)
[
(IN ⊗ A + G ⊗ Γ )x(t)

+ (H ⊗ Υ )x(t − h) + (IN ⊗ B)F
(
x(t)

)
+ (IN ⊗ C)F

(
x(t − h)

) − y(t)
] = 0. (36)

From (33)–(36) and by Propositions 2 and 3, it is easy
to obtain

E
(

LV (xt , t)
)

= E
(

1

h

∫ t

t−h

[
2x(t)T (U ⊗ P)

(
(IN ⊗ A

+ G ⊗ Γ )x(t)

+ (IN ⊗ B)F
(
x(t)

) + (IN ⊗ C)F
(
x(t − h)

))

+ 2
(
x(t − h) + hy(s)

)T
(U ⊗ P)

× (H ⊗ Υ )x(t − h)

+ σ(t)T (U ⊗ P)σ(t) + x(t)T (U ⊗ Q)x(t)

− x(t − h)T (U ⊗ Q)x(t − h)

+ F
(
x(t)

)T
(U ⊗ R)F

(
x(t)

)

− F
(
x(t − h)

)T
(U ⊗ R)F

(
x(t − h)

)
+ hy(t)T (U ⊗ Z)y(t) − hy(s)T (U ⊗ Z)y(s)

+ 2y(t)T (U ⊗ S)((IN ⊗ A + G ⊗ Γ )x(t)

+ (H ⊗ Υ )x(t − h) + (IN ⊗ B)F
(
x(t)

)

+ (IN ⊗ C)F
(
x(t − h)

) − y(t))
]
ds

)

= E
(

1

h

∫ t

t−h

[ ∑
1≤i<j≤N

(
2
(
xi(t) − xj (t)

)T

× (PA − NgijPΓ )
(
xi(t) − xj (t)

)

+ 2
(
xi(t) − xj (t)

)T
PB

(
f

(
xi(t)

) − f
(
xj (t)

))

+ 2
(
xi(t) − xj (t)

)T
PC

(
f

(
xi(t − h)

)
− f

(
xj (t − h)

))

− 2
(
xi(t − h) − xj (t − h)

)T
(NhijPΥ )

× (
xi(t − h) − xj (t − h)

)

− 2h
(
yi(s) − yj (s)

)T
NhijP

× Υ
(
xi(t − h) − xj (t − h)

)
+ (

σi

(
t, xi(t), xi(t − h)

)

− σj

(
t, xj (t), xj (t − h)

))T

× P
(
σi

(
t, xi(t), xi(t − h)

)
− σj

(
t, xj (t), xj (t − h)

))

+ (
xi(t) − xj (t)

)T
Q

(
xi(t) − xj (t)

)

− (
xi(t − h) − xj (t − h)

)T

× Q
(
xi(t − h) − xj (t − h)

)

+ (
f

(
xi(t)

) − f
(
xj (t)

))T

× R
(
f

(
xi(t)

) − f
(
xj (t)

))

− (
f

(
xi(t − h)

) − f
(
xj (t − h)

))T

× R
(
f

(
xi(t − h)

)

− f
(
xj (t − h)

)) + h
(
yi(t) − yj (t)

)T

× Z
(
yi(t) − yj (t)

)

− h
(
yi(s) − yj (s)

)T
Z

(
yi(s)

− yj (s)
) + 2

(
yi(t) − yj (t)

)T

× (SA − NgijSΓ )
(
xi(t) − xj (t)

)

− 2
(
yi(t) − yj (t)

)T
(NhijSΥ )

× (
xi(t − h) − xj (t − h)

)

+ 2
(
yi(t) − yj (t)

)T

× SB
(
f

(
xi(t)

) − f
(
xj (t)

))

+ 2
(
yi(t) − yj (t)

)T
SC

(
f

(
xi(t − h)

)

− f
(
xj (t − h)

)) − 2
(
yi(t) − yj (t)

)T

× S
(
yi(t) − yj (t)

))]
ds

)
. (37)

According to Assumption 3 and (27), it is clear that

(
σi

(
t, xi(t), xi(t − h)

) − σj

(
t, xj (t), xj (t − h)

))T

× P
(
σi

(
t, xi(t), xi(t − h)

)
− σj

(
t, xj (t), xj (t − h)

))
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≤ λ
(
xi(t) − xj (t)

)T
WT

1 W1
(
xi(t) − xj (t)

)

+ λ
(
xi(t − h) − xj (t − h)

)T

× WT
2 W2

(
xi(t − h) − xj (t − h)

)
. (38)

From Assumption 1, it can be derived that

0 ≤ 2ε
(
xi(t) − xj (t)

)T
UT

(
f

(
xi(t)

) − f
(
xj (t)

))

+ 2ε
(
f

(
xi(t)

) − f
(
xj (t)

))T
V

(
xi(t) − xj (t)

)

− 2ε
(
xi(t) − xj (t)

)T
UT V

(
xi(t) − xj (t)

)

− 2ε
(
f

(
xi(t)

) − f
(
xj (t)

))T

× (
f

(
xi(t)

) − f
(
xj (t)

))
. (39)

Combining (37)–(39), we have

E
(

LV (xt , t)
) ≤ E

[
1

h

∫ t

t−h

∑
1≤i<j≤N

ξT
ij Ξξij ds

]
. (40)

where

ξij =

⎛
⎜⎜⎜⎜⎜⎜⎝

xi(t) − xj (t)

xi(t − h) − xj (t − h)

f (xi(t)) − f (xj (t))

f (xi(t − h)) − f (xj (t − h))

yi(t) − yj (t)

yi(s) − yj (s)

⎞
⎟⎟⎟⎟⎟⎟⎠

.

From (27)–(28), it is guaranteed that all the subsys-
tems in (3) are globally asymptotically synchronized
in the mean square by Definition 2. The proof is com-
pleted. �

Remark 2 For the delay-dependent synchronization
criterion of stochastic complex networks with time
delays, Wang et al. [21] has investigated this prob-
lem. However, we should point out here that Wang et
al. [21] made a mistake when dealing with the expec-
tations of stochastic cross terms. In fact, (25) in [21]
was obtained by taking the expectation of (21) in [21].
In this derivation process, Wang et al. [21] considered
that

E
[ ∑

1≤i<j≤N

(−2
(
γi(t) − γj (t)

)T
M

(
Ωi(t) − Ωj(t)

))]

= 0, (41)

where γi(t), γj (t),Ωi(t),Ωj (t) are given in [21]. But
(41) is not tenable. For instance, if we let r = 1 in The-

orem 1 of [21], it is the simplest case of the delay frac-
tioning approach used in [21]. Under this situation, we
can see that

E
[ ∑

1≤i<j≤N

(−2
(
γi(t) − γj (t)

)T
M

(
Ωi(t) − Ωj(t)

))]

= E
[
−2x(t)T (U ⊗ M)

∫ t

t−τ

σ (s) dw(s)

]

is not always equal to 0 (see the Remark 1 of this pa-
per), where x(t), σ (t),U are also same as the ones
in [21]. Therefore, the result in [21] is not correct.

Remark 3 In order to deal with the stochastic cross
terms containing the Itô integral, cross-terms bound-
ing techniques was adopted in [23–25]. It may increase
the conservatism. In the derivation process of Theo-
rem 1, we do not use any bounding technique to deal
with stochastic cross terms. Therefore, our method can
show less conservatism.

4 Numerical example

In this section, we present a simulation example to il-
lustrate the effectiveness of our approach. Consider the
following complex network consisting of three identi-
cal nodes:

dxi(t) =
[
Axi(t) + Bf

(
xi(t)

) + Cf
(
xi(t − h)

)

+
3∑

j=1

gijΓ xj (t) +
3∑

j=1

hijΥ xj (t − h)

]
dt

+ σi

(
t, xi(t), xi(t − h)

)
dw(t)

for all i = 1,2,3, where xi(t) = [xi1(t), xi2(t)]T ∈ R2

is the state vector of the ith subsystem, and let

A =
(−3 0

0 −3

)
, B =

(−1 0.1
0.2 −0.1

)
,

C =
(−2 0

0 −2

)
.

The out-coupling configuration matrices G,H and
inner-coupling matrices Γ,Υ are chosen as

G =
⎛
⎝−3 1 2

1 −2 1
2 1 −3

⎞
⎠ ,
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Fig. 1 State error of xi1(t) − x11(t), i = 2,3

H =
⎛
⎝−2 1 1

1 −3 2
1 2 −3

⎞
⎠ ,

Γ =
(

0.2 0
0.1 0.2

)
, Υ =

(
0.2 0.1
0.2 0.2

)
.

The noise intensity function vector σ(·, ·, ·) is of the
following form:

σ
(
t, x(t), x(t − h)

)

=
(√

0.1 0
√

0.2 0
0

√
0.1 0

√
0.2

)(
x(t)

x(t − h)

)
,

and the nonlinear function f (xi(t)) = (f1(xi1(t)),

f2(xi2(t)))
T = (tanh(xi1(t)), tanh(xi2(t)))

T . Thus,
the matrices U,V,W1,W2, in Assumptions 1 and 3
are

U =
(

0 0
0 0

)
, V =

(
1 0
0 1

)
,

W1 =
(√

0.2 0
0

√
0.2

)
, W2 =

(√
0.4 0
0

√
0.4

)
.

According to Theorem 1, the allowable maximum
delay h that guarantees the globally asymptotically
mean-square synchronization of the delayed stochastic
complex networks, is 0.42. When we randomly choose
the initial states in [0,1] × [0,1], the synchronization
errors are plotted in Figs. 1 and 2, which can confirm
that the stochastic complex dynamical system (3) is
globally synchronized in the mean square.

Fig. 2 State error of xi2(t) − x12(t), i = 2,3

5 Conclusions

In this paper, the problem of the delay-dependent
synchronization criterion for stochastic complex net-
works with time delays is investigated. First, this pa-
per is concerned with expectations of stochastic cross
terms containing the Itô integral. We prove that among
stochastic cross terms, x(t −h)T N

∫ t

t−h
g(s, xs) dw(s)

is the only one, whose expectation is equal to zero.
Then, based on this, the paper establishes a delay-
dependent synchronization criterion for stochastic de-
layed complex networks. In the derivation process, the
mathematical development avoids bounding stochastic
cross terms. Thus, the method leads to a simple crite-
rion with less conservatism, and a numerical example
is provided to demonstrate the effectiveness of the pro-
posed approach.

On the other hand, it is worth mentioning that there
are still some important problems to solve for stochas-
tic complex networks with time delays. (1) Most of the
stochastic complex networks considered in existing
results are perturbed by the Brown noises. However,
there are many other stochastic noises such as Pois-
son noises and Lévy noises in the real world. Thus,
it is very important to investigate the dynamic be-
haviors, such as the synchronization phenomena, for
complex networks perturbed by the Poisson noise and
Lévy noises in future researches. (2) As a very impor-
tant kind of stochastic delayed complex networks, the
neutral-type stochastic delayed complex networks are
still not investigated up to now. Since the neutral-type
stochastic systems with time delays have many appli-
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cations in practice, it is necessary to discuss the dy-
namical behaviors of neutral-type stochastic delayed
complex networks in future researches.
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