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Abstract

Drought has been a major cause of agricultural disaster, yet how it affects the vulnerability

of maize and wheat production in combination with several co-varying factors (i.e., pheno-

logical phases, agro-climatic regions, soil texture) remains unclear. Using a data synthesis

approach, this study aims to better characterize the effects of those co-varying factors with

drought and to provide critical information on minimizing yield loss. We collected data from

peer-reviewed publications between 1980 and 2015 which examined maize and wheat

yield responses to drought using field experiments. We performed unweighted analysis

using the log response ratio to calculate the bootstrapped confidence limits of yield

responses and calculated drought sensitivities with regards to those co-varying factors. Our

results showed that yield reduction varied with species, with wheat having lower yield reduc-

tion (20.6%) compared to maize (39.3%) at approximately 40% water reduction. Maize was

also more sensitive to drought than wheat, particularly during reproductive phase and

equally sensitive in the dryland and non-dryland regions. While no yield difference was

observed among regions or different soil texture, wheat cultivation in the dryland was more

prone to yield loss than in the non-dryland region. Informed by these results, we discuss

potential causes and possible approaches that may minimize drought impacts.

Introduction

Cereals grains have nourished humanity since their domestication thousands of years ago and

remained the most important source of calories for the majority of human population. Three

major cereal grains (i.e., maize, wheat and rice) and other minor grains (e.g., barley, sorghum,

oat, rye, millet) provided about 56% of the food energy and 50% of the protein consumed on

earth [1]. Maize and wheat alone contributed to more than 50% of global cereal production in

2013 or equal to about 1,016 and 713 million tons of grain production, respectively (Table 1).

These numbers need to be increased by 60% to 110% by 2050 to meet the increasing human

population, meat and dairy consumption, as well as biofuel industry [2].

Our food source heavily depends on cereals, yet their agricultural production is greatly

affected by drought [4, 5]. Drought occurs in virtually all climatic regions and drought-induced

crop yield loss is considered among the greatest losses in agriculture. During the last few
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decades, major drought events have been recorded and are projected to intensify in most parts

of Asia and beyond, which could make farming exceedingly challenging in some countries [6].

With the exception of United States, major producers of maize (e.g., China, Brazil, France) and

wheat (e.g., China, India, Russia) are projected to experience declines in production due to cli-

mate variability [6]. This variability was large enough to offset the increases in production

Table 1. World production and top producers of different cereal crops [3].

Common name Scientific name Production in tons (x106) in
2013

Top producers in descending order, averaged from
1993 to 2013

Wheat Triticum spp. 713.2 (25.65%)* China, India, USA, Russia

Common wheat, bread wheat Triticum aestivum

Durum wheat Triticum durum

Spelt Triticum spelta

Rice Oryza spp. 745.7 (26.82%) China, India, Indonesia, Bangladesh

Rice, paddy Oryza sativa

Barley Hordeum spp. 144. 7 (5.20%) Russia, Germany, Canada, France, Ukraine

Four-row barley Hordeum vulgare

Two-row barley Hordeum disticum

Six-row barley Hordeum hexasticum

Maize Zea mays 1,016.7 (36.56%) China, USA, Brazil, Mexico

Corn, Indian corn, mealies Zea mays

Pop corn Zea mays var. Everta

Rye Secale cereale 16.7 (0.6%) Russia, Poland, Germany, Belarus, Ukraine

Oats Avena spp. 23.8 (0.86%) Russia, Canada, USA, Poland, Australia

Oats Avena sativa

Millets 29.9 (1.07%) India, Nigeria, China, Niger

Pearl, cattail millet Pennisetum glaucum

Proso, common, golden millet Panicum miliaceum

Barnyard, Japanese millet Echinocloa frumentacea

African millet, finger Eleusine coracana

Ditch millet, koda Paspalum scrobiculatum

Foxtail millet Setaria italic

Sorghum Sorghum spp. 61.4 (2.21%) USA, India, Nigeria, Mexico, Sudan (former)

Common, milo, feterita, kaffir
corn

Sorghum vulgare

Guinea corn Sorghum guineense

Durra, juwar, kaoliang Sorghum dura

Buckwheat Fagopyrum esculentum 2.55 (0.10%) China, Russia, Ukraine, France

Quinoa Chenopodium quinoa 0.10 (0.004%) Peru, Bolivia, Ecuador

Fonio Digitaria spp. 0.58 (0.20%) Guinea, Nigeria, Mali, Burkina Faso, Côte d’Ivoire

Fonio, findi Digitaria exilis

Black fonio, hungry rice Digitaria iburua

Triticale Triticale hexaploide 14.6 (0.52%) China, USA, Turkey, Vietnam

Cereals nes 6.4 (0.23%) Ethiopia, Chad, Austria, Thailand, Kazakhstan

Canagua or coaihua Chenopodium

pallidiacaule

Quihuicha, Inca wheat Amaranthus caudatus

Wild rice Zizania aquatica

*number in parentheses are percentage of total cereal production

doi:10.1371/journal.pone.0156362.t001
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resulting from improvement in technology and elevated carbon dioxide concentration, gener-

ating declines in global maize and wheat production by 3.8% and 5.5%, respectively [6]. Similar

trend was also found in the less developed regions such as South Asia and Southern Africa

where malnourished human population has been concentrated [7]. With global climate change

and uncertainties in precipitation patterns, food security may become more vulnerable than in

the past [8], yet few economically-viable approaches exist to support crop production under

drought [9].

Despite ongoing breeding efforts to develop drought-resistant cultivars [10, 11], prolonged

droughts in the food-insecure regions may cause famine, epidemics, and deaths, generate water

crisis due to drying up of perennial streams, impact agriculture-based livelihood systems, food

security and overall economic development [12]. To fully understand the impact of drought on

food security, it is necessary to elucidate the environmental variables and agronomic factors

that determine the vulnerability of cereal production to drought. As variabilities often accom-

panied site-specific field experiments, meta-analysis can be used to summarize results from

numerous independent experiments on drought [13]. Based on this reasoning, this study aims

to better characterize the co-varying effects of several important factors (i.e., cereal species,

agroclimatic regions, plant phenological phases, and soil texture), and ultimately be able to use

this information to guide agricultural planning and minimize crop loss due to drought. This

information may also aid food production modeling by providing information on drought sen-

sitivity under different co-varying conditions which have been known to constrain the models

[14]. Our main research questions are: (i) how does drought-induced maize and wheat yield

reduction vary with different phenological phases, agroclimatic regions, and soil texture, and

(ii) what can we learn from this analysis to minimize maize and wheat yield reduction?

Methods

Peer-reviewed journal articles published in English from 1980 to 2015 were collected to build

the database based on Google Scholar search using the following two sets of keywords: (i)

wheat or maize, water, stress, yield, and field, or (ii) wheat or maize, irrigation, deficit, yield,

and field. Only articles that meet the following criteria were included in the database: (i) plants

that experienced drought under field conditions (excluding pot studies), (ii) the effect of water

deficit was considered in comparison with well-watered condition and not in combination

with other treatments (e.g., addition of fertilizers or growth hormones, modification of temper-

ature or CO2), (iii) the reported plants were monoculture cereals of maize (Zea mays) and

wheat (i.e., bread wheat; Triticum aestivum) which contributed approximately 62.3% of global

cereal production (Table 1), (iv) the articles reported crop response as yield (i.e., grain) [15].

The magnitude of yield responses is examined based on the following categorical variables: (i)

cereal species (maize and wheat), (ii) agro-ecosystem types (dryland and non-dryland), (iii)

drought timing (vegetative phase, reproductive phase which included flowering and grain fill-

ing, and during both the vegetative and reproductive phases or throughout season), and (iv)

soil texture (fine-, medium-, or coarse-textured soil).

For the purposes of meta-analysis, we established discrete levels for the each of the afore-

mentioned variable and coded each observation accordingly. Since we focused our analysis on

the amount of water available and yield, we only included studies which examined the single

effect of water reduction to minimize the variability of other agronomic factors (e.g., pests,

nutrients and diseases) that might affect yield. More importantly, these other factors were usu-

ally controlled during water treatment experiments. For the selected articles, we only used

paired study sites and therefore considered that other environmental factors (e.g., temperature,

light intensity) were the same between control and droughted condition. Agro-ecosystem types

Global Synthesis of Drought on Maize andWheat
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were differentiated based on aridity indices, which showed significant correlation with yield

[16] and soil texture was differentiated based on soil texture triangle. We considered clay,

sandy-clay, and silty-clay soils as fine texture, silt, silt-loam, silty-clay-loam, loam, sandy clay-

loam soils, and clay-loam soils as medium texture, and sand, loamy-sand, and sandy-loam as

coarse texture [17]. The flowchart diagram on how the process was conducted is presented in

S1 Fig. and the PRISMA checklist is available via S1 Information. The distribution of the study

locations, generated using ArcGIS 10.0 (ESRI, Redlands, CA), the list of the articles, and raw

data extracted from those articles are provided in Fig 1, S2 Information, and S1 Table,

respectively.

The total data points before averaging were 2829 from 144 studies. We averaged responses

across cultivars under the same drought treatment since the number of cultivars within a spe-

cies, especially for maize and wheat, could be very large [18–20]. By averaging the response

across cultivars instead of considering it as a factor, we increased the reliability of our results

and ensured the independence of each data entry [21]. Apart from genetic factors, crop yield

was also determined by agronomic practices under different climatic and soil conditions,

which were more commonly determined based on species rather than cultivar. We did not dif-

ferentiate among irrigation types and only recorded the amount of water applied. If a study

reported more than one timing of drought or levels of water reduction, all observations were

considered independent and included in the database. We therefore established ‘throughout

growing season’ as a separate level of drought timing to ensure the independence of data that

were continually collected during both vegetative and reproductive phase. Similarly, we also

considered all data independent if a study repeated the experiment over several years or loca-

tions, except when there was no significant year or location effect. For these non-significant

cases, data from the same study were then reported as an average across the years or places to

avoid over-representation of the study and to reduce publication bias [21]. Using average for

Fig 1. Distribution of the locations of all the studies used in this synthesis. The map was generated using ArcGIS 10.0 (ESRI, Redlands, CA).

doi:10.1371/journal.pone.0156362.g001
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non-significant results, for example, has been reported as a rigorous procedure to ensure the

independence of each data entry [21]. After averaging, the total data points used in the meta-

analysis were 1164.

Since most of the studies were controlled experiments (i.e., comparing irrigated conditions

and irrigation reduction instead of observing natural rainfall deficit), we could not use the

widely-accepted drought intensity indices such as Palmer index which are more effective in

determining long-term naturally-occurring drought [22, 23]. Instead, we calculated the ratio

between water during drought and during well-watered condition (i.e., water availability ratio)

for each categorical variable. Since not all studies incorporated the amount of rainfall, we also

included or excluded it accordingly (i.e., depending on the study). Therefore, while water avail-

ability ratio might or might not include rainfall, the inclusion or exclusion of rainfall was con-

sistent for each ratio. The highest water level in a study (i.e., well-watered condition,�100%

ET) was then used as control for all data in the corresponding study. We used this observed

water availability ratio to: (i) measure differences of available water among different categorical

variables using one-way ANOVA, and (ii) define drought sensitivity as the relationship

between ratio of yield during drought and during well-watered condition (i.e., yield response

ratio) and water availability ratio. We used ratio rather than the actual yield or amount of

water to make a more robust comparison among categorical variables since some species might

have lower or higher yield potential or water demand than others [24].

Drought sensitivity was also determined for each categorical variable. We separated maize

from wheat when calculating drought sensitivity during the reproductive phase and in the

non-dryland region since we observed different trends within the group (i.e., having R2 lower

than 0.1). Since not all studies recorded the amount of water available, we used the subset of

data (the exact numbers of data points were shown in the corresponding figures) that recorded

both yield response ratio and water availability ratio to construct the relationship. Confidence

interval and prediction band for each drought sensitivity relationship was calculated at the 95%

confidence level using Sigmaplot (Systat Software, San Jose, CA). It was noted that yield

response ratio and drought sensitivity could be different for the same species due to the differ-

ent calculation method. The yield response ratio was calculated based on the change of yield

under drought conditions vs. control without considering the variability in the amount of

water reduction. The difference in sensitivity, on the other hand, was determined by the ratio

between yield and water of each species. Therefore, while yield response ratio provided infor-

mation on the performance of one crop compared to other crops under certain range of water

reduction, the results may vary according to the water availability levels. Drought sensitivity

will thus provide a more useful indicator for farmers since it shows what will happen in the

field if they reduce a certain amount of water. We acknowledge, however, that there are some

limitations in the calculation of water sensitivity since it is quite possible that the amounts of

water applied to the well-watered control are in excess of crop usage. To minimize the effects

of overestimating the water requirement (i.e., maximum yield might have been reached at

water supply lower than the observed maximum supply) [25], we did not incorporate water

levels higher than the maximum evapotranspiration if this information is provided in the

paper.

To compare the differences in yield response ratio between each categorical variable, meta-

analysis was used to construct the confidence intervals. In order to include those studies that

did not adequately report sample size or standard deviation, we performed an unweighted

analysis using the log response ratio (lnR) to calculate bootstrapped confidence limits using the

statistical software MetaWin 2.0 [26]. The response ratio is the ratio between the outcome of

experimental group (i.e., drought) to that of the control group (i.e., well-watered condition) to

estimate the proportional change resulting from experimental drought manipulation. To

Global Synthesis of Drought on Maize andWheat
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improve the reliability of lnR in estimating the effect size, we performed a simple diagnostic

test using the formula [27]:

x

SD

4N
3=

2

1þ 4N

 !

� 3

where x is the mean, SD is the standard deviation and N is the sample size. Bootstrapping was

also iterated 9999 times to improve the probability that the confidence interval was calculated

around the cumulative mean effect size for each categorical variable [26]. The sample size of

each bootstrapping which reported the amount of water reduction was shown in its corre-

sponding figure. The difference is considered significant if the bootstrap confidence interval

did not overlap with each other. A statistical significance level of P< 0.05 was used.

Results and Discussion

Response of Maize andWheat to Drought

Based on the meta-analysis of all the available literature data, our results indicated that maize

and wheat showed significantly different yield response to drought. Under comparable water

reduction (approximately 40%), wheat had only 20% yield reduction, while maize experienced

approximately 39% yield reduction (P< 0.05; Fig 2). Our results also indicated that maize, the

major C4 cereal species (91.7% of global C4 cereal production in 2013) had higher sensitivity

than wheat, the major C3 species (42.9% of global C3 cereal production in 2013; Table 1, Fig 3).

This result is surprising given that plants with C4 photosynthetic pathway usually have higher

water-use efficiency than C3 plants, and therefore considered less sensitive to drought.

Although it has not been studied in all Poaceae family including in wheat and maize, lower

chlorophyll contents and higher leaf mortality have been observed in various C4 genera (i.e.,

Heteropogon, Themeda, Tristachya) compared to C3 (i.e., Alloteropsis, Panicum) grasses under

the same drought condition (i.e., 48 days without water where soil water content decreased by

Fig 2. Observed yield reduction (A) resulting frommeta-analysis and their corresponding water reduction (B) for maize and wheat.
Letters a and b indicate significant difference between observed water reduction level and n indicates the number of samples for each category
variable that has observable water reduction.

doi:10.1371/journal.pone.0156362.g002
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0.4% day-1) [28]. While photosynthetic rate was significantly higher in those C4 than C3 grasses

under well-watered condition, the opposite occurred when water was limited [29]. Photosyn-

thetic rate of the C4 grasses recovered from drought increased more slowly than that of C3

grasses with subsequent re-watering [28], which might partly explain the disparity in drought

sensitivities between maize and wheat. More importantly, maize is considered a diclinous mon-

oecious plant in which competition for water between female and male flowers during drought

favors the development of male rather than female inflorescence [30]. This attribute results in

fertilization failure and further contributes to the susceptibility of maize to drought during

reproductive phase. In contrast, the same effect is less pronounced in monoclinous monoecious

plant (e.g., wheat) as the anthers and ovaries develop in the same flower.

Different drought sensitivities of maize and wheat are likely related to the plant trait varia-

tions related to drought. Plant responses to drought are generally divided into three categories:

(i) drought escape (e.g., short life cycle), (ii) drought avoidance (i.e., maintenance of favorable

Fig 3. Drought sensitivity of wheat (A) andmaize (B), 95% confidence intervals of drought sensitivity of maize and wheat (C). Dotted
lines indicate 95% prediction band.

doi:10.1371/journal.pone.0156362.g003
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water status during drought using various mechanisms such as stomatal closure and senes-

cence of older leaves), and (iii) drought tolerance (i.e., ability of plants to function at low water

potential, including the ability to recover after stress) as the result of osmotic adjustment (OA),

rigid cell walls, small cells and reactive oxygen species scavenging [31]. Variability of yield

response and sensitivity in maize and wheat thus occur as they adopt different adaptation

mechanisms to drought. Some plants such as wheat adapt to droughts through their ability to

shed their old leaves and maintain appropriate cell turgor and stomatal conductance for carbon

assimilation by their young leaves [32, 33]. This stay-green trait (delayed senescence) in wheat

is important for its adaptation to environment where late-season drought (i.e., drought during

reproductive phase) is a common condition as it allows normal grain filling by mobilizing stem

reserve to the grains [34, 35]. Wheat is also able to tolerate drought by having high OA, and

along with high transpiration efficiency, they allow recovery from late-season drought, pro-

vided that water is available during grain filling period [36]. Osmotic adjustment in wheat facil-

itates critical growth functions (e.g., root growth, leaf metabolism, pollen development) which

may mitigate some of the most detrimental effects of plant water deficit [36]. For maize, strong

correlations seem to exist between yield and traits related to reproductive organs due to their

sensitivity to drought during reproductive phase [37, 38]. The selection of maize varieties that

develop small tassel size has been successful since maize favors the development of male (tas-

sels) rather than female inflorescences (ears), particularly during drought [39]. Small tassel size

is positively correlated with yield, which could be due to the suppression of shading and better

interception of light by the upper leaves or reduced transpiration [40].

Different Responses of Plant Phenological Phases to Drought

Our results showed that maize and wheat experiencing drought during their reproductive

phase had greater yield loss than those experiencing drought during their vegetative phase

(P< 0.05), although greater amount of available water during vegetative phase likely contrib-

uted to the greater yield (Fig 4). While wheat had similar sensitivity to drought during vegeta-

tive and reproductive phases, maize was much more sensitive than wheat during the

reproductive phase (Fig 5). Plants usually have different sensitivity to drought at different

Fig 4. Observed yield reduction (A) resulting frommeta-analysis and their corresponding water reduction (B) for maize and wheat
at different phenological phases. Letters a, b and c indicate significant difference between observed water reduction level and n indicates
the number of samples for each category that has observable water reduction.

doi:10.1371/journal.pone.0156362.g004
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phases of their growing period. Most seed plants, including cereals, start to lose their resistance

to drought once they are germinated [41]. In fact, seeding establishment, including crown root

and initial green leaf area development is critical. In drought-prone areas, drying seedbed is a

common cause of crop failure [41]. This circumstance, however, is not reflected in our analysis

since most drought experiments require good germination and initial plant development to

observe drought effects during subsequent crop life phases. During plant vegetative phase, we

found that yield reduction that occurred due to drought was smaller than that during the

reproductive phase (Fig 4), consistent with many other studies [31, 38, 39]. Since most of the

carbohydrate in maize and wheat grains is derived from post-anthesis photosynthesis [42],

potential yield loss due to drought during vegetative stage is usually small. Some exceptions

exist, however, when water stress inhibits ear development and therefore storage capacity [42].

In general, drought during vegetative phase is considered reparable because water deficit

merely induced stomatal closure and inhibit photosynthesis which limit carbohydrate synthesis

and thus cell division and expansion [31]. Drought that occurred during reproductive phase,

however, may lead to ovule abortion and pollen sterility in some cereal species (e.g., rice,

maize) [38, 39], suggesting that the effect of drought on yield during this phase could not be

reverted by adding water afterwards. Drought causes significant delay in silking [41], prevent-

ing the critical synchrony between silking and anthesis and resulting in maize yield reduction

[30, 43]. This observation explains why the anthesis-silking interval (ASI) has been reduced in

modern maize hybrids [39], and short ASI has been the focus of breeding programs aimed at

developing drought-tolerant maize varieties [37, 44]. Indeed, short ASI (and tassel size in tem-

perate maize) have contributed to the increase in grain yield in newer maize hybrids [39].

Wheat seemed to have similar sensitivity to drought, whether it occurred during the vegeta-

tive or reproductive phase. This result is surprising given that most of the literature would sug-

gest that the reproductive phase is the most crucial in determining crop yield [31, 33, 38, 39].

This similarity in drought sensitivity between vegetative and reproductive phase might be pos-

sible as reduction in the number of ears in wheat was reported when drought occurred during

the entire growing season or between anthesis and early milk development, but not when it

occurred during grain maturity [45]. Wheat is apparently sensitive to water stress during the

vegetative phase (i.e., early-season drought) as it allocates more of its assimilates to the roots,

resulting in reduced leaf area, number of leaves per plant, leaf size and leaf longevity [46].

Early-season drought that happened four weeks before anthesis was also found to reduce yield

significantly by lowering the number of grains per ear [46, 47]. If drought prolongs to mid-sea-

son (i.e., between jointing and anthesis), however, its impact on wheat head size (i.e., the num-

ber of spikelet per spike) and root growth can be irreversible since late-emerging tillers do not

contribute to yield [48, 49]. Here the combination of reductions in photosynthetic sink and

nutrient uptake capacity could severely decrease yield. Therefore, traits that allow soil moisture

saving during early growth (e.g., vigorous crop establishment to shade the soil and suppress

water competition from weeds, as well as thinner but wider leaves to increase ground cover and

radiation-use efficiency) are particularly important for wheat in dry areas where water loss

from soil evaporation is significant (e.g., Mediterranean) [50, 51].

Response to Droughts of Maize andWheat Grown under Different
Climates

Maize and wheat production in various regions of the world is frequently affected by water

shortages, particularly in the dry regions. We, however, did not find any significant effect on

yield reduction between dryland and non-dryland regions (P>0.05; S2 Fig). Wheat plants

grown in the dryland had higher sensitivity to drought compared to those grown in the non-
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Fig 5. Drought sensitivity of maize and wheat at different phenological phases (A-D) and 95% confidence interval of drought sensitivity
of maize and wheat experiencing drought at different phenological phases (E). Dotted lines indicate 95% prediction band.

doi:10.1371/journal.pone.0156362.g005
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dryland region while maize was equally sensitive in both regions (P< 0.05; S3 Fig). Drought is

one of the most prominent characteristics of the drylands, which makes the two billion inhabi-

tants of these eco-regions vulnerable to crop failure [52]. Given the low relative humidity and

the high potential evapotranspiration demand in dryland regions, it is unsurprising that the

crops grown there have relatively high sensitivity to drought. Wheat showed lower sensitivity to

drought in the non-dryland regions, suggesting that differences in origin and therefore inherited

adaptability traits between maize and wheat could attribute to the difference. Unlike maize that

likely came from wetter regions [53], wheat originated from dryland region [54], and therefore

wheat could show lower sensitivity to drought when they were grown in the more humid regions.

Indeed, maize cultivation has been more common in areas where water availability is non-limit-

ing [55]. While 75% of the land area where wheat is grown receives between 375 and 875 mm of

annual precipitation with mean temperature of 25°C, wheat can tolerate precipitation ranging

between 250 and 1750 mm and temperature from 3° to 32°C [50, 51].

Response to Drought of Maize andWheat Grown on Soils of Different
Texture

In most cases, soil texture can provide a good estimate for soil-water potential, water holding

capacity, and water availability for plant growth. Our meta-analysis results, however, suggested

that soil texture was not a major determining factor for drought-induced maize and wheat

yield reduction worldwide (S4 Fig). Similarly, soil texture did not affect maize and wheat sensi-

tivity to drought (S5 Fig). Cereal crops, including maize and wheat, usually had larger root

mass and root length density when compared to other food crops (i.e., legumes), which showed

variability across different soil texture [56, 57]. Cereals also required lower water intake per

unit root length compared to legumes [58], and those factors likely contributed to the robust-

ness of cereal yield across contrasting soil textures. Wheat, for example, was able to extend

their roots to an average 113 cm and had less than 50% of their total root length in the top 20

cm, while legume (i.e., field pea) to only 65 cm with more than 70% of them was in the top 20

cm [59]. Apart from having drought tolerance strategy (e.g., stay green, high OA), wheat also

had drought avoidance strategy by having deep-root system, which allowed them to access sub-

soil water and performed well under drought [60].

Conclusions

Overall, we found that maize tended to experience greater yield loss due to drought, partly

because maize was originated from wetter region which likely contributed to their sensitivity

across agro-climatic conditions. Maize was also highly sensitive during reproductive phase.

Although wheat had similar sensitivity to drought during vegetative and reproductive phase, it

was considerably lower than that of maize. Therefore, when supplemental irrigation could be

applied, the timing of irrigation is essential in determining its efficiency. Our results may be

used as the basis to model the interactions between agronomic inputs, to quantify productivity

gains and production costs for maize and wheat and to determine optimum irrigation schedul-

ing during critical growth periods (e.g., flowering). Indeed, research in several counties in the

Gansu Province of China has shown that supplemental irrigation of wheat and maize using

rainwater harvesting stored in subsurface tanks could significantly improve yield in these

water-scarce areas (mean annual rainfall = 289 mm). Even a small amount of supplemental

irrigation (350–750 m3 ha-1 or 35–75 mm of water depth equivalent) during the growth period

generated about 28–88% increase in yield of wheat and maize, respectively. Thus, the yield

increase was more than proportional to the increase (12–25%) in water as supplemental irriga-

tion [9]. Since there is no single approach that is sufficient to improve plant performance, a
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combination of approaches should be considered when designing a response plan to drought.

Site-specific management that considers soil conditions (i.e., intercropping, mulching, and

crop rotation) and trait selection that is adjusted to the local climate are more likely to result in

sustainable crop yields in a changing climate. Although plant breeding provides a pathway for

the development of drought-resistant cereal species and thus could help reduce the vulnerabil-

ity of agricultural production to the unpredictability of climates, successful applications of

these technological innovations require careful consideration of local environmental condi-

tions (e.g., rainfall, temperature and soil nutrients).
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