
The Annals of Statistics
2011, Vol. 39, No. 5, 2533–2556
DOI: 10.1214/11-AOS910
© Institute of Mathematical Statistics, 2011

GLOBAL TESTING UNDER SPARSE ALTERNATIVES: ANOVA,
MULTIPLE COMPARISONS AND THE HIGHER CRITICISM1

BY ERY ARIAS-CASTRO, EMMANUEL J. CANDÈS AND YANIV PLAN

University of California, San Diego, Stanford University
and California Institute of Technology

Testing for the significance of a subset of regression coefficients in a
linear model, a staple of statistical analysis, goes back at least to the work of
Fisher who introduced the analysis of variance (ANOVA). We study this prob-
lem under the assumption that the coefficient vector is sparse, a common situ-
ation in modern high-dimensional settings. Suppose we have p covariates and
that under the alternative, the response only depends upon the order of p1−α

of those, 0 ≤ α ≤ 1. Under moderate sparsity levels, that is, 0 ≤ α ≤ 1/2,
we show that ANOVA is essentially optimal under some conditions on the
design. This is no longer the case under strong sparsity constraints, that is,
α > 1/2. In such settings, a multiple comparison procedure is often preferred
and we establish its optimality when α ≥ 3/4. However, these two very pop-
ular methods are suboptimal, and sometimes powerless, under moderately
strong sparsity where 1/2 < α < 3/4. We suggest a method based on the
higher criticism that is powerful in the whole range α > 1/2. This optimal-
ity property is true for a variety of designs, including the classical (balanced)
multi-way designs and more modern “p > n” designs arising in genetics and
signal processing. In addition to the standard fixed effects model, we estab-
lish similar results for a random effects model where the nonzero coefficients
of the regression vector are normally distributed.

1. Introduction.

1.1. The analysis of variance. Testing whether a subset of covariates have any
linear relationship with a quantitative response has been a staple of statistical anal-
ysis since Fisher introduced the analysis of variance (ANOVA) in the 1920s [15].
Fisher developed ANOVA in the context of agricultural trials and the test has since
then been one of the central tools in the statistical analysis of experiments [35].
As a consequence, there are countless situations in which it is routinely used, in
particular, in the analysis of clinical trials [36] or in that of cDNA microarray ex-
periments [7, 26, 37], to name just two important areas of biostatistics.
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To begin with, consider the simplest design known as the one-way layout,

yij = μ + τj + zij ,

where yij is the ith observation in group j , τj is the main effect for the j th treat-
ment, and the zij ’s are measurement errors assumed to be i.i.d. zero-mean normal
variables. The goal is of course to determine whether there is any difference be-
tween the treatments. Formally, assuming there are p groups, the testing problem
is

H0 : τ1 = τ2 = · · · = τp = 0,

H1 : at least one τj �= 0.

The classical one-way analysis of variance is based on the well-known F -test cal-
culated by all statistical software packages. A characteristic of ANOVA is that it
tests for a global null and does not result in the identification of which τj ’s are
nonzero.

Taking within-group averages reduces the model to

yj = βj + zj , j = 1, . . . , p,(1.1)

where βj = μ + τj and the zj ’s are independent zero-mean Gaussian variables. If
we suppose that the grand mean has been removed, so that the overall mean effect
vanishes, that is, μ = 0, then the testing problem becomes

H0 :β1 = β2 = · · · = βp = 0,(1.2)

H1 : at least one βj �= 0.

In order to discuss the power of ANOVA in this setting, assume for simplicity that
the variances of the error terms in (1.1) are known and identical, so that ANOVA
reduces to a chi-square test that rejects for large values of

∑
j y2

j . As explained
before, this test does not identify which of the βj ’s are nonzero, but it has great
power in the sense that it maximizes the minimum power against alternatives of
the form {β :

∑
j β2

j ≥ B} where B > 0. Such an appealing property may be shown
via invariance considerations; see [32] and [28], Chapters 7 and 8.

1.2. Multiple testing and sparse alternatives. A different approach to the same
testing problem is to test each individual hypothesis βj = 0 versus βj �= 0, and
combine these tests by applying a Bonferroni-type correction. One way to imple-
ment this idea is by computing the minimum P -value and comparing it with a
threshold adjusted to achieve a desired significance level. When the variances of
the zj ’s are identical, this is equivalent to rejecting the null when

Max(y) = max
j

|yj |(1.3)

exceeds a given threshold. From now on, we will refer to this procedure as the
Max test. Because ANOVA is such a well established method, it might surprise the
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reader—but not the specialist—to learn that there are situations where the Max test,
though apparently naive, outperforms ANOVA by a wide margin. Suppose indeed
that zj ∼ N (0,1) in (1.1) and consider an alternative of the form maxj |βj | ≥ A

where A > 0. In this setting, ANOVA requires A to be at least as large as p1/4 to
provide small error probabilities, whereas the Max test only requires A to be on
the order of (2 logp)1/2. When p is large, the difference is very substantial. Later
in the paper, we shall prove that in an asymptotic sense, the Max test maximizes
the minimum power against alternatives of this form. The key difference between
these two different classes of alternatives resides in the kind of configurations of
parameter values which make the likelihoods under H0 and H1 very close. For
the alternative {β :

∑
j β2

j ≥ B}, the likelihood functions are hard to distinguish
when the entries of β are of about the same size (in absolute value). For the other,
namely, {β : maxj |βj | ≥ A}, the likelihood functions are hard to distinguish when
there is a single nonzero coefficient equal to ±A.

Multiple hypothesis testing with sparse alternatives is now commonplace, in
particular, in computational biology where the data is high-dimensional and we
typically expect that only a few of the many measured variables actually con-
tribute to the response—only a few assayed treatments may have a positive ef-
fect. For instance, DNA microarrays allow the monitoring of expression levels
in cells for thousands of genes simultaneously. An important question is to de-
cide whether some genes are differentially expressed, that is, whether or not there
are genes whose expression levels are associated with a response such as the ab-
sence/presence of prostate cancer. A typical setup is that the data for the ith in-
dividual consists of a response or covariate yi (indicating whether this individual
has a specific disease or not) and a gene expression profile yji , 1 ≤ j ≤ p. A stan-
dard approach consists in computing, for each gene j , a statistic Tj for testing the
null hypothesis of equal mean expression levels and combining them with some
multiple hypothesis procedure [13, 14]. A possible and simple model in this sit-
uation may assume Tj ∼ N (0,1) under the null while Tj ∼ N (βj ,1) under the
alternative. Hence, we are in our sparse detection setup since one typically expects
only a few genes to be differentially expressed. Despite the form of the alterna-
tive, ANOVA is still a popular method for testing the global null in such problems
[26, 37].

1.3. This paper. Our exposition has thus far concerned simple designs,
namely, the one-way layout or sparse mean model. This paper, however, is con-
cerned with a much more general problem: we wish to decide whether or not a
response depends linearly upon a few covariates. We thus consider the standard
linear model

y = Xβ + z(1.4)

with an n-dimensional response y = (y1, . . . , yn), a data matrix X ∈ R
n×p (as-

sumed to have full rank) and a noise vector, assumed to be i.i.d. standard nor-
mal. The decision problem (1.2) is whether all the βi ’s are zero or not. We briefly
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pause to remark that statistical practitioners are familiar with the ANOVA derived
F -statistic—also known as the model adequacy test—that software packages rou-
tinely provide for testing H0. Our concern, however, is not at all model adequacy
but rather we view the test of the global null as a detection problem. In plain En-
glish, we would like to know whether there is signal or whether the data is just
noise. A more general problem is to test whether a subset of coordinates of β are
all zero or not, and, as is well known, ANOVA is in this setup the most popular
tool for comparing nested models. We emphasize that our results also apply to
such general model comparisons, as we shall see later.

There are many applications of high-dimensional setups in which a response
may depend upon only a few covariates. We give a few examples in the life sci-
ences and in engineering; there are, of course, many others:

• Genetics. A single nucleotide polymorphism (SNP) is a form of DNA varia-
tion that occurs when at a single position in the genome, multiple (typically
two) different nucleotides are found with positive frequency in the population
of reference. One then collects information about allele counts at polymorphic
locations. Almost all common SNPs have only two alleles so that one records a
variable xij on individual i taking values in {0,1,2} depending upon how many
copies of, say, the rare allele one individual has at location j . One also records
a quantitative trait yi . Then the problem is to decide whether or not this quan-
titative trait has a genetic background. In order to scan the entire genome for a
signal, one needs to screen between 300,000 and 1,000,000 SNPs. However, if
the trait being measured has a genetic background, it will be typically regulated
by a small number of genes. In this example, n is typically in the thousands
while p is in the hundreds of thousands. The standard approach is to test each
hypothesis Hj :βj �= 0 by using a statistic depending on the least-squares esti-
mate β̂j obtained by fitting the simple linear regression model

yi = β̂0 + β̂j xij + rij .(1.5)

The global null is then tested by adjusting the significance level to account for
the multiple comparisons, effectively implementing a Max test; see [33, 39], for
example.

• Communications. A multi-user detection problem typically assumes a linear
model of the form (1.4), where the j th column of X, denoted xj , is the chan-
nel impulse response for user j so that the received signal from the j th user is
βj xj (we have βj = 0 in case user j is not sending any message). Note that the
mixing matrix X is often modeled as random with i.i.d. entries. In a strong noise
environment, we might be interested in knowing whether information is being
transmitted (some βj ’s are not zero) or not. In some applications, it is reasonable
to assume that only a few users are transmitting information at any given time.
Standard methods include the matched filter detector, which corresponds to the
Max test applied to XT y, and linear detectors, which correspond to variations of
the ANOVA F -test [21].
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• Signal detection. The most basic problem in signal processing concerns the de-
tection of a signal S(t) from the data y(t) = S(t) + z(t) where z(t) is white
noise. When the signal is nonparametric, a popular approach consists in model-
ing S(t) as a (nearly) sparse superposition of waveforms taken from a dictionary
X, which leads to our linear model (1.4) (the columns of X are elements from
this dictionary). For instance, to detect a multi-tone signal, one would employ a
dictionary of sinusoids; to detect a superposition of radar pulses, one would em-
ploy a time-frequency dictionary [30, 31]; and to detect oscillatory signals, one
would employ a dictionary of chirping signals. In most cases, these dictionaries
are massively overcomplete so that we have more candidate waveforms than the
number of samples, that is, p > n. Sparse signal detection problems abound, for
example the detection of cracks in materials [40], of hydrocarbon from seismic
data [6] and of tumors in medical imaging [24].

• Compressive sensing. The sparse detection model may also arise in the area of
compressive sensing [4, 5, 10], a novel theory which asserts that it is possible
to accurately recover a (nearly) sparse signal—and by extension, a signal that
happens to be sparse in some fixed basis or dictionary—from the knowledge of
only a few of its random projections. In this context, the n × p matrix X with
n � p may be a random projection such as a partial Fourier matrix or a matrix
with i.i.d. entries. Before reconstructing the signal, we might be interested in
testing whether there is any signal at all in the first place.

All these examples motivate the study of two classes of sparse alternatives:

(1) Sparse fixed effects model (SFEM). Under the alternative, the regression
vector β has at least S nonzero coefficients exceeding A in absolute value.

(2) Sparse random effects model (SREM). Under the alternative, the regression
vector β has at least S nonzero coefficients assumed to be i.i.d. normal with zero
mean and variance τ 2.

In both models, we set S = p1−α , where α ∈ (0,1) is the sparsity exponent. Our
purpose is to study the performance of various test statistics for detecting such
alternatives.2

1.4. Prior work. To introduce our results and those of others, we need to recall
a few familiar concepts from statistical decision theory. From now on, � denotes
a set of alternatives, namely, a subset of R

p \ {0} and π is a prior on �. The
Bayes risk of a test T = T (X,y) for testing β = 0 versus β ∼ π when H0 and H1
occur with the same probability is defined as the sum of its probability of type I
error (false alarm) and its average probability of type II error (missed detection).
Mathematically,

Riskπ(T ) := P0(T = 1) + π [Pβ(T = 0)],(1.6)

2We will sometimes put a prior on the support of β and on the signs of its nonzero entries in SFEM.
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where Pβ is the probability distribution of y given by the model (1.4) and π [·] is
the expectation with respect to the prior π . If we consider the linear model in the
limit of large dimensions, that is, p → ∞ and n = n(p) → ∞, and a sequence
of priors {πp}, then we say that a sequence of tests {Tn,p} is asymptotically pow-
erful if limp→∞ Riskπp(Tn,p) = 0. We say that it is asymptotically powerless if
lim infp→∞ Riskπp(Tn,p) ≥ 1. When no prior is specified, the risk is understood as
the worst-case risk defined as

Risk(T ) := P0(T = 1) + max
β∈�

Pβ(T = 0).

With our modeling assumptions, ANOVA for testing β = 0 versus β �= 0 re-
duces to the chi-square test that rejects for large values of ‖Py‖2, where P is the
orthogonal projection onto the range of X. Since under the alternative, ‖Py‖2 has
the chi-square distribution with min(n,p) degrees of freedom and noncentrality
parameter ‖Xβ‖2, a simple argument shows that ANOVA is asymptotically pow-
erless when

‖Xβ‖2/
√

min(n,p) → 0,(1.7)

and asymptotically powerful if the same quantity tends to infinity. This is congru-
ent with the performance of ANOVA in a standard one-way layout; see [1], who
obtain the weak limit of the ANOVA F -ratio under various settings.

Consider the sparse fixed effects alternative now. We prove that ANOVA is still
essentially optimal under mild levels of sparsity corresponding to α ∈ [0,1/2] but
not under strong sparsity where α ∈ (1/2,1]. In the sparse mean model (1.1) where
X is the identity, ANOVA is suboptimal, requiring A to grow as a power of p; this
is simply because (1.7) becomes A2S/

√
p → 0 when all the nonzero coefficients

are equal to A in absolute value. In contrast, the Max test is asymptotically pow-
erful when A is on the order of

√
logp but is only optimal under very strong

sparsity, namely, for α ∈ [3/4,1]. It is possible to improve on the Max test in the
range α ∈ (1/2,3/4) and we now review the literature which only concerns the
sparse mean model, X = Ip . Set

ρ∗(α) =
{

α − 1/2, 1/2 < α < 3/4,(
1 − √

1 − α
)2

, 3/4 ≤ α < 1.
(1.8)

Then Ingster [22] showed that if A = √
2r logp with r < ρ∗(α) fixed as p → ∞,

then all sequences of tests are asymptotically powerless. In the other direction, he
showed that there is an asymptotically powerful sequence of tests if r > ρ∗(α).
See also the work of Jin [25]. Donoho and Jin [9] analyzed a number of testing
procedures in this setting, and, in particular, the higher criticism of Tukey which
rejects for large values of

HC∗(y) = sup
t>0

#{i : |yi | > t} − 2p�̄(t)√
2p�̄(t)(1 − 2�̄(t))

,
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where �̄ denotes the survival function of a standard normal random variable. They
showed that the higher criticism is powerful within the detection region established
by Ingster. Hall and Jin [18, 19] have recently explored the case where the noise
may be correlated, that is, z ∼ N (0,V) and the covariance matrix V is known
and has full rank. Letting V = LLT be a Cholesky factorization of the covariance
matrix, one can whiten the noise in y = β + z by multiplying both sides by L−1,
which yields ỹ = L−1β + z̃; z̃ is now white noise, and this is a special case of the
linear model (1.4). When the design matrix is triangular with coefficients decaying
polynomially fast away from the diagonal, [19] proves that the detection threshold
remains unchanged, and that a form of higher criticism still achieves asymptotic
optimality.

There are few other theoretical results in the literature, among which [16] de-
velops a locally most powerful (score) test in a setting similar to SREM; here,
“locally” means that this property only holds for values of τ sufficiently close to
zero. The authors do not provide any minimal value of τ that would guarantee the
optimality of their method. However, since their score test resembles the ANOVA
F -test, we suggest that it is only optimal for very small values of τ corresponding
to mild levels of sparsity, that is, α < 1/2.

Since the submission of our paper, a manuscript by Ingster, Tsybakov and
Verzelen [23], also considering the detection of a sparse vector in the linear re-
gression model, has become publicly available. We comment on differences in
Section 3.

In the signal processing literature, a number of applied papers consider the prob-
lem of detecting a signal expressed as a linear combination in a dictionary [6, 17,
40]. However, the extraction of the salient signal is often the end goal of real signal
processing applications so that research has focused on estimation rather than pure
detection. As a consequence, one finds a literature entirely focused on estimation
rather than on testing whether the data is just white noise or not. Examples of pure
detection papers include [12, 20, 34]. In [12], the authors consider detection by
matched filtering, which corresponds to the Max test, and perform simulations to
assess its power. The authors in [20] assume that β is approximately known and
examine the performance of the corresponding matched filter. Finally, the paper
[34] proposes a Bayesian approach for the detection of sparse signals in a sensor
network for which the design matrix is assumed to have some polynomial decay
in terms of the distance between sensors.

1.5. Our contributions. We show that if the predictor variables are not too cor-
related, there is a sharp detection threshold in the sense that no test is essentially
better than a coin toss when the signal strength is below this threshold, and that
there are statistics which are asymptotically powerful when the signal strength is
above this threshold. This threshold is the same as that one gets for the sparse
mean problem. Therefore, this work extends the earlier results and methodologies
cited above [9, 18, 19, 22, 25], and is applicable to the modern high-dimensional
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situation where the number of predictors may greatly exceed the number of obser-
vations.

A simple condition under which our results hold is a low-coherence assump-
tion.3 Let x1, . . . ,xp be the column vectors of X, assumed to be normalized; this
assumption is merely for convenience since it simplifies the exposition, and is not
essential. Then if a large majority of all pairs of predictors have correlation less
than γ with γ = O(p−1/2+ε) for each ε > 0 (the real condition is weaker), then
the results for the sparse mean model (1.1) apply almost unchanged. Interestingly,
this is true even when the ratio between the number of observations and the num-
ber of variables is negligible, that is, n/p → 0. In particular, A = √

2ρ∗(α) logp

is the sharp detection threshold for SFEM (sparse fixed effects model). Moreover,
applying the higher criticism, not to the values of y, but to those of XT y is asymp-
totically powerful as soon as the nonzero entries of β are above this threshold; this
is true for all α ∈ (1/2,1]. In contrast, the Max test applied to XT y is only optimal
in the region α ∈ [3/4,1]. We derive the sharp threshold for SREM as well, which
is at τ = √

α/(1 − α). We show that the Max tests and the higher criticism are
essentially optimal in this setting as well for all α ∈ (1/2,1], that is, they are both
asymptotically powerful as soon as the signal-to-noise ratio permits.

Before continuing, it may be a good idea to give a few examples of designs
obeying the low-coherence assumption (weak correlations between most of the
predictor variables) since it plays an important role in our analysis:

• Orthogonal designs. This is the situation where the columns of X are orthogonal
so that XT X is the p×p identity matrix (necessarily, p ≤ n). Here the coherence
is of course the lowest since γ (X) = 0.

• Balanced, one-way designs. As in a clinical trial comparing p treatments, as-
sume a balanced, one-way design with k replicates per treatment group and
with the grand mean already removed. This corresponds to the linear model
(1.4) with n = pk and, since we assume the predictors to have norm 1,

X = 1√
k

⎡
⎢⎢⎣

1 0 · · · 0
0 1 · · · 0
...

...
...

...

0 0 · · · 1

⎤
⎥⎥⎦ ∈ R

n×p,(1.9)

where each vector in this block representation is k-dimensional. This is in fact
an example of orthogonal design. Note that our results apply even under the
standard constraint 1T β = 0.

• Concatenation of orthonormal bases. Suppose that p = nk and that X is the con-
catenation of k orthonormal bases in R

n jointly used as to provide an efficient
signal representation. Then our result applies provided that k = O(nε),∀ε > 0

3Although we are primarily interested in the modern p > n setup, our results apply regardless of
the values of p and n.
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and that our bases are mutually incoherent so that γ is sufficiently small (for
examples of incoherent bases see, e.g., [11]).

• Random designs. As in some compressive sensing and communications appli-
cations, assume that X has i.i.d. normal entries4 with columns subsequently
normalized (the column vectors are sampled independently and uniformly at
random on the unit sphere). Such a design is close to orthogonal since γ ≤√

5(logp)/n with high probability. This fact follows from a well-known con-
centration inequality for the uniform distribution on the sphere [27]. The exact
same bound applies if the entries of X are instead i.i.d. Rademacher random
variables.

We return to the discussion of our statistics and note that the higher criticism
and the Max test applied to XT y are exceedingly simple methods with a straight-
forward implementation running in O(np) flops. This brings us to two important
points:

(1) In the classical sparse mean model, Bonferroni-type multiple testing (the
Max test) is not optimal when the sparsity level is moderately strong, that is, when
1/2 < α < 3/4 [9]. This has direct implications in the fields of genetics and ge-
nomics where this is the prevalent method. The same is true in our more general
model and it implies, for example, that the matched filter detector in wireless multi-
user detection is suboptimal in the same sparsity regime.

We elaborate on this point because this carries an important message. When
the sparsity level is moderately strong, the higher criticism method we propose is
powerful in situations where the signal amplitude is so weak that the Max test is
powerless. This says that one can detect a linear relationship between a response y
and a few covariates even though those covariates that are most correlated with y
are not even in the model. Put differently, if we assign a P -value to each hypothesis
βj = 0 (computed from a simple linear regression as discussed earlier), then the
case against the null is not in the tail of these P -values but in the bulk, that is, the
smallest P -values may not carry any information about the presence of a signal. In
the situation we describe, the smallest P -values most often correspond to true null
hypotheses, sometimes in such a way that the false discovery rate (FDR) cannot
be controlled at any level below 1; and yet, the higher criticism has full power.

(2) Though we developed the idea independently, the higher criticism applied
to XT y is similar to the innovated higher criticism of Hall and Jin [19], which is
specifically designed for time series. Not surprisingly, our results and arguments
bear some resemblance with those of Hall and Jin [19]. We have already explained
how their results apply when the design matrix is triangular (and, in particular,
square) and has sufficiently rapidly decaying coefficients away from the diagonal.
Our results go much further in the sense that (1) they include designs that are far

4This is a frequently discussed channel model in communications.
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from being triangular or even square, and (2) they include designs with coefficients
that do not necessarily follow any ordered decay pattern. On the technical side,
Hall and Jin astutely reduce matters to the case where the design matrix is banded,
which greatly simplifies the analysis. In the general linear model, it is not clear
how a similar reduction would operate especially when n < p—at the very least,
we do not see a way—and one must deal with more intricate dependencies in the
noise term XT z.

As we have remarked earlier, we have discussed testing the global null β = 0,
whereas some settings obviously involve nuisance parameters as in the comparison
of nested models. Examples of nuisance parameters include the grand mean in
a balanced, one-way design or, more generally, the main effects or lower-order
interactions in a multi-way layout. In signal processing, the nuisance term may
represent clutter as opposed to noise. In general, we have

y = X(0)β(0) + X(1)β(1) + z,

where β(0) is the vector of nuisance parameters, and β(1) the vector we wish to
test. Our results concerning the performance of ANOVA, the higher criticism or
the Max test apply provided that the column spaces of X(0) and X(1) be suffi-
ciently far apart. This occurs in lots of applications of interest. In the case of the
balanced, multi-way design, these spaces are actually orthogonal. In signal pro-
cessing, these spaces will also be orthogonal if the column space of X(0) spans the
low-frequencies while we wish to detect the presence of a high-frequency signal.
The general mechanism which allows us to automatically apply our results is to
simply assume that P0X(1), where P0 is the orthogonal projector with the range of
X(0) as null space, obeys the conditions we have for X.

1.6. Organization of the paper. The paper is organized as follows. In Section 2
we consider orthogonal designs and state results for the classical setting where no
sparsity assumption is made on the regression vector β , and the setting where β
is mildly sparse. In Section 3 we study designs in which most pairs of predictor
variables are only weakly correlated; this part contains our main results. In Sec-
tion 4 we focus on some examples of designs with full correlation structure, in
particular, multi-way layouts with embedded constraints. Section 5 complements
our study with some numerical experiments, and we close the paper with a short
discussion, namely, Section 6. Finally, the proofs are gathered in a supplementary
file [2].

1.7. Notation. We provide a brief summary of the notation used in the paper.
Set [p] = {1, . . . , p} and for a subset J ⊂ [p], let |J | be its cardinality. Bold upper
(resp., lower) case letters denote matrices (resp., vectors), and the same letter not
bold represents its coefficients, for example, aj denotes the j th entry of a. For an
n×p matrix A with column vectors a1, . . . ,ap , and a subset J ⊂ [p], AJ denotes
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the n-by-|J | matrix with column vectors aj , j ∈ J . Likewise, aJ denotes the
vector (aj , j ∈ J ). The Euclidean norm of a vector is ‖a‖ and the sup-norm ‖a‖∞.
For a matrix A = (aij ), ‖A‖∞ = supi,j |aij |, and this needs to be distinguished
from ‖A‖∞,∞, which is the operator norm induced by the sup norm, ‖A‖∞,∞ =
sup‖x‖∞≤1 ‖Ax‖∞. The Frobenius (Euclidean) norm of A is ‖A‖F . � (resp., φ)
denotes the cumulative distribution (resp., density) function of a standard normal
random variable, and �̄ its survival function. For brevity, we say that β is S-sparse
if β has exactly S nonzero coefficients. Finally, we say that a random variable
X ∼ FX is stochastically smaller than Y ∼ FY , denoted X ≤sto Y , if FX(t) ≥ FY (t)

for all scalar t .

2. Orthogonal designs. This section introduces some results for the orthog-
onal design in which the columns of X are orthonormal, that is, XT X = Ip . While
from the analysis viewpoint there is little difference with the case where X is the
identity matrix, this is of course a special case of our general results, and this sec-
tion may also serve as a little warm-up. Our first result, which is a special case
of Proposition 2, determines the range of sparse alternatives for which ANOVA is
essentially optimal.

PROPOSITION 1. Suppose X is orthogonal and let the number of nonzero co-
efficients be S = p1−α with α ∈ [0,1/2]. In SFEM (resp., SREM), all sequences of
tests are asymptotically powerless if A2S/p1/2 → 0 (resp., τ 2S/p1/2 → 0).

Returning to our earlier discussion, it follows from (1.7) and the lower
bound ‖Xβ‖2 = ‖β‖2 ≥ A2S that ANOVA has full asymptotic power whenever
A2S/p1/2 → ∞. Therefore, comparing this with the content of Proposition 1 re-
veals that ANOVA is essentially optimal in the moderately sparse range corre-
sponding to α ∈ [0,1/2].

The second result of this section is that under an n × p orthogonal design, the
detection threshold is the same as if X were the identity. We need a little bit of
notation to develop our results. As in [9], define

ρMax(α) = (
1 − √

1 − α
)2

,

and observe that with ρ∗(α) as in (1.8),{
ρ∗(α) < ρMax(α), 1/2 ≤ α < 3/4,
ρ∗(α) = ρMax(α), 3/4 ≤ α ≤ 1.

We will also set a detection threshold for SREM defined by

ρ∗
rand(α) =

√
α/(1 − α).(2.1)

With these definitions, the following theorem compares the performance of the
higher criticism and the Max test.
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THEOREM 1. Suppose X is orthogonal and assume the sparsity exponent
obeys α ∈ (1/2,1].

(1) In SFEM, all sequences of tests are asymptotically powerless if A =√
2r logp with r < ρ∗(α). Conversely, the higher criticism applied to |xT

1 y|, . . . ,
|xT

p y| is asymptotically powerful if r > ρ∗(α). Also, the Max test is asymptotically
powerful if r > ρMax(α) and powerless if r < ρMax(α).

(2) In SREM, all sequences of tests are asymptotically powerless if τ <

ρ∗
rand(α). Conversely, both the higher criticism and the Max test applied to

|xT
1 y|, . . . , |xT

p y| are asymptotically powerful if τ > ρ∗
rand(α).

In the upper bounds, r and τ are fixed while p → ∞.

To be absolutely clear, the statements for SFEM may be understood either in the
worst-case risk sense or under the uniform prior on the set of S-sparse vectors with
nonzero coefficients equal to ±A. For SREM, the prior simply selects the support
of β uniformly at random. After multiplying the observation by XT , matters are
reduced to the case of the identity design for which the performance of the higher
criticism and the Max test have been established in SFEM [9]. The result for the
sparse random model is new and appears in more generality in Theorem 5.

To conclude, the situation concerning orthogonal designs is very clear. In
SFEM, for instance, if the sparsity level is such that α ≤ 1/2, then ANOVA is
asymptotically optimal whereas the higher criticism is optimal if α > 1/2. In con-
trast, the Max test is only optimal in the range α ≥ 3/4.

3. Weakly correlated designs. We begin by introducing a model of design
matrices in which most of the variables are only weakly correlated. Our model de-
pends upon two parameters, and we say that a p × p correlation matrix C belongs
to the class Sp(γ,�) if and only if it obeys the following two properties:

• Strong correlation property. This requires that for all j �= k,

|cjk| ≤ 1 − (logp)−1.

That is, all the correlations are bounded above by 1 − (logp)−1. In the limit of
large p, this is not an assumption and we will later explain how one can relax
this even further.

• Weak correlation property. This is the main assumption and this requires that
for all j , ∣∣{k : |cjk| > γ }∣∣ ≤ �.

Note that for γ ≤ 1, � ≥ 1 since cjj = 1. Fix a variable xj . Then at most � − 1
other variables have a correlation exceeding γ with xj .

Our only real condition caps the number of variables that can have a correlation
with any other above a threshold γ . An orthogonal design belongs to Sp(0,1) since
all the correlations vanish. With high probability, the Gaussian and Rademacher
designs described earlier belong to Sp(γ,1) with γ = √

5(logp)/n.
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3.1. Lower bound on the detectability threshold. The main result of this pa-
per is that if the predictor variables are not highly correlated, meaning that the
quantities γ and � above are sufficiently small, then there are computable detec-
tion thresholds for our sparse alternatives that are very similar or identical to those
available for orthogonal designs.

We begin by studying lower bounds and for SFEM, these may be understood
either in a worst-case sense or under the prior where β is uniformly distributed
among all S-sparse vectors with nonzero coefficients equal to ±A. For SREM,
these hold under a prior generating the support uniformly at random. We first con-
sider mildly sparse alternatives.

PROPOSITION 2. Suppose that XT X ∈ Sp(γ,1) and let S = p1−α with α ∈
[0,1/2]. In SFEM (resp., SREM), all sequences of tests are asymptotically power-
less if A2S(p−1/2 + γ logp) → 0 [resp., τ 2S(p−1/2 + γ ) → 0].

In order to interpret this proposition, we note that γ will usually be at least as
large as n−1/2, as shown just below.

In Proposition 2 we have required that � = 1 in order to derive sharp results.
Moving now to sparser alternatives, we allow for � to increase with p, although
very slowly, while the condition on γ remains essentially the same.

THEOREM 2. Assume the sparsity exponent obeys α ∈ (1/2,1], and suppose
that XT X ∈ Sp(γ,�) with the following parameter asymptotics: (1) � = O(pε),
for all ε > 0, and (2) γp1−α(logp)4 → 0. In SFEM (resp., SREM), all sequences
of tests are asymptotically powerless if A = √

2r logp with r < ρ∗(α) [resp., τ <

ρ∗
rand(α)].

The result is essentially the same in the case of a balanced, multi-way design
with the usual linear constraints. We comment on this point at the end of the proof
of Theorem 2.

The reader may be surprised to see that the number n of observations does not
explicitly appear in the above lower bounds. The sample size appears implicitly,
however, since it must be large enough for the class Sp(γ,�) to be nonempty. As-
sume � = 1, for instance, and that p ≥ n. Then by the lower bound [38], equation
(12), we have

γ ≥
√

(p − n)/(np).(3.1)

For instance, γ ≥ 1/
√

2n if p ≥ 2n.
As a technical aside, we remark that the lower bounds hold under the strong

correlation assumption

|cjk| ≤ 1 − δ
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for any δ < 1, provided that γ δ−2p1−α(logp)3/2 → 0. We shall prove this more
general statement, and the theorem is thus a special case corresponding to δ =
(logp)−1.

We pause to compare with the results of the recent paper [23]. The lower bounds
in [23] are the same as ours (for SFEM) except that they impose slightly weaker
conditions on γ . In Proposition 2, their condition is A2S(p−1/2 + γ ) → 0, and in
Theorem 2, their condition is γp1−α logp → 0.

3.2. Upper bound on the detectability threshold. We now turn to upper bounds
and, unless stated otherwise, these assume the following models:

• For SFEM, we assume that β has a support generated uniformly at random and
that its nonzero coefficients have random signs.

• For SREM, we assume that β has a support generated uniformly at random.

We require that the support of β be generated uniformly at random and, in SFEM,
that the signs of its coefficients be also random to rule out situations where can-
cellations occur, making the signal strength potentially too small (and possibly
vanish) to allow for reliable detection.

We begin by studying the performance of ANOVA when the alternative is not
that sparse. We state our result for � = 1 in accordance with the lower bound
(Proposition 2), although the result holds when � obeys � = O(pε) for all ε > 0.

PROPOSITION 3. Assume that XT X ∈ Sp(γ,1) and let S = p1−α .

• Assume γ logp → 0. Then, in SFEM, ANOVA is asymptotically powerful (resp.,
powerless) when A2S/

√
min(n,p) → ∞ (resp., → 0).

• Assume γ → 0. Then, in SREM, ANOVA is asymptotically powerful (resp., pow-
erless) when τ 2S/

√
min(n,p) → ∞ (resp., → 0).

Note that this holds for all values of α.

For example, consider an n × p Gaussian design with p > n. For this design
γ � √

(logp)/n (in probability). Hence, assuming (logp)3/2/
√

n → 0, Proposi-
tion 3 says that, in SFEM, the ANOVA test is powerful when A2S/

√
n → ∞. We

contrast this with Proposition 2, which says that, in the same context and assum-
ing that α ∈ [0,1/2], all methods are powerless when A2S(logp)3/2/

√
n → 0.

Hence, in this moderately sparse setting where α ∈ [0,1/2], if one ignores the
(logp)3/2 factor (we do not know whether Proposition 2 is tight), then one can say
that ANOVA achieves the optimal detection boundary. However, as we will see in
Theorems 3, 4 and 5, ANOVA is far from optimal in the strongly sparse case when
α > 1/2.

Compared with Proposition 2, the condition on γ is substantially weaker. More
importantly, there appears to be a major discrepancy when n is negligible com-
pared to p because

√
min(n,p) replaces

√
p. This is illusory, however, as the
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lower bound on γ displayed in (3.1) implies that the condition on A in Proposi-
tion 2 matches that of Proposition 3 up to a logp factor.

Turning to sparser alternatives, we apply the higher criticism to XT y and for
t > 0, put

H(t) = |{j : |xT
j y| > t}| − 2p�̄(t)√

2p�̄(t)(1 − 2�̄(t))
.

The innovated higher criticism of Hall and Jin [19] resembles supt>0 H(t) :=
HC∗(XT y), the main difference being that they apply a threshold to the entries
of X before multiplying by XT . Here, to facilitate the analysis, we search for the
maximum on a discrete grid and define

H ∗(s) = max
{
H(t) : t ∈ [

s,
√

5 logp
] ∩ N

}
.

THEOREM 3. Assume the sparsity exponent obeys α ∈ (1/2,1] and suppose
that XT X ∈ Sp(γ,�) with the following parameter asymptotics: (1) � = O(pε),
for all ε > 0; (2) γ 2p1−α(logp)3 → 0 and (3) γ 3 = O(pε+5α−4), for all ε > 0.

• In SFEM, the test based on H ∗(
√

2rα logp) with rα := min(1,4ρ∗(α)) is
asymptotically powerful against any alternative defined by S = p1−α′

with
α′ ≥ α and A = √

2r logp with r > ρ∗(α′).
• In SREM, the test based on H ∗(

√
2 logp) is asymptotically powerful when τ >

ρ∗
rand(α) regardless of α ∈ (1/2,1] and without condition (3).

In SREM, the conclusion is an immediate consequence of the behavior of the
Max test stated in Theorem 5 and we, therefore, omit the proof. Having said this,
the remarks below apply to SFEM:

(1) The condition on γ is weaker than the condition required in Theorem 2,
although the two conditions get ever closer as α approaches 1/2.

(2) The test based on H ∗(
√

2 logp) is asymptotically powerful for all α ∈
[3/4,1] (this test is closely related to the Max test).

(3) Other discretizations in the definition of H ∗ would yield the same result.
In fact, we believe the result holds without any discretization, but we were not
able to establish this in general. However, suppose that p = kn and that X is the
concatenation of k orthonormal bases. If k = O(nε), for all ε > 0, the result holds
without any discretization, meaning that rejecting for large values of supt>0 H(t) is
asymptotically powerful under the same conditions. This comes from leveraging
the behavior (under the null) of the higher criticism—detailed in [9]—for each
basis.

While the above theorem gives relatively weak requirements on γ , it is not fully
adaptive. In particular, in SFEM, one requires knowledge of α to set the search
grid for the statistic H ∗. Under a stronger condition on γ , we have the following
fully adaptive result for α ∈ (1/2,1].
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THEOREM 4. Assume the sparsity exponent obeys α ∈ (1/2,1] and suppose
that XT X ∈ Sp(γ,�) with the following parameter asymptotics: (1) � = O(pε),
for all ε > 0; (2) γ = O(p−1/2+ε), for all ε > 0. Then in SFEM, the test based on
H ∗(1) is asymptotically powerful whenever r > ρ∗(α).

We restricted our attention to the case of strong sparsity, that is, α > 1/2, as we
may cover the whole range α ∈ (0,1] by combining the ANOVA and the higher
criticism tests (with a simple Bonferroni correction), obtaining an adaptive test
operating under weaker constraints on the coherence γ . That said, we mention
that the higher criticism test is near-optimal in the setting of Theorem 4 when,
under the alternative, the nonzero coefficients are not too spread out (restriction
on the dynamic range) and the amplitude is sufficiently large. This is the case,
for instance, when all nonzero coefficients are equal to A in absolute value with
A2S/

√
p > pη for some η > 0 fixed.

The paper [23] studies three tests assuming a random design X. The first is
based on ‖y‖2 and is studied in the nonsparse case where S = p, whereas the
second is based on ‖XT y‖2. The combined test is very similar to ANOVA and the
authors obtain the equivalent of Proposition 3 for random design matrices X having
standardized independent entries with uniformly bounded fourth moment. Refer-
ence [23] also considers the test based on the higher criticism applied to |xT

j y|/‖y‖
and the equivalent of Theorems 3 and 4 are established under the assumption that
the design matrix X has i.i.d. standard normal entries. Averaging over a random de-
sign X with standardized independent entries effectively reduces to an orthogonal
design, resulting in much weaker (implicit) assumptions; no randomness assump-
tions on β—since this randomness is carried by X—and no discretization of the
thresholds in the higher criticism statistic. In stark contrast, we consider the design
fixed (although it can of course be generated in a random fashion).

Turning our attention to the Max test now, the results available for orthogonal
designs remain valid under similar conditions on the matrix X.

THEOREM 5. Let S = p1−α and assume that XT X ∈ Sp(γ,�) with the fol-
lowing parameter asymptotics: (1) � = O(pε), for all ε > 0 and (2) γ 2p1−α ×
(logp)3 → 0.

• In SFEM, the Max test is asymptotically powerful if A ≥ √
2r logp with r >

ρMax(α), and asymptotically powerless if r < ρMax(α).
• In SREM, the Max test is asymptotically powerful for a fixed signal level obeying

τ > ρ∗
rand(α), and asymptotically powerless if τ < ρ∗

rand(α).

The above holds for all α ∈ (1/2,1].
This theorem justifies the assertion made in the Introduction, which stated that

one could detect a linear relationship between the response and a few covari-
ates even though those covariates that were mostly correlated with the response
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were not in the model. To clarify, consider SFEM and α ∈ (1/2,3/4]. Then, for
A = √

2r logp with ρ∗(α) < r < ρMax(α), the Max test is asymptotically pow-
erless, whereas the test based on H ∗ has full power asymptotically. In particular,
in the regime in which the Max test is powerless, with high probability the entry
of XT y which achieves the maximal magnitude corresponds to a covariate not in
the support of β . (This is explicitly demonstrated in the proof of Theorem 5.) In
the proof, we use fine asymptotic results for the maximum of correlated normal
random variables due to Berman [3] and Deo [8].

We pause here to comment on the situation in which the variance of the noise
(denoted σ 2) is unknown and must be estimated. As for the identity design, the
results in this section hold with y replaced by y/σ̂ with the proviso that σ̂ is any
accurate estimate with a slight upward bias to control the significance level. For-
mally, suppose we have an estimator obeying

P
(
σ ≤ σ̂ ≤ (1 + an)σ

) → 1(3.2)

and anp
1/2−ε → 0 for all ε > 0. We would then apply our methodology to y/σ̂ . On

the one hand, it follows from the monotonicity of our statistic that the asymptotic
probability of type I errors is no worse than in the case of known variance since
we use an estimate which is biased upward. On the other hand, consider an alter-
native with S = p1−α and amplitudes set to A = σ

√
2r logp, r > ρ∗(α). The gap

between r and ρ∗(α) is sufficient to reject the null. Indeed, H ∗ is applied to y/σ̂ ,
leading to a normalized amplitude equal to

√
2r ′ logp, where r ′ := (σ/σ̂ )2r is

greater than ρ∗(α) in the limit. (The contribution over the complement of the sup-
port of β is negligible because σ̂ − σ is sufficiently small, and this is why we
require anp

1/2−ε → 0.) The same arguments apply to the ANOVA F -test and the
Max test. We mention that Hall and Jin [19] discuss the same issue for the case of
an orthogonal design and colored noise with a covariance that may be unknown.
Note that [23] treats the case of unknown variance in detail when the design matrix
X has i.i.d. standard normal entries.

We now discuss strategies for constructing estimators obeying (3.2). There are
many possibilities and we choose to discuss a simple estimate applying in the case
of strong sparsity α ∈ (1/2,1], where signals are near the detection boundary, so
that ‖Xβ‖2/(σ 2√n) → 0 (this is the interesting regime). For concreteness, as-
sume that n < p = O(n1+ε) for all ε > 0. As noted in Section 1.4, ‖y‖2/σ 2 has
the chi-square distribution with n degrees of freedom and noncentrality parameter
‖Xβ‖2/σ 2, and, thus,

P
(
σ

(
1 − sn/

√
n
) ≤ ‖y‖/√n ≤ σ

(
1 + sn/

√
n
)) → 1

as long as sn → ∞. Now let tn → ∞ slowly (say, tn = logn) and define σ̂ :=
‖y‖(1/

√
n + tn/n). This estimator obeys (3.2).
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3.3. Normal designs. A common assumption in multivariate statistics is that
the rows of the design matrix are independent draws from the multivariate normal
distribution N (0,�). Our results apply provided that � obeys the assumptions
about XT X.

COROLLARY 1. Suppose the rows of X are independent samples from
N (0,�), and � ∈ Sp(γ,�) (the columns are normalized). Then the conclusions

of Theorems 2, 3 and 5 are all valid, provided that
√

n−1 logp obeys the conditions
imposed on γ .

We remark that if the columns are not normalized so that the rows of X are inde-
pendent samples from N (0,�), the same result holds with a threshold A replaced
by A/

√
n. This holds because the norm of each column is sharply concentrated

around
√

n.

4. Some special designs. We consider correlation matrices which have a sub-
stantial portion of large entries. In general, the detection threshold may depend
upon some fine details of X, but we give here some representative results applying
to situations of interest.

We first examine the simple, yet important and useful example of constant cor-
relation, where xT

j xk = 1 if j = k, and = γ if j �= k.5 We impose 0 < γ < 1 to

make sure that XT X is at least positive definite as p → ∞ (this implies that XT X
has full rank which in turn imposes p ≤ n). The balanced one-way design has this
structure since it can be modeled by the matrix

X = 1√
2k

⎡
⎢⎢⎢⎢⎢⎣

1 0 · · · 0
0 1 · · · 0
...

...
...

...

0 0 · · · 1
−1 −1 · · · −1

⎤
⎥⎥⎥⎥⎥⎦ ,

where each vector in this block representation is k-dimensional. Without further
assumptions on β , this design is equivalent to (1.9) with the constraint 1T β = 0,
except for the normalization. With this definition, XT X has diagonal entries equal
to 1 and off-diagonal entries equal to 1/2 so we are in the setting—with γ = 1/2—
of our next result below.

THEOREM 6. Suppose that xT
j xk is equal to 1 if j = k and γ otherwise, and

that the sparsity exponent obeys α ∈ (1/2,1]. Then without further assumption,
the conclusions of Theorems 2, 3 and 5 remain valid with the bounds on A and τ

divided by
√

1 − γ .

5Whether such a family of vectors exists for special values of γ is a nontrivial matter, and we refer
the reader to the literature on equiangular lines; see [29], for example.
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The balanced, one-way design may be seen either as an orthogonal design with
a linear constraint, or a constant-correlation design without any constraint. More
generally, a multi-way design is easily defined as an orthogonal design with a set
of linear constraints. Specifically, suppose the coordinates of β are indexed by an
m-dimensional index vector, so that

β = (
βj : j = (j1, . . . , jm), js ∈ [ps]), p =

m∏
s=1

ps.

We assume the design is balanced with k replicates per cell so that n = pk. With
any fixed order on the index set, say, the lexicographic order, the design matrix
is the same as in the balanced, one-way design (1.9). Here, β obeys the linear
constraints

∑
s �=t

ps∑
js=1

βj1···jm = 0(4.1)

for all jt ∈ [pt ] and t ∈ [m] (there are
∑m

t=1 pt constraints). As in the balanced,
one-way design, Theorem 1 applies to the balanced, multi-way design. The argu-
ment for the lower bound is at the end of the proof of Theorem 2. The proof of the
upper bounds is exactly as in the case of any other orthogonal design. Finally, em-
bedding the linear constraints into the design matrix leads to a family of designs
with a “full” correlation structure with off-diagonal elements which, in general,
are not of the same magnitude unless the design is one-way.

5. Numerical experiments. We complement our study with some numeri-
cal simulations which illustrate the empirical performance for finite sample sizes.
Here, X is an n × p Gaussian design with i.i.d. standard normal entries, and
normalized columns. We study fixed effects and investigate the performance of
ANOVA, the higher criticism6 and the Max test. We also compare the detection
limits with those available in the case of the p ×p identity design, since the theory
developed in Corollary 1 predicts that the detection boundaries are asymptotically
identical (provided n grows sufficiently rapidly).

We performed simulations with matrices of sizes 500×10,000, 2,000×10,000,
1,000 × 100,000 and 5,000× 100,000, various sparsity levels, and strategically se-
lected values of r . Each data point corresponds to an average over 1,000 trials in
the case where p = 10,000, and over 500 trials when p = 100,000. A new design
matrix is sampled for each trial. The performance of each of the three methods is
computed in terms of its best (empirical) risk defined as the sum of probabilities
of type I and II errors achievable across all thresholds. The results are reported
in Figures 1 and 2. As expected, the detection thresholds for the Gaussian de-
sign are quite close to those available for the identity design. The performance of

6We do not use the discretization here.
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FIG. 1. Left column: identity design with p = 10,000. Middle column: Gaussian design with
p = 10,000 and n = 2,000. Right column: Gaussian design with p = 10,000 and n = 500. Spar-
sity level S is indicated below each plot. In each plot, the empirical risk (based on 1,000 trials) of
each method [ANOVA (red bullets); higher criticism (blue squares); Max test (green diamonds)] is
plotted against r (note the different scales).
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FIG. 2. Left column: identity design with p = 100,000. Middle column: Gaussian design with
p = 100,000 and n = 5,000. Right column: Gaussian design with p = 100,000 and n = 1,000. Spar-
sity level S is indicated below each plot. In each plot, the empirical risk (based on 500 trials) of each
method [ANOVA (red bullets); higher criticism (blue squares); Max test (green diamonds)] is plotted
against r (note the different scales).
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ANOVA improves very quickly as the sparsity decreases, dominating the Max test
with S = √

p; its performance also improves as n becomes smaller, in accordance
with (1.7). The performance of the Max test follows the opposite pattern, degrad-
ing as S increases. Interestingly, the higher criticism remains competitive across
the different sparsity levels.

6. Discussion. It is possible to extend our results to setups with correlated
errors, with known covariance. As discussed in Section 1, suppose z in (1.4) is
N (0,V). We may then whiten the noise by multiplying both sides of (1.4) by L−1,
where LLT is a Cholesky decomposition of V. This leads to a model of the form

y = L−1Xβ + z,

which is our problem with L−1X instead of X. In some situations, the noise co-
variance matrix may not be known and we refer to [19] for a brief discussion of
this issue.

Although several generalizations are possible, an interesting open problem is
to determine the detection boundary for a given sequence of designs {Xn×p} with
n and p growing to infinity. We have seen that if most of the predictor variables
are only weakly correlated, then the detection boundary is as if the predictors were
orthogonal. Similar conclusions for certain types of square designs in which n = p

are also presented in the work of Hall and Jin [19]. Although we introduced some
sharp results in Section 4 corresponding to some important design matrices, the
class of matrices for which we have definitive answers is still quite limited. We
hope other researchers will engage this area of research and develop results toward
a general theory.
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SUPPLEMENTARY MATERIAL

Supplement to “Global testing under sparse alternatives: ANOVA, multiple
comparisons and the higher criticism” (DOI: 10.1214/11-AOS910SUPP; .pdf).
In the supplement, we prove the results stated in the paper. Though the method of
proof has the same structure as the corresponding situation in the classical setting
with identity design matrix, extra care is required to deal with dependencies.
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