
Global	threat	of	arsenic	in	groundwater	1	

Joel	Podgorski
1,2*

and	Michael	Berg
1,3*

	2	

3	

1.	Eawag,	Swiss	Federal	Institute	of	Aquatic	Science	and	Technology,	Department	Water	Resources	and	Drinking4	

Water,	8600	Dübendorf,	Switzerland	5	

2.	University	of	Manchester,	Department	of	Earth	and	Environmental	Sciences,	Manchester,	United	Kingdom6	

3.	UNESCO	Chair	on	Groundwater	Arsenic	within	the	2030	Agenda	for	Sustainable	Development	and	School	of7	

Civil	Engineering	and	Surveying,	University	of	Southern	Queensland,	4350	QLD,	Australia	8	

9	

*Corresponding	authors.	Email:	joel.podgorski@eawag.ch,	michael.berg@eawag.ch.10	

11	

Revision	for	“Science”	12	

13	

14	

Abstract:	15	

Naturally	occurring	arsenic	in	groundwater	affects	millions	of	people	worldwide.	We	created	a	16	

global	prediction	map	of	groundwater	arsenic	exceeding	10	µg/L	using	a	random	forest	17	

machine	learning	model	based	on	eleven	geospatial	environmental	parameters	and	over	18	

50,000	aggregated	data	points	of	measured	groundwater	arsenic	concentration.	Our	global	19	

prediction	map	includes	known	arsenic-affected	areas	and	previously	undocumented	areas	of	20	

concern.	Combining	the	global	arsenic	prediction	model	with	household	groundwater-usage	21	

statistics,	we	estimate	that	94-220	million	people	are	potentially	exposed	to	high	arsenic	22	

concentrations	in	groundwater,	the	vast	majority	being	in	Asia	(94%).	Since	groundwater	is	23	

increasingly	utilized	to	support	growing	populations	and	buffer	against	water	scarcity	due	to	24	

changing	climate,	this	work	is	important	to	raise	awareness,	identify	areas	for	safe	wells,	and	25	

help	prioritize	testing.	26	
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The	natural,	or	geogenic,	occurrence	of	arsenic	in	groundwater	is	a	global	problem	with	wide-27	

ranging	health	effects	for	humans	and	wildlife.	Being	toxic	and	not	serving	any	beneficial	28	

metabolic	function,	inorganic	arsenic	(the	species	present	in	groundwater)	can	lead	to	29	

disorders	of	the	skin	and	vascular	and	nervous	systems	as	well	as	cancer(1,	2).	The	major	30	

source	of	inorganic	arsenic	in	the	diet	is	through	arsenic-contaminated	water,	although	31	

ingestion	through	food,	particularly	rice,	represents	another	important	route	of	exposure(3).	32	

As	a	consequence,	the	World	Health	Organization	(WHO)	has	set	a	guideline	concentration	of	33	

10	µg/L	in	drinking	water(4).	34	

At	least	trace	amounts	of	arsenic	occur	in	virtually	all	rocks	and	sediments	around	the	35	

world(5).	However,	in	most	of	the	large-scale	cases	of	geogenic	arsenic	contamination	in	36	

groundwater,	arsenic	accumulates	in	aquifers	composed	of	recently	deposited	alluvial	37	

sediments.	Under	anoxic	conditions,	arsenic	is	released	from	the	microbial	and/or	chemical	38	

reductive	dissolution	of	arsenic-bearing	iron(III)	minerals	in	the	aquifer	sediments(6-9).	Also	39	

under	oxidizing	high-pH	conditions,	arsenic	can	desorb	from	iron	and	aluminum	40	

hydroxides(10).	Furthermore,	aquifers	in	flat-lying	sedimentary	sequences	generally	have	a	41	

small	hydraulic	gradient,	causing	groundwater	to	flow	slowly.	This	longer	groundwater	42	

residence	time	allows	dissolved	arsenic	to	accumulate	and	its	concentration	to	increase.	Other	43	

processes	responsible	for	arsenic	release	into	groundwater	include	oxidation	of	arsenic-44	

bearing	sulfide	minerals	as	well	as	release	from	arsenic-enriched	geothermal	deposits.	45	

The	fact	that	arsenic	is	generally	not	included	in	the	standard	suite	of	tested	water	quality	46	

parameters(11)	and	is	not	detected	by	the	human	senses	mean	that	arsenic	is	regularly	being	47	

discovered	in	new	areas.	Since	one	of	the	greatest	occurrences	of	geogenic	groundwater	48	

arsenic	was	discovered	in	1993	in	the	Bengal	Delta	(5,	12,	13),	high	arsenic	concentrations	49	

have	been	detected	all	around	the	world,	with	hotspots	including	Argentina(14-17),	50	

Cambodia(18,	19),	China(20-22),	India(23-25),	Mexico(26,	27),	Pakistan(28,	29),	the	USA(30,	51	

31)	and	Vietnam(32,	33).	52	

In	order	to	help	identify	areas	likely	to	contain	high	concentrations	of	arsenic	in	groundwater,	53	

several	researchers	have	used	statistical	learning	methods	to	create	arsenic	prediction	maps	54	

based	on	available	datasets	of	measured	arsenic	concentrations	and	relevant	geospatial	55	

parameters.	Previous	studies	have	focused	on	Burkina	Faso(34),	China(21,	35),	South	Asia(29,	56	

36),	Southeast	Asia(37),	the	USA(31,	38,	39)	and	the	Red	River	Delta	in	Vietnam(33)	as	well	as	57	

sedimentary	basins	around	the	world	(40).	The	predictor	variables	used	in	these	studies	58	

generally	include	various	climate	and	soil	parameters,	geology	and	topography	(Table	S3).	59	

Taking	advantage	of	the	increasing	availability	of	high-resolution	datasets	of	relevant	60	

environmental	parameters,	we	use	statistical	learning	to	model	what	to	our	knowledge	is	the	61	

most	spatially	extensive	compilation	of	arsenic	measurements	in	groundwater	assembled,	62	

which	makes	a	global	model	possible.	In	order	to	focus	on	health	risks,	we	consider	the	63	

probability	of	arsenic	in	groundwater	exceeding	the	WHO	guideline.	For	this	we	have	chosen	64	

the	random	forest	method,	which	our	preliminary	tests	showed	to	be	highly	effective	in	65	

addressing	this	classification	problem.	We	use	the	resulting	model	to	produce	the	most	66	
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accurate	and	detailed	global	prediction	map	to	date	of	geogenic	groundwater	arsenic,	which	67	

can	be	used	to	help	identify	previously	unknown	areas	of	arsenic	contamination	as	well	as	68	

more	clearly	delineate	the	scope	of	this	global	problem	and	considerably	increase	awareness.	69	

	70	

	71	

Figure	1.	Arsenic	concentrations	excluding	those	known	to	originate	from	a	depth	greater	72	

than	100	m.	Values	are	from	the	sources	listed	in	Table	S1.	The	geographical	distribution	of	73	

data	is	indicated	by	continent.	74	

	75	

	76	

RESULTS	77	

Random	forest	modeling	78	

We	aggregated	data	from	nearly	80	studies	of	arsenic	in	groundwater	(see	Table	S1	for	79	

references	and	statistics)	into	a	single	dataset	(n>200,000).	Averaging	into	1	km
2
	pixels	80	

resulted	in	more	than	55,000	arsenic	data	points	for	use	in	modeling	based	on	groundwater	81	

samples	not	known	to	originate	from	greater	than	100	m	depth	(Figure	1).		82	

In	order	to	create	the	simplest	and	most	accurate	model,	an	initial	set	of	52	potentially	83	

relevant	environmental	predictor	variables	was	iteratively	reduced	in	consideration	of	their	84	

relative	importance	and	impact	on	the	accuracy	of	a	succession	of	random	forest	models.	The	85	

final	selection	of	11	predictor	variables	(Table	S2)	includes	several	soil	parameters	(topsoil	86	

clay,	subsoil	sand,	pH	and	fluvisols),	all	of	the	climate	variables	(precipitation,	actual	and	87	

potential	evapotranspiration	and	combinations	thereof	as	well	as	temperature)	and	the	88	

topographic	wetness	index.	In	contrast,	none	of	the	geology	variables	proved	to	be	89	

statistically	important.	This	is	not	to	imply	that	geology	does	not	play	a	role	in	geogenic	90	

arsenic	accumulation,	but	rather	that	the	particular	geology	variables	tested	were	not	as	91	

relevant	as	the	other	variables.	This	may	be	due	to	the	coarse	nature	of	the	geological	maps,	92	

which	are	standardized	for	the	entire	world.	Although	the	number	of	predictor	variables	was	93	
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reduced	by	nearly	80%,	both	the	Area	Under	the	Curve	(AUC,	0.89)	and	Cohen’s	kappa	94	

statistic	(0.55)	remained	unchanged.	95	

The	final	random	forest	model	was	created	based	on	the	compiled	global	dataset	of	high	and	96	

low	arsenic	concentrations	along	with	the	11	predictor	variables.	The	standard	number	of	97	

variables	to	be	made	available	at	each	branch	of	each	tree	is	between	three	and	four	(see	98	

Methods).	Since	our	tests	showed	the	value	of	three	performing	better	than	four	and	higher	99	

values	(though	error/performance	rates	varied	only	within	~1%),	we	set	this	parameter	to	100	

three.	The	global	map	produced	from	this	model	is	displayed	in	Figure	2a	along	with	more	101	

detailed	views	of	the	more	populated	affected	continental	regions	(Figure	2b-f).	It	indicates	102	

the	probability	of	the	concentration	of	arsenic	in	groundwater	in	a	given	1	km
2
	cell	exceeding	103	

10	µg/L.	The	uncertainty	of	the	model	is	inherent	in	the	probabilities	themselves,	since	they	104	

are	simply	the	average	of	the	votes	or	predictions	of	high	or	low	values	of	each	of	the	10,001	105	

trees	grown.	That	is,	each	tree	casts	a	vote	of	0	or	1	(‘no’	or	‘yes’	to	As	>10	µg/L)	for	each	cell	106	

based	on	the	values	of	the	predictor	variables	in	that	cell.	Figures	S2-S8	also	provide	more	107	

detailed	views	of	the	prediction	map	for	each	of	the	inhabited	continents.	108	

The	importance	of	each	of	the	11	predictor	variables	in	terms	of	mean	decrease	in	accuracy	109	

and	mean	decrease	in	the	Gini	index	is	listed	in	Figure	S1.	Relative	to	the	initial	set	of	52	110	

variables,	the	values	of	these	two	statistics	for	most	of	the	11	final	predictor	variables	appear	111	

to	fall	within	a	fairly	narrow	range,	indicating	comparable	importance.	Exceptions	include	112	

fluvisols	and	soil	pH,	which	have	somewhat	greater	importance,	and	temperature,	which	113	

according	to	both	statistics	is	the	least	important	of	the	11	variables.	Soil	pH	was	also	found	to	114	

be	an	important	predictor	variable	in	arid,	oxidizing	environments	in	Pakistan(29).	Although	115	

widespread	arsenic	dissolution	occurs	in	Holocene	fluvial	sediments(5-7,	9,	37),	this	geological	116	

epoch	has	not	been	consistently	mapped	around	the	world.	However,	the	global	dataset	of	117	

fluvisols	provides	a	very	suitable	alternative(29),	which	may	even	be	more	appropriate	as	118	

fluvisols	by	definition	encompass	recent	fluvial	sediments	and	not,	for	example,	aeolian	119	

Holocene	sediments	that	are	generally	not	relevant	for	arsenic	release.	The	generally	high	120	

model	importance	of	climate	variables,	as	evidenced	by	them	all	being	selected	for	the	final	121	

model,	highlights	the	strong	control	that	climate	has	on	arsenic	release	in	aquifers.	In	122	

particular,	precipitation	and	evapotranspiration	have	a	direct	role	in	creating	conditions	123	

conducive	for	arsenic	release	under	reducing	conditions	(e.g.	waterlogged	soils)	as	well	as	124	

high	aridity	associated	with	oxidizing	high-pH	conditions.	125	
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	126	

Figure	2.	Modeled	probability	of	arsenic	concentration	in	groundwater	exceeding	10	µg/L	for	127	

the	entire	globe	(a)	along	with	zoomed-in	sections	of	the	main	more	densely	populated	128	

affected	area	(b)-(f).	The	model	is	based	on	the	arsenic	data	points	in	Figure	1	and	the	129	

predictor	variables	in	Table	S2.	Figures	S2	to	S8	provide	more	detailed	views	of	the	prediction	130	

map.	131	

	132	

The	performance	of	the	random	forest	model	on	the	test	dataset	(20%	of	the	data,	which	was	133	

randomly	selected	while	maintaining	the	relative	distribution	of	high	and	low	values)	is	134	

summarized	in	the	confusion	matrix	in	Table	1.	Despite	a	prevalence	of	high	values	(>10	µg/L)	135	

of	only	22%	in	the	dataset,	the	model	performs	well	in	predicting	both	high	values	(sensitivity:	136	

0.79)	and	low	values	(specificity:	0.85)	at	a	probability	cutoff	of	0.50.	The	average	of	these	two	137	

figures,	known	as	balanced	accuracy,	is	correspondingly	high	at	0.82.	Likewise,	the	model’s	138	

AUC,	which	considers	the	full	range	of	possible	cutoffs,	has	a	very	high	value	of	0.89	with	the	139	

test	dataset	(Table	1).	For	comparison,	the	AUC	of	a	random	forest	using	all	52	original	140	

predictor	variables	is	also	0.89.	141	

The	model	was	also	tested	on	a	dataset	of	over	49,000	arsenic	data	points	originating	from	142	

known	depths	greater	than	100	m	(average	562	m,	standard	deviation	623	m).	Although	the	143	

model	was	not	trained	on	any	measurements	from	these	depths	and	the	fact	that	only	surface	144	



6	

	

parameters	were	used	as	predictor	variables,	the	model	nevertheless	performed	quite	well	in	145	

predicting	the	arsenic	concentrations	of	these	deep	groundwater	sources,	as	evidenced	by	an	146	

AUC	of	0.77.	147	

	148	

	149	

Table	1.	Confusion	matrix	and	other	statistics	summarizing	the	results	of	applying	the	random	150	

forest	model	to	the	test	dataset	at	a	probability	cutoff	of	0.50.		151	

	 Measured	

	 As	≤	10	µg/L	 As	>	10	µg/L	

Predicted	As	≤	10	µg/L	 7710	 555	

Predicted	As	>	10	µg/L	 1394	 2037	

	

Sensitivity:	0.79	 Prevalence:	0.22	

Specificity:	0.85	 Balanced	Accuracy:	0.82	

Positive	Predictive	Value:	0.59	 Cohen’s	kappa:	0.55	

Negative	Predictive	Value:	0.93	 AUC:	0.89	

	152	

	153	

	154	

	155	

	156	

Figure	3.	Proportions	of	land	area	and	population	potentially	affected	by	arsenic	concentrations	157	

in	groundwater	exceeding	10	µg/L	by	continent.	158	

	159	

	 	160	
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Regions	and	populations	at	risk	161	

Areas	predicted	to	have	high	arsenic	concentrations	in	groundwater	exist	on	all	continents,	162	

with	most	being	located	in	Central,	South	and	Southeast	Asia,	parts	of	Africa	and	North	and	163	

South	America	(Fig.	2	andFigs.	S2-S8).	Known	areas	of	groundwater	arsenic	contamination	are	164	

generally	well	captured	by	the	global	arsenic	prediction	map,	e.g.	parts	of	the	western	US,	165	

central	Mexico,	Argentina,	the	Pannonian	Basin,	Inner	Mongolia,	the	Indus	Valley,	the	Ganges-166	

Brahmaputra	Delta	and	the	Mekong	River	and	Red	River	Deltas.	Areas	of	elevated	arsenic	167	

hazard	where	little	concentration	data	exist	include	parts	of	Central	Asia,	particularly	168	

Kazakhstan,	Mongolia	and	Uzbekistan,	the	Sahel	region	and	broad	areas	of	the	Arctic	and	sub-169	

Arctic.	Of	these,	the	Central	Asian	hazard	areas	are	better	constrained	as	evidenced	by	higher	170	

probabilities.	171	

Probability	threshold	values	of	0.57	from	the	sensitivity-specificity	comparison	and	0.72	from	172	

the	PPV-NPV	comparison	were	found	using	the	full	dataset	(combined	training	and	test	173	

datasets)	of	arsenic	concentrations.	The	proportions	of	high	modeled	arsenic	hazard	by	174	

continent	associated	with	each	of	these	probabilities	are	shown	in	Figure	3.	Global	maps	of	175	

the	potentially	affected	population	in	the	risk	areas	as	determined	by	these	two	thresholds	176	

are	shown	in	Figure	4.	As	described	in	the	Methods,	these	maps	were	then	used	to	estimate	177	

the	population	potentially	affected	by	drinking	groundwater	with	arsenic	concentrations	178	

exceeding	10	µg/L.	179	

The	resulting	global	arsenic	risk	assessment	indicates	that	approximately	94-220	million	180	

people	around	the	world	(of	which	85-90%	are	in	South	Asia)	are	potentially	exposed	to	high	181	

concentrations	of	arsenic	in	groundwater	from	their	domestic	water	supply	(Tables	S4	and	182	

S5).	This	range	is	consistent	with	the	previous	most	comprehensive	literature	compilations,	183	

that	is	140	million	people(41)	and	225	million	people(42).	Household	groundwater-use	184	

statistics	were	not	available	for	~6-8	percent	of	the	affected	countries	(depending	on	the	185	

cutoff),	for	which	the	less	detailed	statistics	derived	from	the	FAO	AQUASTAT	database	were	186	

used	instead	(see	Methods	for	details).	To	determine	the	amount	of	error	that	using	these	187	

more	general	groundwater-use	statistics	might	introduce	to	the	overall	population	figures,	the	188	

global	potentially	affected	populations	were	recalculated	with	these	countries’	(those	lacking	189	

household	groundwater-use	statistics)	groundwater-use	rates	set	to	the	extreme	values	of	0%	190	

and	100%.	Since	this	applied	to	relatively	few	countries	and	As-affected	areas,	doing	so	191	

affected	the	overall	global	population	figures	by	an	inconsequential	amount	(±0.1%),	192	

indicating	that	using	the	AQUASTAT	groundwater-use	rates,	where	necessary,	is	an	acceptable	193	

approximation.	194	

	195	
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	196	

Figure	4:	Population	in	risk	areas	potentially	containing	aquifers	with	arsenic	concentrations	197	

>10	µg/L	using	probability	cutoffs	of	(a)	0.57,	at	which	sensitivity	and	specificity	are	equal	198	

(inset)	as	applied	to	the	full	(training	and	test)	dataset,	and	(g)	0.72,	at	which	PPV	and	NPV	are	199	

equal	(inset)	using	the	full	dataset.	The	detailed	areas	of	Fig.	2	are	also	repeated	here	for	both	200	

models	(b)-(f)	and	(h)-(l).	201	
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This	estimate	of	risk	takes	into	account	only	the	proportion	of	households	utilizing	202	

unprocessed	groundwater	and	assumes	uniform	rates	throughout	the	urban	and	non-urban	203	

areas	of	each	country.	The	uncertainties	of	these	rates	are	unknown.	The	population	in	each	204	

cell	was	reduced	by	the	uncertainty	of	the	cell’s	prediction,	which	is	justified	based	on	the	205	

heterogeneity	inherent	in	the	accumulation	of	arsenic	in	an	aquifer,	which	is	generally	at	a	206	

much	finer	scale	than	that	of	the	1-km
2
	resolution	of	the	arsenic	hazard	map.	Since	the	arsenic	207	

prediction	for	a	cell	represents	the	average	outcome	for	that	cell,	we	can	take	the	modeled	208	

probability	as	a	first-order	approximation	of	the	proportion	of	an	aquifer	in	that	cell	209	

containing	high	arsenic	concentrations.	Only	cells	exceeding	the	probability	threshold	(i.e.	210	

0.57	or	0.72)	were	considered.	The	global	estimate	of	94-220	million	people	potentially	211	

affected	by	consuming	arsenic-contaminated	groundwater	is	broken	down	by	continent	and	212	

country	in	Tables	S4	and	S5,	respectively,	and	represents	the	most	accurate	and	consistent	213	

global	estimate	available.	214	

DISCUSSION	215	

The	accuracy	of	the	global	groundwater	arsenic	prediction	model	presented	here,	as	216	

indicated,	for	example,	with	an	AUC	of	0.89	calculated	with	the	test	dataset,	exceeds	that	217	

found	in	previous	arsenic	prediction	studies	(Table	S3).	The	dominance	of	climate	and	soil	218	

parameters	in	the	final	model	is	indicative	of	their	direct	influence	or	at	least	strong	219	

association	with	the	processes	of	arsenic	accumulation	in	groundwater.		220	

With	respect	to	previous	arsenic	prediction	maps	of	global	sedimentary	basins(40,	43),	the	221	

new	model	represents	a	significant	advancement	on	a	few	different	levels.	First	of	all,	the	new	222	

model	presented	here	provides	predictions	for	all	areas	of	the	inhabited	continents,	whereas	223	

the	previous	first-generation	statistical	model	covered	only	about	half	of	the	land	areas.	In	224	

addition,	a	ten-fold	increase	in	measurement	points	has	allowed	arsenic	concentrations	to	be	225	

incorporated	from	many	more	areas	of	the	globe.	The	greatly	expanded	availability	and	226	

quality	of	global	predictor	datasets	over	the	past	ten	years	has	enabled	new	variables	to	be	227	

considered,	such	as	soil	type	(e.g.	fluvisols),	as	well	as	provided	a	10	to	60-fold	greater	spatial	228	

resolution	(i.e.	30	arc-seconds	versus	5-30	arc-minutes).	However,	the	presence	of	high	229	

arsenic	in	groundwater	at	a	given	location	is	of	course	predicated	on	the	existence	of	an	230	

aquifer	in	the	first	place,	which	may	not	be	so	in	the	case	of	unfractured	solid	rock,	steep	231	

terrain	or	very	dry	conditions.	Models	are	only	as	good	as	the	data	on	which	they	are	based.	232	

As	accurate	as	the	new	arsenic	model	is,	it	could	be	further	improved	as	more	arsenic	data	233	

and	more	detailed	predictor	datasets	come	into	existence.	234	

Particularly	in	sedimentary	aquifers,	arsenic	concentration	is	often	highly	dependent	on	235	

depth,	that	is,	to	specific	sedimentary	sequences	that	differ	in	the	concentration	of	arsenic	in	236	

sediments	as	well	as	the	geochemical	conditions	conducive	to	arsenic	release.	In	order	to	237	

better	characterize	this	relationship	in	a	given	sedimentary	basin,	detailed	depth	information	238	

of	groundwater	samples	would	need	to	be	incorporated	in	a	separate	basin-level	study.	239	

Unfortunately,	it	is	not	feasible	in	a	global-scale	study	to	account	for	all	of	the	diversity	of	the	240	

sedimentary	basins	of	the	world,	especially	since	depth	information	of	groundwater	samples	241	
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is	often	not	available.	As	such,	we	have	relied	on	a	statistical	analysis	of	model	performance	242	

against	depth	ranges	of	samples	(where	present)	in	order	to	determine	model	sensitivity	to	243	

depth.	244	

Our	approach	in	the	risk	assessment	of	potentially	affected	population	is	relatively	discerning	245	

and/or	conservative.	As	such,	the	resulting	population	estimates	may	in	some	cases	be	lower	246	

than	those	found	in	earlier	studies.	One	reason	for	this	is	that	we	employed	country-specific	247	

statistics	of	rural	and	urban	domestic	groundwater	usage,	which	allowed	us	to	subtract	the	248	

proportion	of	population	utilizing	surface	water,	tap	water	or	other	sources.	This	was	not	the	249	

case,	for	example,	in	a	previous	study	of	China	that	estimated	19.6	million	people	being	250	

affected	in	the	country(21),	whereas	our	estimate	is	considerably	lower	at	4.3-12.1	million.	251	

Furthermore,	we	consider	only	areas	in	which	the	probability	of	high	arsenic	exceeds	the	252	

statistically	determined	cutoffs,	i.e.	0.57	and	0.72.	Taking	the	USA	as	an	example,	applying	this	253	

criterion	left	only	0.2-2%	of	the	area	of	the	country	over	which	to	sum	the	potentially	affected	254	

population	(≤0.21	million,	this	study).	In	a	previous	arsenic	risk	assessment	of	the	USA(31),	the	255	

entire	country	was		used	to	estimate	affected	population	(2.1	million),	that	is,	not	only	the	256	

high	risk	areas.	257	

The	actual	proportion	of	groundwater	usage	varies	spatially	throughout	a	country,	and	so	258	

more	detailed	usage	statistics	beyond	only	urban	versus	rural	would	improve	the	accuracy	of	259	

a	risk	assessment.	In	addition,	more	groundwater	samples	(ideally	including	depth	260	

information)	from	areas	that	currently	have	poor	coverage	would	benefit	future	modeling	261	

efforts	by	allowing	the	model	to	be	better	adapted	to	those	areas.	262	

The	presented	arsenic	probability	maps	should	be	used	as	a	guide	to	further	groundwater	263	

arsenic	testing,	for	example	in	Central	Asia,	the	Sahel	and	other	regions	of	Africa.	Only	actual	264	

groundwater	quality	testing	can	definitively	determine	the	suitability	of	groundwater	with	265	

respect	to	arsenic,	particularly	due	to	small-scale	(<1	km)	aquifer	heterogeneities	that	cannot	266	

be	modeled	with	existing	global	datasets(9,	44).	The	hazard	maps	highlight	areas	at	risk	and	267	

provide	a	basis	for	targeted	surveys,	which	continue	to	be	important.	The	already	large	268	

number	of	people	potentially	affected	can	be	expected	to	increase	as	groundwater	use	269	

expands	with	a	growing	population	and	increasing	irrigation,	especially	in	the	light	of	water	270	

scarcity	associated	with	warmer	and	drier	conditions	related	to	climate	change.	The	maps	can	271	

also	help	aid	mitigation	measures,	such	as	awareness	raising,	coordination	of	government	and	272	

financial	support,	health	intervention	programs,	securing	alternative	drinking	water	resources	273	

and	arsenic	removal	options	tailored	to	the	local	groundwater	conditions	as	well	as	social	274	

setting.	275	
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