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Abstract-In this paper we present a novel approach for the 
modeling of multivariable time series. The model class consists of 
linear systems, i.e., the solution sets of linear difference equations. 
Restricting the model order, the aim is to determine a model with 
minimal la  -distance from the observed time series. Necessary 
conditions for optimality are described in terms of state-space 
representations. These conditions motivate a relatively simple it- 
erative algorithm for the nonlinear problem of identifying optimal 
models. Attractive aspects of the proposed method are that the 
model error is measured globally, it can be applied for multi- 
input, multi-output systems, and no prior distinction between 
inputs and outputs is required. We give an illustration by means 
of some numerical simulations. 

I. INTRODUCTION 

HE basic problem in time series modeling is to find T a reasonably simple model which gives a sufficiently 
accurate description of the data. Procedures which have been 
developed for this problem differ in the specification of the 
model class and in the way the complexity and accuracy of 
models is evaluated. 

In this paper we will restrict our attention to models 
described by linear difference equations with fixed coefficients 
and finite lags. Within this classical setting several modeling 
procedures have been developed. For an overview, we refer to 
the textbooks [l], [4], [6]. Well-known examples are the least 
squares identification of input-output systems in polynomial 
form and, more generally, the maximum likelihood identifi- 
cation of ARMAX systems, i.e., input-output models where 
the disturbances follow a moving average process. These and 
most other methods require that several structural aspects of 
the model should be specified a priori. 

1) The number of equations, that is, the number of inputs 
and outputs of the system, and the decomposition of the 
system variables into inputs and outputs. 

2) The orders of each of the equations, that is, the so-called 
structural indices of the system. 

3) The stochastic properties of the disturbances, in particu- 
lar the joint correlation structure between inputs, outputs, 
and disturbances. 

4) The choice of a canonical parameterization, to avoid 
problems of nonidentifiable parameters. 
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The identification procedure that we propose in this paper 
differs in some crucial aspects from the methods just described. 
Our aim is to decompose a given multivariable time series, 
denoted by w, into two parts, i.e., 

w=w+271 (1) 

where w represents a regular part and 271 the corresponding 
deviation. The aim is to keep the approximation error as small 
as possible, under the condition that the approximating time 
series w is sufficiently regular. To make this more explicit we 
next describe our notions of regularity and model error. 

A time series is called regular if it satisfies linear, time- 
invariant difference equations of finite lag. Let q denote the 
number of system variables, p the number of independent 
equations, and n the total lag, i.e., the sum of the lags of 
the individual equations. Time series are more regular when 
m: = q - p and n are smaller, i.e., the more equations they 
satisfy and the smaller the number of initial conditions. This 
can also be formulated as follows. Define the complexity of 
a linear, time-invariant, finite dimensional system by the pair 
(m, n), where m is the number of system inputs and n the 
(minimal) number of state variables. A system is called less 
complex if it has fewer inputs, i.e., unexplained variables, and 
if it has less states, i.e., initial degrees of freedom. Then a 
time series is more regular if it can be generated by a less 
complex system. 

The model error is evaluated as follows. For expository 
reasons we restrict ourselves in this paper to time series which 
are specified over the infinite time axis Z and which are square 
summable, i.e., we assume that w E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1;. The main results in 
this paper can be extended for modeling time series observed 
over a finite time interval, but we will not treat this issue 
here to simplify the presentation. The error in approximating 
an observed time series w by a regular part zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 is measured 
by the 12-norm of the deviation 271 = w - 2il, denoted by 

In our approach we will assume that the required regularity 
of the approximating time series & has been specified a priori. 
Stated otherwise, we impose an upper bound on the complexity 
of the system that can generate the approximation. We denote 
by Bq*m,n the set of all time series that can be generated by 
systems with m inputs, q - m outputs, and n states, i.e., all 
time series that satisfy q - m independent linear, time-invariant 
difference equations with total lag n. Under this restriction we 
wish to minimize the approximation error as defined above, 
i.e., 

(2) 

1127111: = {E,"=-, G(t)%(t)}l? 

min{llw - 611; w E BQ7m,n}. 
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Solving this problem for different values of (m, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn) gives 
an impression of the involved trade-off between the required 
regularity and the resulting approximation error. The search 
for an acceptable model complexity is facilitated by the fact 
that the error decreases for increasing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(m, n), as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABqimltnl c zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
BQ>mz9nz if m l  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 m2 and n1 5 n2. Note that this criterion 
allows for deviations in all the system variables and that the 
error is not measured locally, e.g., as a prediction error, but as 
the global /a-distance between the observation and the regular 
part. Therefore we give the name "global total least squares" 
to the identification criterion (2). 

As compared to classical procedures, our formulation of the 
time series modeling problem involves less a priori specifi- 
cations. With respect to the four structural aspects discussed 
before, our approach has the following features: 

1) The number of inputs and outputs is specified a priori, 
but the system variables are all treated alike so that there 
is no need for a specification of inputs and outputs. 

2) The structural indexes need not be specified, but only 
the total lag, and this can be varied easily. 

3) The problem formulation involves no stochastic specifi- 
cations, although these may be incorporated by adjusting 
the norm on 12. 

4) The criterion is nonparametric, so that any representation 
may be chosen as it suits. 

This paper has the following structure. To give some feeling 
for the global total least squares problem, we first describe 
the well-known and relatively simple case of static total least 
squares in Section 11. The basis for our modeling theory is the 
behavioral approach to systems, and this is briefly discussed 
in Section 111. For further treatment of the behavioral approach 
in systems theory we refer to [lo] and [l l ]. In Sections 
IV and V we develop a highly structured type of system 
representations, isometric state representations, which form the 
comerstone of our modeling theory. Section VI concems the 
question of how to determine an optimal approximation of 
an observed time series within a given model. This linear 
optimization problem is solved by a projection algorithm 
which was introduced in [12]. In Section VI1 we treat the 
problem of determining an optimal system. This is a nonlinear 
optimization problem over a nonconvex set. We propose three 
model improvement constructions, based on the results in 
Section VI. These constructions are used in Section VI11 to 
estimate locally optimal models. In Section IX we describe 
three simulation experiments that illustrate the use of the 
global total least squares method, and Section X contains some 
conclusions. 

11. STATIC TOTAL LEAST SQUARES 

We first consider the well-known case of total least squares 
in static models. Although it may be somewhat artificial in 
this case to consider observations in 12, i.e., on an infinite time 
interval, it gives a better introduction for the dynamic case. 

Static total least squares involves the approximation of 
a given time series by a regular one that satisfies linear 
nondynamic relations. For a required number of independent 
equations, the objective is to keep the approximation error 

as small as possible, i.e., to minimize zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIIw zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- wll where w 
denotes the observed time series and 8 the approximation. 
If the required number of independent equations is denoted 
by p, then the regularity of the approximation implies that 
Rw = 0 for some matrix R of rank p. This means that the 
approximation 2i, has rank at most m: = q - p. In terms of 
(2), this class of regular time series is given by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB'J~m~o,  where 
n = 0 corresponds to the exclusion of dynamic equations. This 
leads to the following formulation of static total least squares. 

Definition 2.1 (Static Total Least Squares): For a given 
time series w E 1: and minimal required number of 
independent relations p = q - m, find a decomposition 
w = w + 2zI with .rir E W m l o  and with lllzlll minimal. 

The solution to this problem is given by the singular value 
decomposition (SVD). We denote the usual Euclidean norm 
on Rq by I . I and the induced norm on 1; by 1 1  . 1 1 .  
Proposition 2.2 (Singular Value Decomposition in 12) :  Every 
w E 1; can be decomposed as w = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE:='=, A,u,v,, with 

1) A1 2 ... 2 A, 2 0, called the singular values of w; 
2) U, E RqX1 with I U , ~  = 1 and UT., = 0 for i # j, called 

3) U, E lg with llu,ll = 1 and U, I vj  for i # j ,  called the 

The singular values are uniquely determined, and if they are 
distinct, then the singular vectors are also uniquely determined, 
up to a sign. 

Proofi The existence and properties of the SVD for finite 
matrices are discussed in, e.g., [3]. Let II denote the empirical 
covariance matrix of w, i.e., II = E:-, ~(t)w(t)~. As II 
is symmetric, the left singular vectors are equal to the right 
ones, so let its SVD be given by II = E:='=, p,u,uT. Let 
U: = [UI, . . . , U,], then the empirical covariance matrix of 
UTw is given by d iag(p l , . . - ,pq) ,  so UTw consists of q 
orthogonal components of norm 6. It is easily verified that 
for U,:= (l/&)uTw and At :=  6, w = E:='=, A2u,u2 is 
an SVD of w. 0 

The SVD solves the static total least squares problem, as 
follows. 

Proposition 2.3 (Optimal Static Approximation): Let w = 
E:='=, A2~,w,  be the SVD of w E Z:. Then w: = A,u,v, 
is the optimal approximation of w in Bq>mto, satisfying the 
static equations ~Tzit = o for i = m + 1 , .  . . , q .  

Proofi This result follows immediately from a corre- 
sponding property of the SVD for finite matrices, cf. [3]. 0 

Example: One of the essential features of total least squares 
is that all variables are treated in a similar way. For simplicity 
we consider simulated data from a model with this type 
of symmetry, namely an errors-in-variables model. This also 
gives us the opportunity to relate total least squares to other 
well-known identification methods and to discuss the role of 
stochastic assumptions. We consider the model 

the left singular vectors of w; 

right singular vectors of w. 

U(t) = Z ( t )  + V ( t ) ,  y(t) = az( t )  + E ( t ) .  (3) 

The observed variables consist of w = (U, y), and z is 
an unobserved latent variable and E and q are unobserved 
disturbances. Three of the possible methods for the estimation 
of the parameter a are regression of y on U, regression of U 
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on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy, and total least squares. These methods can be interpreted 
as maximum likelihood methods, in the case that E and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA77 are 
independent white noise processes with variances 0," and U; 

and if in addition respectively zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIY: = 0, 0," = 0, or IY," = IY:. 

As an example, we consider data generated by the model (3) 
with Q = 1 and 0," = 0: = 0.5 and where z is a sample of 20 
observations of a white noise process with variance one and 
independent of 77 and E .  The SVD of the resulting observation 
is 

where q and 212 are two orthogonal vectors of unit length. 
According to Proposition 2.3, the optimal static approximation 
8 of w of rank 1 is given by the first term in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(4), and 
this satisfies [-0.69, 0.7219 = 0. This corresponds to an 
estimated value 0.69/0.72 = 0.96, which is close to Q = 1. 
The corresponding approximation error is llw - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA811 = 2.31. 
Regression of y on U yields an estimate of 0.69, and regression 
of U on y gives 1.36. These results are depicted in Fig. 1. 

This example illustrates the fact that the static total least 
squares (TLS) scheme is in between both regressions. The 
method is easily adapted for the case 0," # a:, by using 
a weighted 12-norm for w = (G, jj), defined by ~ ~ z G ~ ~ ~ : =  
~ ~ 1 1 G l 1 ~  + 11$112 with a = I Y ~ / I Y ~ .  The regressions correspond 
to the extremal cases with infinite weight on one of the com- 
ponents. To choose an appropriate weighted Z2-norm we need 
information on the relative errors involved in the measured 
system variables, c.q., the relative weight one attaches to 
deviations in the different variables. In this paper we will not 
further address these problems. 0 

111. GLOBAL TOTAL LEAST SQUARES 

In the rest of this paper we are concemed with total least 
squares in dynamical systems. For this purpose we describe 
in this section our systems concept and corresponding notions 
of complexity and misfit. 

As stated in the introduction, we consider systems described 
by hfference equations. From the formulation of the global 
total least squares problem (2), it is obvious that sets of 
equations with the same solution set are equivalent as they 
yield the same approximation error for every observation. 
Hence not the equations themselves, but their solution set 
is the essential object in our modeling procedure. This is 
a strong motivation for adopting the behavioral approach to 
systems, as introduced in [lo] and [ l l ] ,  in which a system 
is defined by the set of time series that we compatible 
with the system laws. This set i s  called the behavior of 
a system. The system laws themselves are considered as a 
description or representation of the behavior. The properties 
we impose on difference equations are reflected by the set- 
theoretic properties of the corresponding behavior. Linear, 
time-invariant difference equations correspond to linear, shift- 
invariant behaviors. If in addition the equations have finite 
lag, it can be decided if a time series belongs to the behavior 
by scanning it through a finite window. This property is 
called completeness, which is further explained in Appendix 
A, (see Definition A.l). We will further restrict the attention 

I 
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U 

Fig. 1. Scatter diagram of the data zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw: the solid line denotes the TLS model 
and the dashed lines the two regression models; the dotted lines indicate which 
distance is minimized in the three different models. 

to behaviors in 12. The resulting class of systems is defined 
as follows. 

Definition 3.1 (12-Systems): 12-systems are linear, shift- 
invariant, complete subspaces of 1;. 

As a measure of the restrictiveness of a set of difference 
equations we take into account the number of independent 
equations and their total lag, as described in the introduction. 
We call the equations independent if the number of equations 
cannot be reduced without changing the solution set, i.e., if 
there exists no equivalent smaller set of equations describing 
the same system. On the set theoretic level of 12-systems, we 
define the complexity of a system in terms of its rank and its 
degree. The rank of a system is defined as the number of the 
degrees of freedom at each time instant, which is equal to the 
number of inputs, and the degree of a system corresponds to 
the dimension of the state space (see Definition A.3). 

Definition 3.2 (Complexity): The complexity of an 12- 

system B is defined as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc(B) :  = (m, n), where m denotes 
the rank of B and n its degree. 

Let Bqim,n denote the class of 12-systems with rank at 
most m and degree at most n. Then Bq,m,n consists of the 
solution sets of at least q - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm independent linear time-invariant 
difference equations with the sum of their lags at most n, i.e., 
w E Bq7m,n if and only if there exists a system B E BQ>m,n 
with w E B. 

We summarize this in Table I. For further clarification we 
also relate these concepts to the classical characterization of 
systems in terms of input-output mappings. 

We define the following concept of the misfit of a system. 
Definition 3.3 (Misfit): The misfit of an 12-system B with 

respect to an 12-time series w is defined as d(w, a>:= 
infGEallw - 811. 

This leads to the following reformulation of the global total 
least squares problem (GTLS) as described in the introduction 
(see (2)). 
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TABLE I 
COMPARISON OF SYSTEM CONCEFTS 

linear 
time-invariant 
finite zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAorder zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

m inputs, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq-m outputs 

Definition 3.4 (GTLS): zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFor an observation w E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1; and 
given tolerated complexity (m, n), determine an 2;-system zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
B* E Bq,m,n such that d(w, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa*) = minBEBq.m,n d(w, B). 

This involves a double minimization. The inner minimiza- 
tion, evaluating the misfit d(w, B), amounts to optimization 
over a linear space. Secondly, we have to determine a sys- 
tem for which the misfit is minimal. This is a nonlinear 
optimization problem over a nonconvex set. 

will be used in the following sections to clarify the introduced 
general framework. We consider a time series in B2i111, that 
is corrupted by white noise. The regular part zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw, consists of 
two components, U ,  and y,, where U ,  is the realization of a 
white noise process with unit variance, and yr satisfies 

I Leading Example: We describe a simple example, which 

y,(t) = 2/3y,(t - 1) + 2ur(t) - 2u,(t - 1). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 5 )  

The observation w consists of two components u and y, with 

(6) 

where 7 and E are independent white noise processes with 
variance 0.25, both independent of U,. The data consists of a 
time series of length 100 which is generated by system (6). 
To obtain a time series in 12, the observation ( U ,  y) is taken 
to be zero outside the observation interval. 

Of course, this simple example could be solved by brute 
force as a nonlinear parameter optimization problem, disre- 
garding any system theoretic interpretation of the problem. 
In more complicated cases, however, this becomes hardly 
feasible. Therefore we will follow a system theoretic approach, 
that also gives more insight in the problem. 

The GTLS results in the following sections will be com- 
pared with those obtained by three other methods, namely 
regression, the “output error” method, and the “local total least 
squares” method. Here we mention that the procedures for 
GTLS and local total least squares have been implemented in 
Matlab and that for the regression and output error method 
we used, respectively, the procedures ARX and OE of the 
System Identification Toolbox. The regression model Bregr is 
obtained by regressing y(t) on y ( t  - l ) ,  u(t) and u(t - 1). 
For the observation w this gives 

I 

u(t) = ‘ L L V ( t )  + 4% Y(t) = yr(t) + E ( t )  

Bregr = { ( U ,  Y) E 222; ~ ( t )  = O.lOy(t - 1) 
+ 1 .42~( t )  - 0.78~( t  - 1)). (7) 

the first step ahead predictions of difference equations are 
taken into account. In the GTLS scheme we approximate both 
components and take full account of the global, higher order 
forward and backward implications of difference equations. 

The output error model Bo, is the system with the property 
that for the given input U ,  the corresponding system output yoe 
is as close as possible to the observed output y. In fact, this 
method has some similarity to GTLS, the difference being that 
the input is kept fixed and only the output is approximated. In 
our terminology it is a “global ordinary least squares” method. 
The estimated output error model is 

Bo, = { ( U ,  y) E 1;; y ( t )  = 0-68y(t - 1) 
+ 1.15u(t) - 1 . 5 1 ~ ( t  - 1)). (8) 

Finally we use a simple modification of the static total least 
squares method of Section I1 to determine a first-order model, 
as follows. Define the block Hankel matrix H E 1; by 
H ( t )  = [ w$:’] , then static equations for H correspond to 
first-order equations for the observation w. The optimal static 
equation for H is obtained by applying Proposition 2.2 with 
q = 4 and m = 3. Clearly, the quality of the corresponding 
first-order model for w is evaluated only locally. By this 
we mean that, for example, the second-order restrictions 
on (w(t - 2), w(t - l), w(t) )T implied by the model are 
not taken into account, and the same holds true for higher 
order restrictions. Therefore we call this the “local total least 
squares” model. For the data of this example this gives 

This example will be continued in the next sections. 0 

IV. STATE REPRESENTATIONS 

One of the crucial questions in our modeling theory is 
how to calculate the misfit of a system with respect to a 
given observation, cf. Definition 3.3. Obviously this requires 
a numerical representation of the system. In Section V we 
develop a representation that is extremely useful for this 
purpose, namely the isometric state representations. They also 
play a central role in the construction of optimal models, as 
discussed in Section VII. We now first introduce general state 
representations, which will be abbreviated as SR. Let r~ denote 
the shift operator, defined as ax(t):  = x(t + 1). 

Definition 4.1 (State Representation): A state representa- 
tion (A, B, C, D) of an 12-system B is a description of the 
form 

B = {U E 1;; 3x E l;, v E 1? such that 

r ~ x  = A x +  Bv and w = Cx+ Dv} 

This equation yields optimal one-step ahead predictions for 
y(t), given y(t - l ) ,  u(t) ,  and u(t - 1). According to 
our terminology, we would call this method “local ordinary 
least squares.” By ordinary we mean that only one of the 
components of w is approximated and by local that only 

with A E RnXn, B E Rnx”, C E Rqxn, D E Rqxm and 
n, m E N. 

Here U is an auxiliary input, x is a state trajectory and w 
a system trajectory, m denotes the number of auxiliary inputs 
and n the number of state variables. The system defined by 

I l l  
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this representation is denoted as B(A, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB,  C, D).  We mention 
that the condition that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx and w are square summable involves 
no loss of generality, as it can be shown that for every 
(x, w): Z R" zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx R" generating w E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1; there also exists 
(x', U') E 1; x 1y generating the same time series w. Systems 
in Bq>m,n, i.e., with rank at most m and degree at most n, 
are precisely those systems that admit an SR with m auxiliary 
inputs and n states, cf. Proposition A.4. 

Representations are called equivalent if they describe the 
same system. They are called minimal if the number of state 
variables and the number of auxiliary inputs are both minimal. 
These two quantities can be minimized simultaneously, so for 
every system there indeed exists a minimal SR. From a given 
SR we obtain equivalent ones as follows. 

Proposition 4.2 (Equivalent State Representations): Let be 
given a state representation (A, B ,  C, D )  of an 12-system zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB. 
Then for all invertible S E R" n, invertible R E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR" " , and 
F E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARmx", ( S ( A  + B F ) S - l ,  S B R ,  (C + DF)S-I ,  DR)  
is also a state representation of B. Moreover, if (A, B ,  C, D )  
is minimal, then all minimal state representations for B are 
obtained in this way. 

Proof: By definition, w E 1; is contained in 
B(A, B ,  C, D) if and only if there exist an v and x such 
that (TZ = Ax + Bv and w = Cx + Dv. These equations are 
equivalent to a(Sx)  = S(A + B8')S-l (Sx) + SBR( R-' (U - 
Fx)) and w = (C + DF)S- l (Sx )  + DR(R- l (v  - Fx)), 
provided that S and R are invertible. This shows the 
equivalence of the representations. For a proof of the fact that 
for minimal representations all equivalent representations are 
obtained in this way we refer to [5, Corollary IV.3-41. 0 

Observe that minimal SR's for a given 12-system are highly 
nonunique. The choice of basis in the state space, corre- 
sponding to S, is a well-known nonuniqueness of state-space 
representations. In our framework the auxiliary input v is 
merely a tool to describe the system behavior and need not 
have additional extemal significance. This allows for a basis 
transformation for the auxiliary input, corresponding to R. 
Further the behavior is invariant under a static state feedback 
F to this auxiliary input. This is in contrast to the common 
notion of feedback to the actual input of the system, which 
would affect the set of compatible input-output pairs. As a 
consequence, in our framework the spectrum of the A-matrix 
is not an intrinsic property of a system. In the next section 
we exploit this nonuniqueness to obtain SR's with convenient 
properties for computing the misfit of a model with respect 
to data. 

Minimality of a representation can be expressed in terms of 
rank conditions on the matrices ( A ,  B,  C, D ) ,  as follows. 

Proposition 4.3 (Minimal State Representations for 12 - 
Systems): A state representation (A, B ,  C, D )  is minimal 
if and only if: 

1) ( A ,  B )  is controllable 
2) V F  E R"'", ( A  + BF, C + D F )  is observable 
3) kerD = 0. 

By eliminating the state, SR's induce an image repre- 
sentation of 12-systems. For the exposition in the sequel, 

Proof: See Appendix B. 

representations with A asymptotically stable are most rele- 
vant. Every 12-system allows for such a representation, which 
follows from Propositions 4.2 and 4.3.1. 

Proposition 4.4 {Image Representations): Let B be an 1;- 
system in Bq,",", with state representation ( A ,  B ,  C, D ) ,  
where A is asymptotically stable. Let G : ly  + 1; be defined 
as G = C(uI - A) - lB  + D,  i.e., (Gv)(t) = Dv(t )  + 

Proof: G is well defined, as A is asymptotically stable. 
It is easily verified that the equations ( ~ x  = Ax + Bv and 

0 
Leading Example (Continued): Consider the 12-system cor- 

responding to (3, Beex:= {w E 1;; w = (U, y), with y(t) = 
2/3y(t - 1) + 2u(t) - 2u(t - 1)). This can be written in 
input/state/output form as follows 

CA"'Bv(t - k ) .  Then B = imG. 

w = C x  + Dv imply that Gv = w. 

x(t + 1) = 2/3x(t) + U ( t ) ;  ~ ( t )  = -2 /3~( t )  + 2 ~ ( t ) .  (10) 

From this it is easy to obtain an SR by taking the auxiliary 
input w to be equal to U, which gives 

This representation is minimal. The corresponding image 
representation G = Gka-k has coefficients Go = [ 23,  
and Gk = [ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- ( 2 0 / 3 ) k ] .  An SR equivalent to (1 1) is given by 

(1, 1/2, [,,'I, [ 'i2]3>, which follows from Proposition 4.2 

by taking S = 1, R = 1/2, and F = 1/3. Note that in 
this representation the auxiliary input is given by y. This also 
illustrates that the eigenvalues of A are not intrinsic for the 
system B. 0 

V. ISOMETRIC STATE REPRESENTATIONS 

In this section we define isometric state representations 
(ISR's), which are defined by a local isometry property in- 
volving the state variable. 

state 
representation (A, B, C, D) is called isometric if for all 
x E R",w E R", w E RQandz  E R" suchthatz = Ax+Bw 
and w = Cx + Dv there holds 

Definition 5.1 (Isometric State Representation): A 

[VI2 + 1xI2 = 1Wl2 + 1zI2. (12) 

Equivalently 

(" C D  B ) T ( A  C D  " )  = ( In  0 I" O )  . (13) 

Minimal ISR's can be constructed from arbitrary minimal SR's 
as follows. 

(A, B ,  C, D )  
be a minimal state representation, and let K E Rnxn be the 
unique symmetric positive definite solution of the algebraic 
Riccati equation 

Proposition 5.2 (Construction of ISR): Let 

K = ATKA - (BTKA + DTC)T(BTKB + DTD)-l 

. (BTKA + DTC)  + CTC. (14) 

I I 1  
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Let the matrices S E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARnXn, F E Rmxn and R E Rmxm be 
solutions of the equations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

S T S =  K (15) 

R R ~  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= ( B ~ K B  + D ~ D ) - ~  

Fig. 2. Projection scheme. 
F = - (BTKB + DTD) - l (BTKA + DTC). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(17) 

Then (S (A  + BF)S- l ,  SBR, (C + DF)S- l ,  DR) is an 
equivalent isometric minimal state representation. 

Proof: See Appendix B. 
The following proposition gives a necessary minimality 

condition for ISR’s and states that they are unique modulo 
unitary transformations. 

Proposition 5.3 (Minimal ISR): 
1) If (A ,  B, C, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0) is an ISR, then A is stable. If the rep- 

resentation is minimal then A is asymptotically stable. 
2) Two minimal ISR’s (A ,  B, C, D )  and (A’, B’, C’, D’) 

are equivalent if and only if there exist unitary 
matrices U and V such that (A’, B’, C’, D’) = 
(UAUT, UBV, CUT, DV) .  

Proof: See Appendix B. 
ISR’s induce a description of 12-systems as the image of 

an isometric operator. This is made explicit in the following 
proposition. 

Proposition 5.4 (Isometric Image Representations): Let 
( A ,  B, C, 0) be a minimal isometric state representation 
of an 12-system zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB. Then the corresponding image operator 
G :  1T -+ 1; defined by G = C ( u l - A ) - l B + D  is isometric, 
i.e., llGvll = llvll for all zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv E l y .  

Proof: If w = Gw then w(t) = Cx(t) + Dv(t) for 
x = (aI  - A)- lBv,  so that u x  = Ax + Bv. Summation 
of (12) over t E Z yields 1)v(I2 + 1 1 ~ 1 1 ~  = 1 1 ~ 1 1 ~  + ll0x11~. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

fJ 
Summarizing, every 12-system can be represented as the 

image of an isometric q x m transfer function with an ISR 
as its realization. In the literature an isometric operator G is 
sometimes called lossless, and if it is in addition stable it is 
called inner. So an ISR is a realization of an inner transfer 
function that displays the isometry in a local way, in terms of 
the state variables. 

Leading Example (Continued): We apply the construction 
of Proposition 5.2 to the SR (1 1) of 12-system BeX. This yields 
K = 419, S = 213, R = 317, and F = 4/21, resulting in 
the isometric representation 

Clearly ) ( X I (  = I(ux11, from which the result follows. 

o x  = 6/72 + 2 1 7 ~ ;  w = [ $1 x + [;;;I U. (18) 

According to Proposition 5.3, Bex has a unique minimal ISR, 
modulo sign changes for the state and for the auxiliary input. 0 

VI. OPTIMAL APPROXIMATION WITHIN A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASYSTEM 

In this and the next section we consider the GTLS problem 
of Definition 3.4. As stated before, this involves a double 
minimization. In this section we discuss the computation of 

the misfit, and in the next section we treat the problem of 
selecting an optimal model. 

For the computation of the misfit we will use the adjoint 
G* of an operator G :  17 .+ 1;. This is defined by the 
condition (w, Gv) = (G*w, w) for all ‘U E IT and w E l ; ,  
where (e, .) denotes the inner product on 12. It follows that 
G is isometric if and only if G*G = I. For the image 
operator G:= C(a l  - A)- lB  + D the adjoint is given 
by G* = BT(a- l1  - AT)-lCT + DT. This can also be 
written as G* = R,GTRq where Rk: 12“ .+ 1; denotes 
the time reversion operator defined by RkW(t): = w( -t) and 
GT: = BT(aI - AT)-lCT + DT. 

Theorem 6.1 (Optimal Approximation Within a System): Let 
be given an observation w E 1; and an l;-system B E Bp>m,n. 
Let G :  l? --+ 1;. be an isometric image representation of 
23. Then the optimal approximation 2ir E B is given by 
2i, = GG*w, with misfit d(w, B) = ll(Iq - GG*)wlI. 

Proof: This is a well-known result. To be explicit, we 
should minimize IIw - Gwll over w E l?. Let w’ = v - G*w, 
then 1120 - Gull2 = 11w - GG*w - Gv’)I2 = I(w - GG*w1I2 + 
I IGW’~~~ ,  as (w-GG*w, Gw’) = (G*w-G*w, U’) = 0 where 
we use that G is isometric so that G*G = I,. So the minimum 

0 
The optimal approximation within a system B gives rise to 

a decomposition w = w + 271, with w E B regular and with 271 
the corresponding approximation error. We will now show that 
6 also exhibits regularity. As w is obtained as the projection 
of w on 8, it follows that 6 E BL = {w E 12 ;  (w, w’) = 
0 for all w’ E 23). This set is clearly linear and shift-invariant. 
The following theorem states that it is an 12-system. 

Theorem 6.2 (Orthogonal Complement): Let B be an 12- 

system with rank m and degree n. 
1) The orthogonal complement B* of B is an 12-system. 

3) BL has rank q - m and degree n. 
4) Let (A ,  B, C,  D )  be a minimal isometric state repre- 

sentation of B, and let B,  D be such that ($ $) 
is a unitary matrix. Then ( A ,  8, C, D )  is a minimal 
isometric state representation of B* . 

5) Let 8 be the optimal approximation in l? of w E 1;. 
Then the approximation error 271: = w - w is the optimal 
approximation in BL of w. 

is achieved by taking U’ = 0, and w = GG*w. 

2) B @ Bl = z;. 

Proof: See Appendix B. 
We summarize this result in the following projection scheme 

as shown in Fig. 2. Here G and G denote the image repre- 
sentaLions c2rresponding to, respectively, (A ,  B, C, D )  and 
(A, B, C, D), and E: = [G G]. In the literature is some- 
times called a lossless embedding of G. Further i and ij are 

I 
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TABLE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11 

MISFIT OF MODELS 

the auxiliary inputs corresponding to w and w, i.e., w zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= G8 
and w = GG. According Lo Theorem 6.1 and 6.2.5, there holds 
that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 = G*w and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG = G*w as shown in Fig. 2. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Leading Example (Continued): We apply the projection al- 
gorithm of Theorem 6.1 to determine the optimal approxi- 
mation w E Be, of the observation w described in Section 
111. Let G denote the image operator corresponding to the 
ISR ( 1 Q  and let (A ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB,  C, D )  denote the corresponding 
matrices. First compute 8:= G*w, which is given by the 
backward state equations x ( t )  = ATx(t + 1) + CTw(t); 
S ( t )  = BTx(t + 1) + DTw(t). Then 6 = G8 is given by 
i ( t  + 1) = AP(t) + B8(t); w(t) = C i ( t )  + D8(t).  

According to Theorem 6.2, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABA has ISR (6/7,3/7, 

[ _2$] , [ ;7?]). This corresponds to the equation 

y ( t )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy ( t  - 1) - 1 / 3 ~ ( t )  + 1 / 2 ~ ( t  - 1). (19) 

So every time series in 1; that is orthogonal to Be, satisfies 
this difference equation, in particular the approximation error 
w:= w - GI. The misfit of Be, equals ll6ll = 5.22, as 
compared to I(w(I = 22.72. This is considerably smaller that 
the Z2-norm of the white noise by which the observation was 
corrupted. Recall that w = W, + w,, with W r  E Be, and 
w, white noise. In our example, (Iw,(( = 7.62. The optimal 
approximation is simply obtained by projecting the noise wn 
on Be,, with a resulting decomposition w, = w, + w,, where 
w, E Be, and wn E BA. In our case, (18,)) = 5.56 and 
~ ~ w n [ ~  = )1611 = 5.22. We also determine projections onto the 
models Bregr, Bo,, and Bltl,, as defined in Section 111, and onto 
a randomly chosen system Brand E B21131. The parameters of 
an SR of Brand were obtained by a random sample from the 
standard normal distribution. The resulting misfits are listed in 
Table 11. It tums out that the local total least squares model is 
of relatively good quality in this example. This, however, may 
be completely different in other situations, as we will illustrate 
by an example in Section IX-B. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 

VII. MODEL IWROVEMENT CONSTRUCTIONS 

In this section we discuss the second part of the GTLS 
problem, namely determining an /a-system with minimal misfit 
with respect to a given observation. Formulated in terms of 
state representations, this amounts to the following. 

Definition 7.1 (GTLS in terms of SR): For given observa- 
tion w E 1; and tolerated complexity (m, n) ,  determine a 
state representation ( A ,  B,  C, D )  with m auxiliary inputs 
and n states and an auxiliary input 6 E 1r such that for 
G(t) :  = (C(aI - -A)- 'B+D)6,  the error IIw-wll is minimal. 

We follow an iterative approach for this nonlinear problem. 
In each step we keep some parameters fixed, such that the re- 
sulting subproblem becomes sufficiently simple. For instance, 
for fixed ( A ,  B, C, D )  the resulting problem in 8 is solved 

by the projection scheme discussed in the foregoing section. 
We consider the following subproblems. 

Problem &Optimal C and D: For given A,  B and 6, 
solve the GTLS problem for C and D. 

Problem 2 4 p t i m a l  B and D: For given A, C and 8, solve 
the GTLS problem for B and D. 

Problem 3 4 p t i m a l  B ,  D and 8 in an ISR: For given A 
and C with ATA + CTC = I,, solve the GTLS problem 
for B,  D ,  and 8, under the restriction that ( A ,  B,  C, D )  is 
isometric. 

In the next theorem we given constructive solutions of these 
problems. 

Theorem 7.2 (Model Improvement Constructions): 
1) Construction 1 (Projection of the Approximation Error): 

Let 2 be defined by aP = A i  + B6, and let E :  = {w E 
Z;; 3C E RQXn, D E RQxm such that w = CP + D8).  
Let Pi + QS denote the orthogonal projection of w onto 
E ,  then B1: = B(A, B,  P, Q) solves problem 1. 

2) Construction 2 (Dual version of construction 1): Let 
3= {w E 1:; 3B E Rnxm, D E RQXml such that 
w = (C(a1 - A ) - l B  + D)8} .  Let the orthogonal 
projection of w onto F be given by (C(a1- A)- lP  + 
&)a, then B,: = (A, P, C, Q) solves problem 2. 

3) Construction 3 (SVD on auxiliary inputs): Let B E 

Rnxq, D E RQxq be such that (: g) is a unitary 

matrix. Let ;ii: = (BT(n-ll - AT)-'CT + DT)w have 
SVD ;ii = &z;, and let Um:= [uI,.-.,u,]. 
Then &: = B(A, BU,, C, Dum) solves problem 3.  

Pro08 Parts 1 and 2 follow immediately from the defi- 
nitions of E and F. For part 3 ,  okserye that ( A ,  B,  C, 0) is 
an ISR if and only if there e_xist B, D,  and a unitary V such 
that [ B  B] = SV and [D D] = DV. For this representation 

the projection scheme gives (:) = V T V ,  with misfit 11G11. By 

taking V = [ul, . . + , uQ] , this misfit is determined by the g - m 
17 

We use these results in an iterative algorithm for the GTLS 
problem. At each step we use one of the three constructions 
to improve the model. The resulting model parameters are 
transformed to ISR, which also involves an update of the 
A-matrix. The projection scheme is then applied to update 8. 

Proposition 7.3: The above method leads to a sequence of 
models with monotonically decreasing misfit. 

Proof: This is immediately evident from Theorem 7.2 .0  
So the algorithm leads to a convergent sequence of misfits. 

In the next section we show that, in the limit, the correspond- 
ing models are stationary points with respect to the GTLS 
criterion. 

Leading Example (Continued): To illustrate the foregoing, 
we consider the data w = (U, y) described in Section I l l  
(see (5) and (6)). To investigate the effect of the choice of an 
initial model, we apply the model improvement constructions 
to the models Bex, Bo,, Bregr, Bltl,, and Brand as described 
in Sections I l l  and VI. The results are in Table 111. The first 
row shows the initial misfits, cf. Table 11. The next three rows 
contain the misfits of the models obtained by applying each 
of the constructions separately and only once. This shows that 

- 

smallest singular values of 77, which is minimal. 

I 
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TABLE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIII 
MODEL IMPROVEMENTS 

model zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11 aez zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa o e  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABregr alt ls Brand 

misfit 11 5.22 I 5.62 1 6.84 I 5.30 1 13.53 

I I I I I I 

TABLE IV 
ORDER SELECTION 

order. n = O  n = l  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn = 2  n = 3  n = 4  
misfit 6.71 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 5.11 I 5.02 I 4.91 I 4.91 

_ _  

each individual construction can give a significant decrease 
of the misfit. The last row shows the misfit resulting from 
applying these constructions iteratively until convergence. 

For each initial model convergence occurred after about 20 
iterations. The limiting model is the same in all four cases, 
which suggests that it is optimal. It is given by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Ljgtls = { ( U ,  9) E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1;; ~ ( t )  = 0.67y(t - 1) + 1.85~( t )  

- 1.96u(t - 1)). (20) 

The parameters of this system are relatively close to those of 
the data generating system, cf. (5). 

Next, we investigate whether the model order can be de- 
duced from the data. For this purpose we compare in Table IV 
the optimal misfits for models of various degree. The misfit 
of the optimal static model is given by the smallest singular 
value of W. This clearly motivates the choice of a first-order 
model. It is significantly better than the static model, and an 
increase of the order gives only small improvements. 0 

VIII. OPTIMALITY CONDITIONS 

From the model improvement constructions in Section VI1 
we can derive necessary conditions for optimality, as for an 
optimal model the constructions can give no improvement. 
We express the optimality conditions in terms of empirical 
covariances. For two sequences a E 12" and b E la this is 
defined as cov(a, b):= E,"=-, a(t)b(t)T E Rkxz.  Further, 
by cov([al, 4, [ b l ,  bz]), we denote the covariance matrix of 
the combined trajectories [aT a:]' and [by b:lT. 

Theorem 8.1 (12-optimality Conditions): Let B denote a 
GTLS model for an observation w E 1;.  Let w E B denote the 
optimal approximation of w, and 271 E BL the corresponding 
approximation error. Let 2,  fi denote, respectively, the state 
and auxiliary input corresponding to w in a minimal state 
representation of B, and let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5, fi be defined analogously for 
271. Then the following equivalent conditions hold: 

1) cov(6, 6) = 0, cov(fi, 2 )  = 0 and cov(P, 6) = 0; 
2) cov([fi, 4, [ V ,  4) = 0; 
3) cov([fi, 2,  6, a?], [e, 2,  271, a?]) = 0. 

Proof: See Appendix B. 
In practice, to evaluate how far these conditions are satisfied 

it may be useful to consider the empirical correlations, i.e., the 
covariances scaled by the magnitude of the variables. 

Next we investigate how far these conditions are sufficient 
for optimality. It is not difficult to check that the number of 
free parameters in (A, B, C, D), modulo the equivalence of 
Proposition 4.2, is given by nq + m(q - m). This is precisely 
the number of equations in Theorem 8.1.1. In fact, these 
conditions characterize the stationary points with respect to 
the GTLS criterion. We call a system B a stationary point 
for an observation w if all the derivatives of the GTLS misfit 
d(w, B(A, B, C, 0)) with respect to the system parameters 
are zero for a minimal SR of B. As all its minimal SR's 
are linearly related this is equivalent to the condition that all 
minimal SR's of B are stationary points. 

Theorem 8.2: An 12-system B satisfies the optimality con- 
ditions of Theorem 8.1 if and only if B is a stationary point 
of the GTLS criterion. 

Proof: S e e  Appendix B. 
This shows that the GTLS algorithm can only converge 

to stationary points. This does not, however, establish con- 
vergence of the systems. For what it is worth, we mention 
that we never encountered convergence problems in any of 
our simulations. A thorough discussion of the convergence 
properties of the algorithm falls beyond the scope of this paper. 

The foregoing results can also be used to analyze whether a 
proposed system B is close to optimality. This is, for example, 
relevant in the formulation of stopping criteria for the iterative 
algorithm of Section VII. Probably the most convincing way to 
evaluate optimality is to consider the distance between B and a 
GTLS model B*, as defined in Definition 3.4. This is in general 
not feasible, however, as it would require the knowledge of 
B*. Instead of asking how far the system should be changed 
to become optimal for the observed data w, we will consider 
the question of how far these data should be changed to make 
the given system optimal. For pragmatic reasons we consider 
the distance to the nearest stationary point, defined as 

min{(lul(; B is stationary for w - 20). (21) 

Because it seems difficult to evaluate this distance exactly, we 
present an upper bound that is relatively easy to compute. This 
upper bound is obtained by allowing only adjustments of the 
data that belong to Bl, so that the optimal approximation of 
the data within B is not affected. This leads to the following 
definition of the optimality margin. 

Definition 8.3 (Optimality Margin): The optimality margin 
of a system B with respect to an observation w is defined as 

min{ IlUlll; G E BL and B is stationary for w - G}. (22) 

The following result shows that the computation of the opti- 
mality margin is indeed relatively easy. 

Proposition 8.4 (Optimality Margin): Let 12 denote the op- 
timal approximation of w in B and let w: = w - 2it denote the 
corresponding approximation error. Further define 2: = { z  E 
SI; Bis stationaryforw + z } .  Then 2 is a linear space, and 
the optimality margin is given by 11w - 6'11, where W' is the 
orthogonal projection of 6 on 2. 

1 
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model 
misfit with respect t o  w zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATABLE V 

OPTIMALITY MARGINS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Sgt ls  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS b a l  Shank 

0.32 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 0.36 I 0.38 

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 40, NO. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1, JANUARY 1995 

scaling factor 
Il.lla-misfit with respect to w 
error in impulse response 

TABLE VI 
PROPERTIES OF REDUCED MODELS 

c r = l  a = 1 0  c r = l O O  
0.3204 0.4457 0.4476 
0.5407 0.4477 0.4476 

model 11 Bgth B e ,  Bo, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA&egr &tls Brand 
optimality margin ]I 4.58 * I 1.00 I 2.29 I 3.32 I 1.23 I 11.19 

Proof: See Appendix B. 
These results can also be used to determine a lower bound 

for the achievable misfit. This indicates the quality of a 
proposed model relative to the optimal one. For this purpose 
we will assume that a proposed model zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB is not only stationary 
for the adjusted data zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw - W, but even globally optimal. 

Proposition 8.5 (Bounds for the Minimal Misfit): Let be 
given an observation w, and let e* be the minimally achievable 
misfit under a certain complexity constraint. Further let B be a 

error in impulse response 0.54 0.46 0.57 
Hankel norm distance 11 0.93 I 0.80 1 0.74 I 

GTLS model of tolerated complexity for adjusted data W - 
with misfit e:= d(w, B). Then there holds 

by more than one equation, and we discuss the choice of the 
model complexity. 

A .  l9-Model Reduction 
e - 211Wll 5 e* 5 e. (23) 

Proof: Let B* denote a GTLS model for the original 
data w, so that d(w, B*) = e*. Then the upper bound 
follows from the optimality of B*. For the lower bound 
we use the properties of the misfit that d(w, B) 5 1 1 ~ 1 1  
and d(w1 + WZ, B) 5 d(w1, B) + d(w2, B), so that e = 

llWll+ d(w, a*) +d(W, B*) 5 2112011 +e*. Here we have used 
the optimality of B for w - U in the second inequality. 0 

This shows that for models with a small optimality margin 
the corresponding misfit is nearly optimal. 

Leading Example (Continued): The covariances of Theo- 
rem 8.1 give a first indication of the optimality of a model. 
To make this scale invariant we consider the correlations in an 
ISR. For the nominal model Bex they are around 0.3, for the 
regression model Bregr around 0.35, while for the randomly 
chosen model Brand correlations of 0.8 occur. For the model 
Bgtls in (20) the correlations are approximately zero, below 

From the optimality margins we obtain more precise infor- 
mation about the optimality of the systems. They are listed 
in Table V. This shows that it requires only a change of 
the observation of the order IlWll z to make Bgtls a 
stationary point, cf. (22). Now assume that Bgtls is globally 
optimal for w - U, which is reasonable assumption. The 
evaluation of the bounds in Proposition 8.5 for the data in this 
example with e = 5.1095 and 2112011 z lop5 shows that the 
optimal misfit e* z 5.1095 is determined within an accuracy 
of lop5. This also shows that Bggtls is optimal within this 
accuracy level. 

d(w, 0) 5 d(W, B) + d(w - W, a) 5 115711 + d(w - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA57, B*) 5 

10-5. 

IX. SIMULATION EXPERIMENTS 

We illustrate the use of the GTLS algorithm by three 
simulation experiments. The first example concerns model 
reduction, i.e., the approximation of a system by one of lower 
complexity. We use weighted 12-norms to determine the 12- 

optimal approximation of a systems impulse response. In 
the second example we show that the algorithm can handle 
noncausal systems without any additional difficulty. As a final 
example we identify a system with multiple outputs, described 

The algorithm of Section VI1 can be applied to arbitrary 
time series in 12.  Here we analyze its performance for very 
special data, a system impulse response. The aim is to reduce 
the dimension of the state space in such a way that the error 
in the impulse response is as small as possible (cf. [9] and the 
references therein). We compare the results of our algorithm 
with those obtained by balanced reduction and optimal Hankel 
norm approximation that have been developed especially for 
model reduction (see [2] and [7]). We consider the single-input, 
single-output system B with poles in f0.9i and -0.7 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf 0.6i, 

S O B  = { [U  yIT E 1;; y ( t )  = 0.5u(t)-1.4y(t-1)-1.66y(t- 
2) - 1.13y(t - 3) - 0.69y(t - 4)). This system has complexity 
(1, 4), and we consider reduction to complexity (1, 2). The 
observation w E B consists of two components U and y, where 
U is a unit pulse at time t = 0 and y is the corresponding 
response. 

We apply the GTLS algorithm, starting in a randomly 
chosen model. When the decrease in the misfit has become 
sufficiently small, below the iterations are stopped. This 
occurs after a few hundred iterations. The final model Bgtls is 
compared in Table VI with the balanced reduction Bbal and 
the Hankel norm reduction &&. 

The /a-error in the impulse response in Bgtls is somewhat 
larger than that in Bbal and If one is interested in 
this response then one should prevent an approximation of 
the input, so that an optimal approximation of the output 
becomes the criterion. This is achieved by taking the norm 
1122111:: = a211G112 + llij112 with a sufficiently large. The effect 
of increasing a is given in Table VII. This shows that for large 
a the method determines better approximations of the impulse 
response. 

This also gives bounds for the minimally achievable 12- 

error, which we denote by e*. Let B, be the GTLS model 
for 11 . [I,, and let y, be the impulse response of B,; then 
it is easily checked that d(w, B,) 5 e* 5 IIy - y,ll. By 
increasing a we can obtain an arbitrarily accurate estimate of 
e*. This gives an iterative solution method for the 12-optimal 
impulse response approximation problem. For a = 100 we 
obtain e* = 0.4476; see Table VII. The corresponding model 
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-o.6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt 
I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 5 . I O  15 20 25 30 35 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA40 
-0.8 ' 

Fig. 3. The impulse response (solid line) and its lz-optimal approximation 
of second order (dashed line). 

is given by theequation y ( t )  = -1.35y(t-1)-0.78y(t-2)+ 
0.50u(t) + O.llu(t - 1) - 0.21u(t - 2). The impulse response 
is depicted in Fig. 3. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
B. Noncausal Systems 

We consider the following noncausal system, the "Mexican 
hat," 

where- cp is_ the standard normal density zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~ ( x )  = 

(27r)-i e-;.'. In the simulations we consider a discrete-time 
version wg(t) = Gjwl(t - j )  with N = 40 and time 
steps of size 0.2. Note that wg is not a causal output, as the 
transfer function from w1 to wg is not proper. 

First we apply our procedure to the impulse response 
observation, i.e., w1 is a unit pulse at time t = 0 and w2 is the 
corresponding response; see Fig. 4. The misfits of the optimal 
models of orders 2, 4, and 6 are given in Table VIII. They 
are compared with the optimal Hankel norm approximations 
of orders 2,4 ,  and 6. These are obtained by approximations of 
orders 1, 2, and 3 of the causal part of the impulse response 
and using the symmetry of the Mexican hat to estimate the 
anticausal part. Analogously we determined approximations 
by balanced reduction. In Table VI11 we also list the error 
in the impulse response of these models, i.e., the 12-distance 
between the systems impulse response and the Mexican hat 
202. This error should be compared with the magnitude of the 
response, given by llwgll = 0.35. 

Hankel norm reduction and especially balancing give rather 
good results. They can only be used, however, when a causal 
impulse response is available. The GTLS method makes no 
use of the symmetry of the observed signals, but this property 
is preserved well in the identified models. This is illustrated 
in Figs. 5 and 6, which contain the optimal approximations of 
orders 2 and 4. 

We also apply the GTLS method to data w,, consisting of 
two noisy steps for the input and the corresponding system 
output. These data and the optimal approximation of order 4 

N 

-0.05 

-0.1 1 
-40 -30 -20 -10 0 10 20 30 40 

Fig. 4. The Mexican hat. 

TABLE VI11 
MODEL QUALITY 

model 11 Sgtls Bbal Shank 

n=2 I misfit 11 0.17 I 0.18 I 0.32 

1 
1 error in impulse response 1 0.21 1 0.20 1 0.34 

1 n=4 misfit 0.046 0.047 0.052 
error in impulse response 0.051 0.050 0.055 

n=6 misfit 0.0070 0.0071 0.0078 
error in imDulse remonse 0.0076 0.0075 0.0081 

0.8 1 

0.4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 
. ._ ...- 

Ol------ 
-0.2 ' 

-40 -30 -20 -10 0 I O  20 30 1 

Fig. 5. The pulse w1 (solid line), the first component of the 62-optimal 
approximation of second order (dashed line) and fourth order (dash-dotted 
line). 

are given in Fig. 7. We should mention that the approximation 
error in the input is so small that it is nearly invisible in this 
figure. 

The misfit of this model and the error in its impulse response 
are listed in the first column of Table IX. In view of the 
results for n = 4 in Table VIII, this shows that the identified 
model is a rather accurate approximation of the Mexican hat. 
Depending on the choice of an initial model, it typically takes 
a few hundred iterations to obtain convergence, and sometimes 
convergence to a local optimum occurred. 

I 
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model zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
m zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
m = 2 

0.2 

n=O n = l  n = 2  n = 3  n = 4  
3.33 1.45 0.93 0.89 0.88 
1.30 0.61 0.56 0.52 0.46 

-0.1 I I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
-40 -30 -20 -10 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 10 20 30 40 

Fig. 6. The Mexican hat zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwz (solid line), the second component of the 
12-optimal approximation of second order (dashed line) and fourth order 
(dash-dotted line). 

method 
misfit with respect to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw, 
error in impulse response 

1.2, I 

Global TLS Local TLS 
0.11 1.17 
0.066 0.522 

0.2 

0 

-0.2 

I 
0 I O  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA20 30 40 50 60 70 80 90 100 

-0.4 ' 
Fig. 7. 
imation of fourth order (dashed lines). 

Noisy step measurement wn (solid lines) and its 12-optimal approx- 

Finally, as mentioned at the end of Section VI, we will once 
more consider the local total least squares method described 
in Section 111. The results for the fourth order model are given 
in the second column in Table IX. This clearly shows that, 
perhaps not surprisingly, the local method gives poor results 
with respect to the global total least squares criterion. For 
example, the error in the impulse response of the local model 
is even larger than the Mexican hat itself, which has norm 
IIw211 = 0.35. 

C.  A System with Multiple Outputs 

In this experiment we consider a system with multiple 
outputs, so that a single difference equation does not suffice 
to describe the system. For simplicity we consider a system 

with one input and two outputs. The data are generated 
w = w' + e, where w' E B3l1>' satisfies the equations 

wi(t) = w;(t - 1) + wi(t) 

as 

w#) = wk(t) + wi(t - 1). (25) 

For w1 we take white noise with unit variance, and for e 
a three-dimensional white noise process with independent 
components and variance 0.01. The observation interval has 
length 50. Outside this interval we define w(t) = 0. The GTLS 
model of rank one and degree two is 

~ 2 ( t )  = 0.95~2( t  - 1) - 0.04w2(t - 2) + l.OSWl(t) 

+ 0.07wi(t - 1) + 0.15wl(t - 2) 

w3(t) = 0.95~3( t  - 1) - 0.04w3(t - 2) + 1.12Wl(t) 

+ 1.08wl(t - 1) - 0.89~1( t  - 2). (26) 

Transforming model equation (25) to the form 

wL(t) - wi( t  - 1) = w'l(t) 

wb(t) - w$(t - 1) = ~ i ( t )  + wi( t  - 1) - w;(t - 2) (27) 

shows that the original model equations are estimated rather 
accurately. We compare the misfits of GTLS models of various 
complexity in Table X. 

For rank one, the misfit hardly decreases for orders above 
two. This could be expected, as the regular part of the data 
belongs to a system of order two. For rank two the results 
suggest to take the order one. Comparing the complexities 
(m, n) = (1, 2) and (2, l ) ,  the first one of course leads to 
a larger misfit, as it imposes more restrictions. The misfit is 
still relatively small, however, when compared to the norm of 
the data IlwII = 6.10. 

X. CONCLUSION 

In this paper we investigated the modeling of vector time 
series by means of difference equations, using the global total 
least squares criterion. Distinctive features of our approach 
are that no decomposition into inputs and outputs is required 
and that the criterion measures the global misfit in a nonpara- 
metric way. The misfit of a given system is evaluated by a 
dynamic projection algorithm formulated in terms of isometric 
state representations. We developed an iterative algorithm for 
constructing optimal models and gave a characterization of 
stationary points of the GTLS criterion. The method was 
illustrated by some simulation experiments. 

The results of this paper can be extended in several direc- 
tions, e.g., time series on a finite time interval, time varying 
systems, and time-varying norms for the misfit. Further re- 
search will be concerned with statistical properties and the 
development of faster algorithms and recursive methods. 
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APPENDIX A 
12-SYSTEMS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

By zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1; we denote the set of q-dimensional square sum- 
mable time series over time axis Z, i.e., zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAl;:= {w: Z zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Rq; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE:"=_, w(t)Tw(t) < CO}. We define 12-systems as 
follows. By zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAo we denote the time shift defined by (aw)(t): = 

Definition A.1 (12-systems): An 12-system is a subset B of 

1) linear, i.e., for w, w' E B and a, /? E R there holds 

2) shift-invariant, i.e., OB = B; 
3) complete, i.e., if w E I; satisfies W I T  E BIT for all finite 

This class of systems can be represented by linear, time- 
invariant difference equations of finite lag. Let RPxq[s] denote 
the set of p x q matrices with polynomial entries. A set of p 
difference equations corresponds to a polynomial matrix in the 
shift o, i.e., R(a)  E RPx*[a]. 

Proposition A.2: A set B E 1; is an /;?-system if and only 
if B = {w E 1;; R(o)w = 0) for some R E Rpxq[s] and 
p E N. 

Proofi The if-part is trivial, and the other part is proved 
by construction; see [ lo, Theorem 51. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 

The complexity of a system is measured in terms of its 
dimension. Considered as a linear space, every nonzero 12- 

system has infinite dimension. Therefore we consider its 
dimension on finite time intervals. 

Definition A.3: For a given system B let Bo: = {w E 
B; w(t) = 0 for t < 0}, and let Bg be the restriction of 
Bo to time t = 0. 

w(t + l), t E z. 

1; that is: 

a w  + Dw' E B; 

T c Z, then w E B. 

1) The rank of B is defined as m(B): = dim(@). 
2) The degree of B is defined as n(B) := dim(B1[O,m) 

The rank and degree determine the dimension of an 12- 

systems on finite intervals. To be specific, if I3 is a system 
with rank m and degree n, then dim(BIT) = mN + n for 
intervals T C Z of length N 2 n. The rank and degree have 
the following interpretation. The rank is the number of degrees 
of freedom for a system at each time instant, given the past. 
This is equal to the number of inputs in the system. The degree 
measures the remaining freedom due to initial conditions. This 
is equal to the number of states. This is made precise in the 
following result. 

PropositionA.4: The rank and degree of a system equal, 
respectively, the number of auxiliary inputs and the number 
of states in a minimal state representation. 

0 

.pIO,m)) 

Proofi For a proof we refer to [ 10, Theorem 91. 

APPENDIX B 
PROOFS 

Proof of Proposition 4.3: 
Necessity of 1 :  Let R: = im[B AB . . . A"-lB], then 

A R  C R and i m B  C R. If (A ,  B) is not controllable there 
is a choice of basis for the state space such that with respect 

to this basis A and B take the form [$ and [?I .  

So in a corresponding partition (::) of the state variables it 
holds that ox2 = A2x2.  As this admits only the zero solution 
in 12, xg can be removed. 

Necessity of 2: Suppose there exists an F such that ( A  + 
BF, C + DF) is not observable. Then the unobservable 
components of the state can be removed, as in the previous 

Part. 
Necessity o f3 :  An obvious condition is that 

column rank, so it suffices to prove that ker 
Suppose kerD\kerB # 0}, then there exists an invertible 

R E Rmxm such that [;E] = [E: t] with 0 # b E 

R". Then B is represented by ox = Ax + B'u' + bz 
and w = Cx + D'u'. As z influences w only with a 
delay, we remove its direct influence on ox by defining 
ox': = ox - bz. This gives ox' = Ax' + B'u' + Aba-lz 
and w = Cx' + D'u' + Cbo-lz.  Hence (A ,  B ,  C, D) is 
equivalent to (A ,  [B' Ab], C, [D' Cb]).  From Proposition 4.2 
it follows that this is equivalent to ( A  + Abf, [B' Ab], C + 
Cbf, [D' Cb]), for all f E RIX". As b # 0, f can be chosen 
such that I ,  + bf is singular, by taking f = -bT/llbl12. It 
is easily verified that then ( A  + Abf, C + Cbf )  = (A(In + 
bf), C( ln  + bf ) )  is not observable. From the Necessity of 2 
it follows that the state dimension can be reduced. 

Suficiency ofthe Conditions: Let (A ,  B, C, D) be an SR 
with m auxiliary inputs and n states that satisfies Conditions 
l), 2), and 3). From controllability and Proposition 4.2 it 
follows that without loss of generality we may assume that 
A is asymptotically stable. We prove that the rank of B equals 
m, and its degree equals n. Then the result follows from 
Proposition A.4. 

Concerning the rank, consider Bo as introduced in Definition 
A.3. Observability implies that trajectories w E Bo have state 
zero at time t = 0. So 23: = im D, and from Condition 3) it 
follows that dim B: = rank D = m. Concerning the degree, 
we consider the space BI[o,,) mod Bio,m); cf. Definition A.3- 
2). This space can be parameterized by the initial state X O .  

Observability implies that this parameterization is injective, 
from which the result follows. 0 

(A', B', C', 0'): = 
( S ( A  + BF)S- l ,  SBR, (C + DF)S- l ,  DR).  Then 

ProofofProposition 5.2: Write 

(A' 
B ' )  = ( S  

0 ) ( A  

B ) (  S-l 

0 )  C' D' 0 I ,  C D FS-l R ' 

Equation (13) for (A',  B', C', 0') gives, with K = STS 

- (s-1 o ) - T (  s-1 0)- '  
- FS-l R FS-l R 

- ( K  + FT(RRT)- lF -FT(RRT)- ' )  

Now verification of (16), (17), and (14) is straightforward. For 
0 

( R R ~ ) - '  * 
- 

-( R R ~ ) - ~  F 

a proof of the uniqueness of K we refer to [8]. 
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ProofofProposition 5.3: From (13) it follows that ATA zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= scheme in Section VI: see Fig. 2. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

" I  - . ,  ., 
I, - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACTC, hence IAx12 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1x1' - lCx12 5 1x1'. So A is 
stable. We prove that the representation is not minimal if A ' = ATOX CTW, = BTaz + DTw (29) 
is not asymptotically stable. In that case A has an eigenvalue (30) fori7 : 5 = A T m  + CTW, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf i  = B T m  + D T W  

. -  - 
(3 1) X with 1x1 = 1. Let x denote a corresponding eigenvector, forzit : zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA02 = A i  + B6, W=CP+DG 

and z* its complex conjugate. Then lCx12 = x*CTCx = 
x*x - x*ATAx = 1x1' - IAz1' = 0. This implies that 

forw: O3 = + fiV, W = CZ + DV. (32) 

CAkx = 0, k 2 0, so that (A, C )  is not observable and 
hence not minimal. 

From the proof of Proposition 5.2 it follows that (15)-(17) 

ulo a left unitary factor, corresponding to U. Equation (16) 
determines R modulo a right unitary factor, corresponding to 
V. 0 

Further, from (13) we obtain 

P = ATaP + CTw, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 = BTaP + DTW, 

are necessary conditions. Equation (15) determines S mod- 0 = BTaP + DTw 

6 = BTaZ + DTw. 

(33) 

(34) 

2 = ATa3 + CTw, 0 = BTaZ + DTW, 

Propf of Theorem 6.2: From Definition 5.1 it follows 
that (A, B, C, D )  as defined in part 4) is an ISR. As A is 
asymptotically stable [see Proposition 5.3-l)] the correspond- 
ing image representation G :  I;-" + 1; is well defined. We 
first prove that 

Define B = [B B] and n = [D  B]. Then (A, B, C, D) 
is also an isometric state representation. Let G(o) : 1; + 1; 
denote the corresponding image representation. Then = 
[G GI, so GG* + GG* = GG*. It remains to prove that 
G G = Iq, or equivalently, that G* = RqGTRq is isometric. 

The operator R, is clearly isometric, and because GT is the 

image representation induced by the ISR (AT, CT , ET , DT), 
it is also isometric. This proves (28). 

1) From Theorem 6.1 it follows that GG*w is the optimal 
approximation of w in "(A, B, C, b). From (28) we 
obtain {w E B(A, B, C, D ) }  * {GG"w = w }  @ 

{GG*w = 0) * {w E BI}. So imG = B1, which 
proves 1). 

2) Equation (28) shows that every w E 1; can be decom- 
posed int? a parf contained in B and one in BI. 

3) As (A, B,  C, D )  is a state representation of BL, it 
follows that m(BL) 5 q-m and n(B*) 5 n. From part 
2) it follows that m ( B l )  2 q - m, so m(B') = q - m. 
As ( B l ) l  = B, there holds that n = T I ( ( B ~ ) ~ )  5 
n(B*), so-that n ( B l )  = n. This proves 3). 

4) That (A, B, C, b) is an ISR of B* was proved in 1), 
and minimality follows from 3) and Proposition A.4. 

5) Eq!ation (28) implies that .L?I = w - w = w - GG*w = 
GG*w, and the result follows from Theorem 6.1. 0 
Proof of Theorem 8.1: It suffices to prove the theorem 

for a minimal isometric SR. This can be seen as follows. 
If condition 2) holds for an arbitrary minimal SR, then it 
holds for all equivalent minimal SR's, as in the transformation 
(S(A + BF)S- l ,  S B R ,  (C + DF)S- l ,  D R ) ,  the auxiliary 
input and state are linearly transformed to R-l(6 - FP) and 
S i ;  see the proof of Proposition 4.2. 

So let (A, B,  C, D )  be a minimal ISR of B, and let B,  b, 
be defined as in Theorem 6.2-4). In the proof we will make use 
of the following relations, which follow from the projection 

- -* 

We first describe those optimality conditions that can be 
derived straightforwardly from the model improvement con- 
structions in Theorem 7.2. 

Lemma B.l :  

1) Construction 1 gives no improvement if and only if 

2) Construction 2 gives no improvement if and only if 

3) If Construction 3 gives no improvement, then 

Proof of the Lemma: We use the notation of Theorem 7.2. 
1) As 6 = CP + D6, clearly 6 E E .  Construction 1 does 

not yield an improvement iff the projection of W onto E 
is zero, from which the result follows. 

2) Construction 2 gives no improvement iff the projection 
of W onto F is zero, cf. part 1). This is equivalent to 
( 6 ,  (C(a1- A)-lB' + DOG) = 0 for all B', D'. From 
(34) this is equivalent to ( 6 ,  CAk-lB'a-kG + 
0 ' 6 )  = B'T(AT)k-lCTakW + DtTW, 6) = 
(B'Ta5+ D'TW, 6 )  = 0, from which the result follows. 

3) If cov(6, V )  # 0, then construction 3 decreases llVll = 

Returning to Theorem 8.1, we first prove part 2. From 
the lemma it follows that cov(6? V) = 0, and cov(6, 3) = 
cov(6, ATaZ + CTW) = 0. As D is injective, cov(i, V) = 0 
if and only if cov(P, b) = 0, which is equivalent to 
cov(i, 6 - CZ) = -cov(i, C3) = 0. So to prove 2 
it remains to show that cov(2, 3) = 0. As (AT, BT)  is 
observable, this is equivalent to cov(aP, BTATba5) = 0 
for all k 2 0. We prove this by induction. For k = 0, the 
lemma shows that cov(aP, BTa5) = cov(a2, -DTG) = 0. 
Now suppose that cov(a2, BTATba3) = 0 for 5 5 N .  Then 
COV(CP, BTATN+la2) = COV(AP + B6, BTATNf1a3) = 

cov(A2, BTATN+'a3) = cov(AP, BTATN(5 - CTUI)) = 
Acov(2, BTATNZ) = 0. This proves Theorem 8.1.2. Con- 
cerning the equivalence of 1, 2, and 3, the implications 
3 + 2 + 1 are trivial. Further, if 1 h_olds then cov(P, 3) = 
COV(OP, 03) = cov(AP + B6, A3 + B6) = cov(A2, A3) = 
Acov(2, ?)AT. As A is asymptotically stable, it follows that 
cov(P, 5) = 0, so 1 implies 2. Finally, 3 is easily derived 

0 
Proof of Theorem 8.2: Let w be a given observation 

and let W be its optimal approximation in B. Further let 

cov([i, 61, W) = 0. 

cov(6, [aZ, 4) = 0. 

cov(6, V) = 0. 
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from 2 by using (31) and (32). 
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( A ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB, C, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0) be a minimal SR of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB with A asymptotically 
stable, and write the approximation error as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= w - 6 = 
w - (C(a1- A)-l  B + D)fi. We have to prove that B satisfies 
the optimality conditions if and only if the derivative of llzzlll 
with respect to the parameters in A,  B, C, D, and fi is zero. 
First we analyze the tangent space of 2zI with respect to these 
parameters. Let E and F be defined as in Theorem 7.2, and let 
E: = {F E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1;; 3H E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARnX” such that F = C(a1- A ) - l H i }  
with 2 the state corresponding to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw. 

Lemma B.2: The tangent space 7 of 6 = w - (C(a1 - 
A) - lB  + 0); is given by 7 = B + E + F + E. 

Proof of the Lemma: The tangent space is defined as the 
smallest closed subspace of Z2 containing all partial deriva- 
tives. Note that 6 is linear in 6, in B, in C and in D. A 
change of 8 corresponds to adding F E B to w, a change 
of C and D to adding W E E to 6 and a change of B 
and D to adding W E F to 6. It remains to prove that the 
derivatives of z?r with respect to the parameters in A span 
the space E. For H E RnX” let x’ be defined by ax’ = 
( A  - H)x’ + Bfi and let w’: = Cx’ + Dfi. The corresponding 
error is GI:= w - w‘, so that the change in 6 is given by 

a: = Ai-(A-H)a’  = AZ+Hs’ = AZ+HP-H:, ignoring 
the second-order term H: for small H gives the result. U 

We will next prove the theorem by showing that the 
optimality conditions and the stationarity condition are both 
equivalent to 6 I 7. 

Stationarity is equivalent to the condition that lim6-o 6-l 
{ ((6 + 611 - 112z111) = 0 for all F E 7. It is easily verified that 
this limit equals (G, F ) / l l ~ l l ,  so stationarity is equivalent to 
w I 7. 

Finally we show that G I 7 is equivalent to the optimality 
conditions. First, suppose that the optimality conditions hold. 
As G is an optimal approximation within B thee holds that 
6 I B. Further, Theorem 8.1-3) states that cov([fi, 21, 6) = 
0, so that w I E ,  and cov(fi, [c2, 2711) = 0, so that the 
proof of Lemma B.l-2) shows that w I 3. Finally, for 
F E E given by U = E;, C A k - 1 H ~ - k 2  we obtain 
by using (34) that (E, w) = (Erzl CAk-1Ha-k2, 6) = 

(2,  HTATk-1CTak2ZI) = (i, HTa3) = 0, so 6 I 0. 
From Lemma B.2 it follows that w I 7. 

Second, supposing that 27, I 7 we prove the optimality 
conditions. The fact that 6 I E + F implies the conditions 
in Lemma B.l-2) and B.l-2), cf. the proof of that lemma. 
The condition in Lemma B.l-3) follows from that in B.l-2) 
by using (34). Further, the optimality conditions were derived 

0 
Proof of Proposition 8.4: First we prove that 2 is a 

linear space. Observe that for every z zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE BL the optimal 
approximation of & + z within B is given by w. Let (fi, 2) 
be the auxiliary input and state for 6 in a minimal SR of 
B, and let (Gz,  2-+) be defined analogously for z in BI. As 
(6, 2 )  is fixed, the condition in Theorem 8.1-2) for stationarity 
of B with respect to & + z consists of linear restrictions on 
( G z ,  2z ) .  As 2-+ is a linear function of e,, these conditions can 
be expressed as linear restrictions on G-+ alone. This shows 
that B is a stationary point for w + z if and only if the 

- w = ~ ’ - . 1 Z = ~ - w ’ = C ( 2 - x E ’ )  =C:forZ:=i-x‘.As 

from these conditions in the proof of Theorem 8.1, 
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auxiliary input e-+ is restricted to a linear subspace of Z ; - m ,  
from which the linearity of 2 follows. Next we show that the 
minimum in (22) is achieved by taking GO = 6 - w’. As 
w-Eo = 8+&- (6-6’) = 8+6’ and 221’ E 2, it follows 
that B is stationary for w - Go, by definition of 2. Further, 
w E BL is such that B is stationary for w - F = Zi, + w - W 
if and only if z : =  6 -U E 2. Now the norm of W =  27, - z 
is minimized by taking z = C’, the orthogonal projection of 

U 

- 

15 on 2, hence FO = w - w’. 
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