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Abstract:  204 

Plant functional traits directly affect ecosystem functions and are fundamental for managing 205 

and predicting biodiversity and ecosystem change. Globally, at the species level, plant trait 206 

combinations depend on key trade-offs representing different ecological strategies1, but at the 207 

community level trait combinations may be decoupled from these trade-offs because different 208 

strategies can facilitate co-existence within communities2. A key remaining question is to 209 

what extent community-level trait composition depends on local factors (microclimate, fine-210 

scale soil properties, disturbance regime3, successional dynamics4) and regional to global 211 

environmental drivers (macroclimate5-7, coarse-scale soil properties8,9). Here, we perform the 212 

first global, plot-level analysis of trait-environment relationships, using a novel database with 213 

more than 1.1 million vegetation plots and 26,632 plant species with trait information. We 214 

show that the two main community trait axes (plant stature and resource acquisitiveness), 215 

which capture half of the global trait variation, are weakly associated with climate and soil 216 

conditions at the global scale. Thus, similar climate and soil conditions support communities 217 

differing greatly in mean trait values, and within-plot trait variation does not vary 218 

systematically with macro-environment. Beyond the two main trait dimensions, we found a 219 

strong correlation between leaf N:P ratio and growing-season warmth, indicating increasing 220 

phosphorus limitation towards the tropics. Our results indicate that, at fine grains, macro-221 

environmental drivers are much less important for functional trait composition than has 222 

hitherto been assumed from analyses restricted to co-occurrence in large grid cells. Instead, 223 

trait combinations may predominantly reflect local-scale factors such as disturbance, fine-224 

scale soil conditions, niche partitioning or biotic interactions. 225 

 226 

Main Text:  227 

How climate drives the functional characteristics of vegetation across the globe has been a 228 

key question in ecological research for more than a century10. While functional information is 229 

available for a large portion of the global pool of plant species, we do not know how 230 

functional traits of co-occurring species are combined, which is what determines their joint 231 

effect on ecosystems4,8,11. At the species level, Díaz et al.1 demonstrated that 74% of the 232 

global spectrum of six key plant traits determining plant fitness in terms of survival, growth 233 

and reproduction can be accounted for by two principal components (PCs). They showed that 234 

the functional space occupied by vascular plant species is strongly constrained by trade-offs 235 

between traits and converges on a small set of successful trait combinations, confirming 236 

previous findings7,12-14. While these constraints describe evolutionarily viable ecological 237 

strategies for vascular plant species globally, they provide only limited insight into trait 238 

composition within communities. This is information necessary to understand how climate 239 

change and other anthropogenic drivers affect ecosystem functioning at the global scale.  240 

So far, studies relating trait composition to the environment at continental to global extents 241 

have been restricted to coarse-grained species occurrence data (e.g. presence in 1° grid cells15-
242 

17). Such data capture neither biotic interactions (co-occurrence in large grid cells does not 243 

indicate local co-existence), nor local variation in environmental filters (e.g. variation in soil, 244 



topography or disturbance regime within grid cells). In contrast, functional composition 245 

within vegetation plots with sizes of a few hundred square meters is the direct outcome of 246 

these local factors. Here, we present the first global analysis of plot-level trait composition. 247 

We combined the ‘sPlot’ database, a new global initiative incorporating more than 1.1 million 248 

vegetation plots from over 100 databases (mainly forests and grasslands; see Methods), with 249 

30 large-scale environmental variables and 18 key plant functional traits derived from TRY, a 250 

global plant-trait database (see Methods, Table 1, Extended Data Table 1).  251 

We used this unprecedented fine-resolution worldwide dataset to test the hypothesis 252 

(Hypothesis 1) that environmental filtering is the main global structuring force of community 253 

trait composition. Globally, temperature and precipitation drive the differences in vegetation 254 

between biomes, suggesting strong environmental filtering3,8 that constrains the number of 255 

successful trait combinations and leads to community-level trait convergence. Trait 256 

convergence also results from other mechanisms (biotic interactions may eliminate 257 

excessively divergent trait combinations18,19), and alternative functional trait combinations 258 

may confer equal fitness in the same environment2. Thus, stronger environmental filtering is 259 

expected to result in both greater global variation of plot-level trait means, and less trait 260 

variation within plots, than expected by chance. Furthermore, with strong trait convergence, 261 

trait spectra of plant communities should mirror those of individual species1. 262 

The main environmental drivers of this filtering should correlate strongly (though not 263 

necessarily linearly20) with plot-level trait means and with within-plot trait variance. 264 

Identifying these drivers has the potential to fundamentally alter our understanding of global 265 

trait-environment relationships. We tested the hypothesis (Hypothesis 2) that there are strong 266 

correlations with respect to global environmental drivers such as macroclimate and coarse-267 

scale soil properties5-9,15-17,20-24 (see Table 1 for expected relationships and Extended Data 268 

Table 2 for variables used).  269 

Consistent with hypothesis 1, global variation in plot-level trait means was much higher than 270 

expected by chance: all traits had positive standardized effect sizes (SESs), which were 271 

significantly > 0 for 17 out of 18 traits (mean SES = 8.06 standard deviations (SD), Extended 272 

Data Table 1). This suggests that environmental filtering is the prevailing force of community 273 

trait composition globally. Also confirming hypothesis 1, within-plot trait variance was 274 

typically lower than expected by chance (mean SES = -1.76 SD, significantly < 0 for ten traits 275 

but significantly > 0 for three traits; Extended Data Table 1). Thus, global environmental 276 

filtering may also constrain trait variation within communities.  277 

Trait correlations at the community level were relatively well captured by the first two axes of 278 

a Principal Component Analysis (PCA) for both plot-level trait means and within-plot trait 279 

variances (Figures 1 and 2). The dominant axes were determined by those traits with the 280 

highest absolute SESs of mean trait values (Extended Data Table 1). The PCA of plot-level 281 

trait means (Fig. 1) reflects two main functional continua on which community trait values 282 

converge: one from short-stature, small-seeded communities such as grasslands or herbaceous 283 

vegetation to tall-stature communities with large, heavy diaspores such as forests (the size 284 

spectrum), and the other from communities with resource acquisitive to those with resource 285 

conservative leaves (i.e. the leaf economics spectrum)12. The high similarity between this 286 



PCA and the one at the species level by Díaz et al.1 is striking: here at the community level, 287 

based on 1.1 million plots, the same functional continua emerged as at the species level, based 288 

on 2,214 species, revealing a strong parallel of present-day community assembly to individual 289 

species’ evolutionary histories. This strong congruence between community-level and 290 

species-level trait spectra also corroborates our finding of strong trait convergence. 291 

Surprisingly, we found only limited support for our second hypothesis. Community-level trait 292 

composition was poorly captured by global climate and soil variables. None of the 30 293 

environmental variables accounted individually for more than 10% of the variance in the traits 294 

defining the main dimensions in Fig. 1 (Extended Data Fig. 1). The coefficients of 295 

determination were not improved when testing for non-linear relationships (see Methods). 296 

Using all 30 environmental variables simultaneously as predictors only accounted for 10.8% 297 

or 14.0% of the overall variation in plot-level trait means (cumulative variance, respectively, 298 

of the first two or all 18 constrained axes in a Redundancy Analysis). Overall, our results 299 

show that similar global-scale climate and soil conditions can support communities that differ 300 

markedly in mean trait values and that different climates can support communities with rather 301 

similar mean trait values. 302 

The ordination of within-plot variance of the different traits (Fig. 2) revealed two main 303 

continua. Variances of plant height and diaspore mass varied largely independently of 304 

variances of traits representing the leaf economics spectrum. These results suggest that short 305 

and tall species can be assembled together in the same community independently from 306 

combining species with acquisitive leaves together with species with conservative leaves. 307 

Global climate and soil variables accounted for even less variation on the first two PCA axes 308 

in within-plot trait variances than on the first two PCA axes in plot-level trait means. Only 309 

two environmental variables had r2 > 3% (Extended Data Fig. 2), whether allowing for non-310 

linear relationships (see Methods) or not, and overall, macro-environment accounted for only 311 

3.6% or 5.0% of the variation (cumulative variance, respectively, of the first two or all 18 312 

constrained axes). Removing species richness effects from within-plot trait variances did not 313 

increase the amount of variation explained by the environment (see Methods).  314 

These results suggest that plot-level trait means and variation may both be predominantly 315 

driven by local environmental factors, such as topography (e.g. north- vs. south-facing 316 

slopes), local soil characteristics (e.g. soil depth and nutrient supply)8,9,24,25, disturbance 317 

regime (including land use26 and successional status4,27) or biotic interactions18-19. These 318 

findings contrast strongly with studies where the variation in traits between species was 319 

calculated at the level of the species pool in large grid cells15,16, demonstrating that plot-level 320 

and grid cell-level trait composition are driven by different factors21. 321 

The strongest community-level correlations with environment were found for traits that were 322 

not linked to the leaf economics spectrum. Mean stem specific density increased with 323 

potential evapotranspiration (PET, r2=15.6%; Fig. 3a, b), reflecting the need to produce 324 

denser wood with increasing evaporative demand. Leaf N:P ratio increased with growing-325 

season warmth (growing degree days above 5°C, GDD5, r2=11.5%; Fig. 3d), indicating strong 326 

phosphorus limitation28 in most of the southern hemisphere (Fig. 3c, d). This pattern was not 327 

brought about by a parallel increase in the presence of legumes, which tend to have relatively 328 



high N:P ratios; excluding all species of Fabaceae resulted in a very similar relationship with 329 

GDD5 (r2=10.0%). The global N:P pattern is consistent with results based on traits of single 330 

species related to mean annual temperature29. The underlying mechanism is the high soil 331 

weathering rate at high temperatures and humidity, which in the southern hemisphere was not 332 

reset by glaciation. We propose that phosphorus limitation may weaken the relationships 333 

between productivity-related traits and macroclimate (Extended Data Fig. 2). For example, 334 

specific leaf area may be similarly affected by low nutrient availability8-9,24-25 in favourable 335 

climates as by low temperature and precipitation under favourable nutrient supply. Overall, 336 

our findings are relevant in improving Dynamic Global Vegetation Models (DGVMs), which 337 

so far have used trait information only from a few calibration plots22. The sPlot database 338 

provides much-needed empirical data on the community trait pool in DGVMs30 and identifies 339 

traits that should be considered when predicting vegetation, such as stem specific density and 340 

leaf N:P ratio. 341 

We also assessed whether the observed trait-environment relationships hold for forests and 342 

non-forest vegetation independently (see Methods). Both subsets confirmed the overall 343 

patterns in trait means (Extended Data Figs. 3-6). The variance in plot-level trait means 344 

explained by large-scale climate and soil variables was higher for forest than non-forest plots, 345 

probably because forests belong to a well-defined and rather resource-conservative formation, 346 

whereas non-forest plots encompass a heterogeneous mixture of different vegetation types, 347 

ranging from alpine meadows to semi-deserts, and tend to depend more on disturbance and 348 

management, which can strongly affect trait-environment relationships of communities21. We 349 

also tested whether our findings depended on the uneven distribution of plots among the 350 

world’s different climates and soils and repeated the analyses in 100 subsets of ~100,000 plots 351 

resampled in the global climate space (Extended Data Figs. 7-8). The analyses of the 352 

resampled datasets revealed the same patterns, but more strongly, and confirmed the impact of 353 

PET and GDD5 on stem specific density and leaf N:P ratio, respectively. The correlations 354 

between trait means and environmental variables were stronger in the resampled subsets 355 

because the resampling procedure significantly reduced the overrepresentation of the 356 

temperate-zone areas with intermediate climatic values.  357 

Our findings have important implications for understanding and predicting plant community 358 

trait assembly. First, worldwide trait variation of plant communities is captured by a few main 359 

dimensions of variation that are consistent with species-based studies1,12-14, suggesting that the 360 

drivers of past trait evolution, which resulted in the present-day species-level trait spectra1, are 361 

also reflected in the composition of today’s plant communities. If species-level trade-offs 362 

indeed constrain community assembly, then the present-day contrasts in trait composition of 363 

terrestrial plant communities should also have existed in the past and will probably remain, 364 

even for novel communities, in the future. Second, clear plot-level vegetation trait continua 365 

cannot easily be captured by coarse-resolution environmental variables21. This brings into 366 

question both the use of simple large-scale climate relationships to predict the leaf economics 367 

spectra of global vegetation,6,15-16,22 and attempts to derive net primary productivity and global 368 

carbon and water budgets from global climate, even when employing powerful trait-based 369 

vegetation models30. The finding that within-plot trait variances were only very weakly 370 

related to global climate or soil variables points to the importance of either local-scale climate 371 



or soil variables or to disturbance regimes for the degree of local trait dispersion3. Finally, 372 

both the limited role of large-scale climate in explaining trait patterns and the relevance of 373 

phosphorus limitation call for including local variables when predicting community trait 374 

patterns. At the same place in global climate space, communities can vary greatly in trait 375 

means and variances, consistent with high local variation in species’ trait values7-8,12. Future 376 

research on functional response of communities to changing climate should incorporate the 377 

effect of local environmental conditions24-26 and biotic interactions18-19 for building reliable 378 

predictions of vegetation dynamics. 379 

 380 
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Material and Methods 461 

Vegetation Data. The sPlot 2.1 vegetation database contains 1,121,244 plots with 23,586,216 462 

species × plot observations, i.e. records of a species in a plot 463 

(https://www.idiv.de/en/sdiv/working_groups/wg_pool/splot.html). This database aims at 464 

compiling plot-based vegetation data from all vegetation types worldwide, but with a 465 

particular focus on forest and grassland vegetation. Although the initial aim of sPlot was to 466 

achieve global coverage, the plots are very unevenly distributed with most data coming from 467 

Europe, North America and Australia and an overrepresentation of temperate vegetation types 468 

(Fig. 3).  469 

For most plots (97.2%) information on species relative abundance was available, expressed as 470 

cover, basal area, individual count, importance value or per cent frequency in subplots. For 471 

the other 2.8% (31,461 plots), for which only presence/absence (p/a) was available, we 472 

assigned equal relative abundance to the species (1/species richness). For plots with a mix of 473 

cover and p/a information (mostly forest plots, where herb layer information had been added 474 

on a p/a basis; 8,524 plots), relative abundance was calculated by assigning the smallest cover 475 

value that occurred in a particular plot to all species with only p/a information in that plot. 476 

After removing plots without geographic coordinates and all observations on bryophytes and 477 

lichens, the database contained 22,195,966 observations on the relative abundance of vascular 478 

plant species in a total of 1,117,369 plots.  479 

Taxonomy. To standardize the nomenclature of species within and between sPlot and TRY 480 

(see below), we constructed a taxonomic backbone of the 121,861 names contained in the two 481 

databases. Prior to name matching, we ran a series of string manipulation routines in R, to 482 

remove special characters and numbers, as well as standardized abbreviations in names. 483 

Taxon names were parsed and resolved using Taxonomic Name Resolution Service version 484 

4.0 (TNRS31; http://tnrs.iplantcollaborative.org; accessed 20 Sep 2015), selecting the best 485 

match across the five following sources: i) The Plant List (version 1.1; 486 

http://www.theplantlist.org/; Accessed 19 Aug 2015), ii) Global Compositae Checklist (GCC, 487 

http://compositae.landcareresearch.co.nz/Default.aspx; accessed 21 Aug 2015), iii) 488 

International Legume Database and Information Service (ILDIS, 489 

http://www.ildis.org/LegumeWeb; accessed 21 Aug 2015), iv) Tropicos 490 

(http://www.tropicos.org/; accessed 19 Dec 2014), and v) USDA Plants Database 491 

(http://usda.gov/wps/portal/usda/usdahome; accessed 17 Jan 2015). We allowed for partial 492 

matching to the next higher taxonomic rank (genus or family) in cases where full taxon names 493 

could not be found. All names matched or converted from a synonym by TNRS were 494 

considered accepted taxon names. In cases when no exact match was found (e.g. when 495 

alternative spelling corrections were reported), names with probabilities of ≥ 95% or higher 496 

were accepted and those with < 95% were examined individually. Remaining non-matching 497 

names were resolved based on the National Center for Biotechnology Information's 498 

Taxonomy database (NCBI, http://www.ncbi.nlm.nih.gov/; accessed 25 Oct 2011) within 499 

TNRS, or sequentially compared directly against The Plant List and Tropicos (accessed 500 

September 2015). Names that could not be resolved against any of these lists were left as 501 

blanks in the final standardized name field. This resulted in a total of 86,760 resolved names, 502 

corresponding to 664 families, occurring in sPlot or TRY or both. Classification into families 503 



was carried out according to APGIII32, and was used to identify non-vascular plant species 504 

(~5.1% of the taxon names) which were excluded from the subsequent statistical analysis. 505 

Trait Data. Data for 18 traits that are ecologically relevant (Table 1) and sufficiently covered 506 

across species33 were requested from TRY34 (version 3.0) on the 10th August, 2016. We 507 

applied gap-filling with Bayesian Hierarchical Probabilistic Matrix Factorization 508 

(BHPMF33,35-36). We used the prediction uncertainties provided by BHPMF for each 509 

imputation to assess the quality of gap-filling and removed all imputations with a coefficient 510 

of variation > 136. We obtained 18 gap-filled traits for 26,632 out of a total of 58,065 taxa in 511 

sPlot, which corresponds to 45.9% of all species but to 88.7% of all species × plot 512 

combinations. Trait coverage of the most frequent species was 77.2% and 96.2% for taxa that 513 

occurred in more than 100 or 1,000 plots, respectively. The gap-filled trait data comprised 514 

observed and imputed values on 632,938 individual plants, which we loge transformed and 515 

aggregated by taxon. For those taxa that were recorded at the genus level only, we calculated 516 

genus means. Out of 22,195,966 records of vascular plant species with geographic reference, 517 

21,172,989 (=95.4%) refer to taxa for which we had gap-filled trait values. This resulted in 518 

1,115,785 and 1,099,463 plots for which we had at least one taxon or two taxa with a trait 519 

value (99.5% and 98.1%, respectively, of the 1,121,244 plots that had vascular plants), and for 520 

which trait means and variances could be calculated. 521 

We are aware that using species mean values for traits excludes the possibility to account for 522 

intraspecific variance, which can also strongly respond to the environment37. Thus, using one 523 

single value for a species is a source of error in calculating trait means and variances. In 524 

addition, some mean values of traits in TRY were based on a very small number of replicates 525 

per species, resulting in greater uncertainty in trait mean and variance calculations38.  526 

 527 

Environmental Data. We compiled 30 environmental variables (Extended Data Table 2). 528 

Macroclimate variables were extracted from CHELSA39-40, V1.1 (Climatologies at High 529 

Resolution for the Earth’s Land Surface Areas, www.chelsa-climate.org). CHELSA provides 530 

19 bioclimatic variables equivalent to those used in WorldClim (www.worldclim.org) at a 531 

resolution of 30 arc sec (~ 1 km at the equator), averaging global climatic data from the 532 

period 1979-2013 and using a quasi-mechanistic statistical downscaling of the ERA-Interim 533 

reanalysis41.  534 

Variables reflecting growing-season warmth were growing degree days above 1°C (GDD1) 535 

and 5°C (GDD5), calculated from CHELSA data42. We also compiled an index of aridity 536 

(AR) and a model for potential evapotranspiration (PET) extracted from the Consortium of 537 

Spatial Information (CGIAR-CSI) website (www.cgiar-csi.org). In addition, seven soil 538 

variables were extracted from the SOILGRIDS project (https://soilgrids.org/, licensed by 539 

ISRIC – World Soil Information), downloaded at 250 m resolution and then resampled using 540 

the 30 arc second grid of CHELSA (Extended Data Table 2). We refer to these climate and 541 

soil data as “environmental data”.  542 

Community trait composition.  543 



For every trait j and plot k, we calculated the plot-level trait means as community-weighted 544 

mean (CWM) according to4,43: 545 

௝,௞ܯܹܥ = ෍ ௜,௝௡ೖݐ	௜,௞݌
௜  

where nk is the number of species sampled in plot k, pi,k is the relative abundance of species i 546 

in plot k, referring to the sum of abundances for all species with traits in the plot, and ti,j is the 547 

mean value of species i for trait j. This computation was done for each of the 18 traits for 548 

1,115,785 plots. The within-plot trait variance is given by community-weighted variance 549 

(CWV) 43,44: 550 ܹܥ ௝ܸ,௞ = ෍ ௜,௝ݐ)	௜,௞݌ − ௝,௞)ଶ௡ೖܯܹܥ	
௜  

CWV is equal to functional dispersion as described by Rao’s quadratic entropy45, when using 551 

a squared Euclidean distance matrix di,j,k
 46: 552 

ܹܥ ௝ܸ,௞ = ෍ ௜,௝ݐ)	௜,௞݌ − ௝,௞)ଶ௡ೖܯܹܥ	
௜ = ொܦܨ = ෍ ෍ ݀௜,௝,௞ଶ௡ೖ		௝,௞݌	௜,௞݌

௝ୀ௜ାଵ
௡ೖିଵ
௜ୀଵ  

We had CWV information for 18 traits for 1,099,463 plots, as at least two taxa were needed to 553 

calculate CWV. We performed the calculations using the 'data.table' package47 in R. 554 

Vegetation trait-environment relationships. Out of the 1,115,785 plots with CWM values, 555 

1,114,304 (99.9%) had complete environmental information and coordinates. This set of plots 556 

was used to calculate single linear regressions of each of the 18 traits on each of the 30 557 

environmental variables. We used the 'corrplot' function48 in R to illustrate Pearson 558 

correlation coefficients (see Extended Data Figs. 1-2, 4, 6, 8) and for the strongest 559 

relationships produced bivariate graphs and mapped the global distribution of the CWM 560 

values using kriging interpolation in ArcGIS 10.2 (Fig. 3). We also tested for non-linear 561 

relationships with environment by including an additional quadratic term in the linear model 562 

and then report coefficients of determination. As in the linear relationships of CWM with 563 

environment, the highest r2 values in models with an additional quadratic term were 564 

encountered between stem specific density and PET (r2=0.156) and leaf N:P ratio and 565 

growing degree days above 5°C (GDD5, r2=0.118). These were not substantially different 566 

from the linear CWM-environment relationships, which had r2=0.156 and r2=0.115, 567 

respectively (Fig. 3, Extended Data Fig. 1). Similarly, including a quadratic term in the 568 

regressions did not increase the CWV-environment correlations. Here, the strongest 569 

correlations were encountered between plant height and soil pH (r2=0.044) and between 570 

specific leaf area (SLA) and the volumetric content of coarse fragments in the soil 571 

(CoarseFrags, r2=0.037), which were similar to those in the linear regressions (r2=0.029 and 572 

r2=0.036, respectively, Extended Data Fig. 2). 573 

To account for a possible confounding effect of species richness on CWV, which may cause 574 

low CWV through competitive exclusion of species, we regressed CWV on species richness 575 

and then calculated all Pearson correlation coefficients with the residuals of this relationship 576 



against all climatic variables. Here, the highest correlation coefficients were encountered 577 

between PET and CWV of conduit element length (r2=0.038), followed by the relationship of 578 

specific leaf area (SLA) and the volumetric content of coarse fragments in the soil 579 

(CoarseFrags, r2=0.034), which were very similar in magnitude to the CWV environment 580 

correlations (r2=0.035 and r2=0.036, respectively; Extended Data Fig. 2). 581 

The CWMs and CWVs were scaled to a mean of zero and standard deviation of one and then 582 

subjected to a Principal Component Analysis (PCA), calculated with the 'rda' function from 583 

the 'vegan' package49. Climate and soil variables were fitted post hoc to the ordination scores 584 

of plots of the first two axes, producing correlation vectors using the 'envfit' function. We 585 

refrain from presenting any inference statistics, as with > 1.1 million plots all environmental 586 

variables showed statistically significant correlations. Instead, we report coefficients of 587 

determination (r2), obtained from Redundancy Analysis (RDA), using all 30 environmental 588 

variables as constraining matrix, resulting in a maximum of 18 constrained axes 589 

corresponding to the 18 traits. We report both r2 values of the first two axes explained by 590 

environment, which is the maximum correlation of the best linear combination of 591 

environmental variables to explain the CWM or CWV plot × trait matrix and r2 values of all 592 

18 constrained axes explained by environment. We plotted the PCA results using the 'ordiplot' 593 

function and coloured the points according to the logarithm of the number of plots that fell 594 

into grid cells of 0.002 in PCA units (resulting in approximately 100,000 cells). For further 595 

details, see the captions of the figures. 596 

To analyse how plot-level trait means and within-plot trait variances depart from random 597 

expectation, for each trait we calculated standardized effect sizes (SESs) for the variance in 598 

CWM and SES for the mean in CWV. Significantly positive SESs in variance of CWM and 599 

significantly negative ones in the mean of CWV can be considered a global-level measure of 600 

environmental filtering. To provide an indication of the global direction of filtering, we also 601 

report SESs for the mean of CWM trait values. Similarly, to measure how much within-602 

community trait dispersion varied globally, we also calculated SESs for the variance in CWV. 603 

SESs were obtained from 100 runs of randomizing trait values across all species globally. In 604 

every run we calculated CWM and CWV with random trait values, but keeping all species 605 

abundances in plots. Thus, the results of randomization are independent from species co-606 

occurrences structure of plots50. For every trait, the SES of the variance in CWM, were 607 

calculated as the observed value of variance in CWM minus the mean variance in CWM of 608 

the random runs, divided by the standard deviation of the variance in CWM of the random 609 

runs. SESs for the mean in CWM, the mean in CWV and the variance in CWV were 610 

calculated accordingly. Tests for significance of SESs were obtained by fitting generalized 611 

Pareto-distribution of the most extreme random values and then estimating p values form this 612 

fitted distribution51. 613 

 614 

Testing for formation-specific patterns. We carried out separate analyses for two 615 

‘formations’: forest and for non-forest plots. We defined as forest plots that had > 25% cover 616 

of the tree layer. However, this information was available for only 25% of the plots in our 617 



sPlot database. Thus, we also assigned formation status based on growth form data from the 618 

TRY database. We defined plots as ‘forest’ if the sum of relative cover of all tree taxa was > 619 

25%, but only if this did not contradict the requirement of > 25% cover of the tree layer (for 620 

those records for which this information was given in the header file). Similarly, we defined 621 

non-forest plots by calculating the cover of all taxa that were not defined as trees and shrubs 622 

(also taken from the TRY plant growth form information) and that were not taller than 2 m, 623 

using the TRY data on mean plant height. We assigned the status ‘non-forest’ to all plots that 624 

had >90% cover of these low-stature, non-tree and non-shrub taxa. In total, 21,888 taxa out of 625 

the 52,032 in TRY which also occurred in sPlot belonged to this category, and 16,244 were 626 

classed as trees. The forests and non-forest plots comprised 330,873 (29.7%) and 513,035 627 

(46.0%) of all plots, respectively. We subjected all CWM values for forest and non-forest 628 

plots to PCA, RDA and bivariate linear regressions to environmental variables as described 629 

above. 630 

The forest plots, in particular, confirmed the overall patterns, with respect to variation in 631 

CWM explained by the first two PCA axes (60.5%) and the two orthogonal continua from 632 

small to large size and the leaf economics spectrum (Extended Data Fig. 3). The variation 633 

explained by macroclimate and soil conditions was much larger for the forest subset than for 634 

the total data, with the best relationship (leaf N:P ratio and the mean temperature of the 635 

coldest quarter, bio11) having a r2 of 0.369 and the second next best ones (leaf N:P ratio and 636 

GDD1 and GDD5) close to this value with r2=0.357 (Extended Data Fig. 4) and an overall 637 

variation in CWM values explained by environment of 25.3% (cumulative variance of all 18 638 

constrained axes in a RDA). The non-forest plots showed the same functional continua, but 639 

with lower total amount of variation in CWM accounted for by the first two PCA axes 640 

(41.8%, Extended Data Fig. 5) and much lower overall variation explained by environment. 641 

For non-forests, the best correlation of any CWM trait with environment was the one of 642 

volumetric content of coarse fragments in the soil (CoarseFrags) and leaf C content per dry 643 

mass with r2=0.042 (Extended Data Fig. 6). Similarly, the cumulative variance of all 18 644 

constrained axes according to RDA was only 4.6%. This shows, on the one hand, that forest 645 

and non-forest vegetation are characterized by the same interrelationships of CWM traits, and 646 

on the other hand, that the relationships of CWM values with the environment were much 647 

stronger for forests than for non-forest formations. The coefficients of determination were 648 

even higher than those previously reported for trait-environment relationships for North 649 

American forests (between CWM of seed mass and maximum temperature, r2=0.281)6.  650 

Resampling procedure in environmental space. In order to achieve a more even 651 

representation of plots across the global climate space, we first subjected the same 30 global 652 

climate and soil variables as described above, to a Principal Component Analysis (PCA), 653 

using the climate space of the whole globe, irrespective of the presence of plots in this space, 654 

and scaling each variable to a mean of zero and a standard deviation of one. We used a 2.5 arc 655 

minute spatial grid, which comprised 8,384,404 terrestrial grid cells. We then counted the 656 

number of vegetation plots in the sPlot database that fell into each grid cell. For this analysis, 657 

we did not use the full set of 1,117,369 plots with trait information (see above), but only those 658 

plots that had a location inaccuracy of max. 3 km, resulting in a total of 799,400 plots. The 659 

resulting PCA scores based on the first two principal components (PC1-PC2) were rasterized 660 



to a 100 × 100 grid in PC1-PC2 environmental space, which was the most appropriate 661 

resolution according to a sensitivity analysis. This sensitivity analysis tested different grid 662 

resolutions, from a coarse-resolution bivariate space of 100 grid cells (10 × 10) to a very fine-663 

resolution space of 250,000 grid cells (500 × 500), iteratively increasing the number of cells 664 

along each principal component by 10 cells. For each iteration, we computed the total number 665 

of sPlot plots per environmental grid cell and plotted the median sampling effort (number of 666 

plots) across all grid cells versus the resolution of the PC1-PC2 space. We found that the 667 

curve flattens off at a bivariate environmental space of 100 × 100 grid cells, which was the 668 

resolution for which the median sampling effort stabilized at around 50 plots per grid cell. As 669 

a result, we resampled plots only in environmental cells with more than 50 plots (858 cells in 670 

total). 671 

To optimize our resampling procedure within each grid cell, we used the heterogeneity-672 

constrained random (HCR) resampling approach52. The HCR approach selects the subset of 673 

vegetation plots for which those plots are the most dissimilar in their species composition 674 

while avoiding selection of plots representing peculiar and rare communities that differ 675 

markedly from the main set of plant communities (outliers), thus providing a representative 676 

subset of plots from the resampled grid cell. We used the turnover component of the Jaccard’s 677 

dissimilarity index (βjtu
53) as a measure of dissimilarity. The βjtu index accounts for species 678 

replacement without being influenced by differences in species richness. Thus, it reduces the 679 

effects of any imbalances that may exist between different plots due to species richness. We 680 

applied the HCR approach within a given grid cell by running 1,000 iterations of randomly 681 

selecting 50 plots out of the total number of plots available within that grid cell. Where the 682 

cell contained 50 or fewer plots, all were included and the resampling procedure was not run. 683 

This procedure thinned out over-sampled climate types, while retaining the full environmental 684 

gradient. 685 

All 1,000 random draws of a given grid cell were subsequently sorted according to the 686 

decreasing mean of βjtu between pairs of vegetation plots and then sorted again according to 687 

the increasing variance in βjtu between pairs of vegetation plots. Ranks from both sortings 688 

were summed for each random draw, and the random draw with the lowest summed rank was 689 

considered as the most representative of the focal grid cell. Because of the randomized nature 690 

of the HCR approach, this resampling procedure was repeated 100 times for each of the 858 691 

grid cells. This enabled us to produce 100 different subsamples out of the full sample of 692 

799,400 vegetation plots subjected to the resampling procedure. Each of these 100 693 

subsamples was finally subjected to ordinary linear regression, PCA and RDA as described 694 

above. We calculated the mean correlation coefficient across the 100 resampled data sets for 695 

each environmental variable with each trait. 696 

To plot bivariate relationships, we used the mean intercept and slope of these relationships. 697 

PCA loadings of all 100 runs were stored and averaged. As different runs showed different 698 

orientation on the first PCA axes, we switched the signs of the axis loadings in some of the 699 

runs to make the 100 PCAs comparable to the reference PCA, based on the total data set. 700 

Across the 100 resampled data sets, we then calculated the minimum and maximum loading 701 

for each of the two PCA axes and plotted the result as ellipsoid. We also collected the post-702 

hoc regressions coefficients of PCA scores with the environmental variables in each of the 703 



100 runs, switched the signs accordingly and plotted the correlations to PC1 and PC2 as 704 

ellipsoids. The result is a synthetic PCA of all 100 runs. To illustrate the coverage of plots in 705 

PCA space, we used plot scores of one of the 100 random runs. Similarly, the coefficients of 706 

determination obtained from the RDAs of these 100 resampled sets were averaged. 707 

The mean PCA loadings across these 100 subsets (summarized in Extended Data Fig. 7) were 708 

fully consistent with those of the full data set in Fig. 1, with the same two functional continua 709 

in plant size and diaspore mass (from bottom left to top right), and perpendicular to that, the 710 

leaf economics spectrum. The variation in CWM accounted for by the first two axes was on 711 

average 50.9% ± 0.04 standard deviations (SD), and thus, virtually identical with that in the 712 

total dataset. In contrast, the variation explained on average by macroclimate and soil 713 

conditions (26.5% ± 0.01 SD as average cumulative variance of all 18 constrained axes in the 714 

RDAs across all 100 runs) was considerably larger than that for the total dataset, which is also 715 

reflected in consistently higher correlations between traits and environmental variables 716 

(Extended Data Fig. 8). The highest mean correlation was encountered for plant height and 717 

PET (mean r2=0.342 across 100 runs). PET was a better predictor for plant height than the 718 

precipitation of the wettest months (bio13, mean r2=0.231), as had been suggested 719 

previously7. The correlation of PET with stem specific density (mean r2=0.284) and warmth 720 

of the growing season (expressed as growing degree days above the threshold 5°C, GDD5) 721 

with leaf N:P ratio (mean r2=0.250) ranked among the best 12 correlations encountered out of 722 

all 540 trait-environment relationships, which confirms the patterns found in the whole data 723 

set (compared with Fig. 3). Overall, the coefficients of determination were much closer to the 724 

ones reported from other studies with a global collection of a few hundred plots (r2 values 725 

ranging from 36% to 53% based on multiple regressions of single traits with five to six 726 

environmental drivers22). 727 
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Table 1: Traits used in this study and their function in the community. Traits are arranged 852 

according to the degree to which they should respond to macroclimatic drivers. ↑↓ in the trait 853 

column denotes reciprocal relationships,  in the description column denotes trade-offs. For 854 

trait units, plot-level trait means and within-plot trait variance see Extended Data Table 1. 855 

Trait Description Function Expected 
correlation 
with 
macroclimate

Specific leaf area, Leaf 
area, Leaf fresh mass, 
Leaf N, Leaf P 
     ↑↓ 
Leaf dry matter content, 
Leaf N per area, Leaf C 

Leaf economics spectrum12-13,17: 
Thin, N-rich leaves with high turnover 
and high mass-based assimilation rates 
       
Thick, N-conservative, long-lived leaves 
with low mass-based assimilation rates 

Productivity, 
Competitive 
ability 

Very high5-

6,17,21,23 

Stem specific density 
 

Fast growth 
      
Mechanical support, Longevity 

Productivity, 
Drought 
tolerance 

Very high5,22 

Conduit element length 
     ↑↓ 
Stem conduit density 

Efficient water transport 
      
Safe water transport 

Water use 
efficiency 

High 

Plant height Mean individual height of adult plants Competitive 
ability 

High5,7 

Seed number per 
reproductive unit 
     ↑↓ 
Seed mass, Seed 
length, Dispersal unit 
length 

Seed economics spectrum23: 
Small, well dispersed seeds 
      
Seeds with storage reserve to facilitate 
establishment and increase survival 

Dispersal, 
Regeneration 

Moderate23-24 

Leaf N:P ratio P limitation (N:P > 15) 
N limitation (N:P < 10)28 

Nutrient 
supply 

Moderate29 

Leaf nitrogen isotope 

ratio (leaf δ15N) 

Access to N derived from N2 fixation 
      
N supply via mycorrhiza 

Nitrogen 
source,  
Soil depth  

None 
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Fig. 1: Principal Component Analysis of global plot-level trait means (community-weighted 858 

means, CWMs). The plots (n = 1,114,304) are shown by coloured dots, with shading 859 

indicating plot density on a logarithmic scale, ranging from yellow with 1–4 plots at the same 860 

position to dark red with 251–1142 plots. Prominent spikes are caused by a strong 861 

representation of communities with extreme trait values, such as heathlands with ericoid 862 

species with small leaf area and seed mass. Post-hoc correlations of PCA axes with climate 863 

and soil variables are shown in blue and magenta, respectively. Arrows are enlarged in scale 864 

to fit the size of the graph; thus, their lengths show only differences in variance explained 865 

relative to each other. Variance in CWM explained by the first and second axis was 29.7% 866 

and 20.1%, respectively. The vegetation sketches schematically illustrate the size continuum 867 

(short vs. tall) and the leaf economics continuum (low vs. high LDMC and leaf N content per 868 

area in light and dark green colours, respectively). See Extended Data Tables 1 and 2 for the 869 

description of traits and environmental variables. 870 
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Fig. 2: Principal Component Analysis of global within-plot trait variances (community-873 

weighted variances, CWVs). The plots (n = 1,098,015) are shown by coloured dots, with 874 

shading indicating plot density on a logarithmic scale, ranging from yellow with 1–2 plots at 875 

the same position to dark red with 631–1281 plots. Post-hoc correlations of PCA axes with 876 

climate and soil variables are shown in blue and magenta, respectively. Arrows are enlarged 877 

in scale to fit the size of the graph; thus, their lengths show only differences in variance 878 

explained relative to each other. Variance in CWV explained by the first and second axis was 879 

24.9% and 13.4%, respectively. CWV values of all traits increased from the left to the right, 880 

which reflects increasing species richness (r2 = 0.116 between scores of the first axis and 881 

number of species in the communities for which traits were available). The vegetation 882 

sketches schematically illustrate low and high variation in the plant size and leaf economics 883 

continua. See Extended Data Tables 1 and 2 for the description of traits and environmental 884 

variables. 885 
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Fig. 3: The two strongest relationships found for global plot-level trait means (community-888 

weighted means, CWMs) in the sPlot dataset. CWM of the natural logarithm of stem specific 889 

density [g cm-3] as a) global map, interpolated by kriging within a radius of 50 km around the 890 

plots using a grid cell of 10 km, and b) function of potential evapotranspiration (PET, 891 

r2=0.156). CWM of the natural logarithm of the N:P ratio [g g-1] as c) global kriging map and 892 

d) function of the warmth of the growing season, expressed as growing degree days over a 893 

threshold of 5°C (GDD5, r2=0.115). Plots with N:P ratios > 15 (of 2.71 on the loge scale) tend 894 

to indicate phosphorus limitation28 and are shown above the broken line in red colour (90,979 895 

plots, 8.16% of all plots). The proportion of plots with N:P ratios > 15 increases with GDD5 896 

(r2=0.895 for a linear model on the log response ratio of counts of plots with N:P > 15 and 897 

≤15 counted within bins of 500 GDD5). 898 

 899 
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Extended Data Table 1: Traits, abbreviation of trait names, identifier in the Thesaurus Of Plant characteristics (TOP)54, units of measurement, 902 

observed values (obs.) standardized effect sizes (SES) and significance (p) of SES for means and variances of both plot-level trait means 903 

(community-weighted means, CWMs) and within-plot trait variances (community-weighted variances, CWVs). CWMs and CWVs were based on 904 

1,115,785 and 1,099,463 plots, respectively. All trait values were loge-transformed prior to analysis and observed and SES values are on the loge 905 

scale. Stem specific density is stem dry mass per stem fresh volume, specific leaf area is leaf area per leaf dry mass, leaf C, N and P are leaf carbon, 906 

nitrogen and phosphorus content, respectively, per leaf dry mass, leaf dry matter content is leaf dry mass per leaf fresh mass, leaf delta 15N is the 907 

leaf nitrogen isotope ratio, stem conduit density is the number of vessels and tracheids per unit area in a cross section, conduit element length refers 908 

to both vessels and tracheids. SESs were calculated by randomizing trait values across all species globally 100 times and calculating CWM and 909 

CWV with random trait values, but keeping all species abundances in plots. Tests for significance of SES were obtained by fitting generalized 910 

Pareto-distribution of the most extreme random values and then estimating p values form this fitted distribution51. * indicates significance at p < 911 

0.05. 912 

    CWM CWV 

  mean variance mean variance

Trait Abbreviation TOP Unit obs. SES p obs. SES p obs. SES p obs. SES p 

Leaf area LA 25 mm
2

6.130 -9.75 * 1.691 12.53 * 1.565 -2.59 * 2.448 -0.27 n.s.

Specific leaf area SLA 50 m
2
 kg

-1
 2.850 9.89 * 0.172 12.88 * 0.150 -1.33 n.s. 0.023 1.10 n.s. 

Leaf fresh mass Leaf.fresh.mass 35 g -2.125 -13.28 * 1.395 10.83 * 1.520 -2.05 * 2.311 0.01 n.s. 

Leaf dry matter content LDMC 45 g g
-1

-1.294 -5.67 * 0.101 11.52 * 0.130 0.95 n.s. 0.017 6.73 *

Leaf C  LeafC 452 mg g
-1

 6.116 -3.77 * 0.003 8.80 * 0.002 -1.78 * 0.000 -0.38 n.s. 

Leaf N LeafN 462 mg g
-1

3.038 4.22 * 0.055 6.29 * 0.063 -3.19 * 0.004 -0.13 n.s.

Leaf P LeafP 463 mg g
-1

 0.535 9.57 * 0.097 2.81 * 0.117 -5.17 * 0.014 -2.11 * 

Leaf N per area LeafN.per.area 481 g m
-2

0.251 -9.06 * 0.075 8.18 * 0.099 -0.28 n.s. 0.010 1.54 n.s.

Leaf N:P ratio Leaf.N:P.ratio - g g
-1

 2.444 -11.95 * 0.040 0.40 n.s. 0.081 -2.74 * 0.007 -0.39 n.s. 

Leaf δ
15

N Leaf.delta15N - ppm 0.521 -3.58 * 0.254 6.68 * 0.455 2.82 * 0.207 2.44 * 

Seed mass Seed.mass 103 mg 0.407 -11.19 * 2.987 3.69 * 2.784 -9.06 * 7.750 -2.81 *

Seed length Seed.length 91 mm 1.069 -4.51 * 0.294 5.50 * 0.365 -4.67 * 0.134 -3.07 * 

Seed number per 

reproductive unit 

Seed.num.rep.unit -  6.179 7.67 * 2.783 4.40 * 5.156 1.44 n.s. 26.588 2.25 * 

Dispersal unit length Disp.unit.length 90 mm 1.225 -2.51 * 0.343 6.50 * 0.451 -3.21 * 0.203 -1.39 n.s. 



Plant height Plant.height 68 m -0.315 -12.15 * 1.532 13.34 * 1.259 -9.01 * 1.585 9.68 * 

Stem specific density SSD 286 g cm
-3

-0.869 -14.93 * 0.041 13.15 * 0.058 2.09 * 0.003 2.99 *

Stem conduit density Stem.cond.dens - mm
-2

 4.407 15.08 * 0.656 8.45 * 0.975 -0.95 n.s. 0.951 1.10 n.s. 

Conduit element length Cond.elem.length - µm 5.946 -7.09 * 0.182 9.14 * 0.367 7.12 * 0.135 5.29 *

Mean SES  -3.50 8.06 -1.76 1.25

Mean absolute SES     8.66   8.06   3.36   2.43  
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Extended Data Table 2: Environmental variables used as predictors. Climate data were obtained from CHELSA38,39 (www.chelsa-climate.org), 915 

GDD1 and GDD5 were calculated from CHELSA data, based on monthly temperature and precipitation values for the years 1979–201339-40. The 916 

index of aridity (AR) and potential evapotranspiration (PET) were extracted from the CGIAR-CSI website (www.cgiar-csi.org). Soil variables were 917 

obtained from the SOILGRIDS project (https://soilgrids.org/) and reflect mean values expected at 0.15 m depth. 918 

 919 

Variable Abbreviation Unit Data source 

Annual Mean Temperature Bio01 °C*10 CHELSA 

Mean Diurnal Range (Mean of monthly (maximum

temperature - minimum temperature)) 

Bio02 °C CHELSA

Isothermality (bio2/bio7) (* 100) Bio03 - CHELSA 

Temperature Seasonality (standard deviation of monthly 

temperature averages ) 

Bio04 °C*100 CHELSA 

Max Temperature of Warmest Month Bio05 °C*10 CHELSA 

Min Temperature of Coldest Month Bio06 °C*10 CHELSA 

Temperature Annual Range (bio5-bio6) Bio07 °C*10 CHELSA 

Mean Temperature of Wettest Quarter Bio08 °C*10 CHELSA

Mean Temperature of Driest Quarter Bio09 °C*10 CHELSA 

Mean Temperature of Warmest Quarter bio10 °C*10 CHELSA 

Mean Temperature of Coldest Quarter bio11 °C*10 CHELSA

Annual Precipitation bio12 mm/year CHELSA 

Precipitation of Wettest Month bio13 mm/month CHELSA 

Precipitation of Driest Month bio14 mm/month CHELSA 

Precipitation Seasonality bio15 coefficient of variation CHELSA 

Precipitation of Wettest Quarter bio16 mm/quarter CHELSA 

Precipitation of Driest Quarter bio17 mm/quarter CHELSA 

Precipitation of Warmest Quarter bio18 mm/quarter CHELSA

Precipitation of Coldest Quarter bio19 mm/quarter CHELSA 

Growing degree days above 1°C GDD1 °C days calculated 

Growing degree days above 5°C GDD5 °C days calculated

Index of aridity AR (*10,000) CGIAR-CSI 



Potential evapotranspiration PET mm/year CGIAR-CSI 

Cation exchange capacity of soil CEC cmolc kg
-1

 SOILGRIDS 

Soil pH pH (*10) SOILGRIDS

Coarse fragment volume CoarseFrags vol. % SOILGRIDS 

Soil organic carbon content in the fine earth fraction Soil_C g kg
-1

 SOILGRIDS 

Clay content (0–2 µm) Clay mass fraction % SOILGRIDS

Silt content (2–50 µm) Silt mass fraction % SOILGRIDS 

Sand content (50–2000 µm) Sand mass fraction % SOILGRIDS 
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Extended Data Fig. 1: Visualisation of the Pearson correlation matrix of plot-level trait means 922 

(community-weighted means, CWMs) of all 18 traits (rows) in the entire dataset (n = 923 

1,114,304) with all 30 environmental predictors (columns). Positive correlations are shown in 924 

blue, negative ones in red colour, with increasing colour intensity as the correlation value 925 

moves away from 0. The eccentricity of the ellipses is scaled to the absolute value of the 926 

correlation48. Rows and columns are arranged from top to bottom and from left to right 927 

according to decreasing absolute correlation values. The highest correlation coefficient 928 

(between stem specific density and PET) was 0.395 (r2=0.156). The best predictors for the 929 

plant height and seed mass trade-off were potential evapotranspiration (PET) and growing 930 

degree days above 5°C (GDD5), with r2=0.093 and 0.052 for plant height and r2=0.099 and 931 

0.074 for seed mass, respectively. The best predictors for traits of the leaf economics 932 

spectrum were PET and the seasonality in precipitation (bio15), with r2=0.078 and 0.051 for 933 

specific leaf area (SLA) and r2=0.039 and 0.024 for leaf dry matter content (LDMC), 934 

respectively. See Extended Data Tables 1 and 2 for the description of traits and environmental 935 

variables. 936 

 937 



Extended Data Fig. 2: Visualisation of the Pearson correlation matrix of within-plot trait 938 

variances (community-weighted variances, CWVs) of all 18 traits (rows) in the entire dataset 939 

(n = 1,098,015) with all environmental predictors (columns). Positive correlations are shown 940 

in blue, negative ones in red colour, with increasing colour intensity as the correlation value 941 

moves away from 0. The eccentricity of the ellipses is scaled to the absolute value of the 942 

correlation48. Rows and columns are arranged from top to bottom and from left to right 943 

according to decreasing absolute correlation values. The highest correlation coefficient was 944 

encountered between specific leaf area (SLA) and the volumetric content of coarse fragments 945 

in the soil CoarseFrags, r2=0.036), followed by the correlation of PET to CWV of conduit 946 

element length (r2=0.035). See Extended Data Tables 1 and 2 for the description of traits and 947 

environmental variables. 948 
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Extended Data Fig. 3: Principal Component Analysis of plot-level trait means (community-951 

weighted means, CWM) of forest communities only in the dataset. The plots (n = 330,873) 952 

are shown by coloured dots, with shading indicating plot density on a logarithmic scale, 953 

ranging from yellow with 1–4 plots at the same position to dark orange with 32–453 plots. 954 

Post-hoc correlations of PCA axes with climate and soil variables are shown in blue and 955 

magenta, respectively. Arrows are enlarged in scale to fit the size of the graph; thus, their 956 

lengths show only differences in variance explained relative to each other. Variance in CWM 957 

explained by the first and second axis was 32.9% and 27.6%, respectively. The vegetation 958 

sketches schematically illustrate low and high variation in the plant size and leaf economics 959 

continua. See Extended Data Tables 1 and 2 for the description of traits and environmental 960 

variables. 961 

 962 

  963 



Extended Data Fig. 4: Visualisation of the Pearson correlation matrix of plot-level trait means 964 

(community-weighted means, CWMs) of all 18 traits (rows) of forest communities only in the 965 

dataset (n = 330,873) with all environmental predictors (columns). Positive correlations are 966 

shown in blue, negative ones in red colour, with increasing colour intensity as the correlation 967 

value moves away from 0. The eccentricity of the ellipses is scaled to the absolute value of 968 

the correlation48. Rows and columns are arranged from top to bottom and from left to right 969 

according to decreasing absolute correlation values. The highest correlation coefficient 970 

(between leaf N:P ratio and the mean temperature of coldest quarter (bio11)) was 0.607 971 

(r2=0.369). See Extended Data Tables 1 and 2 for the description of traits and environmental 972 

variables. 973 
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Extended Data Fig. 5: Principal Component Analysis of plot-level trait means (community-976 

weighted means, CWMs) of non-forest communities only in the dataset. The plots (n = 977 

513,035) are shown by coloured dots, with shading indicating plot density on a logarithmic 978 

scale, ranging from yellow with 1–4 plots at the same position to dark red with 251–1111 979 

plots. Post-hoc correlations of PCA axes with climate and soil variables are shown in blue and 980 

magenta, respectively. Arrows are enlarged in scale to fit the size of the graph; thus, their 981 

lengths show only differences in variance explained relative to each other. Variance in CWM 982 

explained by the first and second axis was 24.3% and 17.5%, respectively. The vegetation 983 

sketches schematically illustrate low and high variation in the plant size and leaf economics 984 

continua. See Extended Data Tables 1 and 2 for the description of traits and environmental 985 

variables. 986 
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Extended Data Fig. 6: Visualisation of the Pearson correlation matrix of plot-level trait means 989 

(community-weighted means, CWMs) of all 18 traits (rows) of non-forest communities only 990 

in the dataset (n = 513,035) with all environmental predictors (columns). Positive correlations 991 

are shown in blue, negative ones in red colour, with increasing colour intensity as the 992 

correlation value moves away from 0. The eccentricity of the ellipses is scaled to the absolute 993 

value of the correlation48. Rows and columns are arranged from top to bottom and from left to 994 

right according to decreasing absolute correlation values. The highest correlation coefficient 995 

(between leaf C content per dry mass and the volumetric content of coarse fragments in the 996 

soil (CoarseFrags)) was 0.204 (r2=0.042). See Extended Data Tables 1 and 2 for the 997 

description of traits and environmental variables. 998 
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Extended Data Fig. 7: Summary of Principal Components Analyses applied to 100 resampled 1001 

subsets of plot-level trait means (community-weighted means, CWMs) from the entire dataset 1002 

for all 18 traits in the sPlot dataset. Each subset was resampled from the global environmental 1003 

space (see Methods) and comprised between 99,342 and 99,400 (mean 99,380) plots. The 1004 

coloured dots show the plots of one random example of these 100 subsets, with shading 1005 

indicating plot density on a logarithmic scale, ranging from yellow with 1–3 plots at the same 1006 

position to red with 10–81 plots in the subset. The loadings of each of the traits are displayed 1007 

by a grey circle, its radius scaled to the range of loadings on PC1 and PC2 of all 100 runs. 1008 

Post-hoc regressions of PCA axes with each of the environmental variables are illustrated by 1009 

blue circles, its radius scaled to the range of correlations with PC1 and PC2. The circles are 1010 

rather small, indicating that both the loadings and the post-hoc correlations with the 1011 

environment had very similar values in the different runs. The mean variance in CWM 1012 

explained by the first and second axis across the 100 runs was 33.4% ± 0.04 sd and 17.5% ± 1013 

0.03 sd, respectively. The vegetation sketches schematically illustrate low and high variation 1014 

in the plant size and leaf economics continua. See Extended Data Tables 1 and 2 for the 1015 

description of traits and environmental variables. 1016 
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Extended Data Fig. 8: Visualisation of the mean Pearson correlation coefficients of plot-level 1018 

trait means (community-weighted means, CWMs) of all 18 traits (rows) with all 1019 

environmental predictors (columns) of the 100 resampled subsets. Each subset was resampled 1020 

from the global environmental space (see Methods) and comprised between 99,342 and 1021 

99,400 (mean 99,379.5) plots. Positive correlations are shown in blue, negative ones in red 1022 

colour, with increasing colour intensity as the correlation value moves away from 0. The 1023 

eccentricity of the ellipses is scaled to the absolute value of the correlation48. Rows and 1024 

columns are arranged from top to bottom and from left to right according to decreasing 1025 

absolute mean correlation values. The highest mean correlation coefficient (between plant 1026 

height and potential evapotranspiration (PET) was 0.585 (r2=0.342). See Extended Data 1027 

Tables 1 and 2 for the description of traits and environmental variables. 1028 
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