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Abstract This paper analyzes changes in areas under

droughts over the past three decades and alters our under-

standing of how amplitude and frequency of droughts differ

in the Southern Hemisphere (SH) and Northern Hemi-

sphere (NH). Unlike most previous global-scale studies that

have been based on climate models, this study is based

on satellite gauge-adjusted precipitation observations. Here,

we show that droughts in terms of both amplitude and fre-

quency are more variable over land in the SH than in the

NH. The results reveal no significant trend in the areas

under drought over land in the past three decades. However,

after investigating land in the NH and the SH separately,

the results exhibit a significant positive trend in the area

under drought over land in the SH, while no significant

trend is observed over land in the NH. We investigate the

spatial patterns of the wetness and dryness over the past

three decades, and we show that several regions, such as

the southwestern United States, Texas, parts of the Ama-

zon, the Horn of Africa, northern India, and parts of the

Mediterranean region, exhibit a significant drying trend.

The global trend maps indicate that central Africa, parts

of southwest Asia (e.g., Thailand, Taiwan), Central Amer-

ica, northern Australia, and parts of eastern Europe show

a wetting trend during the same time span. The results of

this satellite-based study disagree with several model-based

studies which indicate that droughts have been increasing

over land. On the other hand, our findings concur with some

of the observation-based studies.
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1 Introduction

Numerous studies indicate that the frequency of extreme

events such as droughts has increased, particularly in the

twentieth century (Trenberth 2001; Alexander et al. 2006;

Dai 2012; Hao and AghaKouchak 2013b; Frich et al. 2002).

Major drought events have been reported in the USA, the

Horn of Africa, Australia, and southern Europe over the past

few decades. Texas, for example, experienced two record

droughts in 2011 and 2006, resulting in billions of dollars

in economic losses (AghaKouchak et al. 2012a). Numerous

model-based studies indicate that droughts and dry spells

have increased in the second half of the twentieth century

(e.g., Dai 2012).

Drought development is a slow and complex process

that can be described using multiple indicators and vari-

ables. Droughts are often classified into four different cat-

egories: meteorological drought (deficit in precipitation),

agricultural drought (deficit in soil moisture), hydrologi-

cal drought (deficit in surface water, groundwater, reservoir

storage), and socioeconomic drought (imbalance in water

supply and demand)—see Wilhite and Glantz (1985). This

study investigates global trends and patterns of meteoro-

logical droughts and drying areas using a satellite-based,

model-independent data record. Hereafter, drought refers to

a deficit in precipitation (Hayes et al. 1999).

The Standardized Precipitation Index (SPI; McKee et al.

1993), which is one of the most commonly used and rec-

ommended drought indicators, is used to describe meteo-

rological droughts (WMO 2009; WCRP 2010). Negative

and positive values of SPI indicate dry and wet periods,

respectively. SPI values between −1 (≈20th percentile) and

−2 (≈5th percentile) refer to moderate to severe droughts,

while SPI below −2 indicates extreme droughts (McKee

et al. 1993). Given the flexibility and simplicity of SPI, it has
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been widely used in drought studies (e.g., Mo 2008; Wang

et al. 2011, 2013a; Shukla and Wood 2008).

Documenting changes in droughts requires long-term

records of observations with suitable temporal and spatial

coverage. Most studies of historical droughts have been

based on analyses of long-term gauge (point) measurements

of precipitation (e.g., Serinaldi et al. 2009; Shiau 2006).

However, the spatial distribution of rain gauges is insuffi-

cient for providing reliable and homogeneous estimates of

the spatial distribution of precipitation and, hence, droughts

on a global scale (Easterling 2012). As is well known,

the spatial extent is fundamental for understanding the

drought phenomena (Andreadis et al. 2005). In addition

to rain gauges, hydrological and climate model simula-

tions have also been used to assess changes in drought

occurrences and intensities (Robock et al. 2004; Sheffield

et al. 2004; Anderson et al. 2011; Wehner 2012; Dirmeyer

et al. 2006). Climate/hydrological models provide valu-

able gridded information on droughts. However, numerous

studies have shown discrepancies in regional and global cli-

mate model simulations of precipitation patterns and, thus,

drought spatial extent (WCRP 2010; Kirono and Kent 2011;

Coelho and Goddard 2009).

Recent advances in developing global satellite precipi-

tation data sets (e.g., Adler et al. 2003; Sorooshian et al.

2011) provide the opportunity to assess changes in the spa-

tial extent of droughts over the past three decades. The

advantages of using satellite precipitation data for drought

monitoring include (a) consistent and homogeneous data in

a quasi-global scale and (b) coverage over areas with no

other means of observations (e.g., rain gauges and weather

radars). The importance of using the emerging satellite data

sets for drought monitoring, especially for validation and

verification of model simulations, has been emphasized in

previous studies (e.g., Wardlow et al. 2012). This paper

documents changes in trends and patterns of meteorologi-

cal droughts using satellite precipitation observations. The

paper is organized as follows: after this introduction, the

data set used in the study is discussed. The methodology and

results are presented in Section 3, and the conclusions and

final remarks are summarized in Section 4.

2 Data

We use a recently developed, merged monthly data set

that combines the long-term Global Precipitation Climatol-

ogy Project (GPCP; Adler et al. 2003) satellite data with

near real-time satellite observations (TMPA-RT; Huffman

et al. 2007 and PERSIANN; Sorooshian et al. 2000; Hsu

et al. 1997) developed for drought analysis (AghaKouchak

and Nakhjiri 2012). In the merged data set, the climatol-

ogy is driven by the GPCP data, and the near past data

are based on near real-time satellite precipitation observa-

tions. The merging algorithm includes a Bayesian correction

algorithm to ensure consistency of the two data sets for

drought analysis and to reduce biases and uncertainties asso-

ciated with satellite data discussed in previous studies (e.g.,

Turk et al. 2008; AghaKouchak et al. 2012b; Tian et al.

2009; Mehran and AghaKouchak 2013). The algorithm and

the overall quality of the data set are tested and validated

for the period of overlap (2000–2010) between GPCP and

both TMPA-RT and PERSIANN (see AghaKouchak and

Nakhjiri 2012). The final product is a data set of consistent

monthly precipitation data with a spatial resolution of 2.5◦

from 1979 to the present. It is acknowledged that satellite

observations are subject to various errors and uncertain-

ties. The error sources arise from uncertainties in retrieval

algorithms, data acquisition, data postprocessing, infrequent

overpasses, etc. (Hong et al. 2006; AghaKouchak et al.

2009). However, previous studies show that bias-adjusted

data sets exhibit reasonable agreement with ground-based

observations (Gebremichael et al. 2003; Huffman et al.

2003; Janowiak et al. 2001). The data set used in this study

is available to the public through the Global Integrated

Drought Monitoring and Prediction System (GIDMaPS;

AghaKouchak et al. 2013).

The study area extends from 60 ◦S to 60 ◦N (6,912 pixels)

where satellite-based drought data are available. Follow-

ing (Sheffield and Wood 2008), areas with rainfall below

0.5 mm/day (<15 mm month−1) are masked out of the anal-

ysis to avoid unreliable statistics. This procedure eliminates

areas in perpetual droughts such as deserts, where a small

variability in monthly rainfall alters wet and dry conditions

considerably.

3 Method and results

In this paper, and following (Yoon et al. 2012), the 6-month

SPI (see McKee et al. 1993) is employed to investigate

droughts (see Appendix for details). The drought conditions

used in this study are (a) −2 < SPI ≤ −1 (moderate to

severe droughts) and (b) SPI ≤ −2 (extreme droughts).

Time series of the areas under drought from January 1980

to January 2012 are derived for moderate to severe droughts

(−2 < SPI ≤ −1) and extreme droughts (SPI ≤ −2)

across the global land areas, the Northern Hemisphere (NH),

and the Southern Hemisphere (SH). Figures 1 and 2 display

areas in moderate to severe drought (Fig. 1) and extreme

drought (Fig. 2) over the past three decades. In both figures,

the solid black line represents the global land, whereas the

dashed red and dotted blue lines show land in the NH and

SH, respectively.

For SPI ≤ −1, on average 13–15 % of the global land

is under drought, whereas 2–3 % is in extreme drought
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Fig. 1 Area (percent) in moderate to severe drought (−2 < SPI ≤ −1) for the global land, land in the NH, and land in the SH from 1980 to 2012

(SPI ≤ −2) condition (SPI ≤ −1 = −2 < SPI ≤

−1 + SPI ≤ −2). Because SPI is a standardized index, for

−2 < SPI ≤ −1, the areas (percent) under drought for

land (13.52 %), land in the NH (13.51 %), and land in the

SH (13.53 %) are very similar. It should be noted that SPI

normalizes precipitation relative to historical observations

using the standard normal distribution (see Appendix). For

this reason, the area under the SPI graph for a fixed thresh-

old (e.g., SPI < −1) would be quite similar at different loca-

tions/regions. While the mean values of area under drought

are similar, the results indicate that droughts over land in the

SH are far more variable than those over land in the NH (see

Figs. 1 and 2). As shown in Fig. 1, the variability (range of

changes) in fraction of land in moderate to severe drought

Fig. 2 Area (percent) in extreme drought (6-month SPI ≤−2) for the global land, land in the NH, and land in the SH from 1980 to 2012
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conditions (−2 < SPI ≤ −1) is approximately 19 % in the

NH, while it is over 30 % in the SH.

As demonstrated in Figs. 1 and 2, more peaks of land

under drought can be observed in the SH compared to the

NH. Table 1 lists the mean and range of areas under drought

for the global land, the NH land, and the SH land separately.

From Figs. 1 and 2 and Table 1, one can conclude that, in

terms of both amplitude and frequency, land droughts are

more variable in the SH than in the NH. Table 1 indicates

that the mean and ranges of area under extreme droughts are

similar for land, the NH land, and the SH land. The higher

variability of drought in the SH can be explained with the

fact that lands in the SH are less contiguous and more scat-

tered than lands in the NH. Those distinct areas in the SH

undergo very diverse climatic regimes, and this could be

a reason that drought coverage over land varies in the SH

much more than in the NH. Naturally, the larger and more

contiguous land exhibits less variability.

The trends of changes in area under drought are inves-

tigated using the nonparametric Mann–Kendall test (Mann

1945; Kendall 1976; Fatichi 2009), which compares the rel-

ative magnitudes of the samples and provides information

on whether the null hypothesis of no trend in the data can

be rejected or not (Helsel and Hirsh 2010). The test returns

the so-called H value, which is either 0, indicating that the

null hypothesis is correct and no trend is detected, or 1,

indicating the detection of a trend. For a random variable

X(x1, x2, . . . , xn), the Mann–Kendall test can be expressed

as (Mann 1945; Kendall 1976):

S = �n−1
i=1 �n

j=i+1sgn(xj − xi) (1)

where n is the sample size and

sgn =

⎧

⎨

⎩

+1 if(xj − xi) > 0

0 if(xj − xi) = 0

−1 if(xj − xi) < 0

(2)

In the Mann–Kendall test, a large positive value of

the so-called S statistics in Eq. 1 implies an increasing

trend, while a large negative S indicates a decreasing trend.

Table 1 Mean and range of area (percent) in drought

−2 < SPI ≤ −1 SPI ≤ −2

Range Mean Range Mean

Global land 14.49 13.52 10.25 2.47

Land NH 19.43 13.51 13.84 2.51

Land SH 30.68 13.53 14.13 2.36

NH Northern Hemisphere, SH Southern Hemisphere

Following (Yue et al. 2002), the significance of the trend

can be obtained using the z test, where z denotes the stan-

dardized z test statistic (Yue et al. 2002), and σ is standard

deviation that can be approximated as (Kendall 1976):

z =

⎧

⎪

⎨

⎪

⎩

S−1
σ(S)

if S > 0

0 ifS = 0
S+1
σ(S)

ifS < 0

(3)

where z denotes the standardized z test statistic (Yue et al.

2002), and σ is standard deviation that can be approximated

as (Kendall 1976):

σ(S) =

√

n(n − 1)(2n + 5)

18
(4)

Throughout the study, a significance level of 0.05 is used

for analysis, indicating 95 % confidence. Table 2 summa-

rizes the trend analysis results for drought area (percent)

over the past three decades. In this table, column 3 shows

the H value, where 1 indicates a trend at the significance

level of 0.05 and 0 indicates no trend. The P values in

column 4 represent the probability of receiving the values of

the data under the null hypothesis that there is no trend and,

thus, a small P value indicates higher confidence.

As shown in Table 2, a significant trend (Hvalue = 1)

has been observed over the lands in the SH. Here, P values

below 0.05 are considered as significant trends (confidence

of 95 %). A smaller P value implies more confidence in

the presence of a trend. The P values of trend analyses

over land and land in the NH indicate no trend (signifi-

cant increase) in the area of land under drought over the

past three decades. Our findings are consistent with those of

Sheffield et al. (2012) who argued that, based on more real-

istic observations of drought-related variables, little change

has been observed in droughts over the past decades.

Table 2 Trends in the area under drought over the past three decades

based on the Mann–Kendall test

H value P value

Global land SPI ≤ −1 0 0.799

SPI ≤ −2 0 0.908

Land NH SPI ≤ −1 0 0.156

SPI ≤ −2 0 0.452

Land SH SPI ≤ −1 1 0.04

SPI ≤ −2 0 0.8

Column 3 shows the H value, where 1 indicates a trend at the signif-

icance level of 0.05 and 0 indicates no trend. The P values in column

4 represent the probability of receiving the values of the data under

the null hypothesis that there is no trend and, thus, a small P value

indicates higher confidence
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Based on model simulations, Dai (2011) concluded that

global land areas in drought (defined as the bottom 20 % of

the local simulated Palmer Drought Severity Index, PDSI)

varied between 14 and 16 % from 1950 to 1982, when a sud-

den increase of approximately 10 % occurred. Thereafter,

an upward trend for the spatial extent of areas in drought

was demonstrated in Dai (2011). While our results concur

with the fraction of areas in drought, we observed a signif-

icant increasing trend for land only in the SH in moderate

to severe (−2 < SPI ≤ −1) drought conditions. No signifi-

cant trends have been observed for the remaining land areas

(e.g., land in the NH)—see column 3 in Table 2. It should

be noted that the results presented in this paper cannot be

directly compared with those in Dai (2011) because (a) the

presented results are based on meteorological drought (SPI),

while the results in Dai (2011) are based on the PDSI; (b)

different climatology and data records are used than those

used in Dai (2011); (c) different thresholds of droughts are

used in the two studies; and (d) the presented results are

data-driven and model-independent, while the results in Dai

(2011) are based on model simulations.

Finally, the Mann–Kendall test is performed in pixel

scale to detect drying and wetting trends in precipitation

data over the globe. Figure 3 shows a global map of areas

with drying, wetting, and no trend for the past three decades.

Figure 3a, b uses the significance level of 0.05, while Fig. 3c

shows the positive, negative, and lack of trends at the sig-

nificance level of 0.01. The upper panel (Fig. 3a) displays

the relative S value (Fatichi 2009), which is a normalized

measure of the cumulative number of positive and negative

changes for the pixels in order to emphasize those areas

over the globe where trends are stronger. In Fig. 3a, the S

Fig. 3 Global trends of drying

and wetting 6-month SPI over

the last 32 years expressed a as a

relative S value between −1 and

1, where −1 symbolizes the

strongest drying trend (decrease

in the SPI over time) and 1

indicates the strongest wetting

trends (increase in the SPI over

time). The white areas represent

no trends or are masked out due

to perpetual drought

(precipitation <0.5 mm/day);

b areas showing significant

drying (red) and wetting (blue)

trends at a significance level of

0.05; and c areas showing

significant drying (red) and

wetting (blue) trends at a

significance level of 0.01
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values are normalized from −1 to 1 based on the cumu-

lative number of changes. The closer the S value to −1,

the stronger is the trend of drying. Conversely, an S value

close to 1 represents a stronger trend for wet conditions. For

better visualization, Fig. 3 presents the areas with signifi-

cant drying trends in red and areas with significant wetting

trends in blue. Areas with no significant positive or nega-

tive trends appear as white, and areas of perpetual droughts

are masked out to avoid unreliable statistics according to

the above. Note that panels b and c of Fig. 3 show the dry-

ing (red areas) and wetting (blue areas) trends at 0.05 and

0.01 significance levels, respectively. This indicates higher

confidence in the trends provided in Fig. 3c.

Figure 3 indicates that several areas, such as the south-

western United States, Texas and the Gulf of Mexico region,

parts of the Amazon, the Horn of Africa, northern India, and

parts of the Mediterranean region, are among areas showing

significant drying trends over the past three decades. On the

other hand, central Africa, Thailand, Taiwan, Central Amer-

ica, northern Australia, and parts of eastern Europe show a

wetting trend during the same time span. The results of this

study are consistent with local studies on droughts in the

southwestern United States (Cayan et al. 2010) and Amazon

(Marengo et al. 2008; Marengo et al. 2011).

4 Conclusions and remarks

Numerous studies argue that the Earth’s climate is changing

rapidly, especially during the second half of the twentieth

century (Trenberth 2001). The acceleration of the hydro-

logic cycle (Trenberth 1999) indicates that certain regions

may become drier, while other areas may become wet-

ter. In fact, an increase or decrease in temperature would

alter precipitation patterns and frequency and, thus, inten-

sity and occurrence of droughts. Given the significance

of understanding past changes in droughts and their fre-

quency of occurrence in order to predict future droughts,

this paper analyzes areas under drought over the past three

decades. Unlike most previous global drought studies that

have been based on climate model simulations, this study

is based on satellite-based, gauge-adjusted precipitation

observations.

The analysis demonstrates that droughts are more vari-

able over land in the SH than in the NH (see Fig. 1a, b).

The variability (range of change) for the fraction of land in

moderate to severe drought conditions (−2 < SPI ≤ −1) is

approximately 19 % in the NH, while it is over 30 % in the

SH. This indicates that, in terms of both amplitude and fre-

quency, land droughts are more variable in the SH than in

the NH. The results of the Mann–Kendall test reveal that the

area of global land under drought conditions does not show

a significant trend over the past three decades (see Table 2).

However, after investigating land in the NH and SH

separately, the results exhibit a significant positive trend in

the land area under drought in the SH, while no significant

trend is observed in land in the NH.

Using the analysis of spatial patterns of wetting and

drying trends, maps were created from the pixel-based satel-

lite data. The maps show that several regions, such as

the southwestern United States, exhibit significant trends

in occurrence of droughts. Other areas, such as the Gulf

of Mexico region, Texas, parts of the Amazon, the Horn

of Africa, northern India, and parts of the Mediterranean

region, also show significant drying trends over the past

three decades. The global trend maps indicate that central

Africa, parts of southwest Asia (e.g., Thailand, Taiwan),

Central America, northern Australia, and parts of eastern

Europe show wetting trends. The results of this study are

consistent with various previous studies showing an increase

in droughts for the areas with drying trends.

In conclusion, one objective of this study was to inves-

tigate droughts independent of climate models and based

on spatial observations. Overall, the results of this satellite-

based study disagree with several model-based studies (e.g.,

Dai 2012) that indicate droughts have been increasing over

land. On the other hand, our findings concur with some

of the observation-based studies, such as (Sheffield et al.

2012). The authors emphasize the importance of using

independent data sets to cross validate climate model sim-

ulations. Given that satellite-based climate data records are

emerging, we expect that, in the near future, more research

will be devoted to investigating spatial patterns of climate

extremes using spaceborne observations.

Appendix

Estimating the Standardized Precipitation Index (SPI) invol-

ves describing frequency distribution of precipitation using

a gamma probability density function:

g(x) =
1

βαŴ(α)
xα−1e

−x
β (5)

where α and β are the shape and scale parameters, respec-

tively. In Eq. 5, x denotes positive precipitation amounts

and Ŵ(α) is the gamma function. The parameters α and β

can be estimated using the maximum likelihood method as

(Edwards 1997):

α =
1

4
(

ln(x) −
�ln(x)

n

)

⎛

⎜

⎜

⎝

1 +

√

√

√

√

1 +

4
(

ln(x) −
�ln(x)

n

)

3

⎞

⎟

⎟

⎠

(6)
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and

β =
x

α
(7)

where n is the number of observations. The estimated

parameters will then be used to derive the cumulative prob-

ability of observed precipitation values for the given month

and time scale (e.g., 6 months) over each pixel:

G(x) =
1

βαŴ(α)

∫ x

0

xα−1e
−x
β dx (8)

Assuming t =
x
β

, Eq. 8 reduces to the so-called incomplete

cumulative gamma distribution function (Edwards 1997):

G(x) =
1

Ŵ(α)

∫ x

0

tα−1e−tdt (9)

The above equation is not valid for x = 0 (zero precipita-

tion values). To account for zeros, the complete cumulative

probability distribution, H(x), can be written as:

H(x) = q + (1 − q)G(x) (10)

where q and 1 − q denote the probabilities of zero and

nonzero precipitations, respectively. The SPI is then derived

by transforming the cumulative probability (Eq. 10) to the

standard normal distribution with a mean of 0 and variance

of 1 (McKee et al. 1993).
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