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Abstract (125 words max): The global scaleup in demand for animal protein represents among 21 

the most notable dietary trends of our time. Antimicrobial consumption in animals, which 22 

outweighs human consumption, has enabled large-scale production of animal protein, but its 23 

consequences on the development of antimicrobial resistance has received comparatively less 24 

attention than in humans. We analyzed 901 point prevalence surveys of pathogens from developing 25 

countries to map resistance in animals. China and India represented the largest hotspots of 26 

resistance. From 2000 to 2018, the proportion of antimicrobials with resistance higher than 50% 27 

increased from 0.15 to 0.41 in chickens, and from 0.13 to 0.34 in pigs with important consequences 28 

for animal health, and eventually for human health. Global maps of resistance provide a baseline 29 

for targeting urgently needed interventions.   30 

Words (~ 4,500) = 4,774 = 3,273 (main text) + 1,364 (references) + 137 (acknowledgment).  31 

Ref: 37 (max 40)  32 
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Antimicrobials have saved millions of human lives, yet the majority (73%) of antimicrobials are 35 

used in animals raised for food (1). The large and increasing use of antimicrobials in animals is 36 

both an enabler and a consequence of the global scaleup in demand for animal protein. Since 2000, 37 

meat production has plateaued in high-income countries but has grown by 64%, 53% and 66% in 38 

Asia, Africa and South America, respectively (FAOSTAT 2016). The transition to high-protein 39 

diets in low- and middle-income countries (LIMCs) was facilitated by the global expansion of 40 

intensive animal production systems, in which antimicrobials are used routinely to maintain health 41 

and productivity (2). A growing body of evidence has linked this practice with antimicrobial 42 

resistant infections not just in animals but also in some cases, in humans (3–5). Although a majority 43 

of emerging infectious disease events have been associated with drug-resistant pathogens of 44 

zoonotic origins (6), antimicrobial resistance (AMR) in animals has received comparatively less 45 

attention than resistance in humans.   46 

 47 

In LMICs, trends in AMR in animals are poorly documented. Colombia’s is currently the only 48 

country that has made publicly available surveillance data on AMR in animals (7). As in high-49 

income countries, antimicrobials are used in LMICs to treat animals and as surrogates for poor 50 

hygiene on farms. However, in LMICs, AMR levels could be exacerbated by lower biosecurity, 51 

less nutritious feed, and looser regulations on veterinary drugs (8). Conversely, in LMICs, AMR 52 

levels may also be reduced by lower meat consumption and limited access to veterinary drugs in 53 

rural areas. Few works have attempted to disentangle the effect of those factors, and thus far, expert 54 

opinion has prevailed over an evidence-based assessment AMR in LMICs (9).    55 

 56 

In 2017, The World Health Organization (WHO) called on its member states to reduce veterinary 57 

antimicrobial use (10, 11). Coordinating the global response to AMR requires epidemiological 58 
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data to assess trends in AMR across regions. In human medicine, the WHO’s Global Antimicrobial 59 

Resistance Surveillance System (GLASS) (12) has encouraged adoption of a harmonized reporting 60 

framework, but there is no comparable framework for AMR in animals. Scandinavian countries 61 

have been at the forefront of monitoring AMR in animals, and Europe and the United States have 62 

adopted similar systems (13). However, in LMICs, similar surveillance systems are nascent, at 63 

best, and building a globally harmonized surveillance systems could take a long time. The 64 

challenge posed by AMR requires immediate action, and thus alternatives to systematic 65 

surveillance are needed to guide intervention based on the best evidence currently available.  66 

 67 

In LMICs, point prevalence surveys are a largely untapped source of information to map trends in 68 

AMR in animals. Generating resistance maps from these surveys presents several challenges. First, 69 

surveys often differ in protocol, sample size and breakpoints used for antimicrobial susceptibility 70 

testing. Harmonizing those variations is a first step towards improving comparability. Second, 71 

because AMR affects many organisms, indicator organisms should be identified; the foodborne 72 

pathogens listed by the WHO Advisory Group on Integrated Surveillance of Antimicrobial 73 

Resistance (AGISAR) are an ideal starting point (14). Third, since the problem of AMR affects 74 

many drug-pathogen combinations, it is difficult to communicate with policy makers. Introducing 75 

composite metrics of resistance may help summarize its global trends. Finally, the interpolation of 76 

epidemiological observations from data-rich regions to data-poor regions is inherently uncertain, 77 

and could be improved using factors associated with AMR. The field of species distribution 78 

modelling has proposed approaches to use such associations for predictive mapping, and the 79 

development of ensemble geospatial modelling (15) has help improve their accuracy. 80 

  81 
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In this study, we address these challenges to map AMR in animals in LMICs at 10-km resolution 82 

using point prevalence surveys of common foodborne pathogens. The maps summarize current 83 

knowledge, and give policymakers—or a future international panel (16)—a baseline to monitor 84 

AMR levels in animals, and target interventions across regions. 85 

  86 
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Results 87 

 88 

We identified 901 point prevalence surveys reporting AMR rates in animals and food products in 89 

low- and middle-income countries. Our analysis focused on resistance in E. coli, Campylobacter 90 

spp., non-typhoidal Salmonella and S. aureus. The number of published surveys on resistance to 91 

those pathogens in LMICs increased from 3 in 2000 to 121 in 2018, and peaked at 156 per year in 92 

2017. However, the number of surveys conducted during that period was uneven across regions 93 

(Fig. 1A): surveys from Asia (n = 509) exceeded the total for Africa and the Americas (n = 415). 94 

The number of surveys per country was not correlated with gross domestic product (GDP) per 95 

capita (Fig. 1B).  96 

 97 

Fig. 1. Number of surveys conducted on AMR in animals. Publications by continent (A). 98 

Publications per capita vs gross domestic product per capita; each country is designated by ISO3 99 

country code (B).  100 

 101 

In LMICs, from 2000 to 2018, the proportion of antimicrobial compounds with resistance higher 102 

than 50% (P50) increased from 0.15 to 0.41 in chickens, from 0.13 to 0.34 in pigs, and plateaued 103 

between 0.12 to 0.23 in cattle (Fig. 2). Those trends were inferred from average yearly increase in 104 

P50, (1.5%/year for chickens, and 1.3%/year for pigs), weighted by the number of studies 105 

published each year (Supplementary Material).  106 

 107 

Fig. 2. Increase in antimicrobial resistance in low- and middle-income countries. Proportion 108 

of antimicrobial compounds with resistance higher than 50% (P50). Solid lines indicate 109 
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statistically significant (5% level) increases of P50 over time, shades indicate the number of 110 

surveys per year relative to total number of surveys per species.  111 

In LMICs, resistance levels show considerable geographic variations (Fig. 3A, and Fig. S11 for 112 

country level indexes). Regional hotspots (P50 > 0.4) of multidrug resistance were predicted in 113 

south and Northeast India, north-eastern China, northern Pakistan, Iran, Turkey, the south coast of 114 

Brazil, the Nile River delta, the Red River delta in Vietnam and the areas surrounding Mexico City 115 

and Johannesburg. Low P50 values were predicted in the rest of Africa, Mongolia and western 116 

China. Based on maps of animal densities (Fig. S7), we estimate that across LMICs, 9% [95% 117 

confidence interval (CI) (5-12%)] of cattle, 18% [95% CI (11-23%)] of pigs and 21% [95% CI 118 

(11%-28%)] of chickens were raised in hotspots of AMR in 2013. For chickens, the percentage of 119 

birds raised in hotspots of resistance in each country exceeded global average in China (38% [95% 120 

CI (24-46%)]), Egypt (38% [95% CI (22-55%)]) and Turkey (72% [95% CI (41-81%)]). We also 121 

identified regions where AMR is starting to emerge by subtracting, P50 from P10, the proportion 122 

of antimicrobial compounds with resistance higher than 10% (Fig. 3C). In Kenya, Morocco, 123 

Uruguay, southern Brazil, central India and southern China, the proportion of drugs with 10% 124 

resistance was 2 to 3 times higher than the proportion of drugs with 50% resistance, indicating that 125 

those regions are emerging AMR hotspots. Established hotspots of AMR, where the difference 126 

between P10 and P50 was low (~ 10%), included north-eastern China, West Bengal and Turkey.  127 

 128 

The accuracy of the P50 maps (Fig. 3B) reflects the density of surveys for a region as well as the 129 

ability to associate the geographic distribution of P50 with environmental covariates using 130 

geospatial models (Supplementary Material). All geospatial model had limited accuracies (AUCs 131 

[0.674-0.68]), but all identified the travel time to cities of 50,000 people as the leading factor 132 
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associated with the geographic distribution of P50. Minimum annual temperature, and percentage 133 

of irrigated land were also positively associated with P50, but had smaller influence (Table S5).  134 

 135 

Fig. 3. Geographic distribution of antimicrobial resistance in low- and middle-income 136 

countries. (A) P50, the proportion of antimicrobials compounds with resistance higher than 50%. 137 

(B) 95% confidence intervals on P50 (supplementary material). (C) Difference in the proportion 138 

of antimicrobials with 10% resistance and 50% resistance. Red areas indicate new hotspots of 139 

resistance to multiple drugs; blue areas established hotspots. Maps at resistancebank.org.  140 

 141 

Uncertainty in the mapped predictions was greatest in the Andes, the Amazon region, West and 142 

Central Africa, the Tibetan plateau, Myanmar and Indonesia. Good geographic coverage of 143 

surveys enabled more accurate predictions in India, the Rift region in Africa, and the south coast 144 

of Brazil. Dense geographical coverage of surveys (> 4 PPS / 100,000 km2) did not systematically 145 

correlate with high P50 values, (Ethiopia, Thailand, Chhattisgarh; India and Rio Grande do Sul; 146 

Brazil).  147 

The highest resistance rates were observed in the most commonly used classes of antimicrobials 148 

in animal production (Fig 4): tetracyclines, sulfonamides and penicillins (1). Among 149 

antimicrobials considered critical to human medicine (17), the highest resistance rates were for 150 

ciprofloxacin and erythromycin (20–60%) and moderate rates for 3
rd

/4
th

 generation cephalosporins 151 

(10–40%). Other critically important antimicrobials, such as linezolid and gentamicin, were 152 

associated with lower resistance rates (< 20%). AMR trends in LMICs were in agreement with the 153 

trends reported in Europe and the United States (13, 18) for tetracyclines, sulfonamides, and 3
rd

/4
th

 154 

generation cephalosporins, but differences also exist for quinolones and aminoglycosides.  155 
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 156 

In E. coli and Salmonella spp., quinolones resistance in LMICs (20-60%) was comparable with 157 

European levels (59.8-64% (13)), but gentamycin resistance was higher in LMICs (5-38%) than 158 

in Europe (2.4-8.9%). The reverse situation was observed when comparing LMICs and the US 159 

where quinolone resistance is low (2.4-4.6%) and gentamycin resistance higher (22.1% and 41.3% 160 

for Salmonella and E. coli, respectively (18)). In LMICs, high resistance in 3
rd

 and 4
th

 generation 161 

cephalosporins in E. coli was high (~40%). Resistance to carbapenems was low in all host species 162 

in LMICs, as previously reported in animals (19). Asia, and the Americas currently have the 163 

highest rate of colistin resistance (~18-40%).   164 

 165 

In Campylobacter spp., in LMICs, the highest resistance rates were found for tetracycline (60%) 166 

and quinolones (60%). Tetracycline resistance was also the highest among all animals in the US 167 

(49.1–100%
 
(18)), but lower for quinolones in chickens (20%). Resistance to erythromycin was 168 

moderate (< 30%) in LMICs, but higher than in high-income countries (0.3%-22% in US and 0-169 

21.6% in Europe), indicating that erythromycin resistance genes (e.g., erm(B)) could be spreading 170 

more commonly on mobile genetic elements in LMICs.  171 

 172 

Finally, for S. aureus, resistance rates across all antimicrobials were higher in Asia than in other 173 

regions. The highest rates were found for penicillin (40–80%), erythromycin (20–60%), 174 

tetracycline (20–60%) and oxacillin (20–60%). For S. aureus, unlike other pathogens, resistance 175 

rates across drugs (except for penicillin) varied greatly by region. Comparisons with high-income 176 

countries are limited, as few European countries reported resistance in S. aureus in 2016, and 177 
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susceptibility testing was typically restricted to MRSA, which have considerable variation in 178 

prevalence (0% in Irish cattle and chickens to 40-87% in Danish pigs (13)).  179 

 180 

Fig. 4. Resistance in foodborne pathogens recommended for susceptibility testing by the 181 

World Health Organization. Resistance rates and number of surveys (n) by region. Transparency 182 

levels reflect sample sizes for each animal-pathogen combination. (Drug acronyms, see Protocol 183 

S1).  184 

  185 
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Discussion 186 

 187 

In most high-income countries, AMR has been monitored in animals for over 10 years (13). Here, 188 

we used point prevalence surveys to conduct a global assessment of trends in AMR in animals in 189 

LMICs. A singular challenge in the epidemiology of AMR is to synthesize a problem involving 190 

multiple pathogens and compounds across different regions. We therefore introduced two 191 

summary metrics of resistance –P50 and P10– , that reflect the ability of veterinarians to provide 192 

effective treatment. Based on the evidence assembled, P50 increased in LMICs from 0.15 to 0.41 193 

(+ 173%) in chickens, from 0.13 to 0.34 (+161%) in pigs, and plateau between 0.12 and 0.23 in 194 

cattle. Rapid increases in AMR in chicken and pigs are consistent with the intensification of 195 

livestock operations for these species compared with cattle (20). The main consequence of those 196 

trends is a depletion of the portfolio of treatment solutions available to treat pathogens in animals 197 

raised for food. This loss has economic consequences for farmers because affordable 198 

antimicrobials are becoming ineffective as first-line treatment (21) and this could eventually be 199 

reflected in higher food prices.   200 

 201 

The number of surveys supporting this first assessment is limited (n = 901) and heterogeneous 202 

across countries (Fig. S6A). However, it enables us to draw inferences on large-scale trends in 203 

AMR (Fig. 3A). Globally, the percentage of animals raised in hotspots of AMR was limited (< 204 

20%), with the notable exception of chicken production in upper-middle-income countries, such 205 

as Turkey (72%) and Egypt (38%). These countries are also the first- and third-largest per-capita 206 

consumers of antimicrobials in human medicine amongst LMICs (22).  207 

 208 
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The largest hotspots of AMR in animals were in Asia, which is home to 56% of the world’s pigs 209 

and 54% of chickens (FAOSTAT 2016). In Asia, targeted interventions such as legislative action, 210 

subsidies to improve farm hygiene could reduce the need for antimicrobials in animal production 211 

(1), thereby preserving  important drugs for human medicine, and the treatment of sick animals. 212 

We identified hotspots for the emergence of AMR including central India and Kenya, where 213 

resistance to multiple drugs has appeared but not yet reached 50% (Fig. 3C). In these regions, meat 214 

consumption is still low and animal production is gradually intensifying: there may be a window 215 

of opportunity to contain AMR by imposing strict hygiene standards in newly built farms. This 216 

approach could reduce the risk of spread of resistant pathogens such as mcr-1-carrying E. coli (23) 217 

that have emerged in regions where intensive meat production has been facilitated by enormous 218 

quantities of veterinary antimicrobials (1).  219 

 220 

In Africa, resistance maps reveal the absence of major AMR hotspots, with the exception of the 221 

Johannesburg metropolitan area. This suggests –based on the regions surveyed– that Africa 222 

probably bears proportionately less of the current global burden of AMR than high- and upper-223 

middle-income countries. Policymakers coordinating an international response to AMR might 224 

therefore spare Africa from the most aggressive measures, which may be perceived as unfair and 225 

undermine livestock-based economic development.  226 

 227 

In the Americas, where the number of surveys was limited (Fig. 3B), the observed low AMR levels 228 

could reflect either good farming practices (low antimicrobial use) or the absence of surveys 229 

conducted in areas most affected by AMR. Considering that Uruguay, Paraguay, Argentina and 230 

Brazil are net meat exporters (FAOSTAT 2016), it is of particular concern that little 231 
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epidemiological surveillance of AMR is publicly available for these countries. Many low-income 232 

African countries have more point prevalence surveys per capita than middle-income countries in 233 

South America. Globally, our findings show that the number of surveys per capita was not 234 

correlated with GDP per capita, suggesting that surveillance capacities are not solely driven by 235 

financial resources. 236 

 237 

In this study, we stacked prediction from geospatial models to map P50 and P10 in LMICs. The 238 

moderate accuracy of the these models reflect the challenge of associating the spatial distribution 239 

of AMR with environmental and socio-economic factors (24). AMR in animals may be driven by 240 

factors known to influence antimicrobial use in humans—such as cultural norms, presence of drug 241 

manufacturers on national market, or the density of health professionals (25)—that could not be 242 

easily mapped from publicly available sources of information. The leading factor associated with 243 

the spatial distribution of P50 was the travel time to cities (26). Ease of access to providers of 244 

veterinary drugs may drive AMR, and hotspots appear to correspond to peri-urban environments 245 

where large farms supply city dwellers, whose meat consumption typically exceeds national 246 

averages (27). We also found a positive association between P50 and temperature. Evidence for a 247 

link with temperature in animals is less established than in humans (28) but it has been suggested 248 

that high temperatures cause stress in animals, thus increasing the risk of wounds that require 249 

preventive antimicrobial treatment (29). Finally, in Asia, 74% of P50 hotspots corresponded to 250 

areas previously identified for their projected increase in antimicrobial use (Fig. S12). The relative 251 

influence of antimicrobial use on the spatial distribution of P50 was only of 3.8% (Table S5) but 252 

this association should be treated with caution given the scarcity of original data on antimicrobial 253 

use from LMICs (30). 254 
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 255 

We identified diverging patterns of resistance across combinations of pathogens and drugs. For S. 256 

aureus, geographic differences in AMR levels could be explained by sub-lineages carrying 257 

different SCCmec cassettes that are specific to certain regions (31). Of greater concern for public 258 

health is the presence of resistance to 3
rd

/4
th

 generation cephalosporins—critically important 259 

antimicrobials for human medicine—on all continents. In addition, the high levels of colistin 260 

resistance found in Asia suggest that regional spread may have been driven by plasmid-mediated 261 

resistance (23), as well as the widespread use of this cheap antimicrobial. The recent Chinese ban 262 

on colistin (32), if enforced, may improve the situation. However, globally, progress may be 263 

undermined by the large quantities of colistin still used, including in some high-income countries. 264 

For quinolones, patterns fo resistance differed greatly between regions. For E. coli and 265 

Campylobacter, LMICs had resistance levels comparable with European levels but considerably 266 

higher than in the United States, where quinolones were banned in poultry in 2005. Conversely, 267 

for Salmonella and E. coli, LMICs had substantially higher resistance to gentamycin than Europe, 268 

where this compound is not authorized for use in poultry and cattle (33). These findings suggest  269 

that regional restrictions on the use of specific compounds are associated with lower AMR rates. 270 

 271 

As with any modelling study, our analysis has limitations. The uncertainty associated with 272 

interpolation of resistance rates is captured with confidence interval maps (Fig. 3B). However, 273 

there are additional sources of uncertainty. First, insufficient geographic coverage may lead to 274 

inaccurate spatial predictions, and local variations in AMR may not reflect ‘ground truth’. In this 275 

study, we attenuate the risk of overfitting geospatial models to local outliers by using spatial cross-276 

validation. Future research efforts should increase the geographic coverage of surveys by engaging 277 
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with local partners (e.g., in India for this analysis, supplementary information). Second, temporal 278 

variation in AMR over the period 2000–2018 was not accounted for. As more surveys become 279 

available, spatio-temporal, model-based geostatistics approaches could help overcome this 280 

limitation. However, the limited number of surveys (n = 901) identified in this first assessment did 281 

not allow for the use of those methods. Third, in slaughterhouse surveys, most did do not perform 282 

molecular typing longitudinally throughout the different processing stages that would enable to 283 

assess potential cross-contamination. While it may generally affect AMR rates, it is -in the absence 284 

of international benchmarking- unknown if it could systematically bias our result in any single 285 

country. Fourth, our dataset of surveys may include observational bias at sampling sites although 286 

we attempted to account for this by distributing pseudo-absence according to rural human 287 

population density (Table S4). Finally, whilst our analysis raises renewed concerns about the pace 288 

of increase of AMR in animals it is not an attempt to draw definitive conclusions on the intensity 289 

and directionality of transfer of AMR between animals and humans which should be further 290 

investigated with robust genomics methods (34).  291 

  292 

Conclusions 293 

 294 

Point prevalence surveys are imperfect surrogates for surveillance networks. However, in the 295 

absence of systematic surveillance, maps have been useful to guide interventions against other 296 

disease of global importance such as malaria (35). In human medicine, point prevalence surveys 297 

of AMR in hospitals have generated snapshots of AMR across regions (36). This initial assessment 298 

helps outline three global priorities for action. First, our maps show regions poorly surveyed where 299 

intensified sampling efforts could be most valuable. Second, our findings clearly indicate that the 300 
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highest levels of AMR in animals are currently found in China and India where immediate actions 301 

could be taken to preserve antimicrobials that are essential in human medicine by restricting their 302 

use in animal production. Third, high-income countries, where antimicrobials have been used on 303 

farms since the 1950s, should support transition to sustainable animal production in LMICs—for 304 

example, through a global fund to subsidize improvement in farm-level biosafety and biosecurity 305 

(37).  306 

 307 
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Materials and Methods 491 

 492 

Literature Review 493 

 494 

Three bibliographic databases were screened for point prevalence surveys of AMR in Escherichia 495 

coli, Campylobacter spp., non-typhoidal Salmonella and Staphylococcus aureus in LMICs (Fig. 496 

S1, Protocol S1). As recommended by the WHO Advisory Group on Integrated Surveillance of 497 

Antimicrobial Resistance for surveillance in their manual for integrated surveillance of 498 

antimicrobial resistance in foodborne bacteria, we search for epidemiological studies in which 499 

antimicrobial susceptibility testing was used to determine the resistance phenotypes of bacteria 500 

sampled from animals on farms, slaughterhouse, and retail markets (but not diseased and sick 501 

animals. The literature review resulted in 32,030 search results. The titles an abstract of these 502 

publications were used for initial screening. We removed duplicates records (between search 503 

engines) and excluded book-chapters, reviews and meta-analysis. We also excluded publication 504 

that did not report antimicrobial resistance rates such as studies on the activity of new compounds 505 

in strains of animal origin, or on farming practices. Following the initial screening, 1,992 PPS were 506 

identified as having potentially relevant information to be extracted and were read in full. We 507 

extracted data from a total of 1,252 point prevalence surveys reporting a total of 25,929 resistance 508 

rates”. In addition, in India, field visits were conducted in five veterinary schools to collect data 509 

from 178 surveys from paper journals, PhD and MSc theses and conference proceedings (Protocol 510 

S1).  511 

 512 

All records are publicly available at resistancebank.org. The information extracted from each 513 

survey included type of pathogen, anatomical therapeutic chemical classification codes of the 514 

drugs tested, year of publication, latitude and longitude of sampling sites, sample size and host 515 

animals. A description of each variable extracted from the publications is available in the 516 

RESBANK legend file (Protocol S2). From this initial database, 667 records were excluded 517 

because they lacked sufficient information to assign geographic coordinates, and 412 point 518 

prevalence surveys were excluded because resistance rates were pooled across two or more animal 519 

species and could not be disaggregated. Of the 443 emailed requests for clarification, 162 (36.9%) 520 

were positively answered. The 67 records associated with Enterococcus spp. in resistancebank 521 

were not used for the present analysis because only a very small proportion (3.4%) of surveys from 522 

LMICs reported Enterococcus spp. A further eight records were excluded because their 523 

breakpoints were not within the range of values recommended by antimicrobial susceptibility 524 

testing guidelines. The geospatial analysis was conducted for records of drugs recommended for 525 

antimicrobial susceptibility testing by the WHO AGISAR (14) consortium. The final data set had 526 

12,933 resistance rates, extracted from 901 surveys distributed across 822 locations, totaling 527 

285,496 samples from across LMICs.  528 

  529 
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Harmonization of Antimicrobial Resistance Rates  530 

 531 

Various experimental methods can be used for antimicrobial susceptibility testing. The literature 532 

search showed two main families of approaches: diffusion methods (disc diffusion and gradient 533 

diffusion such as E-test) and dilution methods (broth dilution and automated devices such as 534 

VITEK2). Surveys reporting AMR in LMICs predominantly used diffusion methods, which are 535 

less expensive. A notable exception was China (Fig. S2) where the percentage of studies that 536 

reported using dilution methods (45%) was significantly higher (Chi-squared = 1,441) than in other 537 

LMICs (11%). For those countries, we used two-sided Wilcoxon rank-sum test to evaluate 538 

potential differences in mean antimicrobial resistance rates associated with each antimicrobial 539 

susceptibility testing method. We considered all drug-pathogen combinations represented by at 540 

least 10 records for each susceptibility testing method. For nearly all drug-pathogen combinations 541 

(25 of 28), mean AMR levels did not differ based on the method used (Fig. S3). This is consistent 542 

with works (38) showing good agreement between diffusion and dilution methods for foodborne 543 

pathogens. In this analysis, the potential overestimation of resistance rates by ‘method bias’ was 544 

limited to 87 records (0.67% of all records) where dilutions methods were used for cefoxitin, 545 

oxacillin in S. aureus, and nalidixic acid in E. coli. For those 87 records, we modulated the rates 546 

reported in the surveys by the ratio of the mean of rates identified by dilution methods to the mean 547 

of rates identified by diffusion methods for the corresponding drug-pathogen combination.  548 

 549 

Breakpoints, used to identify resistant phenotypes, can differ depending on laboratory guidelines 550 

and are revised annually (Fig. S4). Accounting for breakpoint variations over time is thus essential. 551 

In resistancebank, only 6.2% of records reported the breakpoint values, but 96% of records were 552 

associated with referenced guidelines, and 68% of records could be associated with the guidelines’ 553 

year. For surveys that did not report the guidelines used, we assumed that the guidelines came 554 

from the Clinical & Laboratory Standards Institute (CLSI), which were the most commonly used 555 

guidelines across all the surveys. For surveys that did not report the guidelines’ year, we assumed 556 

a date of four years before publication (the median lag between publication date of the survey and 557 

year of the guidelines, inferred from the 68% of records that did report the year of the guidelines).  558 

 559 

We assembled guidelines published by CLSI, the European Committee on Antimicrobial 560 

Susceptibility Testing (EUCAST) and the French Society of Microbiology (SFM). We then 561 

developed a harmonization procedure for breakpoint variations, based on EUCAST minimum 562 

inhibitory concentration distributions and zone diameter distributions (Fig. S5), as follows.  563 

 564 

Step 1. Each record was assigned an ‘observed breakpoint (BPobs)’, which was either the 565 

reported breakpoint from the publication or the breakpoint value from the EUCAST, CLSI 566 

or SFM guidelines corresponding to the year of the guidelines. 567 

 568 

Step 2. Each record was also assigned a ‘reference breakpoint (BPref)’, which was the 569 

lowest inhibition concentration (for studies using dilution methods) or the highest 570 

inhibition diameters (for studies using diffusion methods) recorded in the EUCAST 571 

guidelines for each drug-pathogen combination. This reference breakpoint was specific for 572 

each drug-pathogen combination such that studies using different BPobs could be compared. 573 

For the harmonization of resistance rates, the use of a human breakpoints was preferred 574 

over  animal breakpoints or epidemiological cutoffs because the overwhelming majority 575 
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the studies reporting AMR in animals used human clinical breakpoints (97% of surveys in 576 

resistancebank).” 577 

 578 

Step 3. For each record with BPobs values that differed from the BPref values, the following 579 

correction was applied to modulate the resistance rates extracted from publications (!"#$) 580 

and take into account variations in breakpoints across years and guidelines (CLSI, 581 

EUCAST or SFM).  582 

 583 

For dilution-based methods 584 

!%
&' =	!"#$ 	 ∙ 	

+,-./012
+,-./345

 585 

 586 

For diffusion-based method  587 

!%
'' =	!"#$ 	 ∙ 	

+,-./345

+,-./012
 588 

 589 

Where !"#$ is the resistance rate reported in a point prevalence survey, !%
&' is the modulated 590 

resistance rates for survey using dilution methods, and !%
'' is the modulated resistance rate for 591 

surveys using diffusion methods. AUCs are the areas under the curve of the minimum inhibitory 592 

concentration distribution (dilution methods) or the inhibition zone diameter distribution (diffusion 593 

methods) obtained from eucast.org (Fig. S5). For dilution methods, the AUC is the integral of the 594 

distribution from the highest inhibition concentration to the reference concentration and observed 595 

concentrations. For diffusion methods, the AUC is the integral from the smallest possible 596 

inhibition radius to values of inhibition diameters corresponding to the observed and reference 597 

breakpoints, respectively. Of the 12,933 records, 1,487 had identical breakpoint (BPobs = BPref) 598 

values and did not require modulation of the resistance rates; 8,139 records were modulated to 599 

account for changes in guidelines; and 3,307 records were not suitable for modulation because 600 

breakpoint values were not provided in the survey or in the guidelines documentation.  601 

 602 

After harmonizing resistance rates, we defined a summary metric to compare resistance rates 603 

across pathogens and host species. We define ‘P50’ as the proportion of drugs tested with 604 

resistance higher than 50% across all samples tested in a point prevalence surveys (Fig. S6). P50 605 

was chosen because drugs that have a failure rate exceeding 50% in a given region are unlikely to 606 

be used for first-line treatment. P50 is thus a reflection of the challenge faced by veterinarians in 607 

providing treatment. We assessed the trends in P50 between 2000 and 2018 for each livestock 608 

species. We use linear regression models, weighted by the number of surveys per year, to assess 609 

the statistical significance at the 5% level of the temporal trends between P50 and year of 610 

publication. The average yearly increase in P50 for chicken and pigs were respectively 1.5%, and 611 

1.3% per year.  612 

 613 

Geospatial Modelling 614 

 615 

We interpolated P50 values from point prevalence surveys to map AMR in LMICs at a resolution 616 

of 0.0833 decimal degrees, or approximately 10 km at the equator. We used a two-step procedure 617 

inspired by Golding and colleagues (15). First, multiple ‘child models’ were trained to quantify 618 

the association between the geographic distribution of P50 and environmental covariates (Fig. S7). 619 
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Second, universal kriging was used to stack predictions from child models. The approach enables 620 

us to capture the potential spatial autocorrelation in the geographic distribution of P50 as well as 621 

the associations between P50 and environmental covariates. Stacking predictions from different 622 

statistical methods produces more accurate disease risk maps (39) than predictions from individual 623 

models. The set of environmental covariates was restricted to biologically relevant factors that 624 

may be associated with antimicrobial resistance, such as antimicrobial use, minimum monthly 625 

temperature and animal densities (Table S3). All covariates were log-transformed and resampled 626 

from their original resolution of 0.0833 decimal degrees.  627 

 628 

Three classes of child models were used: boosted regression trees (40) (BRT); least absolute 629 

shrinkage and selection operator applied to logistic regression (41) (LASSO-GLM); and 630 

overlapped grouped LASSO penalties for General Additive Models selection (42) (LASSO-631 

GAM). For the BRT model, we used a tree complexity of three, a learning rate of 0.0025, and a 632 

step size of 50. These three meta-parameters control the level of interactions between variables, 633 

the weights of each individual tree in the final model and the number of trees added at each cycle, 634 

respectively. For all child models, P50 values were transformed into presence/absence using a 635 

random binarization procedure: all records in the data set were replicated five times, and P50 636 

values in this expanded data set were then compared with a random number between zero and one. 637 

P50 values larger than the random number were classified as presence; lower values were classified 638 

as absences. In addition, pseudo-absence points were distributed across LMICs to provide the child 639 

models with additional covariate values that were not associated with presences (P50 = 0). Pseudo-640 

absence points were sampled within a radius of 10 to 2,000 km from presence points using 641 

stratified random sampling proportional to the log10 of the population density outside urban areas. 642 

The child models contained equal numbers of true presence versus absences (true absence + 643 

pseudo absences), since balanced data sets have been shown to improve spatial predictions (43).  644 

 645 

Child models were fitted using fourfold spatial cross validation to prevent local overfitting and to 646 

ensure that predictions reflected extrapolation capacities outside training regions. Four validation 647 

regions were defined (Fig. S8): Africa, South America, western Asia (longitude < 90 degrees), and 648 

eastern Asia (longitude > 90 degrees). In addition, we calculated the spatial sorting bias (SSB) 649 

index (44) to ensure that it was negligible (mean SSB = 0.90). The model fitting procedure was 650 

bootstrapped 10 times to account for variations attributable to the stratified sampling of pseudo-651 

absence points and the random binarization of P50 values. The predictive ability of each child 652 

model was evaluated by averaging the value of the area under the received-operator curve for all 653 

runs. The influence of each variable in each child was also evaluated across 10 bootstraps: for the 654 

BRT models we used mean relative influences (40), for the LASSO regression we used the fraction 655 

of bootstraps where covariate had a non-null coefficient after regularization, and for the GAM-656 

LASSO we used the fraction of bootstraps where covariates had a non-null linear or non-linear 657 

coefficient after regularization.  658 

 659 

All child models had moderate accuracies (AUCBRT = 0.674, AUCLASSO-GLM = 0.683, AUCLASSO-660 

GAM = 0.680). For the BRT model, the travel time to cities of 50,000 or more people accounted for 661 

68% of the relative influence (45) and was negatively associated with P50 (Table S5). Other 662 

variables were positively associated with P50 but had smaller influence in the final model: 663 

minimum annual temperature (7%), density of intensively raised chickens (6%) and percentage of 664 

irrigated land (5%). For the LASSO-GLM, the most influential covariates were travel times to 665 
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cities (100% of bootstraps, and negative coefficient), percentage of irrigated land (100% of 666 

bootstraps, and positive coefficient) and density of extensively raised chickens (90% of bootstraps, 667 

positive coefficient). For the LASSO-GAM model, the main coefficients included linear terms 668 

from density of extensively raised chickens (100% of bootstraps), the minimum annual 669 

temperature (80% of bootstraps), as well as a non-linear term for antimicrobial use (90% of 670 

bootstraps). 671 

 672 

 673 

In the second step of the geospatial procedure, we combined predictions of child models (Fig. S9). 674 

The predictions of each child model were used as covariate for universal kriging of the P50 values 675 

between survey locations. The kriging procedure was weighted by the number of samples reported 676 

at each location, adjusted for regional variations. Concretely, the number of samples at each 677 

location was multiplied by an accuracy factor ranging between 0 and 1 that reflects regional 678 

variations in performing antimicrobial susceptibility testing, as estimated by the WHO External 679 

Quality Assurance System of the Global Foodborne Infections Network (Protocol S3). We fitted a 680 

Matern semi-variogram model with a maximum range of 1,000 km. Duplicated coordinates, those 681 

that corresponded to P50 for different pathogens in the same location, were randomly redistributed 682 

within a radius of 1 km of the survey sites multiplied by the log10 of the number of samples in the 683 

survey to reflect greater spatial range of large surveys. Following the kriging procedure, all 684 

negative values of P50 were reclassified as zeros.  685 

 686 

We quantified the spatial uncertainty associated with the maps of P50 in a two-step procedure. 687 

First, we calculated the standard deviation in the predictions in each pixel for each child model. 688 

Second, we calculated a standardized kriging variance after stacking such that variance was equal 689 

to zero at the location of the observations. We produced a 95% confidence interval (CI) on the 690 

final prediction as follows:  691 

 692 

95%	-9 = 1.96	×	 	>? @.AB , @DEFFGHIDJ , @DEFFGHIEJ +	 LMNO 	  693 

 694 

where @.AB , @DEFFGHIDJ , @DEFFGHIEJ ,	are the predicted P50 values resulting from each child 695 

models, and VarK is the standardized kriging variance after stacking. The upper bound of the 95% 696 

confidence interval is limited to the maximum value of the pixels where all child models predicted 697 

non-null results.  698 

 699 

Finally, we also mapped regions where multidrug-resistance was starting to emerge. We repeated 700 

the geospatial procedure to map P10 (the proportion of drugs tested with resistance higher than 701 

10%) and subtracted P50 from P10 values in each pixel. The resulting ‘map of differences’ shows 702 

regions where multidrug-resistance phenotypes are emerging (10% resistance) but have not yet 703 

reached alarming levels (50% resistance). All geospatial analyses were conducted using the 704 

statistical language R. A map of P50 is available in Google Earth format for detailed visualization 705 

(https://www.dropbox.com/s/bi3jp5mb3zfozh5/P50.kmz?dl=0).    706 

 707 

Metrics of exposure to AMR 708 

 709 

We used the global maps of P50 to derive two metrics of exposure of resistance. First, we 710 

calculated the proportion of animals raised in these hotspots of resistance. Two approaches were 711 
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compared to define hotspots. The first approach simply assumes a cutoff value of 0.4 on P50 712 

values, whilst the second used the Getis-Ord method (46). Both approaches led to comparable 713 

results (Fig. S10), but the first was preferred because it has a straightforward biological 714 

interpretation: in a hotspot pixel, 40% of drugs have resistance levels above 50%. The 95% 715 

confidence interval on the minimum and maximum extent of the hotspots of P50 was calculate as 716 

follow 717 

 718 

95%	-9 = 1.96	×	 	>? @.AB , @DEFFGHIDJ , @DEFFGHIEJ +	 LMNO,PF	  719 

 720 

where @.AB , @DEFFGHIDJ , @DEFFGHIEJ 	are the predicted P50 values resulting from each child 721 

models, and VarK,HS is the average kriging variance in the hotspots pixels.  722 

 723 

The second metric of exposure to resistance was calculated at the country level for chicken and 724 

pigs (Fig. S11). In each pixel, we multiplied the number of animals raised by the P50 value in the 725 

same location. This product was aggregated in each country then normalized by the total number 726 

of animals in the country. This metric quantifies the level of exposure of the animal population of 727 

a country relative to its stock. The analysis was restricted to countries with at least 10 million birds, 728 

and 250,000 pigs, and 500,00 cattle heads in order to establish a ranking of countries that is not 729 

bias by a density effect due to small islands and microstates.  730 

  731 
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Supplementary Text 732 

 733 

Protocol S1. Literature Review 734 

 735 

We identified point prevalence surveys (PPS), and extracted information on antimicrobial 736 

resistance rates in animals in low- and middle-income countries. The resulting database – 737 

resistancebank – is available in open access 738 

(https://www.dropbox.com/s/qf5nrmqjieds6th/resbank_all.csv?dl=0). The literature search was 739 

conducted in three databases (PubMed, Scopus and ISI Web of Science) in English, Spanish, 740 

Portuguese and French by 4 independent researchers (2 per geographic region of interest). All 741 

studies published between 2000 and March 2019 were included (Table S1). PPS were screened 742 

using the generic formula:  743 

 744 

(Resistance) AND (Bacterial Species) AND (Animals and Sample types) AND (Geographic 745 

Regions) 746 

 747 

Different key words were used to maximize number of hits identified, the full search query used  748 

in PubMed was: (antibiotic resistance OR antimicrobial resistance OR resistance OR susceptibility 749 

OR antibiogram OR antibiotic susceptibility testing OR antibiotic OR antimicrobial OR 750 

antibacterial ) AND (Escherichia OR E. coli OR coliform OR salmonella OR salmonella spp. OR 751 

enterococcus OR enterococcus spp. OR enterococci OR VRE OR E. faecalis OR E. faecium OR 752 

S. aureus OR staphylococcus OR Staphylococcus spp. OR MRSA OR MSSA OR campylobacter 753 

OR campylobacter spp. OR C. jejuni OR C. coli) AND (animal OR food OR food producing OR 754 

farm OR farm animal OR meat OR cow OR cattle OR beef OR bovine OR buffalo OR pig OR 755 

piggeries OR pork OR chicken OR flock OR broiler OR layer OR egg OR poultry OR avian OR 756 

milk OR dairy OR cheese) AND (Country*). 757 

 758 

In addition, keywords for resistance, animals, sample types and geographic regions were translated 759 

into Spanish, Portuguese and French. The list of countries included in the search was: Afghanistan, 760 

Angola, Anguilla, United Arab Emirates, Argentina, Armenia, Antigua and Barb., Azerbaijan, 761 

Burundi, Benin, Burkina Faso, Bangladesh, Bahrain, Belize, Bermuda, Bolivia, Brazil, Barbados, 762 

Brunei, Bhutan, Botswana, Central African Rep., Chile, China, Cote d'Ivoire, Cameroon,  Dem. 763 

Rep. Congo, Congo, Colombia, Comoros, Cape Verde, Costa Rica, Cuba, Curacao, Djibouti, 764 

Dominica, Dominican Rep., Algeria, Ecuador, Egypt, Eritrea, Ethiopia, Gabon, Georgia, Ghana, 765 

Guinea, Gambia, Guinea-Bissau, Equatorial Guinea, Grenada, Guatemala, Guyana, Hong Kong, 766 

Honduras, Haiti, Indonesia, India, Iran, Iraq, Israel, Jamaica, Jordan,  Kazakhstan, Kenya, 767 

Kyrgyzstan, Cambodia, Kuwait, Lao PDR, Lebanon, Liberia, Libya, Sri Lanka, Lesotho, Morocco, 768 

Madagascar, Mexico, Mali, Myanmar, Mongolia, Mozambique, Mauritania, Montserrat, Malawi, 769 

Malaysia, Namibia, Niger, Nigeria, Nicaragua, Nepal, Oman, Pakistan, Panama, Peru, Philippines, 770 

Dem. Rep. Korea, Paraguay, Palestine, Qatar, Rwanda, W. Sahara, Saudi Arabia, Sudan, Senegal, 771 

Singapore, Sierra Leone, El Salvador, Somaliland, Somalia, St. Pierre and Miquelon, Sao Tome 772 

and Principe, Suriname, Swaziland, Syria, Chad, Togo, Thailand, Tajikistan, Turkmenistan, 773 

Timor-Leste, Trinidad and Tobago, Tunisia, Turkey, Taiwan, Tanzania, Uganda, Uruguay, 774 

Uzbekistan, Venezuela, Vietnam, Yemen, South Africa, Zambia, and Zimbabwe. 775 

 776 
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In Scopus and ISI Web of Science, the same key words were used in the advanced search 777 

functionality. For Scopus, the search was specified as TS=(key words) where TS stands for search 778 

topic; whereas for ISI Web of Science the search was specified as TITLE-ABS-KEY=(key words), 779 

where TITLE-ABS-KEY stands for title, abstract and key words. 780 

 781 

All titles and abstracts were screened for PPS. Full text manuscripts that could not be accessed 782 

were included in resistancebank when the information in the abstract was considered sufficient for 783 

the resistancebank format (see Protocol S2).  784 

 785 

Exclusion criteria included: reviews, meta-analysis, PPS dealing with diseased animals (except for 786 

bovine clinical and sub-clinical mastitis), manuscripts characterizing a defined set of strains not 787 

derived from PPS (strain surveys), nation-wide PPS without geographically defined sampling and 788 

PPS written in languages not used in the systematic search. 789 

 790 

In India, in addition to publication available online we also included PPS from alternative sources. 791 

We conducted field visits in 5 of the main veterinary school of the country to access ‘grey 792 

literature’ such as paper-publications, PhD/MSc thesis and conference proceedings. Although the 793 

grey literature may in some cases not have been peer-reviewed, it constitutes in many places the 794 

sole source of information on AMR given the absence of systematic surveillance in animals. A 795 

research assistant visited: Maharashtra Animal and Fishery Science University & Madras 796 

Veterinary, Nagpur (104 studies, visited on April 19th 2018); National Library for Veterinary 797 

sciences in Bareilly (14 studies, visited on February 22th 2018); Tamil Nadu Veterinary and 798 

Animal Sciences University & Madras Veterinary college (34 studies, visited on May 10
th

 2018); 799 

and Kerala Animal and Veterinary Science University (25 studies, visited on May 7
th

 2018). 800 

Altogether, 1,515 studies from systematic online searches and 178 studies from Indian grey 801 

literature were screened for content, of which 1,148 PPS were included in resistancebank. 802 

 803 

  804 
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Protocol S2. Legend of resistancebank 805 

 806 

Foreword  807 

 808 

resistancebank is a database of antimicrobial resistance (AMR) data extracted from point 809 

prevalence surveys (PPS) in food animals and food products. The primary goal of resistancebank 810 

is to support the production of maps of AMR across different geographic regions, animals and 811 

antibiotic classes for further development of applications (e.g., modelling). Currently, data 812 

originates from online scientific journals, reports from governmental agencies. In addition, in 813 

India, the database is complemented by records from paper journals, MSc/PhD thesis obtained 814 

directly from veterinary schools, as well as unpublished data resulting from local surveillance. 815 

 816 

Multiple lines in resistancebank can correspond to the same publication: different combinations 817 

of the studied animals, sample types, coordinates and antibiotics studied. When the information 818 

corresponding to a field was not available NA is used. In these cases, a request to the corresponding 819 

author was sent by e-mail and when appropriate a comment was added in the remark field based 820 

on the author’s response.  821 

 822 

Fields in the resistancebank database  823 

 824 

DOI: Digital Object Identifier. 825 

 826 

When not available, the PubMed identification number (PMID) was used.  827 

 828 

Author: Author’s last name. 829 

 830 

PubDate: Year the article was published. 831 

 832 

First published date. 833 

 834 

ISO3: Three-letters country codes.  835 

 836 

For full list available at: https://en.wikipedia.org/wiki/ISO_3166-1_alpha-3 837 

 838 

Ycoord/Xcoord: Latitude/Longitude in decimal degree. 839 

 840 

The X/Y-coordinates define the position of the area where the field sampling was performed. We 841 

distinguished four different situations:  842 

 843 

i) If the location was provided in decimal degrees this format was used as such,  844 

ii) If the location was provided in a degree/minute/second format was converted in 845 

decimal degrees.   846 

iii) If the samples were converted across an administrative unit, and specific coordinates 847 

were not provided for each sampling site the coordinates of the centroid of the 848 

administrative unit was used.  849 
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iv) If several locations were mentioned in the manuscript and that resistance rates could 850 

not be disaggregated by location based on the information provided in the manuscript 851 

the center of mass between the locations was designated as the geographic coordinates 852 

of the study.  853 

 854 

StartDate/EndDate: Start date of study, specified in the article. 855 

 856 

This refers to the sampling dates. Following format was used: day/month/year (e.g., 29/09/1985). 857 

Sampling might span several time periods. When exact days of sampling were not mentioned, the 858 

15
th

 of each month was assumed. When only sampling year(s) were given, the first and the last 859 

day of the referred period will be used (e.g., 2012-2013, 01/01/2012 for StartDate and 31/12/2013 860 

for EndDate).  861 

 862 

Species: Animal species included in the study. 863 

 864 

All animal species were pooled in the following categories of animals Cattle (including buffaloes 865 

and yak), Chickens (including duck and geese), Pigs, Sheep (including all small ruminants), 866 

Rabbits, Horses, Camel or a mixture of these.  867 

 868 

For studies providing aggregated data for different animal species and/or sample types, an entry 869 

was included in resistancebank with DOI, country and author but no values were entered in the 870 

Rescom% column (see below). 871 

 872 

SampleType: Samples recovered from the animals. 873 

 874 

All sample types were pooled in four categories: Living Animals (animal swabs), Killed Animals 875 

(cecal samples and lymph nodes), Products (dairy and eggs) and fecal samples. Any PPS with 876 

mixed sample type containing meat was categorized as meat, except mixes including killed 877 

animals which were categorized as killed animals 878 

 879 

Method: Methodology used for antibiotic susceptibility testing (AST) 880 

 881 

Methods were recorded as either disk diffusion (DD), agar dilution (AD), broth dilution (BD), 882 

Etest or the name of the automatic system (e.g., VITEK). Disk diffusion method was assumed 883 

when PPS reported the potency of disks used for the AST. When more than one methodology was 884 

used, the acronyms of the methods are separated by a _. When non-standard medium was used to 885 

perform AST, the name of medium was recorded in the remark section. 886 

 887 

For further applications of resistancebank, PPS performing molecular typing or population 888 

structure analysis were also recorded. For simplicity, _PCR (Polymerase Chain Reaction) was 889 

added to all studies performing molecular typing (e.g., detection of antibiotic resistance genes, 890 

virulence determinants, mobile genetic elements and MLST) or fingerprinting methods (e.g., 891 

PFGE). For PPS reporting whole genome sequencing data, a _WGS was added. 892 

 893 

 894 
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There are several AST possibilities but they can be grouped into Diffusion or Dilution methods. 895 

Guidelines for performing these tests are given by different societies and/or organizations (CLSI, 896 

EUCAST, French Society for Microbiology – SFM). Note: antibiotic concentrations are normally 897 

expressed in µg/mL and in µg for the disk content alone.  898 

 899 

Pathogens: Bacterial species targeted for the study 900 

 901 

Currently resistancebank includes the following organisms: non-typhoidal Salmonella spp., 902 

Escherichia coli, Enterococcus spp, Staphylococcus aureus, Campylobacter spp..  903 

 904 

Strain: Bacterial subtype (not used in this study) 905 

 906 

Some studies focus on the epidemiology of restricted strains within a species. If no specification, 907 

NA is introduced. 908 

  909 

• For PPS reporting exclusively on strains resistant to a specific antimicrobials, a 3-letter code 910 

(see below) was used to indicate their resistance phenotype (e.g., nalidixic acid-resistant –  911 

NAL-R). For S. aureus and Enterococcus spp., the common designations for certain 912 

resistant types are used instead (e.g., MRSA and MSSA - methicillin resistant and 913 

susceptible S. aureus, respectively; VISA and VRSA – vancomycin intermediate and 914 

resistant S. aureus; and VRE – vancomycin resistant enterococci) 915 

• For PPS reporting on single-species, the designation is included in the strain column (e.g., 916 

a study focusing only on Enterococcus faecium).   917 

• For PPS reporting on Salmonella spp., the serotype was reported in the strain column. 918 

• For PPS reporting on E. coli pathotypes and/or serotypes characterized, they are inputted 919 

into the strain column (e.g., STEC, O157, ExPEC, etc). 920 

• For studies on the characterization of bacteria carrying specific genetic traits such as 921 

antibiotic resistance genes or virulence determinants, these are specified in the strain 922 

column. 923 

 924 

Nsamples: Number of samples collected. 925 

 926 

The total number of recovered samples per type at the different sampling sites (butchers, markets, 927 

farms or retail/supermarkets). 928 

 929 

Note: In many studies the number of samples which were referred to KilledAnimal does not 930 

entirely represent the number of animals sampled as different organs may have been used for 931 

susceptibility testing. When that was the case, an inquiry to the corresponding author was made 932 

for a breakdown of the data collected. 933 

 934 

Prev%: Number of samples positive for a pathogen divided by the total number of samples 935 

collected.  936 

 937 

In the absence of bacteria, Prev%=0. The value is expressed in percentage and rounded to one 938 

decimal.  939 

 940 
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Nisolates: Number of isolates   941 

 942 

The total number of isolates used for AST.  Normally this is equal to the number of positive 943 

samples (prevalence). Increased numbers in comparison to the samples can be due to recovery of 944 

more than one bacterium per sample, whereas lower numbers can be attributed to the use of a 945 

representative subset or loss of bacterial viability. 946 

 947 

Drug: Antibiotic Class. 948 

 949 

The following broad antibiotic classes were included in resistancebank: PEN (Penicillins), CEP 950 

(Cephalosporins), MON (Monobactams), CAR (Carbapenems), AMI (Aminoglycosides), QUI 951 

(Quinolones), AMP (Amphenicols), TET (Tetracyclines), SUL (Sulfonamides), MAC 952 

(Macrolides), Glycopeptides (GLY), POL (Polymixins), OTH (Others).  953 

 954 

Compound and ATC-Code: Antimicrobial compounds used for susceptibility testing designated 955 

by a 3-letter code and its designation in the Anatomical Therapeutic Chemical (ATC) 956 

Classification.  957 

 958 

ATC-Code starting with J0 stand for antibiotics for human systemic use while QJ01for veterinary 959 

use. For additional information and ATC-Code searching, please refer to 960 

https://www.whocc.no/atc_ddd_index/ or https://www.whocc.no/atcvet/atcvet_index/. 961 

 962 

For antibiotics without attributed ATC codes, a pseudo code was constructed by using the ATC 963 

code of the molecular classification (5 or 6 characters for human and veterinary antibiotics, 964 

respectively) and adding the first character of the compound’s name separated by a - (e.g., 965 

Sarafloxacin – J01MA-S; and Mequindox – QJ01MQ-M). Some ATC codes are provided for 966 

mixture of compounds (e.g., J01RA01 for penicillins in combination with other antibacterials). 967 

Active ingredients’ name were reported in resistancebank when commercial drugs were used. The 968 

antibiotics found across all studies are the following (3 letter code, ATC-code): Amoxicillin-969 

Clavulanic Acid (AMC, J01CR02); Ticarcillin-Clavulanic acid (TIM, J01CR03); Piperacillin-970 

Tazobactam (PIT, J01CR05); Ampicillin-Sulbactam (SAM, J01CR01); Ampicillin (AMP, 971 

J01CA01); Amoxicillin (AMX, J01CA04); Ticarcillin (TIC, J01CA13); Cloxacillin (CLO, 972 

J01CF02); Oxacillin (OXA, J01CF04); Penicillin & Streptomycin (PES, J01RA01); Mecillinam 973 

(MEC, J01CA11); Piperacillin (PIP, J01CA12); Flucloxacillin (FLU, J01CF05); Carbenicillin 974 

(CAR, J01CA03); Methicillin (MET, J01CF03); Penicillin (PEN, J01CE01);  Temocillin (TEM, 975 

J01CA17); Dicloxacillin (DIC, QJ51CF01); Nafcillin (NAF, J01CF06); Mezocillin (MEZ, 976 

J01CA10); Ceftriaxone (CRO, J01DD04); Ceftazidime (CAZ, J01DD02); Cefalexin (CLX, 977 

J01DB01); Cefotaxime (CTX, J01DD01); Cefepime (FEP, J01DE01); Cefoxitin (FOX, 978 

J01DC01); Cefalotin (CFL, J01DB03); Ceftiofur (CFU, QJ01DD90); Cefuroxime (CXM, 979 

J01DC02); Cefpodoxime (CPD, J01DD13); Cefazolin (CFZ, J01DB04); Cefixime (CFM, 980 

J01DD08); Cefamandole (CMD, J01DC03); Cefoperazone (CFP, J01DD12); Moxalactam (MOX, 981 

J01DD06); Cefpirome (CPO, J01DE02); Cefotetan (CTT, J01DC05); Cefradine (CFR, J01DB09); 982 

Ceftaroline (CPT, J01DI02); Ceftobiprole (CBP, J01DI01); Cefquinome (CFQ, QJ01DE90); 983 

Sulbactam-CFP (SFP, J01DD62); Ceftizoxime (CZM, J01DD07); Cephaloridine (CLD, 984 

J01DB02); Cefalonium (CLM, QJ51DB90); CTX-Clavulanic acid (CTC, J01DD51); CAZ-985 

Clavulanic Acid (CAC, J01DD52); Cefmetazole (CEM, J01DC09); Cefaclor (CFC, J01DC04); 986 
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Cefadroxil (CFR, J01DB05); Aztreonam (ATM, J01DF01); Imipenem (IPM, J01DH51); 987 

Ertapenem (ERT, J01DH03); Meropenem (MEM, J01DH02); Doripenem (DOR, J01DH04); 988 

Kanamycin (KAN, J01GB04); Gentamicin (GEN, J01GB03 ); Neomycin (NEO, J01GB05); 989 

Streptomycin (STR, J01GA01); Amikacin (AMK, J01GB06); Tobramycin (TOB, J01GB01); 990 

Apramycin (APR, QA07AA92); Netilmicin (NET, J01GB07); Spectinomycin (SPT, J01XX04); 991 

Isepamicin (ISP, J01GB11); Ciprofloxacin (CIP, J01MA02); Nalidixic acid (NAL, J01MB02); 992 

Enrofloxacin (ENR, QJ01MA90); Norfloxacin (NOR, J01MA06); Ofloxacin (OFX, J01MA01); 993 

Oxolinic Acid (OXO, J01MB05); Flumequine (FLQ, J01MB07); Moxifloxacin (MXF, 994 

J01MA14); Levofloxacin (LVX, J01MA12); Pefloxacin (PEF, J01MA03); Olaquindox (OLA, 995 

QJ01MQ01); Mequindox (MEQ, QJ01MQ-M); Marbofloxacin (MRB, QJ01MA93); Gatifloxacin 996 

(GAT, S01AE0E); Lomefloxacin (LOM, J01MA07); Danofloxacin (DAN, QJ01MA92); 997 

Carbadox (CRB, QJ01MQ-C); Sarafloxacin (SAR, J01MA-S); Chloramphenicol (CHL, 998 

J01BA01); Florfenicol (FFC, QJ01BA90); Thiamphenicol (TFC, J01BA02); Tetracycline (TET, 999 

J01AA07); Oxytetracycline (OXT, J01AA06); Doxycycline (DOX, J01AA02); Minocycline 1000 

(MIN, J01AA08); Tigecycline (TIG, J01AA12); Chlortetracycline (CTE, J01AA03); 1001 

Sulfamethoxazole-Trimethoprim (SXT, J01EE01); Sulfamethoxazole (SMZ, J01EC01); 1002 

Sulfafurazole or Sulfisoxazole (SOX, J01EB05); Sulfonamides-Trimethoprim (SUT, J01EE); 1003 

Sulfonamides (SSS, J01E); Trimethoprim-Sulfadiazine (TDZ, QJ01EW10); Trimethoprim (TMP, 1004 

J01EA01); Sulfamonomethoxine (SMN, QJ01EQ18); Erythromycin (ERY, J01FA01); 1005 

Lincomycin (LIN, J01FF02); Clindamycin (CLI, J01FF01); Clarithromycin (CLR, J01FA09); 1006 

Tylosin (TYL, QJ01FA90); Azithromycin (AZM, J01FA10); Spiramycin (SPI, J01FA02); 1007 

Tilmicosin (TIL, QJ01FA91); Roxithromycin (ROX, J01FA06); Midecamycin (MID, J01FA03); 1008 

Vancomycin (VAN, J01XA01); Teicoplanin (TEC, J01XA02); Avoparcin (AVO, J01XA-A); 1009 

Polymixin B (PMB, J01XB02); Colistin (CST, J01XB01); Linezolid (LIZ, J01XX08); 1010 

Nitrofurantoin (NIT, J01XE01); Rifampicin (RIF, J04AB02); Quinupristin-Dalfopristin (Q-D, 1011 

J01FG02); Bacitracin (BAC, J01XX10); Furazidin (FUR, J01XE03); Daptomycin (DAP, 1012 

J01XX09); Mupirocin (MUP, D06AX09); Fosfomycin (FOF, J01XX01); Fusidic acid (FUS, 1013 

J01XC01); Metronidazole (MTD, J01XD01); Pristinamycin  (PRI, J01FG01); Furazolidone  1014 

(FRZ, QJ01XE90); Tiamulin (TIA, QJ01XQ01); Novobiocin (NOV, QJ01XX95); Valnemulin 1015 

(VAL, QJ01XQ02). 1016 

 1017 

For data analysis, only compounds within the WHO Integrated Surveillance of Antimicrobial 1018 

Resistance in Foodborne Bacteria were used (Table S2): 1019 

 1020 

Rescom%: Percentage of isolates resistant to the relevant antimicrobial compound  1021 

 1022 

Intermediate-resistant isolates were considered susceptible. All values are rounded to one decimal 1023 

place. Any value over 0% was rounded to 1%.  1024 

 1025 

When inconsistencies were noted between the resistance rates reported in the main text of a 1026 

manuscript and the tables, then values reported in the latter were used in resistancebank. Attempts 1027 

to resolve uncertainties on the number of samples used for calculating resistance rates, or to 1028 

disaggregate resistance rates between species were made by contacting the corresponding author. 1029 

Overall 443 emails were sent, and 162 (36.7%) emails were ere answered by April 1
st
 2019.   1030 

 1031 

Concg: Concentration of antimicrobial used for susceptibility test susceptibility. 1032 

 1033 
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For dilutions methods, this is the concentration expressed in µg/mL. For diffusion methods, this is 1034 

the potency of the drug expressed in µg. In the case of antimicrobial mixtures, the sum of both 1035 

concentrations was taken.  1036 

 1037 

Guidelines: Category of Guideline document used for performing AST in each PPS 1038 

 1039 

Refers to the document used to compare AST results against clinical breakpoints to classify a 1040 

pathogen as phenotypically resistant or susceptible to an antibiotic. Values correspond to the 1041 

committee that developed the guidelines, including the EUCAST, and the SFM. Since NCCLS 1042 

was renamed to CLSI in 2005, all NCCLS documents will be recorded as CLSI. 1043 

 1044 

When the year of the guidelines used was not reported in the PPS the acronym of the committee 1045 

was reported. In the case of CLSI animal-specific documents (M31), if the document identification 1046 

was not stated, the term animal was used instead (e.g., CLSI 2004 Animal). 1047 

 1048 

Breakpoint: Breakpoint used for assessing antimicrobial susceptibility testing.  1049 

 1050 

For diffusion methods, the breakpoint is expressed as <= the diameter value in mm of the growth 1051 

inhibition zone. For dilution methods, the breakpoint is expressed as >= the value of the 1052 

concentration µg/mL of bacterial growth inhibition. When breakpoints were not yet established 1053 

for certain antimicrobials, the breakpoint specified by the authors were recorded. These are 1054 

typically derived from breakpoints of similar molecules or from the literature. As of the June 2019, 1055 

this concerns 11 surveys associated with AGISAR pathogens in resistancebank.  1056 

 1057 

Remark: Comments relative to the publication (first row) or for specific compounds (additional 1058 

rows). 1059 

 1060 

E-mail contact: Contact information of authors, and reason for contacting the authors.  1061 
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Protocol S3. Regional variations in accuracy of antimicrobial susceptibility testing 1062 

 1063 

We used the 2015 report from the External Quality Assurance System (EQAS) of the World Health 1064 

Organization Global Foodborne Infections Network (47) to account for regional differences in the 1065 

accuracy of antimicrobial susceptibility testing. The EQAS reports aim to estimate performance 1066 

for antimicrobial susceptibility testing as the percentage of phenotypically resistant isolates 1067 

correctly identified across 10 sub-regions.  1068 

 1069 

In this study, those estimates were used to calculate an adjusted sample size for of each survey by 1070 

multiplying the sample size reported by the accuracy published in the EQAS report for each year 1071 

and region. For example for a surveys on Salmonella spp. conducted in Southeast Asia in 2015 1072 

with original sample size of 200, the adjusted sample size was: 180 = round(200 x 0.899). In 1073 

comparison, a survey conducted with the same number of samples conducted on the same year on 1074 

Campylobacter spp. in Africa where the accuracy of susceptibility testing is lower (0.719) would 1075 

have its sample size further reduce: 144 = round (200 x 0.719). The contribution of the African 1076 

studies to the global interpolation used to produce the maps of P50 maps would be relatively lower 1077 

than the Asian studies. Since E. coli is not part of the panel used within EQAS, the Shigella spp. 1078 

values were used as a proxy for the accuracy on E. coli testing given the close relatedness (48) of 1079 

this genus with Escherichia spp.. 1080 

 1081 

Accuracies were not reported in the EQAS report before to 2001 for Salmonella spp., and before 1082 

2009 for Campylobacter spp. and Shigella spp.. Therefore, the accuracies reported on the first year 1083 

were used to adjust sample size for all years before EQAS reporting started. For all years after 1084 

2015, the accuracies reported in 2015 were used, and for any year missing accuracy reports, the 1085 

last accuracy estimate reported was used. For MRSA, no metrics of accuracy were provided in the 1086 

EQAS report from 2015. The average accuracies reported for Shigella spp., Salmonella spp. and 1087 

Campylobacter spp. each year were used as proxy for each year.  1088 

 1089 

  1090 
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 1091 

Fig. S1. Literature Review. Number of resistance rates (nrates), and point-prevalence surveys 1092 

(nPPS) identified, exclusion criteria and records used for mapping antimicrobial resistance.  1093 

AGISAR = Advisory Group on Integrated Surveillance of Antimicrobial Resistance.  1094 

  1095 
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 1096 
Fig. S2. Geographic distribution of antimicrobial susceptibility testing methods. 1097 

  1098 
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  1099 
Fig. S3. Average resistance levels and susceptibility testing methods. Variations (or absence 1100 

thereof) in levels of antimicrobial resistance associated with each susceptibility testing method: 1101 

antimicrobial dilution (AD) and disc diffusion (DD). Statistically significant differences are 1102 

highlighted with red borders on the boxplots (Mann–Whitney U test).    1103 

  1104 
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  1105 

Fig. S4. Guidelines variation for Susceptibility testing. Variations in breakpoints between 1106 

guidelines from (CLSI, EUCAST, and SFM) over time for E. coli/Cefepime (top), Staphylococcus/ 1107 

Vancomycin (middle), and Campylobacter/ Ciprofloxacin (bottom).  1108 

  1109 
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 1110 
Fig. S5. Modulation of resistance rates. Illustration of the calculation of Areas Under the Curve 1111 

for the correction applied to observed resistance rates reported in PPS for an hypothetical drug-1112 

pathogen combination where reference breakpoints differ from the observed breakpoints by two 1113 

dilutions or 13 mm. MIC/inhibition zone distribution were obtained from the EUCAST online 1114 

database (grey polygon, http://www.eucast.org/mic_distributions_and_ecoffs/).  1115 

  1116 
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 1117 

 1118 
 1119 

 1120 

 1121 
 1122 

Fig S6. Global distribution of multi-resistance. Proportion of drugs with resistance 50% of 1123 

higher (P50) in 901 points prevalence surveys on Amr in animals (A). P50 in countries with 1124 

rapid intensification of the animal production such as Brazil (B), Ethiopia (C) and India (D). 1125 
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 1126 
Fig. S7. Environmental and anthropogenic covariates used for training the child models 1127 

(log10 scaled). Predicted antimicrobial use in animals (use), travel time to cities of more than 1128 

50,000 people (acc), yearly average of minimum monthly temperature (tmp), percentage of pixel 1129 

area irrigated (irg), population densities of extensively raised pigs (PgExt), intensively raised pigs 1130 

(PgInt), extensively raised chicken (ChExt), intensively raised chicken (ChInt), Cattle (Ca), and 1131 

percentage are covered in vegetation (veg).   1132 

  1133 
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 1134 

 1135 
Fig. S8. Geographic distribution or presence and pseudo-absence. Points in four regions were 1136 

used for the K-fold spatial cross-validation procedure of the child models.  1137 

  1138 
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                                                        1139 

 1140 

Fig. S9. Global maps of P50 obtained from child models using environmental covariates. 1141 

Boosted Regression Trees (top), least absolute shrinkage and selection operator (LASSO) applied 1142 

to logistic regression (middle), and Generalized Additive Model (GAM) (bottom).  1143 
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  1144 
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 1145 
Fig. S10. Identification of hotspots using cutoff method (A), Getis-Ord Method (B), and local 1146 

Pearson correlation coefficient between the cutoff method, and Getis-Ord G (C). A global map of 1147 

hotspots is available in raster format.   1148 

 1149 

 1150 

  1151 
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 1152 

 1153 
 1154 

Fig. S11. Summary metric of country-level exposure to antimicrobial resistance in chickens (A), 1155 

pigs (B) and cattle (C).  1156 

 1157 

  1158 
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 1159 
 1160 

Fig. S12. Association between hotspots of antimicrobial resistance (P50 > 0.4, green), and hotspots 1161 

of increased antimicrobial use (blue) in Asia. Hotspots of increased antimicrobial use (AMU) are 1162 

areas where consumption could surpass 30 kg per 10 km
2
 by 2030, as estimated by Van Boeckel 1163 

et al 2015 (49), and updated with the latest global antimicrobial use data (1). Three quarters (74%) 1164 

of the P50 hotspots are in hotspots of increased antimicrobial use, albeit the association between 1165 

P50 and antimicrobial use was moderate (Kappa = 0.28), and consistent with the moderate 1166 

importance of antimicrobial use in used child-models for global geospatial models (Table S5). 1167 

 1168 

  1169 
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 1170 

Geographic 

Region 

End 

Date
a
 

PubMed 
ISI Web of 

Science 
Scopus Total Hits 

Studies 

Screened 

South America 28.03.19 2206 930 1129 4265 260 

Central America, 

Mexico, Caribbean 
28.03.19 694 257 322 1273 53 

Africa 28.03.19 2217 1677 2520 6414 457 

India and South 

East Asia 
28.03.19 4763 1147 2164 8074 543 

West and Central 

Asia, Arabian 

Peninsula 

28.03.19 2297 1359 1409 5065 275 

China 28.03.19 5067 873 999 6939 404 

Grey Literature - - - - - 178 
a
Data collection end date for the corresponding region. For search dates were limited from 2000/01/01 to 2018/12/31. 1171 

Table S1. Number of hits across literature databases and geographic regions 1172 

  1173 
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 1174 

Antimcirobial 

Classes 

ATC-

Code 

Salmonella and 

E. coli 

Campylobacter 

spp. 

Enterococcus 

spp. 

Staphylococcus 

aureus 

Aminoglycosides 
J01GB03 

J01GA01 

Gentamicin Gentamicin 

Streptomycin 

Gentamicin 

Streptomycin 

Gentamicin 

 

Amphenicols J01BA01 Chloramphenicol - Chloramphenicol Chloramphenicol 

Carbapenems 
J01DH51 

J01DH02 

Imipenem 

Meropenem 
- - - 

Cephalosporins  

J01DC01 

J01DD01 

J01DD04 

J01DD02 

J01DE01 

Cefoxitin 

Cefotaxime 

Ceftriaxone 

Ceftazidime 

Cefepime 

- - 

Cefoxitin 

Glycopeptides 
J01XA01 

J01XA02 
- - 

Vancomycin 

Teicoplanin 

Vancomycin 

Glycylcyclines J01AA12 Tigecycline - Tigecycline - 

Lincosamides J01FF01 - Clindamycin - Clindamycin 

Lipopeptides J01XX09 - - Daptomycin - 

Macrolides 
J01FA10 

J01FA01 

Azithromycin  

Erythromycin 

 

Erythromycin 

 

Erythromycin 

Nitrofurans J01XE01 Nitrofurantoin - - - 

Oxazolidinones J01XX08    Linezolid 

Penicillins 

J01CA01 

J01CA04 

J01CA17 

Ampicillin 

Amoxicillin 

Temocillin 

Ampicillin Ampicillin 

- 

Polymyxins J01XB01 Colistin - - - 

Quinolones 

J01MA02 

J01MB02 

J01MA03 

Ciprofloxacin 

Nalidixic acid 

Pefloxacin 

Ciprofloxacin 

Nalidixic acid 

 

Ciprofloxacin Ciprofloxacin 

Rifamycins J04AB02 - - - Rifampicin 

Streptogramins J01FG02 - - 
Quinupristin-

Dalfopristin 

Quinupristin-

Dalfopristin 

Sulfonamides
a
 J01EB05

a
 Sulfisoxazole

a
   Sulfisoxazole 

Tetracyclines J01AA07 Tetracycline Tetracycline Tetracycline Tetracycline 

Trimethoprim J01EA01 Trimethoprim - - Trimethoprim 

Sulfonamides+ 

Trimpethoprim 
J01EE01 

Sulfonamides- 

Trimethoprim 
- - - 

a
Only sulfisoxazole shown, but any combination of sulfonamides can be used to test for this class and were included 1175 

in the analysis 1176 

 1177 

Table S2. Antibiotics suggested by the WHO-AGISAR for surveillance in foodborne bacteria 1178 

(adapted from (14) ) 1179 

  1180 
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 1181 

 1182 
Name Acronym Year Original 

Resolution  

Source 

Antimicrobial 

use in animals  

use 2013 0.083333 

decimal 

degrees 

 

Van Boeckel et al 2017 (1)  

http://science.sciencemag.org/content/357/6358/1350.full 

Travel time to 

cities  

acc 2015 

 

30-arcsec 

resolution 

 

Weiss et al 2018(26) https://www.map.ox.ac.uk/accessibility_to_cities/. 

Yearly average 

of minimum 

monthly 

temperature  

tmp 1970-

2000 

2.5 minutes 

 

Worldclim (50) 

http://worldclim.org/version2 

Percentage 

irrigated areas  

irg 2005 0.083333 

decimal 

degrees 

 

Global Map of Irrigation Areas (GMIA) (51) 

http://www.fao.org/nr/water/aquastat/irrigationmap/index10.stm 

Population 

density  pigs, 

chickens and 

cattle (extensive 

vs intensive 

systems)  

ChExt 

ChInt 

PgExt 

PgInt 

Ca 

2013 0.083333 

decimal 

degrees 

Gridded Livestock of the World v3 (52, 53)  

https://livestock.geo-wiki.org/ 

Percentage of 

tree coverage  

veg 2013 0.008333 

decimal 

degrees  

https://earthenginepartners.appspot.com/science-2013-global-

forest/download_v1.2.html (54) 

 1183 

Table S3. Environmental and anthropogenic covariates used for training the child models 1184 

  1185 
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Name Acronym Year Original 

Resolution 

Source 

Urban Areas   Urban 2009 ~ 300m at 

equator  

GlobeCover 2009 (55) 

http://due.esrin.esa.int/page_globcover.php 

Human 

population 

density (n/km
2
) 

Hpop 2015 30 arc-second 

 

GPW v4 

http://sedac.ciesin.columbia.edu/data/set/gpw-v4-population-density-rev10 

 

 1186 

Table S4. Covariates used for the stratified sampling of pseudo-absence points  1187 

 1188 

 1189 

  1190 
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 Use* acc tmp irg PgExt PgInt ChExt ChInt Ca veg   1191 

Relative Influence (%) 1192 

BRT 3.8 68.1  7.4  5.2  1.5  2.0  2.4  6.4  1.8  1.3 1193 

Frequency of selection  1194 

after regularization (%) 1195 

LASSO-GLM -30 -100 -70 100 0 10 90 50 0 -50 1196 

LASSO-GAM (linear) 0 50 80 60 0 10 100 50 0 10 1197 

LASSO-GAM (non-linear) 90 50 10 40 0 0 0 0 0 60 1198 

*Predicted antimicrobial use in animals (use), travel time to major cities (acc), yearly average of minimum monthly 1199 

temperature (tmp), percentage of pixel area irrigated (irg), population densities of extensively raised pigs (PgExt), 1200 

intensively raised pigs (PgInt), extensively raised chicken (ChExt), intensively raised chicken (ChInt), Cattle (Ca), 1201 

and percentage are covered in vegetation (veg).  1202 

 1203 

Table S5. Relative influence of individual covariates in child models 1204 

 1205 

 1206 

  1207 
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Pathogen Continent Species Studies per compound 

Ecoli Africa Cattle AMP(n=16),AMX(n=13),CAZ(n=14),CHL(n=35),CIP(n=33),CRO(n=10),CST(n=10),CTX(n=26),FEP(n=3),FOX(n=14),GEN(n=41),IPM(n=11),MEM(n=3),NAL(n=26),NIT(n=7),SOX(n=1),SSS(n=8),SXT(n=34),TET(n=49),TIG(n=2),TMP(n=9) 

Ecoli Africa Chicken AMP(n=15),AMX(n=15),CAZ(n=18),CHL(n=31),CIP(n=43),CRO(n=7),CST(n=15),CTX(n=29),FEP(n=3),FOX(n=12),GEN(n=43),IPM(n=14),MEM(n=6),NAL(n=30),NIT(n=5),SSS(n=10),SXT(n=35),TET(n=37),TIG(n=2),TMP(n=10) 

Ecoli Africa Pig AMP(n=3),AMX(n=1),CAZ(n=3),CHL(n=6),CIP(n=8),CRO(n=1),CST(n=2),CTX(n=6),FOX(n=2),GEN(n=8),IPM(n=1),MEM(n=2),NAL(n=4),SSS(n=1),SXT(n=4),TET(n=7),TIG(n=2),TMP(n=2) 

Ecoli Asia Cattle AMP(n=70),AMX(n=27),AZM(n=7),CAZ(n=29),CHL(n=68),CIP(n=67),CRO(n=30),CST(n=16),CTX(n=45),FEP(n=7),FOX(n=10),GEN(n=83),IPM(n=24),MEM(n=11),NAL(n=35),NIT(n=13),SOX(n=3),SSS(n=2),SXT(n=41),TET(n=50),TIG(n=2),TMP(n=12) 5 
Ecoli Asia Chicken AMP(n=60),AMX(n=18),AZM(n=7),CAZ(n=29),CHL(n=57),CIP(n=70),CRO(n=25),CST(n=19),CTX(n=36),FEP(n=11),FOX(n=14),GEN(n=72),IPM(n=21),MEM(n=12),NAL(n=32),NIT(n=11),SOX(n=1),SSS(n=6),SXT(n=45),TET(n=46),TIG(n=1),TMP(n=10) 

Ecoli Asia Pig AMP(n=36),AMX(n=9),AZM(n=1),CAZ(n=18),CHL(n=31),CIP(n=39),CRO(n=14),CST(n=11),CTX(n=29),FEP(n=6),FOX(n=13),GEN(n=42),IPM(n=13),MEM(n=9),NAL(n=19),NIT(n=6),SOX(n=1),SSS(n=1),SXT(n=30),TET(n=34),TIG(n=5),TMP(n=9) 

Ecoli Americas Cattle AMP(n=33),AMX(n=5),CAZ(n=13),CHL(n=20),CIP(n=29),CRO(n=16),CST(n=2),CTX(n=16),FEP(n=10),FOX(n=13),GEN(n=37),IPM(n=11),MEM(n=5),NAL(n=24),NIT(n=8),SOX(n=3),SSS(n=1),SXT(n=35),TET(n=30),TIG(n=1),TMP(n=2) 

Ecoli Americas Chicken AMP(n=18),AZM(n=1),CAZ(n=10),CHL(n=21),CIP(n=25),CRO(n=8),CST(n=4),CTX(n=16),FEP(n=5),FOX(n=10),GEN(n=27),IPM(n=4),MEM(n=1),NAL(n=16),NIT(n=6),SOX(n=3),SSS(n=1),SXT(n=20),TET(n=25),TMP(n=2) 

Ecoli Americas Pig AMP(n=14),AMX(n=1),CAZ(n=4),CHL(n=12),CIP(n=11),CRO(n=4),CST(n=5),CTX(n=8),FEP(n=2),FOX(n=3),GEN(n=16),MEM(n=1),NAL(n=10),NIT(n=4),SOX(n=1),SSS(n=2),SXT(n=14),TET(n=14),TIG(n=1),TMP(n=2) 10 
Salmonella Africa Cattle AMP(n=13),AMX(n=7),AZM(n=1),CAZ(n=9),CHL(n=28),CIP(n=30),CRO(n=15),CST(n=4),CTX(n=12),FEP(n=2),FOX(n=11),GEN(n=34),IPM(n=5),MEM(n=2),NAL(n=27),NIT(n=9),PEF(n=1),SOX(n=5),SXT(n=27),TET(n=30),TIG(n=2),TMP(n=10) 

Salmonella Africa Chicken AMP(n=14),AMX(n=16),CAZ(n=14),CHL(n=38),CIP(n=33),CRO(n=11),CST(n=10),CTX(n=24),FEP(n=1),FOX(n=15),GEN(n=40),IPM(n=8),MEM(n=3),NAL(n=34),NIT(n=8),PEF(n=2),SOX(n=4),SXT(n=35),TET(n=38),TIG(n=2),TMP(n=21) 

Salmonella Africa Pig AMP(n=4),CAZ(n=4),CHL(n=6),CIP(n=7),CRO(n=2),CST(n=1),CTX(n=6),FEP(n=1),FOX(n=2),GEN(n=8),IPM(n=4),MEM(n=2),NAL(n=9),NIT(n=2),SOX(n=1),SXT(n=6),TET(n=7),TIG(n=2),TMP(n=4) 

Salmonella Asia Cattle AMP(n=23),AMX(n=8),AZM(n=2),CAZ(n=6),CHL(n=20),CIP(n=21),CRO(n=8),CST(n=3),CTX(n=10),FEP(n=1),FOX(n=4),GEN(n=23),IPM(n=1),NAL(n=15),NIT(n=2),PEF(n=1),SOX(n=1),SXT(n=14),TET(n=18),TIG(n=1),TMP(n=9) 

Salmonella Asia Chicken AMP(n=94),AMX(n=26),AZM(n=8),CAZ(n=25),CHL(n=81),CIP(n=95),CRO(n=29),CST(n=21),CTX(n=41),FEP(n=9),FOX(n=11),GEN(n=98),IPM(n=18),MEM(n=6),NAL(n=72),NIT(n=9),PEF(n=2),SOX(n=7),SXT(n=56),TET(n=70),TIG(n=3),TMP(n=26) 15 
Salmonella Asia Pig AMP(n=43),AMX(n=8),AZM(n=4),CAZ(n=10),CHL(n=33),CIP(n=40),CRO(n=21),CST(n=4),CTX(n=25),FEP(n=4),FOX(n=8),GEN(n=36),IPM(n=7),MEM(n=3),NAL(n=35),NIT(n=4),PEF(n=1),SOX(n=3),SXT(n=35),TET(n=39),TIG(n=4),TMP(n=6) 

Salmonella Americas Cattle AMP(n=12),CAZ(n=2),CHL(n=14),CIP(n=11),CRO(n=6),CST(n=2),CTX(n=8),FOX(n=2),GEN(n=12),IPM(n=4),NAL(n=11),NIT(n=3),PEF(n=2),SOX(n=1),SXT(n=12),TET(n=12) 

Salmonella Americas Chicken AMP(n=20),AMX(n=2),AZM(n=2),CAZ(n=5),CHL(n=20),CIP(n=21),CRO(n=7),CST(n=8),CTX(n=12),FEP(n=1),FOX(n=3),GEN(n=21),IPM(n=4),MEM(n=2),NAL(n=18),NIT(n=5),PEF(n=1),SOX(n=1),SXT(n=20),TET(n=20),TIG(n=1),TMP(n=2) 

Salmonella Americas Pig AMP(n=13),AMX(n=1),CAZ(n=1),CHL(n=13),CIP(n=13),CRO(n=6),CST(n=2),CTX(n=8),FOX(n=1),GEN(n=14),NAL(n=13),NIT(n=3),PEF(n=1),SOX(n=1),SXT(n=10),TET(n=13),TMP(n=3) 

Campylobacter Africa Chicken AMP(n=10),CIP(n=15),ERY(n=13),GEN(n=11),NAL(n=12),STR(n=6),TET(n=10) 20 
Campylobacter Asia Cattle AMP(n=5),CIP(n=10),DOX(n=2),ERY(n=9),GEN(n=10),NAL(n=10),STR(n=6),TET(n=5) 

Campylobacter Asia Chicken AMP(n=14),CIP(n=35),DOX(n=10),ERY(n=34),GEN(n=31),NAL(n=25),STR(n=10),TET(n=30) 

Campylobacter Asia Pig AMP(n=3),CIP(n=6),DOX(n=1),ERY(n=4),GEN(n=4),NAL(n=6),STR(n=1),TET(n=4) 

Campylobacter Americas Cattle AMP(n=1),CIP(n=4),ERY(n=3),GEN(n=4),NAL(n=3),STR(n=1),TET(n=3) 

Campylobacter Americas Chicken AMP(n=7),CIP(n=15),ERY(n=13),GEN(n=12),NAL(n=8),STR(n=3),TET(n=12) 25 
Campylobacter Americas Pig AMP(n=3),CIP(n=5),ERY(n=3),GEN(n=5),NAL(n=3),STR(n=1),TET(n=4) 

Staphylococcus Africa Cattle CHL(n=34),CIP(n=25),CLI(n=21),ERY(n=37),FOX(n=11),GEN(n=31),LIZ(n=2),OXA(n=26),PEF(n=1),PEN(n=35),RIF(n=10),SOX(n=1),TET(n=36),TMP(n=3),VAN(n=25) 

Staphylococcus Africa Chicken CHL(n=6),CIP(n=7),CLI(n=7),ERY(n=10),FOX(n=3),GEN(n=11),LIZ(n=1),OXA(n=7),PEN(n=8),Q-D(n=1),RIF(n=2),TET(n=10),TMP(n=1),VAN(n=9) 

Staphylococcus Africa Pig CHL(n=2),CIP(n=3),CLI(n=3),ERY(n=3),GEN(n=4),LIZ(n=1),OXA(n=3),PEN(n=2),RIF(n=1),TET(n=3),VAN(n=1) 

Staphylococcus Asia Cattle CHL(n=44),CIP(n=46),CLI(n=28),ERY(n=40),FOX(n=25),GEN(n=63),LIZ(n=9),OXA(n=37),PEF(n=2),PEN(n=52),Q-D(n=1),RIF(n=8),SOX(n=1),TET(n=37),TMP(n=6),VAN(n=31) 30 
Staphylococcus Asia Chicken CHL(n=11),CIP(n=12),CLI(n=9),ERY(n=10),FOX(n=7),GEN(n=14),LIZ(n=3),OXA(n=6),PEN(n=8),TET(n=12),TMP(n=2),VAN(n=9) 

Staphylococcus Asia Pig CHL(n=13),CIP(n=16),CLI(n=14),ERY(n=15),FOX(n=12),GEN(n=18),LIZ(n=9),OXA(n=10),PEN(n=10),Q-D(n=3),RIF(n=6),TET(n=17),TMP(n=2),VAN(n=12) 

Staphylococcus Americas Cattle CHL(n=10),CIP(n=18),CLI(n=17),ERY(n=30),FOX(n=11),GEN(n=31),LIZ(n=4),OXA(n=27),PEF(n=3),PEN(n=31),Q-D(n=2),RIF(n=7),TET(n=29),TMP(n=1),VAN(n=15) 

Staphylococcus Americas Chicken CHL(n=3),CIP(n=3),CLI(n=3),ERY(n=2),FOX(n=1),GEN(n=3),OXA(n=3),PEN(n=3),RIF(n=3),TET(n=2),VAN(n=3) 

Staphylococcus Americas Pig CHL(n=2),CIP(n=2),CLI(n=2),ERY(n=3),FOX(n=1),GEN(n=3),LIZ(n=2),OXA(n=2),PEN(n=2),Q-D(n=1),RIF(n=1),TET(n=3),TMP(n=1),VAN(n=3) 35 

Table S6. Number of point prevalence surveys per pathogens, continent, host species and antimicrobial compound (See Protocol S1 

for drug acronyms) 

 
 


