
Hydrol. Earth Syst. Sci., 19, 877–891, 2015

www.hydrol-earth-syst-sci.net/19/877/2015/

doi:10.5194/hess-19-877-2015

© Author(s) 2015. CC Attribution 3.0 License.

Global trends in extreme precipitation:

climate models versus observations

B. Asadieh and N. Y. Krakauer

Civil Engineering Department and NOAA-CREST, The City College of New York,

City University of New York, New York, USA

Correspondence to: B. Asadieh (basadie00@citymail.cuny.edu)

Received: 5 September 2014 – Published in Hydrol. Earth Syst. Sci. Discuss.: 15 October 2014

Revised: – – Accepted: 9 January 2015 – Published: 12 February 2015

Abstract. Precipitation events are expected to become sub-

stantially more intense under global warming, but few global

comparisons of observations and climate model simulations

are available to constrain predictions of future changes in

precipitation extremes. We present a systematic global-scale

comparison of changes in historical (1901–2010) annual-

maximum daily precipitation between station observations

(compiled in HadEX2) and the suite of global climate mod-

els contributing to the fifth phase of the Coupled Model In-

tercomparison Project (CMIP5). We use both parametric and

non-parametric methods to quantify the strength of trends in

extreme precipitation in observations and models, taking care

to sample them spatially and temporally in comparable ways.

We find that both observations and models show generally in-

creasing trends in extreme precipitation since 1901, with the

largest changes in the deep tropics. Annual-maximum daily

precipitation (Rx1day) has increased faster in the observa-

tions than in most of the CMIP5 models. On a global scale,

the observational annual-maximum daily precipitation has

increased by an average of 5.73 mm over the last 110 years,

or 8.5 % in relative terms. This corresponds to an increase of

10 % K−1 in global warming since 1901, which is larger than

the average of climate models, with 8.3 % K−1. The average

rate of increase in extreme precipitation per K of warming

in both models and observations is higher than the rate of

increase in atmospheric water vapor content per K of warm-

ing expected from the Clausius–Clapeyron equation. We ex-

pect our findings to help inform assessments of precipitation-

related hazards such as flooding, droughts and storms.

1 Introduction

Trends in extreme meteorological events have received con-

siderable attention in recent years due to the numerous ex-

treme events such as hurricanes, droughts and floods ob-

served (Easterling et al., 2000). Changes in global climate

and alteration of Earth’s hydrological cycle (Allen and In-

gram, 2002; Held and Soden, 2006; Wentz et al., 2007) have

resulted in increased heavy precipitation with consequent in-

creased surface runoff and flooding risk (Trenberth, 1999,

2011), which is likely to continue in the future (Dankers

et al., 2013). Anthropogenic climate change is expected to

change the distribution, frequency and intensity of precipita-

tion and result in increased intensity and frequency of floods

and droughts, with damaging effects on the environment and

society (Dankers et al., 2013; Field, 2012; Min et al., 2011;

O’Gorman and Schneider, 2009; Solomon et al., 2007; Tren-

berth, 2011; Trenberth et al., 2003).

As a result of greenhouse gas (GHG) build-up in the at-

mosphere, global mean near-surface temperature shows an

increasing trend since the beginning of the twentieth century

(Angeles et al., 2007; Campbell et al., 2011; Singh, 1997;

Solomon et al., 2007; Taylor et al., 2007), with greater in-

creases in mean minimum temperature than in mean maxi-

mum temperature (Alexander et al., 2006; Peterson, 2002).

The Fifth Assessment Report of the Inter-Governmental

Panel on Climate Change (IPCC) indicates that, globally,

near-surface air temperature has increased by approximately

0.78 ◦C (0.72 to 0.85) since 1900, with a greater trend slope

in recent decades (Stocker et al., 2013).

As a result of global warming, climate models and satellite

observations both indicate that atmospheric water vapor con-

tent has increased at a rate of approximately 7 % K−1 warm-
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ing (Allen and Ingram, 2002; Held and Soden, 2006; Tren-

berth et al., 2005; Wentz et al., 2007), as expected from the

Clausius–Clapeyron equation under stable relative humidity

(Held and Soden, 2006; Pall et al., 2006). Increasing avail-

ability of moisture in the atmosphere can be expected to

result in increased intensity of extreme precipitation (Allan

and Soden, 2008; Allen and Ingram, 2002; O’Gorman and

Schneider, 2009; Trenberth, 2011; Trenberth et al., 2003),

with a proportionally greater impact than for mean precip-

itation (Lambert et al., 2008; Pall et al., 2006). An increase

in the frequency and intensity of extreme precipitation has al-

ready been identified in observations (Alexander et al., 2006;

Min et al., 2011; Solomon et al., 2007; Westra et al., 2013)

as well as in simulations of climate models (Kharin et al.,

2013; Scoccimarro et al., 2013; Toreti et al., 2013). Climate

models also indicate that further increases in extreme pre-

cipitation would be expected over the next decades (Kharin

et al., 2007, 2013; O’Gorman and Schneider, 2009; Pall et

al., 2006; Toreti et al., 2013), while in terms of mean pre-

cipitation, moist regions become wetter and dry regions drier

(Allan and Soden, 2008; Chou and Neelin, 2004; Wentz et

al., 2007; Zhang et al., 2007).

Although climate models generally indicate an increase

in precipitation and its extremes, the rate of this increase

seems to be underestimated (Allan and Soden, 2008; Allen

and Ingram, 2002; Min et al., 2011; O’Gorman and Schnei-

der, 2009; Sillmann et al., 2013; Wan et al., 2013; Wentz et

al., 2007; Zhang et al., 2007), which implies that future pro-

jections of changes in precipitation extremes may also be un-

derpredicted (Allan and Soden, 2008). This underestimation

can be a result of differences in scale between climate model

grids and observational data (Chen and Knutson, 2008; Sill-

mann et al., 2013; Toreti et al., 2013; Wan et al., 2013; Zhang

et al., 2011) and/or limitations in moist convection or other

parameterizations in the models (O’Gorman and Schneider,

2009; Wilcox and Donner, 2007). Assessments of climate

models also reveal that the rate of increase in precipitation

extremes varies greatly among models, especially in trop-

ical zones (Kharin et al., 2007; O’Gorman and Schneider,

2009), which makes it especially important to compare mod-

eled trends with those identified in observations. However,

few global comparisons of observations and climate model

simulations are available to constrain predictions of future

changes in precipitation extremes. Of the available global-

scale studies, some use older versions of climate models or

observations and/or use only one or a few climate models

(Allan and Soden, 2008; Min et al., 2011; O’Gorman and

Schneider, 2009; Wentz et al., 2007; Zhang et al., 2007). Spa-

tial and temporal differences in data coverage between cli-

mate models and observations also challenge comparisons.

In this paper, we present a systematic comparison of

changes in annual-maximum daily precipitation in weather

station observations (compiled in HadEX2) with 15 models

from the suite of global climate models contributing to the

latest phase of the Coupled Model Intercomparison Project

(CMIP5) (Taylor et al., 2012), as the largest and most recent

set of global climate model runs. Both parametric (linear re-

gression) and non-parametric methods – Mann–Kendall (Ap-

pendix A1) as well as Sen’s slope estimator (Appendix A2) –

are utilized to quantify the strength of trends in extreme pre-

cipitation in observations and models, taking care to sample

them spatially and temporally in comparable ways. We also

calculate the rate of change in the defined extreme precipita-

tion index per K of global warming in both observations and

models to investigate the relation between global warming

and precipitation extremes. Climate models and observation

data sets do not provide the same spatial and temporal cov-

erage for precipitation data, leading to some uncertainties in

the comparison of the results. In the present study, precipita-

tion data for years/grids of climate models that do not have

corresponding observational data are excluded, resulting in a

comparable sampling approach for both data sets.

2 Data and methodology

Precipitation data in the Hadley Centre global land-based

gridded climate extremes data set (HadEX2) is based on

daily observations from about 11 600 precipitation stations

gridded on a 2.54◦ × 3.75◦ grid from 1901 to 2010 (Donat

et al., 2013). Here, gridded HadEX2 annual maximum 1-

day precipitation data (Rx1day) are analyzed as the obser-

vation data set. The Rx1day extreme precipitation index is

defined as the annual-maximum daily precipitation, in which

the maximum 1-day precipitation amount is selected for each

year. The same index is also obtained for the climate model

simulations. Daily precipitation amounts from simulations

with 15 models (overall 19 runs) with complete temporal

data coverage have been retrieved from the fifth phase of the

Coupled Model Intercomparison Project (CMIP5) (Taylor et

al., 2012), as the largest and most recent set of global cli-

mate model (GCM) runs. The historical data for projections

from 1901 to 2005 and the high radiative forcing path sce-

nario (representative concentration pathway, RCP) RCP8.5

(Moss et al., 2010) for projections from 2006 to 2010 are

selected. The aforementioned 15 CMIP5 models, provided

by the IRI/LDEO Climate Data Library, are BCC-CSM1-

1, CMCC-CM, CMCC-CMS, CNRM-CM5, GFDL-CM3,

GFDL-ESM2G, HadGEM2-CC, IPSL-CM5A-LR, IPSL-

CM5A-MR, IPSL-CM5B-LR, MIROC5 (three runs), MPI-

ESM-LR (three runs), MPI-ESM-MR, MRI-CGCM3 and

NorESM1-M.

Climate models produce simulated precipitation fields for

all years of a specified time interval, covering all coordinates

of the globe thoroughly, even the oceans and polar zones.

This is completely different from the spatial and temporal

coverage of station observation data sets, such as HadEX2,

where usually cover only a certain part of the continents, with

missing data for a considerable number of years. This differ-
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Figure 1. (a) Global averaged extreme precipitation and (b) linear regression trend slope averaged over HadEX2 grid cells with a different

minimum number of years with extreme precipitation data available. (c) Map of the number of annual extreme precipitation records in

HadEX2 (1901–2010). (d) Minimum number of years with extreme precipitation data available versus the percentage of the grid cells with

corresponding coverage.

ence in coverage results in some difficulties in comparison of

the two data sets.

As a solution for this issue, a new subsampled data set is

created for each of the 19 CMIP5 climate models in which

each of the HadEX2 grid cells take the GCM precipitation

data of the grid cell in which its geo-referenced coordinates

fit. The new data set is created with the same resolution and

the same data availability pattern of HadEX2, which means

that only data of the grids/years will be assigned to the new

data set for which HadEX2 has recorded precipitation data

for that year for the corresponding grid cell. The newly cre-

ated data set is called the subsampled CMIP5 data set.

As stated above, most grid cells in HadEX2 do not have

recorded precipitation data for most of the years. A sensitiv-

ity analysis of global averaged maximum precipitation and

trend slopes to the minimum number of years with precipita-

tion data required for a grid cell to be considered shows that

these values do not change drastically (Fig. 1a and b). Se-

lection of only stations with longer records may strengthen

the confidence with which trends are quantified, but lim-

its the calculations to smaller spatial coverage of the globe,

which is not in line with the scope of this study to evalu-

ate global changes in precipitation. We chose to use the grid

cells with at least 30 years of available precipitation data over

the last 110 years, which includes more than 90 % of the

766 HadEX2 grid cells that had any Rx1day data (Fig. 1c

and d).

Tests for trend detection in time series can be classified

as parametric and non-parametric methods. Parametric trend

tests require independence and a particular distribution in

the data, while non-parametric trend tests require only that

the data be independent. The trend slope (b) obtained from

the linear regression method, which assumes that the data

variability follows a normal distribution, is utilized for trend

strength analysis and comparison of the data sets. The rel-

ative change in extreme precipitation is defined as the trend

slope divided by the average extreme precipitation of the grid

cell (b/P ). The relative change in extreme precipitation per

K of warming is also calculated as an index for the relation

between changes in precipitation extremes of each grid cell

with global mean near-surface temperature, which indicates

the percentage change in extreme precipitation per K global

warming. Linear regression is utilized to calculate this pa-

rameter, in which global annual mean near-surface tempera-

ture obtained from NASA-GISS (Hansen et al., 2010) is se-

lected as the predictor and the natural logarithm of extreme

precipitation time series is chosen as the response.

The Z score (Z) obtained from the Mann–Kendall test

(Kendall, 1975; Mann, 1945) and the Q median (Qmed) from

Sen’s slope estimator (Sen, 1968) are also applied in order to
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Table 1. Statistics of variation of global average extreme precipitation for HadEX2 and the 19 subsampled CMIP5 model runs from 1901

to 2010. The 19 climate model runs give 19 global averages, of which the minimum, maximum, median, mean, and standard deviation are

presented.

Qmed Z score Slope of Average of Relative Change per

(mm day−1 yr−1) (–) change (b) extreme change degree

(mm day−1 yr−1) precipitation (b/P ) warming

(P ) (mm day−1) (% yr−1) (% K−1)

Model
0.0005 0.0944 0.0023 29.31 0.0118 4.37

min.

Model
0.0648 0.7050 0.1592 48.46 0.3849 28.67

max.

CMIP5 Model
0.0218 0.3056 0.0271 37.89 0.0606 7.30

(subsampled) median

Model
0.0133 0.1555 0.0326 5.08 0.0774 5.16

SD

Model
0.0230 0.3330 0.0314 37.85 0.0797 8.43

average

HadEX2 – 0.0504 0.7242 0.0521 55.03 0.0775 9.99

support the results of linear regression using non-parametric

trend detection approaches. It is important to compare the

non-parametric trend estimates with those obtained from lin-

ear regression, since the extreme precipitation time series

need not follow the normal distribution but may instead be

better represented by, for example, the generalized extreme

value distribution (Katz, 1999; Westra et al., 2013). The trend

tests are applied for each grid cell’s extreme precipitation

time series. The obtained values are averaged globally as well

as by continent in order to present the general trend of pre-

cipitation extremes in different regions. Continents studied

comprise Africa, Asia, Europe, North America, South Amer-

ica and Oceania. The subcontinent of India has results shown

separately and is also included in Asia. Results are also aver-

aged by latitude to investigate changes in the tropics versus

the northern/southern mid-latitudes.

The statistical significance of the trends, presented in the

text as well as the figures, at the 95 % confidence level is

based on p values less than 0.05 from the linear regres-

sion. The statistical significance of trends estimated from the

Mann–Kendall and Sen methods is evaluated differently (Ap-

pendix A).

3 Results

Linear regression indicates that 66.2 % of the studied grid

cells show a positive trend in annual-maximum daily pre-

cipitation during the past 110 years, including 18 % that are

statistically significant at the 95 % confidence level. On the

other hand, 33.8 % of the studied grids show a negative trend,

including only 4 % that are statistically significant at the 95 %

confidence level. The results are very similar to those found

by Westra et al. (2013) for the same HadEX2 data set (64 %

positive and 36 % negative). Thus, the global record of ex-

treme precipitation shows a meaningful increase over the last

century. This increase is expected to continue over the next

decades, based on physical arguments and modeling (Kharin

et al., 2007, 2013; O’Gorman and Schneider, 2009; Pall et

al., 2006; Toreti et al., 2013).

Table 1 presents the statistics of global averaged trend

parameters of annual-maximum daily precipitation for

HadEX2 and 19 subsampled CMIP5 model runs (from

15 models) from 1901 to 2010. Observation is only one data

set; hence, it has one global average for each parameter. The

19 climate model runs give 19 global averages, of which we

present the minimum, maximum, median, mean, and stan-

dard deviation in Table 1. Figure 2 illustrates the results pre-

sented in Table 1 as boxplots of trend parameters and average

precipitation for annual-maximum daily precipitation for all

19 subsampled data sets of CMIP5 on global as well as con-

tinental scales, showing observations (HadEX2) as blue cir-

cles. The boxplots show the minimum, 25th percentile, me-

dian, 75th percentile and maximum values obtained from the

climate models. As seen in Fig. 2a., the global average of ex-

treme precipitation data shows a higher value than the largest

value obtained from the climate models, which indicates that

all of the climate models underestimate the annual-maximum

daily precipitation. This underestimation can be seen in con-

tinental scale averages as well, and is expected given the dif-

ference in spatial scale between GCMs and station precipita-

tion gauges.

The mean linear regression slope (b) for HadEX2 observa-

tion data globally shows a positive trend of 0.052 mm day−1

per year in extreme precipitation over the last 110 years (Ta-

ble 1). This positive trend is captured by the climate models

but is significantly underestimated, since HadEX2 shows a
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Figure 2. Boxplots of CMIP5 model run averaged results (minimum, 25th percentile, median, 75th percentile and maximum of the 19 model

runs) as well as the average of HadEX2 observational data (shown as blue circles) for 1901–2010 extreme precipitation data on global

and continental scales – (a) annual-maximum daily precipitation (mm day−1), (b) relative change in annual-maximum daily precipitation

(% yr−1), (c) linear regression slope of change in annual-maximum extreme precipitation (mm day−1 yr−1), and (d) trend slope from the

Sen test (Qmed) (mm day−1 yr−1). The red markers outside the boxes represent model outliers.

greater mean value of b than all but one of the values obtained

from CMIP5 models. This underestimation is seen particu-

larly in the continents of America, Europe and Oceania as

well as the subcontinent of India. The global average of rela-

tive change in precipitation (b/P ) for HadEX2 is close to the

75th percentile of the GCMs, which indicates that approxi-

mately 75 % of the CMIP5 models have underestimated the

relative change in extreme precipitation, but is close to the

average value of the CMIP5 models. This substantial differ-

ence between the CMIP5 average and median value can be

linked to the large and positive skew scatter among the results

obtained from the models and the large inter-model standard

deviation (Table 1). The observational relative changes in ex-

treme precipitation for North America and Europe are higher

than the values obtained from any of the CMIP5 climate

models but, for South America, Oceania, Asia and Africa,

are lower than the median of the CMIP5 models, suggesting

that there may be coherent spatial patterns in the model bias

(Fig. 2) analogous to those seen for changes in mean precip-

itation (Krakauer and Fekete, 2014).

Similar to the linear regression slope (b), Qmed from Sen’s

test shows the direction and magnitude of the trend in a

time series, having the advantage of using a non-parametric

method for the trend test. The global average of Qmed for ob-

servations is 0.050 mm day−1 per year (Table 1), very close

to the average value of b obtained from the linear regression,

which further supports increasing trends in observational

annual-maximum daily precipitation. Considering the sim-

ilar trend magnitudes from parametric and non-parametric

methods, similar values for the relative change in annual-

maximum daily precipitation are also expected from the two

methods. As seen in Fig. 2, the boxplots of the distribution of

b and Qmed over the climate models show very similar results

on global and continental scales (Fig. 2c and d, respectively).

The last column of Table 1 presents a relative change in

extreme precipitation per K of global warming (% K−1). On

a global scale, the observed annual-maximum daily precip-

itation has increased by an average of 10 % K−1 of global

warming since 1901, which is larger than the average of

climate models, with 8.3 % K−1. The Clausius–Clapeyron

equation under stable relative humidity indicates that atmo-

spheric water vapor content will increase at a rate of approx-

imately 7 % K−1 warming (Held and Soden, 2006; Pall et al.,

2006). The rates of increase in extreme precipitation per K

warming in both models and observations are higher than

the rate of increase in atmospheric water vapor content per

K warming expected from the Clausius–Clapeyron equation.

Observational relative change in extreme precipitation with

respect to global warming is also higher than all of the mod-

eled values for North America and Europe, and is higher than

the model median for South America, Africa and India, but
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Figure 3. HadEX2 observational data versus CMIP5 averaged results of global extreme precipitation in 1901–2010 – annual-maximum daily

precipitation map (mm day−1) for (a) HadEX2 and (b) the average of CMIP5 model runs.

is lower than the median of the models for Asia and Oceania

(Fig. 8a).

Values of the Z score index obtained from the Mann–

Kendall method shows the non-parametric confidence level

of statistical significance in the identified trends in the data.

The expectation might be that observational data would have

a lower confidence level in the identified trends due to higher

levels of noise in observations compared to climate model

simulations. However, Table 1 shows that the global average

value of the Z score for HadEX2 is higher than the largest

value obtained from the climate models, indicating that the

CMIP5 climate models’ simulations generally show lower

level of confidence in the trends compared to the HadEX2

observations. This interesting finding that the level of inter-

nal variability in climate models appears to be too high com-

pared to observations warrants further investigation.

Figure 3 depicts the global maps of the average of annual-

maximum daily precipitation (P ) for HadEX2 (Fig. 3a) as

well as the average of CMIP5 model runs (Fig. 3b). Figure 4

shows the linear regression slope (b) for HadEX2 (Fig. 4a)

and the average of CMIP5 model runs (Fig. 4b). Relative

change in extreme precipitation (b/P ) for HadEX2 as well

as the average of CMIP5 model runs are illustrated in Fig. 5a

and b, respectively. Stippling in Figs. 4 and 5 means that the

grid cell has a significant trend at the 95 % confidence level.

In cases of CMIP5 average maps, filled/empty stippling in-

dicates a positive/negative trend on average. While a larger

marker size means a larger number of models agreeing on

the presented trend, the largest marker size shown indicates

only 7 out of 19 model simulations agreeing on the presented

trend significance, which also illustrates the discrepancy in

the trend significance between the climate models.

Figure 6 shows the average values of extreme precipita-

tion (P ), linear regression trend slope (b) and relative change

in extreme precipitation (b/P ) at each 2.5◦ latitudinal win-

dow (Fig. 6a–c). The figure presents the result of the HadEX2

data set with the average result of CMIP5 data sets as well as

their mean ± SD. As seen in Fig. 6a, average extreme precip-
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Figure 4. HadEX2 observational data versus CMIP5 averaged results of global extreme precipitation in 1901–2010 – linear regression slope

of change in annual-maximum daily precipitation map (mm day−1 yr−1) for (a) HadEX2 and (b) the average of CMIP5 model runs. Stippling

indicates significance of the calculated trend at the 95 % confidence level. In cases of CMIP5 average maps, filled/empty stippling indicates a

positive/negative trend on average. The larger marker size means a larger number of models agreeing on the presented trend, with the largest

one indicating only 7 out of 19 model runs agreeing on the presented trend significance, which also implies the discrepancy in the trend

significance between the climate models.

itation observed and simulated in the Northern Hemisphere

(NH) is lower than in the Southern Hemisphere (SH), and

the underestimation of extreme precipitation by the climate

models can also be seen. Figure 6b and c depict the fact that

the SH shows larger percentage changes in extreme precipi-

tation than the NH. Tropical zones of the globe show much

higher ranges of fluctuations in both observed and simulated

extreme precipitation trends compared to mid-latitudes, as

well as a larger discrepancy between the observations and

simulations (Fig. 6). There is larger uncertainty regarding the

results in the tropics, due to fewer numbers of cells with ob-

servational data in these regions. The failure of climate mod-

els to capture changes in tropical zones has been reported by

previous studies as well (Kharin et al., 2007; O’Gorman and

Schneider, 2009).

Figure 7 depicts the relative change in extreme precipi-

tation per K of global warming maps for HadEX2 observa-

tions (Fig. 7a) and the grid average of CMIP5 model runs

(Fig. 7b). Boxplots of CMIP5 model run results as well as

HadEX2 observational data (shown as blue circles) for rela-

tive change in extreme precipitation per K of global warming

on global and continental scales are shown in Fig. 8a. Fig-

ure 8b shows the relative change in extreme precipitation per

K of global warming at each 2.5◦ latitudinal window. As seen

in Fig. 8b, the Southern Hemisphere shows higher ranges of

relative changes in extreme precipitation per K global warm-

ing than the Northern Hemisphere. Similar behavior in fluc-

tuations in observational extreme precipitation per K warm-

ing can also be seen in Westra et al. (2013) in the HadEX2

data set for 1900–2009, although the aforementioned study
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Figure 5. HadEX2 observational data versus CMIP5 averaged results of global extreme precipitation in 1901–2010 – relative change in

annual-maximum daily precipitation (% yr−1) map for (a) HadEX2 and (b) the average of CMIP5 model runs. Stippling indicates significance

of the calculated trend at the 95 % confidence level. In cases of CMIP5 average maps, filled/empty stippling indicates a positive/negative

trend on average. The larger marker size means a larger number of models agreeing on the presented trend, with the largest one indicating

only 7 out of 19 model runs agreeing on the presented trend significance.

presents the results as the median of the trends across grid

cells instead of the average.

4 Discussion

Results show that both observations and climate models

show generally increasing trends in extreme precipitation in-

tensity since 1901. Although the climate models reproduce

the direction of observational trends on global and continen-

tal scales, the rate of change seems to be underestimated in

most models, though the observations fall within the range

of inter-model variability for at least the global mean relative

change (b/P ). Similar discrepancies between observations

and climate models have also been reported in earlier studies

(Allan and Soden, 2008; Allen and Ingram, 2002; Min et al.,

2011; O’Gorman and Schneider, 2009; Sillmann et al., 2013;

Wan et al., 2013; Wentz et al., 2007; Zhang et al., 2007).

The global average of trends from the non-parametric

method (Qmed from Sen’s slope estimator) show similar val-

ues to those obtained from the parametric method (b from the

linear regression) in observations, confirming the results of

the parametric method, which further supports an increasing

trend in observational annual-maximum daily precipitation

(Table 1 and Fig. 2c and d). Also, the boxplots of b and Qmed

for climate models are very similar on global and continental

scales for different percentiles (Fig. 2c and d, respectively).

Tropical latitudes show higher ranges of fluctuations ob-

served and simulated for extreme precipitation trends com-

pared to mid-latitudes, as well as a larger discrepancy be-

tween the observations and simulations (Fig. 6). The high

variation of the results for observations as well as models

might be due to the small number of data available for those
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Figure 6. Average parameter value at each 2.5◦ latitudinal window – (a) annual-maximum daily precipitation (mm day−1) for HadEX2 and

average CMIP5, (b) slope of change in annual-maximum daily extreme precipitation (mm day−1 yr−1) for HadEX2 and average CMIP5,

and (c) relative change in extreme precipitation (% yr−1) for HadEX2 and average CMIP5. Values for the climate models are averages of the

19 runs and the dashed lines are the medians of the models plus/minus the standard deviation of the models. The gap in the tropics indicates

the lack of grid cells with more than 30 years of precipitation data available in those zones.
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Figure 7. Relative change in extreme precipitation per K of global warming (% K−1) maps for 1901–2010 for (a) HadEX2 observations and

(b) the average of CMIP5 model runs.

regions, given that the models are sub-sampled the same way

as the available observations. However, the larger discrep-

ancy between observations and models in tropics might also

be a result of inaccuracy of the climate models in simulation

of tropical climate and of precipitation generated by deep

convection, as reported by previous studies (O’Gorman and

Schneider, 2009). The continents of North America, Europe

and Asia, respectively, contain about 22, 18 and 34 % of total

global data grid cells (Fig. 1c). The trend results averaged for

the continents of North America and Europe are generally in

line with global averaged results. The subcontinent of India

generally shows different results from the Asia average, in

both observations and models (Figs. 2 and 8a).

The Clausius–Clapeyron equation indicates that atmo-

spheric water vapor content increases at a rate of 7 % K−1 of

warming (Held and Soden, 2006; Pall et al., 2006). Although

a change in global-mean precipitation with respect to warm-

ing does not scale with the Clausius–Clapeyron equation and

from energy balance consideration, the rate of increase might

be expected to be around 2 % K−1 (Held and Soden, 2006).

The impact of global warming on extreme precipitation is

expected to be close to the Clausius–Clapeyron slope (Pall

et al., 2006). The results of the present study show that, on

average, extreme precipitation since 1901 has increased by

10 % K−1 of global warming in observations and 8.3 % K−1

in climate models over land areas with available station ob-

servations (Table 1). North and South America as well as

Europe show an even stronger increase in extreme precipita-

tion with respect to global warming (Fig. 8a). These numbers

are considerably larger than the 7 % K−1 of the Clausius–

Clapeyron equation, which further emphasizes the impact of

changes in the Earth’s global temperature on precipitation ex-

tremes.

As stated earlier, increased availability of moisture in the

atmosphere is expected to result in a greater increase in in-

tensity of extreme precipitation than for mean precipitation

(Lambert et al., 2008; Pall et al., 2006). Faster change in ex-

treme precipitation than mean precipitation implies a change
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Figure 8. Relative change in extreme precipitation per K of global warming (% K−1) in 1901–2010 – (a) boxplots of CMIP5 model run

averaged results (minimum, 25th percentile, median, 75th percentile and maximum of the 19 model runs) as well as the average of HadEX2

observational data (shown as blue circles) on global and continental scales and (b) average changes at each 2.5◦ latitudinal window.

in precipitation pattern, where the climate shifts to fewer

rainy days and more intense precipitation. This can affect

the availability of fresh water resources throughout the year.

Such changes in precipitation pattern can affect the capa-

bility of reservoirs to capture excessive surface run-off and

result in increased flooding events. Failure of the available

reservoirs to capture the designed amount of annual surface

run-off might also result in a lower total annual amount of

water stored in the reservoir, and hence fewer available fresh

water resources. The design of newly constructed reservoirs

strongly depends on the appropriate prediction of future cli-

mate and precipitation extremes, but the available climate

models seem to underestimate those for at least some regions.

The consequences of changes in both mean and extreme pre-

cipitation for water resource system reliability deserve to be

investigated further.

5 Conclusions

This study presented a systematic global-scale comparison

of changes in historical annual-maximum daily precipitation

between the HadEX2 observational records and a CMIP5 en-

semble of global climate models. The climate models were

spatially and temporally subsampled like the observations,

and trends were analyzed for grid cells with at least 30 years

of extreme precipitation data over the past 110 years. Both

parametric and non-parametric methods were used to quan-

tify the strength of trends in extreme precipitation as well

as the confidence level of the identified trends. Results from

both parametric and non-parametric tests show that both

observations and climate models show generally increas-

ing trends in extreme precipitation since 1901, with larger

changes in tropical zones, although annual-maximum daily
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precipitation has increased faster in the observations than in

most of the CMIP5 models. Observations indicate that ap-

proximately one-fifth of the global data-covered land area

had significant increasing maximum precipitation recorded

during the last century. This is more than 4 times larger than

the areas with a significant decreasing record, which indi-

cates that the global record of extreme precipitation shows

a meaningful increase over the last century. On a global

scale, the observational annual-maximum daily precipitation

has increased by an average of 5.73 mm day−1 over the last

110 years, or 8.53 % in relative terms. The observational

annual-maximum daily precipitation has also increased by

an average of 10 % K−1 of global warming since 1901, which

is larger than the average of climate models, with 8.3 % K−1.

The rates of increase in extreme precipitation per K of warm-

ing in both models and observations are higher than the rate

of increase in atmospheric water vapor content per K of

warming expected from the Clausius–Clapeyron equation,

which is approximately 7 % K−1, which highlights the im-

portance of extreme precipitation trends for water resource

planning.
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Appendix A: Non-parametric trend tests

A1 Mann–Kendall trend test

The MK test is a non-parametric rank-based test (Kendall,

1975; Mann, 1945). The Mann–Kendall test statistic S is cal-

culated as

S =
n−1
∑

i=1

n
∑

j=i+1

sgn
(

xj − xi

)

, (A1)

where n is the number of data points, xi and xj are the

data values in time series i and j (j > i), respectively, and

sgn(xj − xi) is the sign function

sgn
(

xj − xi

)

=







+1 if xj − xi > 0

0, if xj − xi = 0

−1 if xj − xi < 0

. (A2)

The variance is computed using the equation below:

Var(S) =
n(n − 1)(2n + 5) −

m
∑

i=1

ti (ti − 1)(2ti + 5)

18
, (A3)

where n is the number of data points, m is the number of tied

groups and ti is the number of ties of extent i. A tied group

is a set of sample data having the same value. In cases where

the sample size n is greater than 10, the standard normal test

statistic ZS is computed as

ZS =











S−1√
Var(S)

, if S > 0

0, if S = 0
S+1√
Var(S)

, if S < 0

. (A4)

The sign of ZS indicates the trend in the data series, where

positive values of ZS mean an increasing trend, while nega-

tive ZS values show decreasing trends. For the tests at a spe-

cific α significance level, if |ZS| > Z1−α/2, the null hypothe-

sis is rejected and the time series has a statistically significant

trend.

Z1−α/2 is obtained from the standard normal distribution

table, where, at the 5 % significance level (α = 0.05), the

trend is statistically significant if |ZS| > 1.96 and, at the 1 %

significance level (α = 0.01), the trend is statistically signifi-

cant if |ZS| > 2.576.

A2 Sen’s slope estimator

The non-parametric procedure for estimating the slope of the

trend in the sample of N pairs of data was developed by

Sen (1968) as

Qi =
xj − xk

j − k
for i = 1, . . .,N, (A5)

where xj and xk are the data values at times j and k (j > k),

respectively. N is defined as n(n−1)
2

, where n is the number

of time periods.

If the N values of Qi are ranked from smallest to largest,

the parameter Qmed is computed as the median of the Qi

vector. The Qmed sign reflects the direction of trend, while

its value indicates the magnitude of the trend. To deter-

mine whether the median slope is statistically different than

zero, the confidence interval of Qmed at a specific probability

should be computed as follows (Gilbert, 1987; Hollander and

Wolfe, 1973):

Cα = Z1−α/2

√

Var(S), (A6)

where Var(S) is defined before and Z1−α/2 is obtained from

the standard normal distribution table. Then, M1 = N−Cα

2
and

M2 = N+Cα

2
are computed. The lower and upper limits of

the confidence interval, Qmin and Qmax, are the M1th largest

and the (M2 + 1)th largest of the N ordered slope estimates

(Gilbert, 1987). The slope Qmed is statistically different than

zero if the two limits Qmin and Qmax have the same sign.
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