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Abstract. There is a large uncertainty in the relative roles

of human land use, climate change and carbon dioxide fer-

tilization in changing desert dust source strength over the

past 100 years, and the overall sign of human impacts on

dust is not known. We used visibility data from meteoro-

logical stations in dusty regions to assess the anthropogenic

impact on long term trends in desert dust emissions. We did

this by looking at time series of visibility derived variables

and their correlations with precipitation, drought, winds, land

use and grazing. Visibility data are available at thousands of

stations globally from 1900 to the present, but we focused

on 357 stations with more than 30 years of data in regions

where mineral aerosols play a dominant role in visibility ob-

servations. We evaluated the 1974 to 2003 time period be-

cause most of these stations have reliable records only dur-

ing this time. We first evaluated the visibility data against

AERONET aerosol optical depth data, and found that only

in dusty regions are the two moderately correlated. Corre-

lation coefficients between visibility-derived variables and

AERONET optical depths indicate a moderate correlation

(0.47), consistent with capturing about 20% of the variability

in optical depths. Two visibility-derived variables appear to

compare the best with AERONET observations: the fraction

of observations with visibility less than 5 km (VIS5) and the

surface extinction (EXT). Regional trends show that in many

dusty places, VIS5 and EXT are statistically significantly

correlated with the Palmer drought severity index (based on

precipitation and temperature) or surface wind speeds, con-

sistent with dust temporal variability being largely driven by

meteorology. This is especially true for North African and

Chinese dust sources, but less true in the Middle East, Aus-

tralia or South America, where there are not consistent pat-

terns in the correlations. Climate indices such as El Nino

or the North Atlantic Oscillation are not correlated with
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visibility-derived variables in this analysis. There are few

stations where visibility measures are correlated with culti-

vation or grazing estimates on a temporal basis, although this

may be a function of the very coarse temporal resolution of

the land use datasets. On the other hand, spatial analysis of

the visibility data suggests that natural topographic lows are

not correlated with VIS5 or EXT, but land use is correlated

at a moderate level. This analysis is consistent with land use

being important in some regions, but meteorology driving in-

terannual variability during 1974–2003.

1 Introduction

Mineral aerosols or desert dust particles are hypothesized to

be important for local health and air quality problems, as well

as impacts on the global environment through changes in the

radiative budget, precipitation processes, atmospheric chem-

istry and biogeochemistry (e.g. Rosenfeld and Nirel, 1996;

Dentener et al., 1996; Miller and Tegen, 1998; DeMott et al.,

2003; Jickells et al., 2005). While mineral aerosol sources

are thought to be dominated by natural processes (e.g. Pros-

pero et al., 2002), the possibility of human impacts on min-

eral aerosols cannot be eliminated by the existing data (Ma-

howald and Dufresne, 2004; Tegen et al., 2004; Mahowald

et al., 2004; Mahowald et al., 2005). On small scales, culti-

vation or pasture usage has been shown to increase the avail-

ability of particles for wind erosion (e.g. Gillette, 1988; Neff

et al., 2005). In addition, ice core records show that dust is

sensitive to climate change (e.g. Petit et al., 1999). Thus, hu-

man influenced climate change and land use may be impact-

ing dust concentrations. Finally, plants are thought to be bet-

ter able to deal with water stress under a higher carbon diox-

ide environment, suggesting that desert extent (and presum-

ably therefore dust) may be decreasing over the last century

as carbon dioxide levels increase (e.g. Smith et al., 2000; Ma-

howald and Luo, 2003). Attempts to determine the impacts
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of global scale anthropogenic land use on dust emissions are

hampered by the similarity in the spatial distribution of land

use derived dust and natural dust for some sources (e.g. Ma-

howald et al., 2002, 2004; Luo et al., 2003). Results of mod-

eling simulations suggest that humans have either increased

or decreased dust since preindustrial times, depending on the

relative importance of human land use, carbon dioxide fer-

tilization and climate change in driving dust (Mahowald and

Luo, 2003). Ice core changes between the preindustrial and

current time periods are not consistent within regions and

cannot differentiate between these different processes (Ma-

howald and Luo, 2003).

One long time series that is globally available is visibility

data collected at meteorological stations. It has been used in

many previous studies (e.g. Middleton, 1984; McTainsh et

al., 1989; Goudie and Middleton, 1992; Sun et al., 2001).

However, visibility data have not been compiled and pre-

sented globally with time trends in previous studies. These

data are available at hourly to several times daily intervals

over much of the last century at many meteorological sta-

tions located throughout the world. One problem with these

data is that visibility is not directly related to aerosol con-

centration, but may be influenced by humidity, cloudiness or

rain. Visibility is a function of the amount of light which is

attenuated as a viewer looks horizontally, and if the attentua-

tion is due to aerosols, it is the extinction of light by aerosols

occuring at the surface of the earth (surface extinction). In

addition, aerosol amount near a station may be impacted by

very local effects, such as the existence of a dirt road directly

in front of the observer (e.g. Middleton et al., 1985). Another

drawback of the visibility data is that while there are hun-

dreds of stations, they are located close to human habitation,

which tends not to be in the middle of deserts. Traditionally

researchers have considered visibility as too qualititavely to

be compared against models or other data. In this paper we

try to address how quantitatively we can use the visibility

data, and especially whether it represents very local dust or

dust capable of being transported long range. Thus as a first

step in our analysis, we compared the visibility data against

other high quality aerosol data (AERONET aerosol optical

depths: Holben et al., 2001) to understand the quantitative

value of this dataset. Our goal in the first part of the paper

is to determine whether visibility data can be used to evalu-

ate dustiness, and what relationship the visibility data has to

surface source variability.

Many processes may be important for the generation

of atmospheric dust, including strong winds, precipitation,

drought conditions, land surface properties, and human land

use. For each of these processes we try to derive a repre-

sentative proxy from a global dataset to correlate with the

visibility dataset. However, this approach has fundamen-

tal limitations due to lack of quality data. There is a large

spatial variability in surface winds and precipitation, mak-

ing these variables difficult to constrain globally (e.g. Dai et

al., 1996). Very little is known globally about land surface

properties, and we address these in a future study. Especially

problematic are datasets on the time evolution of human cul-

tivation and grazing. The datasets used here present a broad

view of the time evolution of cultivation and grazing, and

represent the best datasets available (Klein-Goldewijk, 2001;

Ramankutty and Foley, 1999). However they are interpola-

tions between land use censuses taken every 5 years in the

best case, and often every 10 years or longer, and therefore

crudely represent the time record of human land use. In ad-

dition, it is not clear how human land use would impact dust.

Some studies have shown that cultivation and grazing make

soils much easier to deflate (Gillette, 1988; Neff et al., 2005).

Soil conservation efforts such as trees planted to block the

winds, contour plowing, and leaving dead vegetation on the

top of the soils have been shown to be effective in reducing

wind erosion (e.g. Baker et al., 2005). Thus, it is not always

straightforward to deduce what the relationship should be be-

tween human land use and dust. This paper may provide

some information about where land use may be enhancing

dust sources.

Our goal in this paper is to use visibility data for esti-

mating long term trends in aerosols, especially desert dust

aerosols. We describe our methods in Sect. 2. We first

evaluate several proxies derived from the hourly visibility

data against AERONET column aerosol optical depth data

in Sect. 3. Then we use visibility proxies to look at tempo-

ral trends in dusty regions. Finally, we correlate visibility

proxies with meteorological variables such as precipitation

and wind speeds as well as the human driven variables, es-

timated cultivation and grazing use (Sect. 4). Summary and

conclusions are presented in Sect. 5.

2 Methodology

For this paper, we analyze hourly to several times daily

station data from the DSS 463.3 surface weather observa-

tion dataset created by the National Climatic Data Center

(NCDC) and archived at NCAR (http://dss.ucar.edu/datasets/

ds463.3/). This data set contains up to 10 000 active stations

worldwide. We analyze this dataset over the period 1900–

2003 for long term trends in visibility. For the bulk of the

analyses, we include stations with data in at least 30 years of

the period from 1900–2003. In dusty regions, where most of

our analysis takes place, there are no data before 1940, so we

do not focus on that time period. Indeed, there are substan-

tially more data from 1974–2003, so we concentrate much of

our correlation analysis on that time period, discussing only

briefly results for the longer time period.

Visibility data from these sites are in meters, and indicate

how far away a large black object can be seen against the sky

at the horizon (Seinfeld and Pandis, 1998). Detailed descrip-

tions of measurement methods at different stations and their

evolution with time are not available. The dataset includes

quality checks, and data which do not pass all quality checks
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are neglected here. We also visually inspect the different sta-

tion time series to look for discontinuities in the data, specif-

ically in the wind data, and rejected 7 stations due to this

problem (WMO stations 400720, 400830, 400870, 607600

612970 847820 and 854170). In addition, we exclude any

data when the dew point temperature is within one degree

Celsius of the temperature to attempt to exclude fog events.

There are over one thousand stations with data for at least

30 years, but only 364 stations with more than 30 years of

data in dusty regions (we discuss the reasons for focussing

on dusty regions in Sect. 2.0).

In order to evaluate the visibility measurements, we com-

pare them against data from AERONET sun photometry

stations, which are in situ column optical depth measure-

ments (Holben et al., 2001) (http://aeronet.gsfc.nasa.gov/

data menu.html). Because we are interested in variability

in visibility, we only use the data from AERONET stations

with more than 3 years of data, and we calculate the correla-

tion coefficient between monthly mean aerosol optical depth

at 670 nm and monthly visibility proxies at the closest me-

teorological stations. We chose this wavelength because it

appears to have the most data, and varies in a manner similar

to other visible wavelengths in the same dataset (not shown).

We evaluate several different visibility proxies at the

AERONET sites. The fraction of observations when the

visibility is less than 1, 5, or 10 km has been used previ-

ously (e.g. N’Tchayi Mbourou et al., 1997; Kurosaki and

Mikami, 2003). We evaluate the fraction of visibility be-

low a succession of thresholds between 1 and 10 km to de-

termine which best reproduces the column aerosol optical

depth from AERONET. In addition, visibility is really a mea-

sure of the integrated surface concentration of aerosols and

other particles between the eye and distant objects, and can

be converted to a surface extinction value (aerosol extinction

of light when a viewer is looking horizontally at the surface)

through Koschmeider’s formula (Godish, 1997):

Extinction = 3.92/Visibility (1)

Thus for each month, we calculate the fraction of measure-

ments where the visibility is below x km (where x goes from

1 to 10 km) and the monthly mean surface extinction.

Previous studies have used data from the Total Ozone

Mapping Spectrometer Absorbing Aerosol Index (AAI) and

the Aerosol Optical Depth (AOD) (Torres et al., 1998, 2002)

for deducing information about dust spatial+ and temporal

variability (e.g. Prospero et al., 2002; Mahowald et al., 2003),

so here we compare them against the AERONET optical

depths to better understand how good the AAI does at mea-

suring aerosol optical depth. The TOMS AAI uses the ab-

sorption of Rayleigh backscattered uv light to deduce absorb-

ing aerosols, which has the trait of giving a response that is

roughly linear with aerosol height (Mahowald and Dufresne,

2004; Torres et al., 1998), and giving a response that is dif-

ferent in sign depending on the type of aerosol (Torres et al.,

1998). In order to deduce a more easily interpreted aerosol

optical depth, TOMS AAI are combined with atmospheric

transport and radiation model output to produce a TOMS

AOD (Torres et al., 2002). However, in both datasets there

are difficulties with interpreting the long time series, because

of problems in changes in the satellite and drift in the orbits:

the time period from 1984 to 1990 is the most stable (O. Tor-

res, personal communication; Torres et al., 2002).

Also included in the station data are surface wind speeds.

Unfortunately, the height at which these measurements are

made is not the same at all stations, or may change with time

in a way which is not well documented. Further, surface wind

speeds can be very sensitive to nearby structures, which may

evolve with time. As with the visibility data, surface wind

speed data should not be taken at face value over such a large

spatial area and long time series. However, the data repre-

sents our only information about local surface wind speeds at

many stations over a long period of time, so we include them

here. Any station where the surface wind speeds changed in

a discontinuous manner (detected by visual inspection) was

excluded from the analysis, as described above. Wind data

were analyzed to determine the median wind, as well as the

average of the cubed of individual wind observations.

Precipitation data from a merging of two gridded monthly

time series from Chen et al. (2002) and Dai et al. (1997), as

described in Dai et al. (2004) are used. Precipitation data are

also difficult to interpret because of the hetereogeneities in

the spatial distribution of precipitation. However, this grid-

ded dataset represents our best state of knowledge about pre-

cipitation at the global scale. From gridded historical tem-

perature and precipitation datasets, Palmer Drought Sever-

ity Index (PDSI) values were calculated and included in this

analysis (Dai et al., 2004). This index tries to capture the cu-

mulative departure from the mean of atmospheric moisture

and soil moisture supply at the surface, based on a simple

hydrological model. It incorporates antecedent precipitation,

moisture supply and moisture demand based on simple hy-

drological model. The results of correlations with PDSI and

visibilty tended to be larger in magnitude than between pre-

cipitation and visibility, so we focus on only the PDSI results

in this paper. We also use two climate indices that have been

developed in previous studies: the El Nino 3.4 (ENSO; Tren-

berth and Stepaniak, 2001) and the North Atlantic Oscillation

(NAO; Hurrell, 1995).

We also include estimates of human influences on visibil-

ity and desert dust specifically. Estimates of human land

use practices are difficult to make, especially in desert re-

gions. We used half degree resolution datasets based on crop-

land area estimates from (Ramankutty and Foley, 1999) and

grazing extent from the HYDE database (Klein-Goldewijk,

2001). The cultivation and grazing data were combined with

satellite derived estimates of Plant Functional Type distribu-

tions. The grazing data were calibrated to match the extent

of present day grass and shrub distributions and then extrap-

olated back in time based on the HYDE historical grazing es-
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timates at the half degree grid scale (Feddema et al., 20071).

For most of the analysis here, we use simple correlation

coefficients. In order to calculate statistical significance we

need to assume that our distributions are gaussian, which

may not be true. We make these assumptions so that our

results are easy to interpret. We have calculated these cor-

relations using rank correlations, for which we know the

ranked distribution, and obtain qualitatively similar results

(not shown). We also test to see whether one of our vari-

ables uniquely captures variability, or if there are mulitple

variables which might explain a certain time variability. We

do this by conducting a multiple linear regression, and evalu-

ating how much variability our model captures with all vari-

ables, and then with all variables minus the one we are inter-

ested in. If the difference in variability explained is substan-

tially different (we arbitrarily chose >25%), then we con-

sider that this variable is “irreplaceable” by another variable.

The “irreplaceable” variables by this criteria are plotted with

an extra square on the correlation plots that follow. Note that

for most of the correlations in this paper, there is not just one

variable which might be responsible, so this adds to the diffi-

culty in interpreting the results of these analyses. We do this

analysis based on annual averages, but qualitatively similar

results are found if we use instead monthy means.

In order to determine regions where mineral aerosols are

the dominant aerosol in terms of surface extinction, we

use the results of the Rasch et al. (2001) model simula-

tions. These simulations are based on 3-dimensional trans-

port modeling using the Model of Atmospheric Transport

and Chemistry (Rasch et al., 1997) driven by the National

Center for Environmental Prediction/National Center for At-

mospheric Research (NCEP/NCAR) reanalysis wind dataset

(Mahowald et al., 1997; Kistler et al., 2001). Sources for

different aerosols follow (Rasch et al., 2001) and the sim-

ulations are for 1995–2000. The mineral aerosol source

model in these simulations is based on the Dust Entrain-

ment and Deposition model (Zender et al., 2003a), as im-

plemented and evaluated by (Mahowald et al., 2002, 2003b;

Luo et al., 2003). The model uses a friction wind velocity

cubed relationship to determine the sources, and a preferen-

tial source defined by Ginoux et al. (2001), which assumes

that natural topographic lows (representing dry lake beds)

are dust sources. The model includes simple sulfur chem-

istry and sulfate aerosols, black and organic carbon aerosols,

and sea salt aerosols, as described in more detail in Rasch

et al. (2001). These aerosol sources include anthropogenic

and natural sources, including biomass burning (see papers

for more details). We use this model for analysis that elu-

cidates the theoretical relationship between dust sources and

extinction, and where dust dominates the aerosol loading, as

discussed in more detail in Sects. 3 and 4. In the real world,

1Feddema, J., Lawrence, P., Bauer, J., and Jackson, T.: A global

land cover dataset for use in transient climate simulations, JAMC,

submitted, 2007.

we do not have data directly measuring dust source fluxes, so

that we will use a model to estimate the relationship between

dust source fluxes and downwind concentrations and column

amounts. This result will be biased if the model has incorrect

representation of vertical or horizontal transport.

3 Evaluation of visibility data

Before using the visibility data to understand global trends,

we first analyze the visibility data to estimate the quality

of the data for determining aerosol distributions. As indi-

cated in the introduction, low visibility events could indi-

cate high mineral aerosols, high total aerosols, fog or rain

events. These visibility events, even if due to aerosols, could

be very local, e.g. due to a dirt road next to the meteoro-

logical station, or due to long range transported aerosols.

There are markers in the datasets that specifically indicate

dust events or rain events, but these markers are not always

there, so it was not possible to use these to screen all the

data consistently. It is possible that the visibility data repre-

sents very small scale aerosol events (less than 1 km) that are

not representative of large scale dust transport. At stations

where visibility is dominated by these small events, the vis-

ibility record would presumably not be well correlated with

the AERONET aerosol optical depth. In addition, we look

at how well visibility (or suface extinction) is able to cap-

ture variability in dust fluxes and compare to other available

datasets, such as satellite derived optical depth.

3.1 Visibility data as a measure of aerosol optical depth

To assess the ability of visibility measurements to cap-

ture dust variability on longer time scales we use aerosol

optical depth measurements. Aerosol optical depth is

measured at many sites globally using sun photometers

and recorded in the AERONET dataset (Holben et al.,

2000; http://aeronet.gsfc.nasa.gov/data frame.html), which

has high quality aerosol optical depth data for the last few

years. For this study, we are interested in variability, so we

use the stations where there are more than 3 years of data

(33 stations, listed in Table 1; locations shown in Fig. 1).

Notice that there are significantly fewer AERONET stations

than visibility stations and their data extend over a shorter

time period, which is why we are focusing on the visibility

data for this paper. In order to compare to visibility data,

we chose the closest visibility station location which has 3

years of overlaping data with the monthly mean AERONET

data. The visibility station used for comparison with the

AERONET data may not necessarily have a long record or

be included in the main analysis (shown in Fig. 1). Notice

that in all but three cases, the visibility station is close to the

AERONET site (much less than 1 degree away, as seen in

Fig. 1). The exceptions are Abracos Hill, where the closest

station is 2.5 degrees away, and Dry Tortugas and the HJ An-
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Table 1. Monthly mean AERONET aerosol optical depth vs. monthly mean surface extinction at closest meteorological station.

AERONET visibility Lat.(N) Lon. (E) # Mo Obs. Corr. Model Corr. Model Frac.

station station Ext vs. Ext. vs. Surf.Ext.

AOD AOD From Dust

Abracos Hill 828240 –10.8 –62.3 49 0.70 0.95 0.04

Alta Floresta 829650 –9.9 –56.0 65 0.70 0.93 0.03

Arica 854060 –18.5 –70.3 59 NS 0.88 0.61 *

Ascension Island 619020 –7.9 –14.4 49 NS 0.33 0.07

Avignon 075860 43.9 4.9 49 NS 0.87 0.12

Banizoumbou 610520 13.5 2.7 65 0.44 0.69 0.86 **

Bondville 725315 40.1 –88.3 80 NS 0.82 0.01

Capo Verde 085940 16.7 –22.9 94 NS 0.13 0.66 **

Cart Site 723536 36.5 –97.5 63 NS 0.92 0.09

Cove, Virginia 723075 36.9 –75.8 51 NS 0.56 0.01

Dalanzadgad 443730 43.5 104.4 76 0.30 0.92 0.73 **

Dry Tortugas 722010 24.5 –82.9 48 NS 0.44 0.11

El Arenosillo 084490 37.1 –6.8 36 NS 0.88 0.29

Goddard SFC 745940 39.0 –76.8 126 NS 0.87 0.01

HJAndrews AFB 726930 44.2 –122.2 60 NS 0.73 0.03

Ispra 160660 45.7 8.6 70 NS 0.82 0.09

Kanpur 423690 26.4 80.3 36 NS 0.95 0.34

Lanai 911905 20.7 –156.9 63 NS 0.64 0.03

Maricopa 722749 33.1 –112.0 42 NS 0.97 0.13

Mauna Loa 911977 19.5 –155.5 99 NS 0.41 0.03

Maryland SC 724060 39.2 –76.6 52 NS 0.80 0.01

Mexico City 766800 19.3 –99.2 43 NS 0.79 0.04

Mongu 676330 –15.3 23.1 48 0.69 0.37 0.07

Nes Ziona 401800 31.9 34.8 43 0.50 0.82 0.54 **

Ouagadougou 644030 12.2 –1.3 58 0.32 0.71 0.80 **

Rimrock 727830 46.5 –116.9 43 NS 0.87 0.05

Rogers Dry Lake 723810 34.9 –117.9 48 NS 0.92 0.04

Sede Boker 401910 30.8 34.8 74 NS 0.81 0.54 **

Sevilleta 723650 34.3 –106.9 103 NS 0.97 0.12

Skukuza 682650 –24.9 31.5 65 NS 0.72 0.05

Solar Village 404370 24.9 46.4 53 0.59 0.86 0.82 **

Venise 161050 45.3 12.5 55 NS 0.90 0.08

Wallops 724020 37.9 –75.5 55 0.36 0.87 0.01

NS indicates the correlation is not significant at the 99%.

* indicates that dust dominates other aerosols in the surface extinction and are included in the next Table.

indicates that dust dominates other aerosols, but that fog is likely, so the station is omitted.

drews Air Force Base, where the closest visibility station is

1 degree away from the AERONET site.

For this paper we assume that the visibility data are of such

a poor quality that it cannot be used as a proxy for dustiness

until it has been verified that it shows aerosols seen in other

reliable data. This is a different assumption than used in other

studies, where the fraction of <1 km visibilty is assumed

to be a reflection of dustiness (e.g. Kurosaki and Mikami,

2003). We think that until the data collection methods have

much higher quality control, the measurement methods are

better documented and an evaluation of the data occurs in

the literature, we will not believe that visibility data contain

quantatively interpretable value. Since that information is

not available, we are comparing the visibility data to data of

known quality to better understand if the visibility data can

be interpreted quantatively. Our goal is to understand what

fraction of the visibility data can be interpreted as aerosols

that are not just important at a very small scale, but impor-

tant at a scale of 100+ km.

We correlate the monthly mean aerosol optical depth

(AOD) at 670 nm to the monthly mean surface extinction and

the fraction of observations where the visibility is below 1–

10 km threshold at the nearest meteorological stations for all

33 AERONET sites individually. If we removed the seasonal

cycle, the correlations would be even lower than described

here. In addition, we correlate the values collectively from

www.atmos-chem-phys.net/7/3309/2007/ Atmos. Chem. Phys., 7, 3309–3339, 2007
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Fig. 1. Location of AERONET stations used in this analysis (diamonds and triangles). Triangles indicate stations where the surface extinction

is dominated by dust, while diamonds are stations where other aerosols dominate (>50%) model predicted surface extinction (shown as

colored contours), using the model of Rasch et al. (2001). Also shown are boxes outlining the different regions emphasized in the main text

and following figures.

all the 33 stations across all time, which we will refer to as

across all stations. This allows us to compare the visibility-

derived variables over as large of a range of values as pos-

sible. For most of the surface meteorological stations there

is not a statistically significant correlation between AOD and

any of the visibility-derived variables (e.g. Table 1, using the

example of extinction). These low correlations could be be-

cause surface extinction and column extinction (equivalent

to AOD) are decoupled in these areas. The low correlations

may be because of strong boundary layer inversions as an

example. To test this hypothesis, we use model simulations

(described in the methodology section) to correlate surface

extinction and AOD in a model with the dominant aerosol

types. The model suggests that at the locations in this com-

parison, and over most of the globe, the surface extinction

and AOD should be correlated at much higher levels than

our results from the data (Fig. 2f and Table 1). Our model

is a global model, so we could be missing small scale vari-

ability that causes lower correlations in the data. In order

to test for this possibility, we correlate the AERONET opti-

cal depths from two nearby AERONET stations (Maryland

Science Center vs. GSFC, see Table 1 for locations) with

each other and we obtain a correlation coefficient of 0.99

suggesting that small scale variability in AOD is not likely

to be causing all the discrepancy between the visibility data

and column optical depth data in our variability comparisons.

This suggests that neither surface extinction derived from the

visibility data nor the fraction of observations with less than

1–10 km visibility are good indicators of regional aerosol op-

tical depth at all stations. There are many possible explana-

tions: the poor quality of the data; moisture impacts on the

visibility through clouds; local dust sources (for example a

dirt road directly in front of the observer). On the other hand,

this lack of correlation could also be that there are elevated

aerosol layers which are not seen by the visibility measurer,

but being observed by the AERONET data. At this point,

we do not know which of these explanations are correct.

Note that if we perform the correlation between monthly

mean aerosol optical depth from AERONET and data from

the visibility stations over all the stations, we obtain corre-

lation coefficients of 0.30 and 0.34 for extinction and frac-

tion of observations with visiblity less than 5 km, respec-

tively. We can obtain higher correlations across all stations

using the fraction of observations less than 10 km (0.57), but

this visibility-derived variable still has the high occurrence

of non-statistically significant correlations at most stations,

similar to that seen in Table 2 for extinction.

There are some stations with a moderate correlation (0.5–

0.7) between visibility-derived variables and AOD (Table 1).

Many of these stations happen to be in dust regions, and the

correlation may be strong because of the dry conditions–e.g.

there is no moisture to either cause hydroscopic growth or

clouds or moisture itself may reduce visibility. Therefore,

we next look specifically at five stations where over 50% of

the surface extinction is predicted by the model to be from

mineral aerosols in model simulations (Rasch et al., 2001)

(marked with ** in Table 1). In addition, we reject one

station (Arica, marked with * in Table 1) on the western

coast of South America. Arica has low correlations, prob-

ably because of the high frequency of fog and stratus clouds

at this location. Using this subset of five AERONET sta-

tions and the ten adjacent meteorological stations, statisti-

cally significant correlations between the AERONET col-

umn optical depth and the visibility-derived variables are
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Fig. 2. Spatial plots of monthly mean dust surface extinction (a), total aerosol surface extinction (b), dust column aerosol optical depth (c),

total aerosol column optical depth (d) dust source flux (e)), scatter plot of total aerosol optical depth vs. total aerosol surface extinction (f),

scatter plot of dust surface flux vs. dust surface extinction in land gridboxes (red boxes are only at the gridboxes which have meteorological

stations analyzed in this paper) (g), scatter plot of dust surface flux vs. total aerosol surface extinction in land gridboxes (red boxes are only

at the gridboxes which have meteorological stations analyzed in this paper) (h), scatter plot of dust surface fluxes vs. dust aerosol optical

depth in land gridboxes (i) and scatter plot of dust surface fluxes vs. total aerosol optical depth in land grid boxes (j). All values are from the

model described in the text.
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Table 2. Visibility proxies at dusty stations.

Visibility variable Overall correlation

at dusty stations

(marked with **

in previous table)

Extinction 0.47

Fraction of observations with visibility <1 km 0.23

Fraction of observations with visibility <2 km 0.42

Fraction of observations with visibility <3 km 0.45

Fraction of observations with visibility <4 km 0.47

Fraction of observations with visibility <5 km 0.46

Fraction of observations with visibility <6 km 0.45

Fraction of observations with visibility <7 km 0.47

Fraction of observations with visibility <8 km 0.44

Fraction of observations with visibility <9 km 0.40

Fraction of observations with visibility <10 km 0.28

obtained (Table 2). The overall correlations for extinction

and fraction of observations with a visibility <5 km are 0.47

and 0.46, respectively, indicating that about 22% of the vari-

ability in the optical depths are captured in the visibility-

derived variables. These correlation coefficients are not par-

ticularly high, but using only the visibility at dusty stations,

we are focusing on the stations with the highest correlations

with aerosol optical depth.

We calculate the correlation with AERONET optical depth

using a variety of visibility-derived variables in order to test

which ones compare the best. We obtain the best correlations

when we use visibility thresholds between 2–9 km, or use the

extinction variable (Table 2), so we chose to continue our

analysis with the 5 km threshold (VIS5) and the extinction

variable (EXT). Notice that the fraction of events with vis-

ibility less than 1 km does much worse than either of these

two visibility proxies, although it has been previously used

for dust studies (e.g. Kurosaki and Mikami., 2003). It is not

clear why the 5 km threshold does better than 1 km thresh-

olds in comparison with aerosol optical depth, but it could

be because 1 km thresholds are more associated with highly

localized events such as the location of a dirt road near the

meteorological station.

In order to consider how well the visibility data compare

to other datasets used for capturing variability, we repeat this

analysis using the TOMS AAI and TOMS AOD – datasets

with longer time periods than the AERONET data – that have

been used to infer dust source variability (e.g. Mahowald et

al., 2003a; Zender and Kwon, 2005). Using all AERONET

sites, TOMS AAI and TOMS AOD have correlations of 0.65,

0.23, respectively, between the monthly mean values and

AERONET optical depth. If we look only at dusty regions

(again the stations marked with a ** in Table 1) TOMS AAI

and TOMS AOD have correlations of 0.66 and 0.70, respec-

tively. Thus, over dusty regions, TOMS AAI and TOMS

AOD have similar ability to capture variability in optical

depths, but over other regions, TOMS AAI does better. This

is not expected, since the AOD is constructed to better con-

sider the effects of different aerosols. However, the TOMS

AOD is a combination of model and data, and thus may be

biased because of the model used to convert from an AAI to

an AOD. There still may remain problems with the use of

TOMS AAI or AOD because of drifts in the satellites when

outside the 1984–1990 period where the AAI is most stable.

3.2 Theoretical value for inferring dust sources

Now that we have evaluated the visibility data to indicate

how good of a proxy it is for aerosol amount, we next con-

sider what measurement is the best proxy for surface fluxes

of dust. Visibility data are actually measures of surface ex-

tinction. If this surface extinction comes solely from aerosols

(and not from water vapor or clouds) it is linearly propor-

tional to concentration. AOD is a measure of column ex-

tinction. Neither of these variables is directly measuring the

surface fluxes. Nonetheless, we are using either surface ex-

tinction (visibility-derived variables) or AOD (e.g. Prospero

et al., 2001) to try to gain information about surface fluxes.

Here we test how much of the variability in surface fluxes is

measured by variability in either surface extinctions or AOD.

This is an example of a problem where model calculations

can provide great insight into how to best infer spatial and

temporal variability in surface fluxes when we have no direct

measurements. When we try to estimate variability in surface

dust fluxes based on other measurements, previous model

analyses have suggested that dust surface concentration will

capture the variability better than dust column amount (Ma-

howald et al., 2003b). We extend that analysis here to corre-

late modeled total aerosol (sum of sulphate, carbonaceous,

dust and seasalt) AOD with modeled surface dust fluxes.

In the real world, we do not have data directly measuring

dust source fluxes, so we will use the aforementioned model

to estimate the relationship between variables we can mea-

sure (surface extinction or column amount) and dust fluxes

(Sect. 3.2). Errors in the model formulation of boundary

layer mixing or ventilation, or horizontal transport will cause

errors in this correlation. In addition, AERONET includes

only cloud free days, while we include all days, causing a

possible discrepancy. However, no other methods have been

postulated to evaluate the ability of different measurements

of dust concentration or optical depth to infer information

about dust flux spatial or temporal variability.

First we look at the ability of visibility data and satel-

lite data to provide information about the spatial location of

dust sources (Fig. 2). Notice that spatially, the maximum

in modeled dust sources are located in different places than

the modeled maximum in dust aerosol optical depth or sur-

face concentrations (these plots show monthly mean values

for January of 1981, but any particular month or annual av-

erage will look similar). The surface concentrations visually
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c.  Surface extinction vs. source flux.

b.  Column AOD vs. source fluxa. Column AOD vs. surface extinction

Fig. 3. Correlations of monthly mean modeled column aerosol optical depth (AOD) versus surface extinction (a), AOD vs. surface fluxes (b)

and surface extinction vs. surface fluxes (c).

appear more related to surface fluxes than optical depth vi-

sually. This is very clear in the scatter plots or the correla-

tion coefficients, which are shown for all land grid points in

the model. The correlation coefficients between the spatial

locations of dust surface fluxes and surface extinction or op-

tical depth in model are 0.75 and 0.46, respectively. Since in

the real world, we have total aerosol optical depth, not just

dust optical depth, that we are using to infer the dust source

variability, we can correlate those values instead in a model.

Correlating total aerosol and dust surface fluxes results in

correlation coefficients of 0.69 and 0.38, corresponding to

capturing 48% or 14%, respectively, of the spatial variabil-

ity in dust surface fluxes, when we use surface extinction or

optical depths, respectively. In the real world we only have

visibility data at a limited number of stations, not globally as

we do in the model. If we sample the model output at these

stations only, our correlation coefficient between extinction

and dust fluxes does not change substantially (0.73). How-

ever, this correlation does not include the effect of the low

spatial resolution of the visibility data, especially in desert

areas. In the real world, TOMS AAI does not sample optical

depth, but an aerosol index which is linearly proportional to

altitude, making it likely to perform worse at detecting dust

source fluxes than the model estimates here. The strength

of sources is not well related to the frequency of emissions

(Laurent et al., 2005), suggesting that sampling the number

of times TOMS AAI is above a certain threshold (e.g. Pros-

pero et al., 2002) is not necessarily a better way to obtain

information about the sources. (Notice that for our visibility-

derived variable, VIS5, which is a frequency variable, does

about as well as the EXT variable.) Thus, visibility-derived

variables should theoretically do a better job of capturing the

spatial variability in dust fluxes than satellite derived optical

depth. Whether they practically do is based on their ability

to capture regional scale aerosol fluctuations, which is exam-

ined in detail in Sect. 3.1.

Next we look at the ability of visibility-derived variables or

aerosol optical depth to capture temporal variability of dust

source fluxes at individual gridboxes in the model. These re-

sults (Figs. 3b and c) show a higher correlation between the

monthly mean time series in modeled surface extinction and

modeled dust surface fluxes than between modeled AOD and

modeled dust surface fluxes. Again, these results suggest that

visibility derived variables will do a better job at capturing

temporal variability in dust source fluxes than aerosol optical

depths. This is only true in practice if the quality of the visi-

bility data in calculating surface extinction is similar to satel-

lite retrieved column amount and has a similar spatial extent.

Our analysis suggests that satellite retrieved aerosol optical

depths are better than visibility-derived surface extinction at

capturing variability at AERONET sites (correlation coeffi-

cient of 0.66–0.7 against 0.47). Realize that each of these

datasets may be capturing different aspects of the surface

flux variability, since they have quite different qualities, and
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Fig 4.  Location of visibility stations

Fig. 4. Location of visibility stations with more than 30 years of data. Colored contours show fraction of surface extinction from desert dust.

Pluses show stations in regions dominated by desert dust (>50%), while dots show other locations.

may be poorly correlated for many reasons that are quite le-

gitimate (e.g. TOMS AAI measures absorbing aerosols, not

total aerosols). Although previous studies have implicitly as-

sumed that satellite derived aerosol optical depths provide

more information about spatial and temporal variability in

dust sources than visibility measurements (e.g. Goudie and

Middleton, 2001; Prospero et al., 2002) this analysis does

not clearly support that assumption.

4 Visibility trends and correlations in dust regions

Since the analysis in Sect. 3 indicates that visibility best

correlates with aerosol optical depth in dust dominated re-

gions, we focus on the visibility-derived measures of dust

here. Dust dominated regions are defined as those regions

where dust contributes to at least 50% of the surface aerosol

extinction in model simulations (Rasch et al., 2001). Fig-

ure 4 shows the locations of meteorological stations with at

least 30 years of data, and those within our dust dominated

region. There are 357 stations from dust dominated regions

included in the analysis of the visibility data. We analyze

these stations grouped together by region, as well as individ-

ually. For this analysis, we focus on annual means and an-

nual mean correlations for simplicity of presentation. Quali-

tatively similar results were obtained when monthly anoma-

lies were used.

The mean fraction of observations when visibility is less

than 5 km (VIS5) and mean surface extinction (EXT) derived

from visibility are shown in Fig. 5 averaged over the pe-

riod of 1974–2003. If we interpret this map as a proxy for

dustiness, it gives us a very different view of where the dust

sources are than what we get from TOMS AAI (e.g. Prospero

et al., 2002). The Bodele basin does not appear to be the

largest source of dust in this region, as some have claimed

(e.g. Prospero et al., 2002), and looks quite moderate in this

dataset. In our model, which has a strong source of dust

in the Bodele basin (seen in Fig. 2b), the model overpre-

dicts the surface extinction downwind of the Bodele basin

(relatively speaking–the values can not be compared quan-

tatively), and the visibility stations do appear to be down-

wind of the Bodele basin plume. One area that stands out in

this analysis as having low visibility (high VIS5 and EXT)

is the region around Pakistan and India, with low visibil-

ity also seen in parts of North Africa, the Middle East and

China/Mongolia. We normally do not think of the region

near Pakistan and northwestern India as being the largest

dust source (e.g. Goudie and Middleton, 2001; Prospero et

al., 2002), and the reason this region has such high VIS5

and EXT values could be due to anthropogenic aerosols that

may be stronger than our model predicts. On the other hand,

Pakistan and northwestern India is generally a highly popu-

lated region with an arid climate, and with some of the high-

est rates of reported desertification (Middleton and Thomas,

1997), so the visibility data could be correct. It is also pos-

sible that the visibility data are biased in that a given station

could stop reporting data during dust events, biasing where

the visibility data suggests the most aerosols are located.

There are no stations in North America where dust repre-

sents 50% of the surface extinction, and the stations in South

Africa are too few to include for a conclusive analysis. The

global distribution of EXT (extinction) and VIS5 (fraction of

observations with visibility less than 5 km) is different, and

this is one of the reasons we analyze both variables. They

are equally good (or bad) measures of aerosol optical depth,

according to Sect. 3, and yet they are measuring aerosols dif-

ferently – the number of extreme events (VIS5) compared to

background visibility plus extreme events (EXT).

Next we look at each region individually; the bounds on

the regional boxes used in the analysis below are shown
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a. VIS5

b. EXT

c. VIS1

d. Blowing dust or sand

Fig. 5. Mean fraction of visibility <5 km (VIS5), mean surface extinction (EXT), and mean fraction of visibility <1 km (VIS1) derived from

the visibility data averaged over 1974–2003 for each of the areas discussed in the text. Also shown are the dust storm frequency data based

on fraction of days with blown dust and sand from Engelstaedter et al. (2003) (d)., divided by 365 days per year.
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North Africa

a.

b.

c.

d.

e.

Fig. 6. Time series of the annual average over all the North Africa stations for extinction (EXT), fraction of visibility <5 km (VIS5), mean of

the cube of the winds, median winds cubed, precipitation, Palmer Drought Severity Index (PDSI), percent of area under cultivation, percent

of area under grazing, number of observations and number of stations included in the averages for each year. Figures 1 and 7 show the region

over which the stations are averaged. Variable described on the left axis is in black and on the right axis is in blue.

globally in Fig. 1. For North Africa, we show a time series of

the average visibility, winds, precipitation, Palmer drought

severity index (PDSI) and human land use and grazing in

Fig. 6. These values are averaged over the station locations

(not over the entire region), to weight them in a manner

similar to the visibility. Note that the data at neighboring

stations should not be considered statistically independent.

Visibility-derived variables (both EXT and VIS5) appear to

vary substantially over the time series, even averaged over

the whole of North Africa. We can see many visibility events

and high extinction during the 1970–1980s, associated with

the Sahel drought and higher downwind dust concentrations

(e.g. Prospero and Nees, 1986; Prospero and Lamb, 2003).

After the 1980s, fractions of VIS5 values decrease by about

50% while the extinction values decrease more slowly. There

is a peak of low visibility during the 1950s associated with

high winds, but the data are quite spotty during the 1940–

1960s. Thus it is not clear how robust these changes are

(the standard deviations are large relative to the signals, not

shown), although they appear at several different stations (not

shown). Precipitation varies over this time period, domi-

nated by the Sahel drought signal, and the Palmer drought

severity index (PDSI) is highly correlated with precipitation

(Dai et al., 2004). Cultivation tends to be increasing over

this time period, while grazing is decreasing, especially after

the 1950s. The poor temporal resolution of observations re-

lated to land use is obvious from this figure. Data availability

is highly variable over the time period with most consistent

observations only available after 1974. This is true in all of

dust regions, and because of this we focus our analysis on the

period 1974–2003.

We focus next on correlations between these variables at

specific stations from 1974–2003 in the North African re-

gion. For North Africa, the correlation coefficients between

visibility-derived variables and Palmer Drought Severity In-

dex (PDSI), the average of winds cubed, El Nino, NAO, year

(indicates where there is a trend in the data), cropland and

grazing are shown in Fig. 7. In these plots, reds indicate pos-

itive correlations, blues negative correlations, pluses indicate

no statistically significant correlations (at 99 percentile sig-

nificance), and boxes indicate that the correlations only exist

between that variable (see methods for how this “irreplace-

able” condition is calculated) and the visibility-derived vari-

able. Notice that there are very few correlations which are

captured by just one variable, indicating that interpreting the

results of the correlation is not staightforward. The strongest
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b.

c. d.

North Africa.

e. f.

g.
h.

i. j.

k. l.

m. n.

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8

Fig. 7. Correlation coefficient between annual averaged time series of fraction of visibility less than 5 km (VIS5-left column) and extinction

(EXT-right column) for the following variables: Palmer Drought Severity Index (PDSI), mean of the cube of the winds (winds3), El Nino-

Southern Oscillation (ENSO), North Atlantic Oscillation (NAO), Year (if correlated, this means there is a trend with time), cropland and

grazing. The color bar indicates the correlation coefficient. Boxes around a value indicate the value is irreplaceable (see text for explanation),

while pluses indicate not statistically significant. The two variables which are correlated are in the heading of the panel with a hyphen

between. The grey scale contours underlying the data represents the dry lake bed factor from Ginoux et al. (2001), for reference to where

dust sources from topographic lows should be located.
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   Algeria
a.

b.

c.

d.

e.

Fig. 8. Same as Fig. 6, but for a region around Algeria (28 N to 3 N, 2 E to 15 E and shown in Fig. 1).

correlations are between the PDSI and mean cube of the

winds and the VIS5 or EXT variable. We use mean cube

of the winds because the strength of dust sources is usually

proportional to winds cubed (e.g. Mahowald et al., 2005).

This suggests that meteorology drives most of the temporal

variability in North Africa, consistent with previous studies

(e.g. Prospero and Nees, 1986; N’Tchayi Mbourou et al.,

1997; Prospero and Lamb, 2003). The correlations at most

stations between PDSI and visibility tend to be larger in mag-

nitude than between precipitation, previous year’s precipita-

tion or the previous year’s PDSI and visibility (not shown),

consistent with drought severity being a better measure of

soil moisture than precipitation alone. Thus, we focus on us-

ing the PDSI for the rest of the analyses. There is little cor-

relation between ENSO or NAO (Trenberth and Stepaniak,

2001; Hurrell, 1995) and visibility in North Africa (similar

to Moulin and Chiapelo, 2004; Chiapelo et al., 2005), un-

like further downwind using other datasets (e.g. Moulin et

al., 1997; Mahowald et al., 2003b). There are some statisti-

cally significant trends in time (i.e. correlations with year) in

the VIS5 and EXT, although they are opposite in sign in some

cases along the Mediterranean coast of North Africa, indicat-

ing that the number of events is going up, but the background

aerosol concentration may be going down. If we calculate

the correlation over 1940–2003, instead of just over the time

period between 1974 and 2003, we obtain much stronger

correlations between year and extinction and between land

use and extinction along the Mediterranean coast of North

Africa, perhaps associated with the difference in the amount

of data. Figure 8 shows the average time series in a region

centered on Algeria (28 N to 3 N, 2 E to 15 E). This shows

that there is little data before 1974, but that the data suggest

episodes of high VIS5 and EXT during the 1950s and 1960s.

There is a tendency for EXT to be higher later in the cen-

tury, consistent with a correlation between EXT and year at

individual stations (not just because of discontinuities in data

records at individual stations). There is also a positive corre-

lation between EXT and cropland and a negative correlation

between EXT and grazing (since cropland and grazing are

almost linearly increasing and decreasing, respectively, over

the 1940–1990s). Similar behaviour is seen for the average

of all the stations in the W. Sahel (13 N to 22 N, 20 W to

15 E) time series (Fig. 9), with a peak in VIS5 and EXT in

1985 (during the Sahel drought), with some high values of

VIS5 and EXT in the 1940s and 1950s.

The time series for the Middle East region is shown in

Fig. 10. Similar to North Africa, there tend to be many low

visibility events in the beginning of the time record (1940–

1960s), where there are few data (and large standard devia-

tions, not shown). But during the 1974–2003 period, when

the amount of data is more stable, there is not as much fluctu-

ation in VIS5 or EXT, although mean winds decrease. Cor-

relation coefficients at each individual station over 1974 to

2003 (Fig. 11) suggest that meteorology is not as important
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West Sahel

a.

b.

c.

e.

f.

Fig. 9. Same as Fig. 6, but for a region in the Western Sahel (13 N to 22 N, 20 W to 15 E also shown in Fig. 1).

Middle East

a.

b.

c.

e.

e.

Fig. 10. Same as Fig. 6, but for the Middle East (region shown in Fig. 11).
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 a.  Middle East b.

c. d.

e. f.

g. h.

i. j.
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Fig. 11. Same as Fig. 6, but for the Middle East (ENSO and NAO are not included).

as in North Africa, but that there are statistically significant

temporal trends. There are also correlations between human

activities (cropland or grazing) and dust in different parts of

the Middle East. There are statistically significant decreases

in Pakistan/India over 1974–2003. If we look at correlations

in Pakistsan/India over the longer time period (back to the

1940s) there are more stations with positive trends in VIS5

and EXT (not shown) and more statistically significant cor-

relations with cropland and grazing (both positive and nega-

tive).

For the sources in and around China (see Fig. 1 or Fig. 5c

for region), we tend to see high VIS5 and EXT in the 1950s,
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China

a.

b.

c.

d.

e.

Fig. 12. Same as Fig. 6, but for a region near China (region shown in Fig. 13).

similar to other regions, and a downward trend between 1974

and 2003 (Fig. 12). Correlations between VIS5 and EXT and

other variables (Fig. 13) suggest that precipitation is not im-

portant for variability in visibility, but that winds are cor-

related with variability in visibility, similar to the results

seen in other studies (e.g. Zhang et al., 2003; Sun et al.,

2001; Zhao et al., 2004; Liu et al., 2004). Our data do not

show the increase in dustiness in 2000-2002 seen in Kurosaki

and Mikami (2003), although our results are consistent with

their conclusion that wind drives variability in dust events.

Kurosaki and Mikami (2003) include in their analysis many

stations close to urban areas in China, which are excluded in

our analysis.

For Australia, there are fewer stations compared to the

other regions previously discussed, but again we see the low

visibility in the 1950s (with large standard deviations, not

shown), with less variability between 1974 and 2003 in the

VIS5 and EXT data. There is an exception in the year 1986,

which is anomalously high, especially for VIS5 (Fig. 14).

Correlations at specific stations (Fig. 15) suggest that PDSI

has the strongest correlations with dust, but in a manner that

is counterintuitive – the higher the water availability is, the

more dust. This makes some sense as a dust correlation if

the increasing water makes the soil more erodible because

the water brings more erodible sediment into the dry fluvial

channels and lake beds or breaks up crusts (e.g. Okin and

Reheis, 2002; Mahowald et al., 2003a; Zender and Kwon,

2005. But this counterintuitive correlation could also be due

to other aerosols or increasing water vapor changing visibil-

ity as well. There are downward trends in VIS5 and EXT

over the 1974–2003 time periods at some stations (similar

results are seen for Fig. 15 when the whole time period is

considered). There are 2 (out of 16) stations with statisti-

cally significant correlations between VIS5 and ENSO, but

these significant correlations are not matched between EXT

and ENSO. (* This is in contrast to the correlation between

El Nino and precipitation in many regions of Australia, al-

though not necessarily across the dust region (Dai et al.,

1998).

In South America, there are 7 stations with data for part

of the time period. Again there are low visibilities at the first

part of the time series, and then flatter visibility trends for

the rest of the time series (Fig. 16). There are few correla-

tions between the station data and other variables (Fig. 17).

Some stations indicate that wind speeds are anti-correlated

with VIS5 and EXT (which may indicate that these stations

are not dust dominated and should be ignored), and there are

some correlations between year, cropland, grazing and pre-

cipitation, but no large scale patterns. Only one station has a

correlation between ENSO and EXT.

There are a couple of regions where our model does not

predict the surface extinction to be dominated by dust, but

where dust emissions may be important. We consider them

briefly here, including all stations with more than 30 years
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Fig. 13. Same as Fig. 11, but for a region near China.

of data. First we look at the Southwestern U.S. region

(e.g. Prospero et al., 2001) (Fig. 19 shows the region). A time

series plot shows that both VIS5 and EXT have been roughly

increasing since the 1940s, with a lot of variability (Fig. 18).

For this region, the data are more regularly available prior to

1974 than in previous regions, so we show correlations from

1940 to 2003 (Fig. 19). There are statistically significant cor-

relations between most of the variables and VIS5 or EXT.

Winds and antecedent PDSI are sometimes anti-correlated

with VIS5, which is not intuitive. Increases in precipita-

tion may bring in more easily erodible soil (Mahowald et al.,

2003a; Okin and Reheis, 2002), but lower winds seem un-

likely to contribute to greater dust sources, unless dust devils

are important (e.g. de Renno et al., 1998). Both the results

of the correlations, as well as the fact that these regions are

not generally dominated by dust make the interpretation of
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Fig. 14. Same as Fig. 6, but for a region in Australia (region shown in Fig. 15).

Table 3. Correlation coefficients with time and visibility-derived variables. If a significant correlation exists, this implies a trend with time.

Only values significant at the 95% are shown here.

Region EXT correlation with time VIS5 correlation with time

1974–2003 (whole time)

All dusty regions NS (NS) NS (NS)

N. Africa NS (0.79) NS (0.43)

Middle East 0.40 (0.42) 0.57 (0.35)

China –0.86 (–0.59) –0.89 (–0.72)

Australia NS (NS) NS (–0.30)

South America NS (–0.22) 0.39 (–0.40)

these results difficult, and are consistent with the results of

the model suggesting that visibility in this region is not dom-

inated by dust.

The Aral Sea area is another region which is thought to

have a great deal of dust (e.g. Prospero et al., 2001), although

our model does not predict dust as the dominant source of

surface extinction. VIS5 and EXT tended to be high during

the 1950s, and are lower now (Fig. 20). Similarly, winds

were higher in the 1950s than today. These might be indi-

cations that the data quality or location of the measurement

devices have changed, or it could be an indication that there

are real changes in the conditions in the Aral Sea. Similar to

North America, the amount of data is relatively stable over

the whole period of data (1940–2003), so we show correla-

tions over the whole period (Fig. 21). There are strong cor-

relations between wind speed cubed and VIS5 and EXT as

well as between grazing and VIS5 or EXT. There are anti-

correlations between VIS5 and EXT and cropland and year.

Studies have shown that Aral Sea levels have dropped dra-

matically, and that the area of the Sea has been reduced by

about 80% in recent decades. There have only been anecdotal

studies of the changes in dustiness of the region (e.g. Smith

et al., 1999). The visibility-based data do not support a de-

crease in visibility since the 1940s. This could be because of

shifts in winds as the lake has dried up.
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Fig. 15. Same as Fig. 11, but for a region near Australia.

If we consider the average of all 357 stations in dusty re-

gions (Fig. 22), we see that the 1940s and 1950s were periods

with relatively high VIS5 and EXT. These were more windy

periods, although there is also more variability in winds. It

is interesting that there was higher VIS5 and EXT during

this period, but it raises a question about the data. It could

be that during this period, there were more dirt roads close

to the meteorological stations, and this caused lower visibil-

ity. This was a period of rapid changes due to the World

War and technological development. There may also have

been an increase in soil conservation efforts in cultivated ar-

eas after this time period. But these results could also be

an indication that the measurement techniques are not con-

sistent across our entire time period. Overall, the appear-

ance of a peak in both EXT and VIS5 at the beginning of

our time series, when the data were relatively sparse, appears
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Fig. 16. Same as for Fig. 6, but for a region in South America (shown in Fig. 17).

suspicious. Thus, we may want to readdress previous stud-

ies which have suggested the 1950s were dustier in China

than current (Zijiang and Guocai, 2003), as an example, and

see if there are independent datasets which allow us to check

that this result is not because of biases in the data collection

method. On the other hand, it is possible that the 1940s and

1950s were a much dustier time period in all dust regions

globally. Over the whole time period, there is no statisti-

cally significant trend in EXT or VIS5 for all regions taken

together. For some regions (China, Middle East or South

America) there are statistically significant trends with time

in the visibility-derived variables over the whole time period

or 1974–2003 (see Table 3).

Another way to analyze the same data is to look at corre-

lations between VIS5 and EXT and other variables not over

time, but in space across the stations. If we look at the spatial

correlations across all regions using the means over all years

(or over 1974–2003, the results do not change qualitatively),

we can look at some different hypotheses about drivers of

dust variability spatially. For the correlations between visi-

bility parameters and topographic lows we use three repre-

sentations: the preferential source distribution of Ginoux et

al. (2001), the dust source used in the NCAR Community

Atmospheric Model (Mahowald et al., 2006) (which is based

on the Zender et al. (2003b) geomorphic soil erodibility fac-

tor which calculates upstream area and satellite derived veg-

etation, Bonan et al., 2002), or the surface reflectance-based

sources of Grini and Zender (2004). In addition to the mean

cropland extent from Ramankutty and Foley (1998) used in

the main part of the study, we use a new cropland dataset be-

ing developed for 2000 (Ramankutty, personal communica-

tion). Table 4 shows the results of this analysis over the 357

stations in dust dominated regions. Only correlations that are

significant at the 99 % are shown, and we crudely include the

impact of non-independence of the stations by reducing the

number of degrees of freedom by 4 in the statistical signifi-

cance calculation. Using VIS5 or EXT these results suggest

that cultivation is the best determinant of spatial variability

in dustiness, not wind speed or whether there are topographic

lows nearby. The correlation coefficients between cropland

extent (Ramankutty and Foley, 1998) and VIS5 and EXT are

0.55 and 0.45 respectively, consistent with cultivation being

associated with 20–30% of the dustiness seen in the visibility

record. We obtain similar results if we use the more recent

dataset developed for the year 2000 (Ramankutty, in prep.),

although this correlation is sensitive to the resolution of the

cropland data. At too high of a resolution (5 min) the cor-

relation decreases, probably because croplands which may

be associated with dust sources are not located in the same

5 min grid box as our stations, but are located within the

100 km grid size. In addition, we can analyze several vari-

ables at the same time and see if more variability is captured.
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Fig. 17. Same as for Fig. 11, but for a region near South America.

If we include winds cubed, PDSI, croplands, grazing and to-

pographic lows, slightly higher correlations coefficients are

found than for any individual process (0.58 and 0.50 vs. 0.55

and 0.45 for VIS5 and EXT, respectively), and these results

also suggest that cultivation is the most reliable variable for

predicting visibility distributions. This result is consistent

with the view of visibility that we obtain from Fig. 5, where

the lowest visibility (i.e. highest VIS5 and EXT) is observed

in Pakistan and northwestern India, where cultivation in an

arid region may be contributing to high rates of desertifica-

tion (Middleton and Thomas, 1997).These correlations are

driven by Indian and Pakistani stations. The correlation be-

tween land use and visibility may be due to biases, of course.

For example, humans must be in a region in order for there

to be either land use or a meteorological station.
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North America (non-dust dominated)

Fig. 18. Same as for Fig. 6, but for a region in North America (shown in Fig. 19 and Fig. 1). This region is one where the model predicts that

dust does not dominate the aerosol extinction in the surface layer.

Table 4. Spatial correlations between visibility-derived variables and other variables (values not significant at the 99% are indicated by NS;

NA indicates no data).

Variable VIS5 EXT VIS1 Blowing dust

Mean winds cubed NS NS NS NA

Median winds –0.27 –0.21 NS NA

Precipitation NS NS NS –0.39

PDSI NS NS NS NS

Cultivation (Ramankutty 0.55 0.45 NS NS

and Foley, 1998)

Cultivation (Ramankutty, 0.48 0.41 NS NS

personal communication)

Grazing NS NS NS NS

Topographic low NS NS NS 0.31

(Ginoux et al., 2001)

Topographic Low NS NS NS 0.41

(upstream area)

(Zender et al., 2003b)

Topographic low NS NS NS 0.46

(surface reflectance)

(Grini et al., 2004)

These results are sensitive to which variable we use. If

we use the fraction of visibility less than 1km (also shown

in Fig. 4 and Table 4), we obtain no statistically signifi-

cant correlations with either topographic lows or human land

use variables. However, if we use the dust storm frequency

dataset described in Engelstaedter et al. (2003) (data courtesy
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Fig. 19. Same as Fig. 11, but for a region in North America.

of I. Tegen and S. Engelstaedter), we obtain similar results

to those obtained in that study (Fig. 4 and Table 4) – the

dustiness in this dataset is correlated with natural dry lake

beds, and not with land use proxies. In doing this compar-

ison, we realized that the dust storm frequency dataset used

in Engelstaedter, et al. (2003) represents the number of days

with blowing dust or sand per year (and is not derived from

the visibility data, but from the atmospheric phenomenon

dataset), not the fraction of days with visibility less than

1km. The original description of the datasets was unclear.
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Fig. 20. Same as Fig. 6, but for a region near the Aral Sea (shown in Fig. 20 and Fig. 1). This region is one where the model predicts that

dust does not dominate the aerosol extinction in the surface layer.

However, interpreting the dust storm frequency dataset used

in Engelstaedter et al. (2003) as blowing dust or sand makes

this dataset consistent with the results of this and other pre-

vious studies which analyzed data at particular stations (e.g.

N’Tchayi Mbourou et al., 1997).

We do not know which of these variables best represent the

true location of the dust sources, since we do not know where

the sources are. Here, we emphasize the results based on

the VIS5 and EXT visibility-derived variables, since we are

able to correlate them with a known quantatity (AERONET

aerosol optical depth in Sect. 3.1), and we think that the frac-

tion of the VIS5 or EXT that correlates with the AERONET

aerosol optical depth represents “regional” aerosols, not a

very local source.

5 Summary and conclusions

This study focuses on using visibility data from surface me-

teorological stations as an indicator of dust variability, and

specifically dust source variability. Because the quantitative

nature of visibility data is not well established, we first eval-

uate the utility visibility data for our purposes. Our goal is

to look at long term variability, so we use the monthly mean

AERONET aerosol optical depth (AOD) at the 33 stations

with more than 3 years of data. While AERONET data are

high quality, it is not available as spatially or temporally ex-

tensively as the visibility data.

For each AERONET station, the monthly mean AOD val-

ues are compared to visibility-derived variables at the clos-

est meteorological station. We do this to see what portion

of the visibility is related to aerosols that are seen in high

quality aerosol optical depth data and should represent more

regional scale aerosols. At many stations there are no sta-

tistically significant correlations between the column aerosol

optical depth and the visibility-derived variables, although

theoretical calculations suggest there should be. Overall, for

the surface extinction and monthly fraction of events with

<5 km visibility, the correlations are 0.25 and 0.33, respec-

tively, implying that between 4 and 9% of the variability in

aerosol optical depth is captured by the visibility data. If we

focus on stations that are predicted to be dominated by dust

based on model calculations, we obtain overall correlations

for extinction and fraction of observations with a visibility

<5 km of 0.47 and 0.46, respectively. These results sug-

gest that about 22% of the variability in the optical depths

is captured in the visibility-derived variables. We tested sev-

eral different visibility-derived variables, and results suggest

that the fraction of observations with a visibility less than

1 km is less well correlated with aerosol optical depth than

either fraction of visibility less than 5 km (VIS5) or averaged

surface extinction (EXT; related to 1/visibility), so we used
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Fig. 21. Same as Fig. 11, but for a region near the Aral Sea.

those variables for most of the analyses in this paper. The

fraction of observations with visibility less than 1 km may be

indicative of some other important value, but we do not know

how to evaluate its accuracy.

Similar correlation analyses using the TOMS AAI and

TOMS AOD data suggest that they are able to capture about

45–49% of the variability in the AERONET optical depth

data over dusty regions (correlation coefficients of 0.67 and

0.7). Note that the TOMS AOD only has a correlation coef-

ficient of 0.23 over all AERONET stations, suggesting that it

is not a robust measure of temporally and spatial variability

in aerosol optical depth in non-dusty regions, even ignoring

problems in satellite drift outside the 1984–1990 period.

For this study, and many previous studies, we use mea-

sures of dust AOD or surface extinction to infer the loca-

tion and temporal variability of dust source surface fluxes,
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Fig. 22. Same as Fig. 6, but for an average across all the dusty stations considered in this study.

since we cannot directly measure dust source surface fluxes

globally. Using models we can better understand which vari-

ables best represent the spatial and temporal variability in

dust source surface fluxes. Our calculations show that sur-

face extinction should be much better related to source sur-

face fluxes of dust than column amount (correlation coeffi-

cient of 0.73 vs. 0.38, equals 36% vs. 10% of variability, re-

spectively). However, the visibility data has problems with

its quality. Thus, it is unclear whether satellite aerosol opti-

cal depth or visibility-derived variability best gives informa-

tion about variability in dust sources (either spatial or tem-

poral). Some studies assume that TOMS AAI represents the

long-range transported dust (e.g. Prospero et al., 2002). Be-

cause TOMS AAI is linearly proportional to the height of

the dust, this is probably true (Torres et al., 1998; Mahowald

and Dufresne, 2004). However, this also makes TOMS AAI

less appropriate for studying spatial or temporal variability

in dust source fluxes. The visibility-derived-proxies repre-

sent regional aerosols to the extent that they correlate with

the AERONET AODs, and thus represent dust that has been

transported somewhere from the kilometer to the hundreds

of kilometers scale. The analysis here suggests that visibility

data and TOMS AAI or TOMS AOD may be equivalently

good (or bad) at representing the spatial and temporal vari-

ability in surface dust fluxes. Indeed, from their characteris-

tics, TOMS AAI will get higher altitude dust while visibil-

ity data will see dust confined to close to the surface. More

work on determining better ways to determine the location

of dust source areas is vital, since the two main datasets we

have to address dust sources (satellite optical depths or vis-

ibility data) show different results. We examined the tem-

poral trends in VIS5 and EXT in regions dominated by dust,

where the visibility-derived variables are able to capture over

20% of the variability in aerosol optical depth measured by

AERONET. Although meteorological station data are avail-

able from 1900 to 2003, in dusty regions there are only data

after 1940 in our dataset. The data record prior to 1974 is

not consistent, forcing us to limit our analysis of “long” term

trends to the last 30 years. This is disappointing, since we

had hoped to extend the satellite record significantly into the

pre-1980s period. This implies we are missing any processes

occurring prior to the 1970s.

Analysis of the temporal variability in VIS5 and EXT

shows that there are maxima in the 1940s and 1950s through-

out most of the dust regions. It is unclear whether these max-

ima occur because this was a dustier time period, or because

of changes in measurement methods, scarceness of the data

during this period, or an increase in dirt roads (which were

later paved) or changes in farming practices (contour plow-

ing, no-till agriculture and crop land intensification). In order

to better understand what happened in the 1940s to 1950s,

we should try to find independent datasets before concluding

that it was a dustier period.
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There are a relatively stable number of observations after

1974 in the dataset over dusty regions, so we conducted most

of our correlation analyses between individual station time

series of VIS5 or EXT and other variables during the pe-

riod 1974–2003. For analysis we present simple and more

commonly used correlation coefficients, but rank correla-

tions show qualitatively similar results. However, in many

cases, there are multiple variables which correlate with the

visibility-derived proxies, making it more difficult to inter-

pret the results. We focus on results that are regionally co-

herent. The high correlation coefficients between annually

averaged PDSI and both VIS5 and EXT are consistent with

precipitation being very important in the Sahel region of

North Africa and the Mediterranean coast of North Africa.

High correlations between winds and VIS5 or EXT in China

are consistent with winds driving much of the variability of

dustiness in China. In other regions, the correlation coef-

ficients are not statistically significant on a regional basis.

In no region are there large numbers of strong correlations

between either NAO or ENSO and visibility, unlike what is

seen farther downwind (e.g. Moulin et al., 1997; Mahowald

et al., 2003b; Prospero and Lamb, 2003; Moulin and Chia-

pello, 2004). Temporally, correlations between human culti-

vation or grazing and visibility-derived variables are not seen

over large regions in our datasets, perhaps due to the poor

temporal quality of the cultivation and grazing datasets.

There are regions with statistically significant trends with

time in VIS5 or EXT for the period 1974–2003 (seen as a

correlation between year and these variables). Upward trends

with time are seen regionally in parts of North Africa, espe-

cially in EXT, correlated with lower precipitation. Down-

ward trends are seen in regionally broader areas, including

parts of Central Asia and China. Looking at the average

across all 357 stations in dusty regions, there is no statisti-

cally significant trend in VIS5 or EXT. Note that analyses of

North America and the region close to Aral Sea (while more

uncertain because these regions’ visibility is not dominated

by mineral aerosols) suggest that EXT and VIS5 are decreas-

ing in these regions.

We get a different picture of the important processes if we

look spatially across stations instead of at individual stations

over time. The hypothesis that dry lake beds are dust sources

is not supported, since there is no significant correlation be-

tween mean VIS5 or EXT in our data and three measures of

the topographic lows (to the extent that topographic lows rep-

resent dry lakebeds). Instead the most consistent correlations

are between VIS5 and EXT and cultivation across all regions,

with correlation coefficients suggesting that approximately

30% of the spatial distribution in the dustiness in the stations

is associated with cultivation (note this does not mean that the

cultivation source of dust is 30% of the dust flux, because of

the statistics used here). Most of this cultivation related dusti-

ness appears to be in the Pakistan/India region (see Fig. 5).

This may indicate that the results here may be sensitive to the

quality of this data as a reflection of dust sources. We may be

seeing a different signal in the spatial versus temporal anal-

ysis because most of the dust sources may have been gener-

ated prior to 1974 in the cultivated regions. To add complex-

ity to this isue, if we use a different meteorological dataset

based on blowing dust or sand (as used in Engelstaedter et

al., 2003), dry lake beds or topographic lows are consistent

with the data (correlation coefficients between 0.3 and 0.46),

but cultivation is not.

The hypothesis that most dust comes from topographic

lows is supported from the TOMS AAI data, geomorphic

data and the blowing sand and dust data (e.g. Goudie and

Middleton, 2001; Prospero et al., 2002; Engelstaedter et al.,

2003). However, the visibility data do not support that hy-

pothesis. Which dataset should we believe? According to

the analysis here, it is likely that the visibility-derived data

used here or TOMS AAI or TOMS AOD are equally good

(or bad) at inferring the spatial and temporal variability of

dust surface fluxes. In addition, the TOMS AAI retrieval

method is biased to show higher values in dry topographic

lows in desert regions than in other nearby regions (Ma-

howald and Dufresne, 2004). Thus, this paper suggests we

may need to re-examine the hypothesis that topographic lows

are the dominant source of dust. Using datasets that represent

the vegetation, land use, and underlying soils and landforms

would provide a more physical basis from which to under-

stand dust sources (e.g. Ballantine et al., 2005) Because of

the known biases of the TOMS AAI specifically, and the poor

correlation of AOD with dust surface fluxes, other datasets

should be used to improve our understanding of dust sources.

Any conclusions about what drives variability in desert

dust sources based on visibility data must include a caveat,

because of the question about the quality of the data. Com-

parisons suggest that the visibility data only capture about

22% of the variability in aerosol optical depth, and thus may

be describing only about 20% of our dust source variabil-

ity (assuming that our data are Gaussian, which they are

not). However, visibility datasets are more extensive in time

and space than our other datasets, and may be as good as

datasets from satellites at looking at surface emissions of dust

(e.g. TOMS AAI or TOMS AOD). The visibility data sets

here suggest very little global trend in dustiness for the period

of 1974–2003. One of the major problems with predicting

changes in desert dust sources and loading is de-convolving

the relative roles of climate change, carbon dioxide fertiliza-

tion and land use in impacting dust mobilization. The tem-

poral analysis performed in this study suggests that climate

variability and change (through wind changes, and the im-

pact of changes in soil moisture from precipitation and sur-

face temperature changes) and potentially carbon dioxide fer-

tilization, and not human land use practices, drive temporal

changes in dust sources between 1974 and 2003 in some re-

gions. However, spatial analysis of dustiness seen in the vis-

ibility record is consistent with a large fraction of the dusti-

ness being associated with human land use, primarily in Pak-

istan and India. Therefore this analysis suggests that land use
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perturbations may control where some of the dust sources

are, but that meteorological variability controls the temporal

variability over the last 30 years. However, the potential bi-

ases of the visibility dataset prevent strong conclusions based

solely on these results.
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