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GLOBAL UNIQUENESS FOR A TWO-DIMENSIONAL SEMILINEAR
ELLIPTIC INVERSE PROBLEM

VICTOR ISAKOV AND ADRIAN I. NACHMAN

Abstract. For a general class of nonlinear Schrödinger equations -Au+a(x, u)
= 0 in a bounded planar domain £2 we show that the function a(x, u) can
be recovered from knowledge of the corresponding Dirichlet-to-Neumann map
on the boundary dQ .

1. Introduction

Let Q. be a bounded Lipschitz domain in R2. For any real-valued potential
q(x) in LP(Q), p > 1, we denote by l\(q) the lowest Dirichlet eigenvalue of
-A + q in Q.

We consider the semilinear elliptic equation
(1.1) -Au + a(x,u) = 0    in Q.
We assume that, for some p > 1,
(1.2) acL»(n, Cx[-M, MX)     forallM<oo,

(1.3) a(x,0) = 0,
and

(1.4) — (x,u)^qt(x)   for some q* c LP(Q) with Xx(qt) > 0.

In view of (1.3), we can restate (1.2) more explicitly as follows: |^ (x, u) is a
Carathéodory function onflxl (i.e., measurable in x and continuous in u )
satisfying

(1.5) sup \^-(-,u)\cL"(Q)     for all M < oc,
\u\^M   öu

One can then show (we do it in Section 2) that for any f in Hxl2(dQ.) n C(öQ)
there is a unique solution u(x; f) in HX(Q) n C(Û) of (0.1) with u\da = /.
We can therefore define the Dirichlet-to-Neumann map Aa on the boundary
dQ, by:

(1.6) Kf=^(-,f)\oa£H-x'2(dil),
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that is

(1.7) (v , Aaf)da = / [Vv(x) • Vw(x) + v(x)a(x, u(x))]dx,
Ja

where u = «(• ; /) and v is any function in HX(Q).
We are interested in the inverse problem of determining the function a(x, u)

from knowledge of Aa .
In dimensions higher than 2, global uniqueness was proved in [Is-Sy] using a

linearization technique first introduced in the context of parabolic equations in
[Is 1]. (By the same technique, global uniqueness for a(x, u) in the quasilinear
equation div (a grad u) - 0 was recently obtained in [S 2].)

In dimension 2, the problem appears at first sight to be underdetermined:
we wish to recover the function of three variables a(x, u) from data on the
two-dimensional set 9Q x <9Q. It turns out that the nonlinear map Aa con-
tains knowledge on a full one-parameter family of Dirichlet-to-Neumann maps
corresponding to linear Schrödinger operators. Global uniqueness for the for-
mally determined linear case a(x, u) = q(x)u has been unknown for a long
time, although a number of partial results have been obtained: local uniqueness
for potentials with small H2(Q.) norm was proved by Sylvester and Uhlmann
([Sy-U]) and extended by Sun ([SI]) to potentials close to q constant. Sun and
Uhlmann ([Su-Ul]) have proved local uniqueness near generic q and global
uniqueness for generic pairs of potentials; they have also shown ([Su-U2]) that
L°° potentials can be determined modulo Ca(Ù), 0 ^ a < 1 . We will derive
our results from the proof in [N 3] of global uniqueness of the conductivity
coefficient y in the equation V • (yVw) = 0 with a given Dirichlet-to-Neumann
map.

To formulate our main result, the following notation will be helpful: let

(1.8) u*(x) = inf{M(x ;f):fc C(dQ) n Hl'2(dSl)},

(1.9) u*(x) = sup{u(x ;f):fc C(dQ) n Hx'2(dQ)}

(see also (4.12) and (4.17)) and let

(1.10) E = {(x, u)cQxR: u*(x) < u < u*(x)}.

Theorem 1.1. Let ¿I be a bounded Lipschitz domain in K2, and suppose that
<z(1)(x, u) and a(2)(x, u) satisfy the conditions (1.2), (1.3), and (1.4). If AaW =
Aa,2) then u(X) = i¿2), w*«1' = u*W in Q and a™ = a(2) on £(1) = £(2).

The proof gives (at least when the boundary dQ. is C1,1 ) a (theoretical)
constructive procedure for recovering u*,u*,E and the function a(x, u) on
E from the Dirichlet-to-Neumann map Aa .

In the paper [Is-Sy] it was observed that in general, the set E need not be all
of il x R. On the other hand, if we make the additional assumption

(1.11) sup|^(.,M)€L"(n).
«6R OU

then, as in [Is-Sy] we prove (for the larger class of nonlinear terms allowed here)
that £ = flxl.
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Corollary 1.2. Let il be a bounded Lipschitz domain in R2. Suppose that the
nonlinear coefficient a in (1.1) satisfies the conditions (1.2), (1.3), (1.4) and
(1.11). Then a(x, u) can be recovered throughout Qxl from knowledge of the
Dirichlet-to-Neumann map Aa.

The above corollary is certainly applicable to linear equations, but in that
case we have the following stronger uniqueness result, where only one of the
two potentials is assumed a priori to satisfy (1.4). If a(x, u) = q(x)u with q
such that 0 is not a Dirichlet eigenvalue of -A + q in Q, we denote by Aq the
corresponding (linear) Dirichlet-to-Neumann map.

Theorem 1.3. Let il be a bounded Lipschitz domain in R2 and let qx and <?2
be real-valued and in Lp(il) for some p > 1. Suppose that Xx(qx) > 0 and that
0 is not in the Dirichlet spectrum of -A + #2 • If A9l = Aqi, then qx = <?2 a.e. in
il. If il is C1,1 (or, more generally, if we know a C1,1 domain Q* D Û such
that q, extended to be zero outside il, has Xx(q) > 0 in il*) then the proof
gives a constructive procedure to recover q from knowledge of Aq on dil.

Theorem 1.3 yields the following semiglobal uniqueness results for fixed-
energy inverse scattering problems. In the first of these, we consider point-
source data, measured in the "near-field": for a q a real-valued potential (not
necessarily of compact support) satisfying

(1.12) \q(x)\ ^ c{\ + |x|)_1~£ for some e > 0,

let &q(x, y; X) denote the outgoing solution in R2 of

(1.13) -Ax&q(x,y;X) + (q(x)-X)gq(x,y;X) = ô(x-y).

Corollary 1.4. Let il be a bounded Lipschitz domain with connected exterior.
Let qx, ^2 be two real-valued potentials which satisfy (1.12) and are identical
outside il. If S?qt (x, y ; X) — &qi(x, y ; X) on Oil x dil for one X > 0 with
A < ¿i(<7i) in il, then qx — ̂ 2 •

Let S?q(X) denote the single-layer potential operator defined on dil by

(1.14) &q{X)Ax)= j   %(x,y;X)f(y)da(y).
Joa

Under the hypotheses above, we show in the Appendix that 5f'q¡ (X) are bounded
invertible operators: H~x/2(dil) -> Hxl2(dil) and the identity
(1.15) Aqi_l-Aq2_, = S--x(X)-^~x(X)

(first found in [Nl] for the case of constant background) holds. Furthermore,
if q is known outside il then the proof gives a formula (A.3) for recovery of
Aq-x, hence of q , from knowledge of <5^(A) on dil.

It may be worth noting that one motivation for working with the assumption
Xx(q) > 0 throughout the paper, rather than the simpler q(x) ^ 0, is to allow
Corollary 1.4 to be applicable to the acoustic equation. Let &(x, y) denote the
wave-field generated by a point source oscillating harmonically with frequency
co in a medium with variable speed c(x) :

(1.16) Ax&{x,y) + ^Lv{x,y) = -S(x-y).
C    lAl
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Assuming for simplicity c(x) = Co  (a known constant) outside il, we have
X = ^y  and q(x) = co2(\ - -jf-v), so that q(x) - X cannot be positive in

this case. The condition Xx(q) > X becomes Xx(-co2/c2(x)) > 0. A sufficient
condition for the latter is c2(x) ^ (o2/(X® - e) for some e > 0, with Xo the
first Dirichlet eigenvalue for the Laplacian in Q .

Corollary 1.4 is in turn equivalent to the following far-field version.
Corollary 1.5. Let il be a bounded Lipschitz domain with R2 \ Ù connected.
Let qx, q2 be two real-valued potentials which satisfy (1.12) and are identical
outside il. Assume Xx(qx) > X > 0. If the corresponding scattering amplitudes
at the energy X satisfy Ax(6', 6 ; X) = A2(d', 6 ; X) for all incident and outgoing
directions 8,6', then qx = q2.

The theoretical equivalence of the data in Corollaries 1.4 and 1.5 (via explicit
formulae) goes back to [B], at least when Q is a disk and q vanishes outside
il. In the Appendix (Proposition A.2) we give a proof for the more general
case above, based on an identity first introduced in [N2].

Uniqueness in the two-dimensional inverse scattering problem at fixed energy,
for exponentially decaying potentials assumed sufficiently small, was obtained
by Novikov ([No]). More recently, in [Is Su] a global uniqueness result was
proved assuming the scattering amplitude given at a finite (sufficiently large)
number of energies.

The plan of the remainder of this paper is the following: in Section 2 we
prove the unique solvability of the Dirichlet problem for the nonlinear equation
(1.1); in Section 3 we treat the linear case, Theorem 1.3. In Section 4 we prove
Theorem 1.1, Corollary 1.2 and conclude with a summary of the main steps of
our reconstruction procedure. The Appendix is devoted to the inverse scattering
results, Corollaries 1.4 and 1.5.

2. The Dirichlet problem

In this section we prove the unique solvability of the Dirichlet problem for
the equation ( 1.1 ) in a Lipschitz domain, and a comparison principle.

Proposition 2.1. Let il be a bounded Lipschitz domain in R2. If a(x, u) satis-
fies the conditions (1.2) and (1.4), then for any f c Hxl2(diï)C\C(diï) there is a
unique u(-\ f) c Hx(il) n C(il) solution of (1.1) with u \da= f ■ Furthermore,
we have the bound

(2.1) sup|M(.;/)láC||/||¿«(aa)

with C depending only on q* and il.
Proof. 1. We begin with a substitution which will change the nonlinear term
in (1.1) to one which is nondecreasing in u, thereby allowing the use of the
maximum principle. Define q*(x) = 0 outside il; let Q be a smooth bounded
domain containing Q and so close to it that the corresponding first eigenvalue
Ai(<7,) satisfies X\(qt) > jXx(q*) > 0. The Dirichlet problem
(2.2) -Au+ + q*u+ = 0 in Ù,     u+ = 1 on dil

then has a positive solution u+ , continuous in Cl (see for instance [A-S], ap-
pendix); since Au+ c Lp(il) and dil is smooth we also have u+ e W2'p(il).
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To solve (1.1) in il, we substitute u = u+v . The equation for v then
becomes
(2.3) Lv + b(x, v) = 0 in il,    v = gondil,
with g = f/u+ ,

(2.4) Lv = -Av - 2^- ■ Vv
u+

and

(2.5) b(x, v) = ^7^y«(x, u+(x)v) - qt(x)v.

Note that the new nonlinear term satisfies §£ ^ 0. Also, sup^^ \b(-, v)\ is
in Lp(il), while the coefficient Vu+/u+ of L is in Lp(il), p > 2 , by Sobolev
imbedding.

2. For any F c Lp(il) there is a unique it) e C(Í2) n //'(£2) solution of the
linear Dirichlet problem Lw = F in il, w\dn = g. We henceforth fix g, write
w = L~XF and claim that L~~x is compact as a map from Lp(il) to C(Q).
To see this, first extend F to be zero in Ù \ il and let wo be the solution of
Lwq = F in Û with Wo\dQ = 0. Then
(2.6) -A(w0u+) + qt(w0u+) = Fu+,

and it follows that Wo c W2'p(il) ; hence the map F —> i/Jo from Z.p(il) to
C(Q) is compact. Next, let wx c Hx(il) n C(Ü) be the solution of Lwx = 0
in Q with wx = g - wq on dil. If {F^} is a bounded sequence in Lp(il),
then, since the operator F —► wo is compact, we can find a subsequence /c„ so

»o
,(kn)

LU   Ut   11 Ut   1U1    lilt   tUlltSpUHUlllg    ^U

of L~x .
3. We now return to the nonlinear equation (2.3). Let M = supa£i \g\ and

consider the modified coefficient b\t given by

(2.7) bM(x, v) = b(x, Wm(v))
with

(2.8) Vm(v) = v if \v\ ^ 2M, y/\f(v) = 2sgnt;Af if |w| > 2M.
Let r be the operator on C(Ù) defined as Tv = L~x(-bM(x, v(x))) and let

(2.9) p = \\ sup |ô(-»u)l ll^(n)ll^_lllLP(n)-c(û)-
\v\^M

Then T is compact and maps the ball {v c C(il) : sup^ \v\ ^ p} to itself. We
may conclude from the Schauder fixed point theorem that T has a fixed point
v . By construction, we have v c C(il) n Hx(il),

(2.10) Lv + bM(x, v) = Oand v\aa = g.
The maximum principle now shows that sup^ \v\ú M. Therefore bh¡(x, v) =
b(x, v) in il, so that v solves (2.2), as required. The corresponding solution
u of (1.1) satisfies
(2.11) sup|«| <; [supMVinfM+lll./'llz.ocfan),

a a        9SÎ

that {Wq"} converges in C(Û).  By the weak maximum principle for L the
same will be true for the corresponding {w[ "'}, thus proving the compactness
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which clearly holds uniformly for all a(x, u) satisfying |^ ^ q,.
4.  It remains to verify uniqueness.  Let ux, u2 in Hx(il) n C(il) be two

solutions of (1.1) with ux\9q = u2\da. Then, writing

(2.12) a(x, ux(x)) - a(x, u2(x)) = q\2(x)(ux(x) - u2(x))

with

t-(x, u2(x) + t(ux(x) - u2(x)))dt,

we have qx2 ^ q* so that Xx(qX2) > 0. The function w(x) = ux(x) - u2(x)
satisfies -Au; + qX2W = 0 in il and w — 0 on dil ; thus w = 0 since 0 is
below the Dirichlet spectrum of qX2.   D

We conclude this section with the observation (which will be helpful in Sec-
tion 4) that our assumptions (1.2) and (1.4) on a(x, u) also suffice for the
following comparison principle (usually stated for a increasing in u ).

Lemma 2.2. Under the hypotheses of Proposition 2.1, if f c Hxl2(diï) n C(dil)
satisfy fx^fi on dil then for the corresponding solutions u(-; f) we have

(2.14) u(x, /1) S u(x, f2)     inil.
Proof. With u+ as in the proof of Proposition 2.1, let Vj(x) = u(x ; f)/u+(x).
Then the functions v¡ satisfy equation (2.3), hence for vx - V2 we have

(2.15) L(vl-v2) + c(x)(vi-v2) = 0    inil,

with

(2.16) c(x)=       -?-(x,tVi(x) + (l-t)v2(x))dt^0.
Jo   Uv

The weak maximum principle for the linear equation (2.15) then implies vx -
v2 ^ 0 in il, hence also (2.14), since u+ is positive throughout Ú.   D

3. The linear case
Throughout this section we assume a(x, u) = q(x)u with q c Lp(il), p > 1.

Theorem 1.3 will be obtained as a consequence of a number of facts proved in
[N3]. We briefly recall the relevant notation.

For any k c C \ 0 we denote by S¿ the following single-layer operator on
dil:

(3.1) Skf(x)= /    Gk(x-y)f(y)da(y),
Jda

with G> the zero-energy Faddeev Green's function

(3-2) GkiX) = ^2^ J \ç\2 + 2k(çl + l^-
A family y/q(x, k) of solutions of the Schrödinger equation in all of R2

(3.3) (-A + q)y/q(x,k) = 0,
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is constructed by solving (when possible) the Fredholm integral equations

(3.4) yq(x, k) = '^t+ixdk _ Gk t {qi¡/q{. j k)y

If k c C\0 is such that (3.3) is not uniquely solvable (in an appropriate weighted
Sobolev space) then it is called an exceptional point. For non-exceptional k we
define the scattering transform tq of q by

(3.5) tq{k)= f ei^-ix')kq(x)y/q(x,k)dx.

We prove below that if X\(qx) > 0 then qx can be extended to a potential
in Lp(M.2), of compact support, which has no (zero-energy) exceptional points.
Moreover, the same will be true of #2 if Aqi = Aq¡ . We can then use the
method of [N3] to, on the one hand, obtain tq¡(k) = tqi(k) for all k e £\0
from knowledge of the Dirichlet-to-Neumann map and, on the other, to recover
Q\ = Q2 from their common transform t.

We begin with a simple lemma which will allow us to work in a slightly larger
domain Û.
Lemma 3.1. Let il, Ù be bounded Lipschitz domains with ficfl, and let
qx,q2 € Lp(Cl). Assume that zero is not a Dirichlet eigenvalue of -A + qx
in il, Û or of -A + q2 in il. If qx = q2 in Ù\îl and Aq¡ — Aq2 on
Hx/2(dil)nC(dil) then zero is not a Dirichlet eigenvalue of-A + q2 in Ù and
(for the corresponding Dirichlet-to-Neumann maps on dil) we have Aq¡ — Aq2
on Hx'2(dÛ).
Proof. 1. If we had a v2 such that (-A + q2)v2 = 0 in Û, v2\da = 0, we
could define vx in Û to equal V2 in Û \ Cl and equal to the solution of the
Dirichlet problem (-A + qx)vx =0, vx\dn — v2\da m ^- Then (since qx = q2
outside il and Aq¡ = Aq2 on dil) vx would be a solution of (-A + qx)vx =0
throughout Ù with Vi|ôq = 0, contradicting our hypothesis on qx . Thus 0 is
not a Dirichlet eigenvalue of q2 in Û.

2. For any fx,f2c Hx/2(dil) we now let u¡ be the unique Hx(ïï) solutions
of the Dirichlet problems (-A+qj)Uj = 0 in Û with u¡ = f¡ on dû ,7 = 1,2.
From (1.7) and the symmetry of Kq2 we have Alessandrini's identity

(3.6) (f2,(kqi-kqi)f)9Ù= f (q2-qx)uxu2.
Ja

Since, by assumption, qx - q2 = 0 outside il, (3.6) yields

(3.7) (f2,(Àq2-Àqi)fx)dà= / (q2-qx)uxu2 = (u2, (Aq2 - Aq¡)ux)aíi
Ja

(the latter by the above identity in il ). Note that ux c W{2¿p in the interior of
il ; in particular, ux is continuous on dil. Thus the right side of (3.7) is zero,
by hypothesis, and Aq2 = Aq¡ , as claimed.   D

Remark. The proof of Proposition 6.1 in [N3], with the obvious modifications
to the case of Schrödinger operators considered here, gives a constructive way
to determine Aq on Hxl2(dïï) from knowledge of Aq on Hxl2(diï) n C(dil)
if q is known in Û \ Ù.
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Proof of Theorem 1.3. We make a preliminary extension of qx and #2 by defin-
ing them to be identically zero outside il. As in Section 2, we then let il* be
a smooth bounded domain containing Cl and sufficiently close to it so that
X*(qx) > 0. Next, let il be any bounded smooth (or, more generally, C1,1 )
domain containing Q*. The following elementary lemma will enable us to
appropriately define the extension of qx and #2 in il\il*.

Lemma 3.2. Let il*, Cl be bounded Cx'x domains with il* c Cl and let qx c
Lp(il*). Given A*t on dil*, we can construct a function y/o c H2(Cl\£l*)
which is bounded away from zero, identically equal to one near dil and such
that

(3.8) y/0\da- = 1,     "^lôfi* = A*, 1.

Proof of Lemma 3.2. By elliptic regularity, A* 1 c Hxl2(dil*). We first choose
y/* £ H2(Cl \ il*) with (¿/„Ian- = 1, 7^7Iôq* = A! 1. Since y/* is continuous,
there are neighborhoods Uo, Ux of dil* with Üq c Ux c Ux c Cl such that
y/t > I in i/o, yi* > \ in Ux . Let x be smooth, of compact support in
Ux,0^x ^ 1, with x = 1 in Uo . Define y/0 = (1 - x) + XV* ■ Then y/0 = y/*
in Uo so that (3.8) are valid for y/o. Also, y/o = 1 outside Ux and y/o > 5
throughout Cl \ il* .    D

Proof of Theorem 1.3 (continued). With ^0 as in the above lemma, we extend
qx and #2 to all of R2 by

(3.9) qx = q2 = — in Cl \ il* and qx = q2 = 0 in (R2 \ Cl) U (Cl* \ il).
Wo

If we define ^0 inside il* to be the solution of (-A + qx)y/o - 0 with y/o\oa' —
1, and outside Cl to be identically 1, then, in view of (3.8) and (3.9) we have
(-A + í7i)^o = 0 throughout R2, ft-le W2>P(R2). By the assumption
Ai(ii) > 0 in Q* and the construction in Lemma 3.2, ^0 is also bounded
away from zero. Theorem 3 of [N3] now shows that qx has no (zero-energy)
exceptional points and tqi(k) = 0(\k\e) for k near zero. Thus, by Theorem 5
of [N3] the integral equation on dCl:
(3.10) yvq(-, k) = eizk - Sk(Aq¡ -À0)^(-, k)

is uniquely solvable for any k e C \ 0. Since we've defined q2 = qx in Cl\il,
we have Ä^, = Aqi, by Lemma 3.1. The converse of Theorem 5(iii) in [N3] now
shows that q2 is also free of exceptional points, so that its scattering transform
tq2(k) is well defined on C \ 0. Furthermore, from Ä9l = Aq2 and (3.10) we
have y/q¡ (x, k) = y/qi(x, k) for x on dCl and all k ^ 0, hence also tq¡ = tq2
in view of the formula (see Theorem 5(iv) in [N3]):

(3.11) tq(k) = (e"k,(Aq-Ào)ysq(-,k))dù.
Theorem 4.1 of [N3] now shows that y/q¡ (x, k) — y/qi (x, k) for all (x, k) and
that these functions never vanish. Returning to (3.3) we obtain qx — q2-   □

The above proof gives the following procedure for reconstructing q from
knowledge of Aq on dil. We assume il* given (as in the statement of Theorem
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1.3). We first extend q to be zero in il* \ il and determine A*l . (See the
Remark after the proof of Lemma 3.1.) If dil is C11 to begin with, this
step is not needed. Next, we choose Cl D Cl* and extend q to be A^o/^o
in Cl \ il*, with ^o constructed as in Lemma 3.2; this allows us to determine
Aq on dCl. With these preliminary adjustments completed, we can now solve
equation (3.10) to find y/(-, k) on dCl and obtain tq(k) by formula (3.11).
The Fredholm integral equation in the proof of Theorem 4.1 of [N3] then yields
y/(x, k), hence q .

4. Linearization
To prove Theorem 1.1 we combine the result in the previous section for the

linear case with the following.

Lemma 4.1. Suppose il is a bounded Lipschitz domain and a(x, u) satisfies
(1.2) and (1.4). Then for any f0, f c Hx/2(dil)f)C(dil) we have
Mn ,;m Na(fo + ef) - Aa(fo)(4-1 ) i™-;-= A«C ; A) (/)

in the H~x/2(dil) norm, where the potential q(- ; fo) is defined to be

(4.2) q(x ; f0) = —(x, u(x ; /0)).

Proof. Fix fo, f and denote by ue the function u£(x) = u(x ; fo + sf). Since

(4.3) -A(u£ - Uo) + a(x, ue) - a(x, Uo) = 0,
the function «£ — uq is a solution of the Dirichlet problem

(4.4) -A(uE - Uo) + ge(x)(uE - u0) = 0 in il,     uE-u0 = ef on dil,

with
/• 1     r\

(4.5) qe(x) =: /   —(x, tue(x) + (\ - t)uo(x))dt.
Jo  au

From the inequality qE(x) ^ q*(x) and the estimate (2.11) we obtain

(4.6) sup \ue - wol S Ce||/||L~(a£i)
a

with C independent of e. It then follows from the continuity of |^ in u,
(1.5), and dominated convergence that

(4.7) Hrn\\qE - q0\\LP(a) = 0.£—»0

Now let v£ denote the difference quotient ve = i(w£ - uq) and let vo be the
solution of

(4.8) -Auo + tfo^o = 0, with Vo\aa = f
Then ve - vq s H¿(il) solves

(4.9) -A(vE - v0) + qo(vE - v0) = (<?o - Qe)ve.

The right side of (4.9) tends to zero in Lp(il), in view of (4.6) and (4.7); since
qo ̂  q*, strict coercivity yields

(4.10) lim||vi-uo||jïi(n) = 0.
£->0
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For any w c Hx(il) we have

,,„,   Aa(/0 + £/)-Aa(/o)I \w > -;-AqoUo)) I

(4-U) =|  / Viii • V(v£ - v0) + w(q£v£ - q0v0) \
Ja

^ C\\w\\Hi,a)(\\ve - v0\\Hi{Q) + \\q£ - qo\\u>{a))

with C independent of s , and (4.1) follows from (4.7) and (4.10).   D

In our inversion procedure it will suffice to work with functions fo(x) = 6
constant on dil. We also note, as in [Is-Sy], that Lemma 2.2 yields the following
simpler formulae for the functions «*, u* defined in (1.8), (1.9):

(4.12) u*(x) = infu(x; 6),        u*(x) = supw(x; 6),

since for any / G Hxl2(dil) n C(dil) we have

(4.13) u(x; min/) < u(x; f) < u(x; max/).

Proof of Theorem 1.1. The proof of Lemma 4.1 (with fo = 6 and /= 1 ) shows
that u(x;8) is differentiable in 8 (in the Hx(il) topology) and ||(x;ö) is
the solution of the linear Dirichlet problem

(4.14) (-A + i?(x;0)Ax;0) = OinQ,     §£(*; 6) = 1 on dil,

With

(4.15) q(x;9) = ^(x,u(x;6)).

Note that, since «(•; 6) is bounded, q(-; 6) is in Lp(il) for any 6; also
Xx(q(-;6))>0, since q(-; 6) ^ q. .

Given Aa on Hxl2(dil) n C(dil) we can, in view of Lemma 4.1, determine
Aq{.;6) on Hxl2(dil) n C(dil) for any 6 c R. By the inversion method for the
linear case (Section 3) we can then reconstruct the potentials q(- ; 6). Solving
(4.14) then yields ff (x; 6) on il x R. We know (from (1.3) and uniqueness
for (1.1)) that u(x ; 0) = 0, thus we also obtain, for all (x, 6) in il x R

(4.16) u(x;6) = l   ^(x;s)ds.

In particular, the functions u*(x) and u*(x) (hence also the set E) are
recovered: noting that ff (x; 9) > 0 (since Xx(q(-; 6)) > 0) we in fact have

f°° ñu /""    du
(4.17) u*(x)=        ^L(x-d)d6   and   u*(x)=-        —(x;d)d6.Jo    dd J_^ dti
For every x , the function u(x; 8) is strictly increasing in 6 ; this allows us to
define for u c (w»(x), u*(x)) the inverse function 0(x, u). Then

(4.18) ^(x,u) = q(x;d(x,u)),
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and (in view of (1.3)) we finally obtain a(x, u) on E as:

(4.19)      a(x,u)= í q(x;8(x,s))ds= Í q(x; 0)f^(x; 8)d8.   a
Jo Jo °v

Proof of Corollary 1.2. Let q* denote the potential

(4.20) q*(x)=:sup^(x,u)

and let u* be the solution of (-A + q*)u* - 0 in Q with u*\da = 1 . Consider
the function

(4.21) w(x, 8) = Äx ; 8) - u*(x))/u+(x),do
with u+ as in the proof of Proposition 2.1. We have w\9n = 0, and

(4.22) -Aw-2~.Vw + (q(x; 8)-q*(x))w = (q*(x)-q(x, 0))£^ ^ 0.

The weak maximum principle yields w ^ 0 in il, hence

(4.23) ^(x;6)Z inf u* > 0 for all (x, 8) c il x R.
do a

From (4.17) it now follows that u*(x) — +oo and u,(x) = -oo throughout
H.    □

For the reader's convenience, we conclude with a summary of the main steps
in our (at least theoretical) reconstruction of the nonlinear term a(x, u) on E ,
assuming, for simplicity that dil is C1 ■ ' :

(i) Use formula (4.1) to determine A9(.;g) on dil for every 8 c R.
(ii) Let Cl be a C11 domain containing dil. Construct y/o(*', Q) m Cl\il

as in Lemma 3.2.
(iii) With q(-; 0) defined to equal A^0(-; ö)/^0(-; Ö) in Cl\il, determine

Aq{-;0) on dCl.
(iv) Solve the integral equations (3.10) to obtain ^(x, k; 6) for x on dCl

and then tq(.;e)(k) on C\0 by formula (3.11).
(v) Use the procedure given in [N 3] to recover y/0(x ; 6) for x in il from

t. Note that:
du       n,     „

(vi) Determine the function 0(x ; u) (inverse of 8 —> w(x ; Ö) ), for instance
by solving the ODE:

<4-25»       ^;»» = ÄüTra- e(j:;0) = 0'
which blows up precisely at  u = m*(x)  and  « = u»(x).   Alterna-
tively, one can integrate equation (4.22) in  6 to find w*(x),   u*(x)
and u(x, 8), then invert the latter.

(vii) Obtain the desired function a(x, u) on E from the formula (compare
with (4.19)):

re(x;u)
(4.26) a(x;u)= Ay/0(x ; 8)d8.

•* 0

(4.24) y/0(x ;8) = —(x; 8)     for x c il.
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Appendix
We give here the scattering theory results needed to obtain Corollaries 1.4

and 1.5 from Theorem 1.3. The arguments are modifications to the case of
nonconstant background of those in [N 1] and [N 2], and are the same for any
dimension n > 2 .

Let il be a bounded Lipschitz domain with connected exterior ile = W \ Cl
and let q be a real-valued potential satisfying the short-range condition (1.12).
For every / in Hxl2(dil) there is a unique outgoing solution ue(x; X; f) to
the exterior Dirichlet problem
(A.1) (-A + q - X)ue = 0 in ile

with ue \aa= f. (Uniqueness follows from a classical result of Kato and ex-
istence can then be obtained by adapting an old argument of R. Phillips. We
omit the details.) We define an exterior Dirichlet-to-Neumann map by

(A.2) A^/= JL(.;A;/)|a£2.
The main properties of the single-layer operator S^q(X) needed here are given

in the following proposition, which also makes clear the usefulness of Ae x .

Proposition A.l. Let il be a bounded Lipschitz domain with ile = R" \ Q
connected, and let q be a real-valued potential satisfying (1.12). Then S?q(X) is
a bounded operator: H~xl2(dil) —> Hx/2(dil) which is invertible if and only if
X is not a Dirichlet eigenvalue of -A + q in il, in which case we have
(A3) ^q-x(X) = Aq_k-Aea_k.
Proof. We denote by HSS(W) the weighted Sobolev space with norm

(A.4) 11/11^ = 11(^/11^, (x) = (l + |x|2)1/2.
1. The Green's function "§q(x ,y;X) is the kernel of the (boundary value

of the) resolvent

(A.5) Rq(X) = lim[(-A + q) - (X + ie)]~x
£j.O

which is known to exist as a bounded operator: Lj(R") —> H^_s(Rn) for
every X > 0 and S > \ (combine the limiting absorption principle
with absence of positive energy eigenvalues for the potentials consid-
ered here). By duality and interpolation we also have Rq(X) bounded:
H°(R") -► HS_+2(W) for all s in [-2, 0].

For any / in H~x/2(dil) denote by fda the single-layer distribu-
tion on R" defined by

(A.6) (v,fda)=[   vfda,    v£Hx(Rn);
Jaa

since fda is in H~X(W) and has compact support we can define the
function

(A.7) &q(X)f = Rq(X)(fda) c HL3(R").
Combining the above with the trace theorem shows that ¿?q(X) is a
bounded operator from H~xl2(dH) to Hx'2(dil).
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2. Using the resolvent equation we have (as functions on R" )

(A.8) yq(X)f-<9>o(X)f = Ro(X)q<yq(X)f;
since the term on the right is in H2S(W) it follows that the jump in the
normal derivative of Siq(X)f across dil is the same as that of Seo(X)f.

If u is an interior Dirichlet eigenfunction then ^q(X)(^ \ga) = 0 on
dil so S?q(X) is not injective in that case. Conversely, if S?q(X)h = 0
on dil for some h ^ 0, then the function Rq(X)(hdo) is an interior
eigenfunction with normal derivative h (use the uniqueness of the exte-
rior Dirichlet problem and the jump relation across dil). So if A is not
an interior eigenvalue, S?q(X) is injective. To prove surjectivity in this
case, as well as (A.3), we define, for / in H~xl2(dil) the double-layer
distribution df in //"2(R") by

(A.9) (v,d*)= j   p-fda,     vcH2(R"),

and the double-layer potential

(A.10) 9)q(X)f = Rq(X)(d-f) c L2_S(R").

From the definitions we then obtain, for any / in Hxl2(dil)

(A.11) S?q(X)(Aq_J) = 2¡q(X)f in ile
and, similarly,

(A. 12) S?q(X)(Aea_xf) = %(X)f in Q.
Thus, for / in Hx/2(dil), the function 3¡q(X)f is piecewise Hx and
its jump across dil is (again using the resolvent equation) the same as
that of 3¡o (X)f:

(A.13) 3¡¡(X)f-3lq(X)f = f,
with grffi^'f) denoting the trace of %(X)f on dil from ile (re-
spectively il). Combining the identities (A.ll), (A. 12) with (A.13)
yields

(A.14) <9q(X)(Aq_,-Aq_x)f=f,
for any / in Hxl2(dil). Thus S^(X) is surjective and (A.3) is estab-
lished.    D

The proof of Corollary 1.4 is now immediate: assume S^q¡ (X) = ^q2(X) ; since
A < Ai(^i), «5^,(X) is invertible, hence so is S^qi(X). Thus X is not a Dirichlet
eigenvalue of -A + q2 in il, and (A.3) holds for q2 as well as for qx . Since
qx and q2 agree outside Q, we have Ae x = Ae x, and the identity (1.15)
follows. Theorem 1.3 now yields qx = q2 ■   □

To obtain Corollary 1.5 we define, as in [N2], the near-to-far-field operator
F(X) : Hx'2(dil) -> L2(Sn~x) by

(A.15) 3r(X)f(co) = 4n(2ni/VX)"^1u00(co; X; f)
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with Woo(-; X; f) the far-field pattern of the outgoing solution ue(-;X; f).
(The normalization will become clear in Lemma A.3 below). Let Aq(X) de-
note the operator on L2(S"~X) with kernel the scattering amplitude of q , and
let ¿?~-(X) be the analogue of &~(X) corresponding to the incoming exterior
solution.

Proposition A.2. Let il be a bounded Lipschitz domain with ile = W \ Cl
connected. Let qx, q2 be two real-valued potentials which satisfy (1.12) andaré
identical outside il. Then

(A. 16) Aqx (X) - Aqi(X) = ^(X)(S%2(X) - 5?qx(X))^_*(X).

From Kato's theorem and unique continuation we know that ^(X), 9~-(X)
are injective, hence also that the range of &*(X) : L2(Sn~x) -+ H~xl2(dil)
is dense. Thus, if Aq](X) = Aq2(X), the identity (A. 16) shows that S^qi(X) =
S^afyX) on dil and allows us to derive Corollary 1.5 from Corollary 1.4. For
reconstruction purposes, the related identity (A.28) below may be preferred.

The proof of Proposition A.2 and of (A.28) will follow from the next two
Lemmas, the first of which establishes an explicit integral formula for £?~(X)
in terms of the scattering solution <pe(x, co; X) of the exterior problem (A. 1)
with cpe \da= 0 and cpe(x, co; X) - exp(iVXx • co) outgoing. (To allow for the
limited decay assumption (1.12) on q , one thinks of cpe(x, co) as the kernel of
an operator defined on L2(S"~X) — see also (A.24) below.)

Lemma A.3. Let il be a bounded Lipschitz domain in R" with connected exte-
rior ile and let q be a real-valued potential on ile satisfying (1.12). Then

(A.17) ST(X)f(co)= [   ^L(x,-co;X)f(x)do(x)
Joa öv

(as functions in L2(Sn~x)) for any f in Hxl2(dil), while for any g in L2(S"~X)

(A.18) ^_*(X)g(x)= [     ^(x,co;X)g(co)da(co).
Js»-i  ov

Proof. Let p0 be such that Q c {x : |x| < p0}. Choose x in C°°(R") van-
ishing in a neighborhood of Cl and identically one for |x| > po. Then the
function ü = xue satisfies (A + X)u = v , with

(A. 19) v = (Ax + qx)ue + 2Vx-Vue,

and is outgoing, hence ü - -Ro(X)v . From the asymptotic behaviour of the
latter we find

(A.20)       ^(X)f(co) = -v(sTXco) = - lim   /      e-iy/hû'x{A + X)ü(x)dx,
R^°°J\x\<R

with the limit taken in the L2(S"~X) norm. Integration by parts gives
(A.z 1J
Sr(X)f(co)

= -lim   f      [e~iVlw-x^-(x;X;f)-ue(x;X;f)^-(e-iVlw-x)]do(x).
r^x Jixi=r dv du
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Since cpe(x, -co; X)-exp(-i\/Xco-x) and ue(x;X) are both outgoing, the limit
(A.21) equals
(A.22)

^(X)f(co)
f due d

= - lim   /       [<pe(x, -co; X)——(x) - ue(x)—— cpe(x, -co; X)]da(x),
R—»oo 7|x|=ä du du

and (A. 17) follows by another integration by parts.
To verify (A. 18), let cpt (x, co ; X) denote the exterior Dirichlet solution with

<P-(x, co; X) - exp(i\/~Xx • co) incoming. Then tpt(x, -co; X)-exp(iV~Xx• co) is
outgoing and uniqueness for the exterior problem shows (since q is real-valued)
that cpe_(x, -co, X) and <pe(x, co, X) are identical.   □

The standard scattering solution <p+(x,co;X) in R" of the Lippmann-
Schwinger equation

(A.23) <p+(x, co ; X) = exp(iVXx • co) - R0(X)(q (•)$+(•, co; X)),

can be constructed as the kernel of the map defined on functions in L2(Sn~x)
by
(A.24)

j ^ ^+q(x,co;X)g(co)do(co)=:(I-Rq(X)q)(J^   ^''^g(o>)da(co)Y

Lemma A.4. Under the hypotheses of Lemma A.3 we have the identity:
d<pe
~dv~

(A.25) ^q(X)^-(.,.;X) = cp+q(.,.;X)

as operators: L2(S"~X) -> Hxl2(dil).
Proof. For any g c L2(S"~X), the function

/     [tpUx,co;X)-<pe(x,co;X)]g(co)da(co)
Js"->

is an outgoing solution of the exterior problem (A 1 ) with trace

cp~ï(x, co; X)g(co)da(co)
IS"-1

on dil. Thus, from the definition of the exterior Dirichlet-to-Neumann map
we have

(A.26) Aq_x(cp^(-, co; X)) = ¿(<-<) = V¿«('. œ> ̂ "T^' a'> ̂ '

Applying S^q(X) to both sides of (A.26) and using (A.3) yields (A.25).
Proof of Proposition A.2. Since the far-field pattern of

/JS"

cpq(x, co; X) - exp(iVXx • co)

is given by the scattering amplitude, for every g in L2(Sn  ') we have (using
(A.23))

(A.27) F{k) f     [<p+i(-,œ;X)-tpq:2(.,co;X)]g(co)do(co) = lAqi(X)-Aqi(X)]g.
Js"-'
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Applying y (A) to both sides of (A.25), using (A. 18) and (A.27), yields (A. 16).    D

If <An,qW denotes the scattering amplitude corresponding to the exterior
Dirichlet problem, (that is, the operator on L2(S"~X) with kernel the far-field
pattern of cpe(x, co ; X) - exp(i\J~Xx • co) ) then the above proof gives the identity

(A.28) 9-(X)3>q(X)SF_* {X) = Àa,gW- Aq (X),
which can, in principle, be used to recover q in il from knowledge of Aq(X)
and of q outside Q (see also [N 2]).
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