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Abstract

An easy-to-implement global procedure for testing the four assumptions of the linear model is
proposed. The test can be viewed as a Neyman smooth test and it only relies on the standardized
residual vector. If the global procedure indicates a violation of at least one of the assumptions, the
components of the global test statistic can be utilized to gain insights into which assumptions have
been violated. The procedure can also be used in conjunction with associated deletion statistics to
detect unusual observations. Simulation results are presented indicating the sensitivity of the
procedure in detecting model violations under a variety of situations, and its performance is compared
with three potential competitors, including a procedure based on the Box-Cox power transformation.
The procedure is demonstrated by applying it to a new car mileage data set and a water salinity data
set that has been used previously to illustrate model diagnostics.
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1 Linear Model and its Assumptions

One of the most important models in Statistics is the linear model, in which the relationship
between an observable n × 1 response vector Y and an observable n × p design matrix X of
predictor variables is given by

(1)

where β is a p × 1 vector of unknown coefficients, σ is an unknown scale parameter, and ε is
an n × 1 vector of unobservable error variables. Conditionally on X, ε has a multivariate normal
distribution with mean vector 0 and covariance matrix I, the n × n identity matrix. This
distributional assumption, together with the linear link specification in (1) are enumerated as
four distinct assumptions: (A1) (Linearity) E{Yi|X} = xiβ,where xi is the ith row of X; (A2)
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(Homoscedasticity) Var{Yi|X} = σ2, i = 1,2,…,n; (A3) (Uncorrelatedness) Cov{Yi,Yj|X} = 0,
(i ≠ j); and (A4) (Normality) (Y1,Y2,…,Yn)|X have a multivariate normal distribution.
Assumptions (A3) and (A4) imply that, given X, Yi, i = 1, 2, …, n,are independent normal
random variables. Without loss of generality, we assume that X is of full rank with n > p, so
rank(X) = p. Under (A1)–(A4),the maximum likelihood (ML) estimators of β and σ2 are given,
respectively, by

(2)

where P[X] = H = X(XtX)−1Xt is the projection operator on the linear subspace generated by
the columns of X. The estimator b in (2) is also the least-squares (LS) estimator of β. The usual
procedures for constructing confidence ellipsoids/intervals and for testing hypotheses for β and
σ2 rely on the validity of (A1)–(A4). The consequences of the breakdown of any of these four
assumptions are well-known, and possible remedial measures such as variable transformations,
weighted regression, incorporating additional predictor variables and, if need be, the adoption
of nonparametric methods, have also been discussed (see, for example, Neter, Kutner,
Nachtsheim, and Wasserman 1996).

Assessment of whether assumptions (A1)–(A4) are satisfied, based on the data (Y, X), has
received considerable attention. Assessment procedures typically involve the standardized
residuals R, herein defined according to

(3)

There are other types of residuals that have been used in model validation and diagnostics. The

studentized residuals are R′ = (R′1, …, R′n) with , where hii is the ith diagonal
element of H. Other residuals are Theil (1965)’s best linear unbiased scalar covariance residuals
(BLUS residuals) as well as recursive or sequential residuals; see review paper. We focus our
attention on R, as this is the residual vector that naturally arises from our theoretical
development.

Important work in assessing the model assumptions includes Tukey (1949) for assessing (A1);
Durbin and Watson (1950, 1951) for assessing (A3); Anscombe (1961) and Anscombe and
Tukey (1963) for assumptions (A4) and (A2). Many of these methods are summarized and
discussed in Cook and Weisberg (1982) and Atkinson (1985). It should be noted that the
residuals are not independent and may have different variances even if (A1)–(A4) hold, in
contrast to the i.i.d. structure of ε = (Y − Xβ)/σ, which is the counterpart of R when the model
parameters β and σ are known. The impact, especially the non-negligible change on the
distributional properties of the residuals even in large samples, by the substitution of estimators
for unknown parameters to obtain the residuals has been duly noted, cf., Durbin and Watson
(1950); Anscombe and Tukey (1963); Theil (1965); Atkinson (1985).

In the assessment of (A1)–(A4) through graphical methods, the impact of the aforementioned
substitution is mostly ignored, potentially giving rise to inaccurate assessment. Moreover, even
apart from this issue, the interpretation of graphical methods is highly subjective, for though
a picture is worth a thousand words, beauty is in the eye of the beholder. Furthermore, a
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particular plot is used to assess a specific assumption, and sometimes the synergistic impact
of combinations of violations of (A1)–(A4) is not clear. It is therefore beneficial to augment
these plots with a numerical measure of the degree to which (A1)–(A4) are violated.

Formal significance tests for (A1)–(A4) involve testing the null hypothesis (H0) versus the
alternative hypothesis (H1), where

(4)

The typical structure of such a test is to define a statistic S(R) whose sampling distribution is
known under H0 and such that departures from H0 will manifest in terms of larger values of S
(R). Given an observed residual vector R = r, one calculates the p-value via p = P {S(R) > S
(R) >S(r) | H0}, and the decision to reject H0 is based on the magnitude of p. However, existing
formal significance tests are typically tests for a specific assumption, hence are not
simultaneous or global tests for the four assumptions (A1)–(A4). For instance, there are tests
for the normality assumption (cf., Anscombe and Tukey 1963); there are tests for link mis-
specifications (cf., Tukey 1949); there are tests for heterogeneity of variances (cf., Cook and
Weisberg 1983; Bickel 1978; Anscombe 1961); and there are tests for the uncorrelatedness or
independence of the error components (cf., Durbin and Watson 1950cf., Durbin and Watson
1951; Theil and Nagar 1961). See also Kianifard and Swallow (1996) for procedures that use
the recursive residuals for significance testing of the different assumptions. The difficulty with
these tests is that each is designed to detect departures from one assumption, and the impact
of violations of other assumptions on this test, as well as its sensitivity against these violations
are not apparent. Hence, when a specific test indicates a violation, it might be due to the
violation of another assumption which affects this test. For example, a test for normality could
be affected by a mis-specified link function or dependent error components. One may decide
to perform tests for each of the different assumptions, but this will lead to an increase in the
Type I error probability when the results of these tests are combined, though some corrective
measure such as a Bonferroni adjustment could be implemented to alleviate this inflation. There
is therefore a need to have a global test for all the assumptions (A1)–(A4) that controls the
Type I error rate and which could be used especially if the analyst does not have an idea of
which set of assumptions are violated. If such a test indicates that at least one of the assumptions
is not satisfied, then directional tests may be used to determine the assumptions that have been
violated. Knowing the set of assumptions that has been violated is important for instituting
appropriate remedial measures, such as variable transformations, adjustments in the link
function, utilizing lagged values, etc.

In this paper we propose such a global test. An important consideration in our proposal is that
the procedure should be simple and easy-to-implement, but at the same time should be
theoretically justifiable. Our procedure is based on the residual vector R, and the theoretical
development of the procedure relies on the idea of smooth test (cf., Thomas and Pierce 1979;
Rayner and Best 1986, 1989). The components of the global test can also be used as directional
tests for determining the assumptions that have been violated. Because functions of R generally
possess complicated distributional properties, asymptotic distributional properties for the
global test are ascertained. For small sample sizes, computer-intensive methods may be
employed to determine p-values. We also discuss deletion statistics based on the global statistic
that can be used to identify outlying or influential observations. Moreover, the mathematical
framework for the test procedure is quite general and allows for a broad class of tests to be
generated by changing the embedding functions (see Section 3). However, with the goal of
obtaining an easy-to-implement procedure, and to recover some currently-used directional
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tests, we have confined ourselves to a particular set of embedding functions. As a reviewer
pointed out, a better procedure may arise via a different choice of embedding functions, but
possibly at the cost of greater complexity. Even with this potential limitation, the performance
of the proposed procedure is still commendable as seen in the simulation studies in Sections 5
and the applications in Section 6.

There is a deeper foundational issue regarding model-building in relation to the validation of
the model assumptions and the additional inferences that are made such as testing hypotheses,
construction of confidence intervals about the regression parameters, or the prediction of future
observations. For example, suppose that the linear model assumptions are validated through
formal and/or graphical methods using the observed data, so this validation process is subject
to error, and then regression parameters are estimated using the same data and via procedures
derived under the linear model and its assumptions. How should one assess the properties of
these estimators in light of this two-step process? There is a growing literature and ongoing
active research on the more general, but related, area of inference after model selection; see
for instance Hjort and Claeskens (2003), Claeskens and Hjort (2003), and Dukić and Peña
(2005), and references in these papers. This is an important issue that needs to be addressed,
but this paper focuses on formally validating the model assumptions.

The paper is organized as follows. Section 2 describes and discusses the global and the
component statistics. The theoretical justification of the global procedure is presented in
Section 3 where it is derived as a Neyman smooth test. The asymptotic normality and the
asymptotic independence of the components are established in this section. Deletion statistics,
obtained by excluding an observation from the analysis, are described in Section 4. Section 5
presents simulation studies that examined the properties of the procedures. Section 6 illustrates
the applications of these procedures to two real data sets. Concluding thoughts are provided in
Section 7.

2 Validation Procedures

We first present the tests in this section, and then provide theoretical justification in the next
section. Henceforth, we assume that X has as its first column the n × 1 vector 1 = (1, 1, …,
1)t, so that we are incorporating an intercept term in model (1). Recalling that the ith component

of the residual vector R is , where  is the ith fitted value, the
first three component statistics are as follows:

(5)

(6)

(7)
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where, with  for an n × q matrix Z, we define

(8)

The fourth component statistic requires a user-supplied n × 1 vector V, which by default is set
to be the standardized time sequence V = (1, 2, …, n)t/n. It is defined via

(9)

with . The global test statistic is defned as

(10)

An appealing feature of this global statistic is that variants of the statistics ,
have been considered for significance testing purposes in earlier papers. For instance, statistics

related to  and  have appeared in Anscombe and Tukey (1963), and a statistic related to

 has been considered by Cook and Weisberg (1983); Bickel (1978); Anscombe (1961) in the

context of testing for heteroscedasticity. Statistic  is related to test for additivity. One of the
main contributions of this paper is combining these different directional statistics in a global
statistic and determining its properties. We will see in ensuing sections that this combined
global statistic serves as an omnibus statistic for globally testing all the assumptions of the
linear model.

For large n, which for application purposes will be understood to mean that n − p ≥ 30, theglobal
test for the hypotheses H0 versus H1 in (4) at an asymptotic significance level of α is:

(11)

where  is the 100(1 − α)th percentile of a central chi-squared distribution with degrees-of-
freedom (df) k. If the test in (11) leads to the rejection of H0,the component statistics

 could be examined by comparing their values to , or perhaps more

approxiately to  (see the test in (19)) or  (see the test in (20)), to get an
indication of which particular assumption or assumptions have been violated. The following
are rough guidelines in interpreting the values of these component statistics, with these
guidelines suggested by the theoretical considerations to be presented in Section 3 and the
simulation results in Section 5: (i) Skewed error distributions will usually be indicated by large
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values of the statistic ; (ii) Deviations from the normal distribution kurtosis of the true error

distribution will be generally revealed by large values of statistic ; (iii) The use of a
misspecified link function, possibly due to the absence of other predictor variables in the model,

will mostly be detected by large values of the statistic ; (iv) The presence of heteroscedastic

errors and/or dependent errors will typically manifest in large values of the statistic ; and (v)
Simultaneous violations of at least two of the assumptions (A1)–(A4) will be manifested by
large values of several of these component statistics.

3 Theoretical Development of Procedure

From (1), if the true parameter values β and σ are known, we may call, perhaps inappropriately,
the error vector ε to be the vector of ‘true’ residuals R0. Thus, R0 ≡ R0(σ2, β) = (Y −Xβ)/σ,
which therefore is equal-in-distribution to the error vector ε. If H0 holds, then the density
function of R0 is

where  is the standard normal density function. Following idea of
constructing a ‘smooth’ test (cf., Thomas and Pierce 1979; Rayner and Best 1989), we embed
fR0(r0) into a class of density functions, indexed by θ = (θ1, θ2, …, θ6)t, whose members are
of the form

(12)

where  with

The particular choice of the Qi(z; σ2, β) functions is motivated by our desire to recover
commonly-used directional statistics. Other forms for the Qi(z; σ2, β) functions, such as
trigonometric or wavelet functions, are certainly possible, and may lead to procedures with
better properties. The function C(θ; σ2, β) in (12) is a proportionality constant that makes

 a density function. A straightforward calculation shows that this constant

satisfies , where Z is a standard normal random variable.
Notice that in the in the embedding class, the null hypothesis density function obtains when θ
= 0. When β = (β1,β*t)t is fixed, this larger family, which does not depend on β1, is an
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exponential family of densities, hence possesses many of the nice properties intrinsic to
exponential families. Furthermore, observe that if we allow for the case where β* = 0, then the
larger model is not identifiable since (θ5 = 0, β* ≠ 0) and (θ5 ≠ 0, β* = 0) both lead to the same
distribution. But since this model validation issue only becomes practically important in the
presence of a ‘trend,’ which is the case where β* ≠ 0, then in the theoretical development we
assume that β* resides in ℜp−1 \ {0}, which does not lead to any technical difficulties as this
is still an open set in ℜp−1.

Let us first consider the case where β and σ2 are known, so R0 = R0(σ2, β) is observable. Within

the embedding class of density functions specified by (12), the score test for  versus

 is easily developed. The use of score tests in this situation is appealing because it is
known that score tests are endowed with a “robustness of optimality” property, see Chen
(1983, 1985) regarding this property, and Cox and Hinkley (1974) for a general discussion of
score tests. In our setting, it is straightforward to see that the score test statistic at θ = 0 equals

Since under , are i.i.d. standard normal variables, then for any positive

integer k,  and , and so the covarience matrix of

 is

where , k = 2, 4. If, as n → ∞, the following conditions are satisfied:

a. There exists a nonsingular p × p matrix Σx such that 

b. There exists a function Ω(β) such that 

c.
There exists a  such that 

d.

 and

e.

then it follows from the Lindeberg-Feller Central Limit Theorem (CLT) that, under H0,

Peña and Slate Page 7

J Am Stat Assoc. Author manuscript; available in PMC 2010 February 11.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



where

(13)

In this situation where β and σ2 are assumed known, notice the asymptotic dependence of the

components Q1, Q3 and Q5; as well Q2 and Q4. An asymptotic α-level score test for 

versus  rejects  whenever

However, since σ2 and β are unknown, neither R0 nor  are observable. There is therefore a
need to use estimators for σ2 and β in R0(σ2, β), and by substituting the ML estimators s2 and
b given in (2), respectively, we obtain the (estimated) residual vector R = R0(s2, b) given in
(3). To develop a test based on R, we need the asymptotic distribution of Q(R; s2, b) under
H0. Towards this goal, observe that the ML estimating equations for σ2 and β that give rise to
s2 and b are

(14)

(15)

Augmenting the vector Q with A and B, then invoking the Lindeberg-Feller CLT, we find that,
under H0, plus the conditions guaranteeing asymptotic normality of Q(R0(σ2, β); σ2, β)
enumerated earlier,

(16)

where
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with

and with μX and Γ(β) defined according to

By virtue of (14) and (15), when s2 and b are substituted for σ2 and β, respectively, the last
two components in the augmented vector are both equal to zero. Consequently, it follows by
multivariate normal theory, or it could be established more formally by relying on result, that

where  To provide a simplified form for this limiting
covariance matrix, we establish the following intermediate result.

Lemma 1 If the first column of X is 1, then 

Proof: Write X = [1 W] so  Applying the partitioned matrix
inverse theorem (cf., Anderson 1984, Th. A.3.3), we obtain
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Since μX = (1 μW), then the assertion immediately follows by matrix multiplication.||

By straightforward multiplication, and applying Lemma 1, we obtain

(17)

with  The matrix Δ(σ2, β) is the correction factor in the limiting
covariance matrix arising from plugging-in s2 and b for σ2 and β, respectively. This factor is
clearly non-negligible. Finally, from (13) and (17), a simplified form of Ξ11.2 is

(18)

where  We formally state this asymptotic result as a theorem.

Theorem 1 If assumptions (A1)–(A4) hold for the linear model in (1) with X having as its first

column the vector 1, and if conditions (a)–(e) enumerated earlier hold, then n−½Q(R; s2, b)
converges in distribution to a zero-mean normal distribution with covariance matrix Ξ11.2

given in (18).

Note the invariance of this asymptotic result to re-scaling, that is, the result is independent of
σ. This is a consequence of the facts that the model is scale-invariant and the residual vector
is scale-equivariant. The theorem also indicates that Q1(R; s2, b) and Q2(R; s2, b) are
degenerate at zero, hardly a surprise since these quantities are the estimating functions for σ2

and β. What is surprising, instead, is the asymptotic independence of Q3(R; s2, b) and Q5(R;
s2, b), since as noted earlier, Q3(R0; σ2, β) and Q5(R0; σ2, β) are not asymptotically
independent. Thus, interestingly and unexpectedly, replacing the unknown parameters by their
ML estimators in the quantities Q(R0(σ2, β); σ2, β) made all the components asymptotically
independent!

The quantities Ω(β), ΣX, and Γ(β) can be consistently estimated by their empirical counterparts
and with β replaced by b. Their respective estimators are those given in (8), and so we are able
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to obtain a consistent estimator  of Ξ11.2. The score statistic for testing  versus

, with σ2 and β considered as nuisance parameters, is the quadratic form of

 with quadratic matrix , where for a matrix M, M− denotes inverse. It is
immediate to see that this statistic is

where , and  are as defined in (5), (6), (7), (9), and (10), respectively.
Theorem 1 therefore justifies the use of the chi-squared distribution with four df for assessing

the magnitude of , as well as the one df chi-squared distributions for each of the component
statistics.

Before proceeding, we mention three possible competing test procedures to the -based test.
These competing tests are also included in the simulation studies. The first is to perform

simultaneous testing using the test statistics  but incorporating a Bonferroni
adjustment. By virtue of the asymptotic results above, this test is as follows:

(19)

This amounts to rejecting H0 if at least one of the unidirectional tests rejects H0 at level of
significance of α/4.

The second competing test arises by recognizing that under H0, by invoking the asymptotic
independence of the component statistics, the asymptotic distribution of the test statistic Gmax

in (19) is  As a consequence, an asymptotic α-level test
of H0 is provided by:

(20)

When α = .05, the critical values of the tests in (19) and (20) equal 6.239 and 6.205, respectively.
This explains the almost identical behaviors of these two tests observed in the simulation
studies (see Section 5).

The third competitor, referred in Section 5 as the BoxCox, is the use of the Box and Cox
1964 power transformation. The idea is to ft the linear model on the transformed responses

 with the transformation being

(21)
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where γ is the transformation parameter, and  is its ML estimate. The null hypothesis H0 is

then rejected if the null hypothesis  is rejected. The test for  utilized a likelihood-
ratio test, with the numerical implementation relying on the R language (Ihaka and Gentleman
1996) object boxcox found in the MASS package of Venables and Ripley.

4 Deletion Statistics

It is important to accompany assessment of model assumptions with investigation for unusual
observations (either outlying or influential), since such observations could impact inferences
regarding model validity. Unusual observations may arise either as a consequence of model
violations or as rare outcomes when the data in fact adhere to the model. In the first case,
exclusion of the unusual observations from analysis may have little impact because the global
test remains sensitive to violations in the remaining data, or may lead to a nonsignificant global
test because the excluded observations aided detection of violations substantially. In the second
case, when the data meet model assumptions apart from rare exceptions, unusual observations
may cause the global test to indicate violations, so that their deletion would then permit the
procedure to reflect the adherence of the remaining data to the model. In any case, unusual
observations should be handled with caution, and solid justification is required for their
exclusion, as in the examples in Section 6.

A natural -based procedure for detecting unusual observations arises from the well-known
idea of deletion statistics, which reflect the change in values of statistics after the deletion of
an observation. For a statistic T, denote by T[i] the value of the statistic after the ith observation
is deleted. We will be interested in the quantities

(22)

which represent the percent relative change in the value of the global statistic  after the
deletion of the ith observation. The idea is that an observation with a large absolute value of

 is either an outlier or has large influence. The sign of this global deletion statistic is also
informative, since a positive (negative) value indicates that the deleted observation makes the
assumptions more (less) plausible.

Related to the statistic in (22) is the p-value after the deletion of the ith observation, that is,

where  is the observed value of the global statistic after deletion of the ith observation.
The evaluation of this probability could be performed using the (approximate) chi-squared
distribution with 4 df. The idea is if p[i] is quite different from the other p[j]’s, this will be
indicative that the ith observation is either an outlier or an influential observation.
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A potentially useful and interesting plot is the scatterplot of p[·] = (p[1],…,p[n])t versus

 Following Tukey’s (1977) idea, we indicate in our plots the

observation labels of those points beyond the outer fences of either  or p[·].Such
observations are unusual in that they either have a large influence on the value or the p-value
of the global statistic. This plotting idea will be demonstrated in the illustrative examples in
Section 6.

5 Properties of Procedures

Simulation studies were performed to assess the achieved levels and powers of the proposed
tests for small to moderate sample sizes. The simulation runs to assess the levels each had
20,000 replications (except for the BoxCox test which was added later at the suggestion of a
reviewer), while the runs to determine the powers of the tests had 5,000 replications. The
simulation code was in the R language (Ihaka and Gentleman 1996), using the function lm and
built-in random number generators. For each set of simulation runs associated with a particular
combination of simulation parameters, a common covariate sequence x1, x2, …, xn, generated
from the standard uniform distribution was used.

The first set of runs was to determine if the procedures achieve a pre-specified 5% level of
significance for the sample sizes considered. The sample size n took values ranging from 5 to
1200; see Table 1. The response values were generated according to the model

(23)

where εi’s were generated from a standard normal distribution. The model

(24)

was fitted and the resulting residuals,Ri, (i = 1, 2, …, n), were used in the testing procedures.

For  V was the default standardized time-sequence. Table 1 summarizes the observed
empirical rejection rates. Note that for small sample sizes (n ≤ 30), the asymptotic

approximation is not satisfactory. Except for the test based on  the procedures tend to be
conservative. For moderate to large sample sizes, the procedures achieve significance levels

close to the nominal 5%, though the -based statistic has a mild degree of conservatism even

when the sample size is large. The rate of convergence to the  distribution for this statistic
is rather slow, as has been noted in earlier papers; see for instance Doornik and Hansen
(1994).

For the power simulations, n takes values in the set {15, 30, 50, 100, 200}. We examined the

achieved powers of the tests for n = 15 and n = 30 because, apart from the -based test, the
results in Table 1 show that the tests are conservative, which may be acceptable except for a
potential decrease in power. Power simulations were performed for specific types of departures
from the model assumptions, and for multiple violations of the assumptions. The generic data
generation model is given by
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(25)

where  and for  In this model, all the assumptions are satisfied
whenever β2 = 0 or γ = 0, σ2 = 1, α = 0, and εi i.i.d. N(0, 1). To induce a dependent error
structure, two models were considered. The first model, which endows the error sequence a
martingale structure, has

(26)

where  are i.i.d. from N(0, 1). The second model induces an autoregressive [AR(1)] structure
via

(27)

with ρ being a dependence parameter. Extensive summaries of the simulated powers for all the
sample sizes considered in the simulation and for many varieties of departures from model
assumptions are summarized in a series of tables in a technical report of the same title as this
manuscript, which is available upon request from the authors. To conserve space, we
summarize in Table 2 representative cases for each specific departure from model assumptions.
Table 3 contains the results when multiple violations occur. The conclusions obtained from
this representative summary in Table 2 coincide with those obtained from the extensive tables
in the technical report. In the discussion of the simulation results that follows, we also refer to
and make use of the more extensive tables in the technical report.

The first type of violation examined was a non-normal error distribution. We considered several
types of error distributions, broadly classified into symmetric and skewed distributions. The
first four cases in Table 2 present the simulated powers of the tests when the error distribution
is symmetric (t-distributed with 5 df), and is right-skewed (a centered χ2 with 5 df). The
technical report includes the results for other error distributions such as the logistic, double
exponential, t, and χ2 with df other than 5. The global test is quite good relative to the best
directional test based on the four component statistics, with its power not significantly degraded
by combining the four statistics, and sometimes exceeding those based on the best directional

test. The best directional test statistic is  which is a kurtosis-type statistic. Notice that the

 test does not have any power for detecting this error distribution mis-specification. As
expected, when the df of the t-distribution increases, the power of the tests decreases. The
powers of the MaxTest in (20) and BonfTest in (19) are almost identical, and for these

symmetric distributions are lower than the -based test. Additional runs where the error
distribution is a normal contaminated with a t1- or t3-distribution were also performed. For

contaminating proportions of .1 and .3, the results indicate that the -based test possesses
good detection abilities for this violation, and has slightly higher power than the MaxTest and
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BonfTest. For the t-distributed error distribution, the performance of the BoxCox test was poor

relative to the -test when the sample size is large.

When the errors have shifted chi-squared distributions, the global test performs acceptably well
relative to the best test among the four directional tests, with the powers slightly degraded due
to combining the four directional tests, some of which do not have good power against this

assumptional departure. The best directional test statistic is  which is the skewness-type

statistic.  does not have any detection power for this alternative. When the df increases, the
power diminishes, because the chi-square distribution approaches the normal distribution. The

MaxTestand the BonfTest perform just slightly better than the -based test for some values
of n. On the other hand, the BoxCox test performed very well for this right-skewed error
distribution. Its power is significantly higher than the other tests for sample size n = 30. This
superior performance of the BoxCox test could be intuitively explained by the fact that the
transformation is especially appropriate for non-normal and non-symmetric error distributions.
Interestingly, this non-symmetric error distribution is the only instance in Table 2 in which the
BoxCox test totally dominated the other tests.

The next set of simulation runs concerns the situation where (A2) is violated, so that the
conditional variances of the Yi’s are not equal. Two models were considered for this purpose.
The first model has variances that depend on the covariate values. Specifically, the true model
is

(28)

where εi’s are i.i.d. from N(0; 1). The simulated powers for α = 2 are summarized in the fifth

and sixth rows of Table 2. The best directional test for this departure is the -test, with the

global test performing best among all the tests. Again, the test based on  has very low power
for this heteroscedastic model, though it is not totally devoid of detection power when n = 200.
The second model for heteroscedastic variances is of form

(29)

with εi’s also i.i.d. from N(0; 1). The seventh and eighth rows of Table 2 present the simulated
powers for data arising from the model with σ1 = 1, σ2. = 2. The best directional test in this

situation is based on  followed by the test based on  The global test also possesses

acceptable power, but has lower power compared to that of  The powers of the MaxTest

and BonfTest are just slightly lower than the -test.

The next set of runs were for mis-specified link functions, that is, when (A1) is violated. The
data analyzed were generated according to the model

(30)
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with εi’s i.i.d. from N(0; 1). The ninth to twelfth rows of Table 2 provide the simulated powers
of the tests for two different sets of (β2, γ). Interestingly, the directional tests based on

 are not at all sensitive to this violation. The best directional test is based on

 The global test also has detection power towards this mis-specification, although its power

is quite degraded relative to that of  possibly because the other three tests have no power
against this alternative. Furthermore, the MaxTest and BonfTest have better powers than the

-test. When β2 = 1 and γ ∈ {.5,2}, the powers of the tests are very low. However, this should
not be perceived as a defect of the tests because this is a consequence of the fact that for these
parameter sets, the signal-to-noise ratios (SNR) are very low. This SNR is measured via

(31)

with E{MSE(Model A)|Model B} being the expectation of the mean-squared error when Model
A is fitted with the expectation evaluated with respect to Model B. Thus, E{MSE(True)|True}
= σ2. It is straighforward to show that for the simulation model in (30), the SNR satisfies, for
large n:

For the values of (β2, γ, σ) utilized in the simulation studies, ,

, , , , and 

These values explain the ordering of the simulated powers for the -based test. Note in

particular that  is only slightly larger than  and this is

reflected by the small differences in the observed powers for the -based test for these two
sets of values of (β2,γ).

For the simulation runs concerning violations of assumption (A3), we considered the two
models described earlier for generating martingale-type and AR-type structures. In the
simulation, we performed runs for ρ ∈ {.5, 1, 2, 5, 10}. The last four rows of Table 2 present
the simulated powers of the tests under these dependent error models, with ρ = 5 for the AR-

type structure. For the martingale structure, the best directional test is based on  with the
global test surpassing the performance of this best directional test for large n, and also being

slightly better than the MaxTest and BonfTest. For the AR(1) structure, the best is also the 
-test, with the global test’s power also very good, and again the power of the global test is best

for large n. The tests based on  and  also have some detection abilities for this violation,

but are not competitive with the -based test or the global test. The test based on  possesses
no ability to detect this particular type of violation. The global test performs slightly better than
the MaxTest and BonfTest for the AR(1) error structure.

Finally, we consider the situation where several of the assumptions are violated simultaneously.
We expect that the global test is ideally suited for this situation. Table 3 presents the achieved
powers of the tests for four sets of simulation parameters where all four assumptions (A1)-
(A4) are violated as in (25). All four directional tests have detection abilities. The performance
of the global test is extremely commendable, as its power is generally higher than any of the
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directional tests as well as the MaxTest and the BonfTest. It is interesting to observe that the

BoxCox test sometimes has higher power than the -test for small n, but the rate of increase
of its power as n increases is relatively slow compared to the latter test. It is conceivable that

the BoxCox test has higher power over the -test when n is small simply because the latter
test is highly conservative for small n.

6 Illustrative Examples

Example 1: The first illustration pertains to car mileage data gathered by the first author while
commuting from Ann Arbor, Michigan to Bowling Green, Ohio during the period October 20,
1996 through January 27, 1999. There were 205 observations corresponding to gas fill-ups for
the following variables: Date, the date of the gas fill-up; NumGallons (denoted Y ), the number
of gallons of regular unleaded gasoline pumped into the car; MilesLastFill (denoted X1), the
distance travelled since the last fill-up; NumDaysBetw (denoted X2), the number of days since
last fill-up; and AveMilesGal, the miles per gallon between gas fill-ups. This data set is at the
URL: http://www.stat.sc.edu/~pena/DataSets/CarMileage.txt. We fit the multiple linear
regression model Yi = β0+β1X1i+β2X2i+σεi, i= 1,2,…,205, where εis are i.i.d. N(0,1) variates.
Scatterplots of Y versus X1 and X2 are provided in the first two plots of Figure 1, respectively.
The Pearson's correlation coefficient between Y and X1 is .653, between Y and X2 is − .002,
and between X1 and X2 is − .378. Other summary statistics for this data set are provided in
Table 4.

Table 5 contains the results of the analysis, including the F-value, estimates of regression
coefficients, , and the coefficient of determination. The row labeled ‘None’ pertains to the
analysis where all 205 observations were used. If the model assumptions are satisfied, the
regression coefficients β1 and β2 are both found to be significantly different from zero.

However,  has a p-value of zero, and those associated with  and  are also very
small, indicating violation of model assumptions.

As advocated in Section 4 we examine for unusual observations. The third plot in Figure 1,

which is a scatterplot of  indicates that the 19th, 56th, 67th, 146th, and 200th
observations are highly unusual. Details of these observations and others that were excluded
in further analyses are in Table 6. The dates of these observations reveal their unusual nature.
The 19th observation was obtained on Christmas Eve just before a long trip. In contrast to usual
practice, though the gas tank was still almost half-full, a decision was made to fully fill it, thus
lowering fuel efficiency; the 146th observation was obtained during a long trip which mostly
covered interstate highway driving; and the 200th observation encompassed a period when the
car was driven during a blizzard and was stuck in deep snow, explaining the low fuel efficiency.
The 56th and 67th observations showed up among these unusual values primarily because of
their X2-values of 26 (on vacation) and 22 (in repair shop) days, respectively.

We refitted the linear model with these five observations excluded from the analysis. The
results are summarized in the third row in Table 5, which still indicates violations of model
assumptions. More importantly, the fourth plot in Figure 1 reveals the 164th observation (in
the original data set) to be highly unusual. Similar to the 56th and 67th observations, it has a
large value of X2 (equal to 21 due to vacation). Observe also the sensitivity of the directional

statistics to the presence of unusual observations. In the first analysis, the p-values of  and

 were high and low, respectively, but after the exclusion of the unusual observations, this
pattern reversed.
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Further excluding this 164th observation (see fourth row of Table 5) now yields a global statistic

of  with p-value of .06 indicating that model assumptions appear viable, though the

statistic  has p-value of .03. A glimpse at the  scatterplot, the fifth plot in
Figure 1, reveals the 58th observation (in the original data set) to be unusual, though there was
no obvious explanation for this being so, in contrast to the other six values. Thus, though it
may not be fully justifiable, in the final analysis we also excluded the 58th observation. The
results are provided in the last row of Table 5, which show all validation test statistics have
p-values larger than .05, indicating that after the exclusion of the seven unusual observations
pinpointed by the deletion statistics, the linear model assumptions appear acceptable. Observe

also that the scatterplot of , the sixth plot in Figure 1, no longer shows any

unusual observations. However, note that the p-values of  and  are both between .05 and .
10, which may be indicating mild violations of the normality and link function assumptions.
For these reduced data, the correlation coeffient between Y and X1 is .618; between Y and X2

is .219, a significant increase from the original correlation of − .002 indicating the impact of
the unusual observations; and between X1 and X2 is − .323.

Example 2: The second example is a multiple regression analysis of water salinity data (see
Table 3 in their paper) which they used to illustrate robust regression techniques, and which
was also used for illustrative purposes in Atkinson (1985, pp. 48–52). The data set consisted
of 28 observations on the variables Salinity, the water salinity at the specified time period;
LagSalinity, the water salinity lagged two weeks; Trend, representing one of the six biweekly
periods in March to May; and WaterFlow, the river discharge. The response variable is Salinity,
while the predictors are LagSalinity, Trend, and WaterFlow. The first part of the analyses fitted
the multiple regression model

(32)

The fitted model had b0 = 9.590, b1 = .777, b2 = − .026, and b3 = − .295. The coefficients β0,
β1 and β3 were significantly different from zero. The multiple R2 was 82.6%. When the model

validation procedures are applied, we obtained , ,

, , and  The global test thus indicates
that model assumptions are acceptable though, as noted by a reviewer, the nearness of these
p-values to one also raises a ‘too good a fit’ concern.

An examination of the plot of , the first plot in Figure 2, reveals that the 16th
observation is highly unusual. In Atkinson (1985) the unusual nature of this observation was
revealed using a half-normal plot of statistic. It was also pointed out that the value of WaterFlow
for this observation is the cause for its being unusual and highly leveraged. The fact that the
global test did not conclude violation of model assumptions, even with this very unusual
observation, may cast doubt on the effectiveness of the validation procedure. Further analyses
of the data, however, reveal the reason for this behavior. LagSalinity is an excellent linear
predictor of Salinity, with the correlation coefficient between them equal to .872; whereas
WaterFlow is not highly correlated with Salinity, with their correlation coeffient equal to − .
477. In addition, the correlation coefficient between LagSalinity and WaterFlow is − .261.
Consequently, when the variables LagSalinity and WaterFlow are included in the regression
model, the effect of WaterFlow is diminished by the presence of LagSalinity. When LagSalinity
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is used in the linear regression model without WaterFlow, then  indicating
that model assumptions are not violated. However, when WaterFlow is used as sole predictor

variable for Salinity, then  and  indicating violations of
model assumptions and, in addition, the 16th observation is highly unusual. Therefore, when
LagSalinity and WaterFlow are both in the linear regression model and the original data is
used, then model assumptions are in fact satisfied. Thus the conclusion from the global test
that the assumptions are satisfied, even with the unusual observation, is not cause for alarm
regarding the effectiveness of the proposed validation procedure.

We follow Atkinson (1985, p. 49), by supposing that the value of 33.443 for WaterFlow for
this 16th observation was a misprint of 23.443. We re-fitted the model in (32) but using 23.443
in place of 33.443. The resulting analysis yielded b0 = 18.39, b1 = .70, b2 = − .15, and b3 = − .
63, with β0, β1, β3 significantly different from zero. The multiple R2 was 89.28%. Applying

the model validation procedures, we obtained , ,

, , and  Though the global statistic has p-value

exceeding 10%, the p-value for  is .04, which seems to indicate a mild problem in the link

function. The scatterplot of , the second plot in Figure 2, indicates no unusual
observations, except possibly for the 5th observation.

To gain further insight about these data, we examined the impact of different replacement

values for WaterFlow in the 16th observation, specifically on the resulting value of  The

third plot in Figure 2 presents the values of  for different replacement values for WaterFlow.

Note that the -value is largest, hence most indicative of violations of model assumptions,
when the replacement value is about 23.9, which is close to the value of 23.443 used by
Atkinson. The fourth plot in Figure 2 presents the values of the correlation coefficients between
Salinity and WaterFlow for different replacement values, and from this plot the largest absolute
correlation is at a value very close to Atkinson’s replacement of 23.443. Using this value the
correlation coefficient between Salinity and WaterFlow is − .646. Because for replacement
values in the interval from 23.3 to 23.9, the correlation coefficients between Salinity and
WaterFlow become largest, the impact of WaterFlow in the linear regression model when
LagSalinity is also included in the model is not easily diminished, in contrast when using the
original data. Consequently, at such replacement values, potential model violations especially
with regards to the linearity assumption for WaterFlow materialize. The fifth plot in Figure 2,
a scatterplot between Salinity and WaterFlow when using the replacement value of 23.443,
partly reveals a curvilinear relationship between Salinity and WaterFlow.

Recognizing the possible problem with the link function, we follow Atkinson’s (1985, p. 51)
suggestion of incorporating a quadratic term of WaterFlow and we fitted the model

(33)

The resulting estimates are b0 = 67.49, b1 = .68, b2 = − .25, b3 = − 4.57, and b4 = :08, and the
multiple R2 was 91.65%. Only β2 did not turn out to be significantly different from zero with

p-value of .053. The model validation statistics are , ,
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, , and  The Scatterplot of ,
which is the sixth plot in figure 2, no longer shows unusual observation

7 Concluding Remarks

In this paper a global test procedure for validating the four assumptions of the linear model is
proposed. The global test statistic, which is a function of the model residuals, is formed from
four asymptotically independent statistics, each having the potential of detecting a particular
violation. The level and powper properties of the tests were examined through simulation
studies, which indicate that the global and directional tests possess the ability to detect different
types of violations of the model assumptions. As such, the tests provide a formal method for
globally assessing the validity of model assumptions. Deletion statistics and graphical methods
based on the global statistic can be used to identify unusual observations. The proposed formal
procedure may help in eliminating, or at least reducing, the oftentimes subjective assessment
of the validity of model assumptions when using existing graphical techniques.

Other issues remain to be addressed. First, there is the problem of developing an adaptive
method. From the simulation results, the power of the global test is generally lower than the
best directional test when only one assumption is violated. Some of the directional tests have
no power for detecting certain types of alternatives, hence they tend to dilute the power when
included in this global statistic. We conjecture that it will be possible to have the data dictate
which among the four directional test statistics to combine to form a global test statistic, and
by doing so we expect that the resulting adaptive global test may acquire increased power.
Several approaches to determining which directional test statistics to combine present
themselves, such as those using information measures like the Schwartz (1978) Bayesian
information criterion (BIC) or the Akaike information criterion (AIC) (Akaike 1973). Second,
the chi-square approximation is not satisfactory for small sample sizes, though we point out

that except for the -based statistic, the approximation leads to conservative tests. Two
possible ways of alleviating this problem are to utilize empirical estimates of the covariance
matrices instead of using the theoretical matrices, or to use computationally-intensive methods
to determine the critical regions of the tests. Third, the main motivation for choosing the
smoothing functions in the density embedding is to recover some commonly used one-
dimensional test statistics, with the aim of formally combining them into one global test
statistic. This has been achieved in this paper. However, one is not limited in choosing the
functions that enter into the embedding. Finally, to make these linear model validation
procedures accessible to practitioners, we plan to provide the procedures through a computer
package in the R Library.
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Figure 1.

Relevant plots for the analysis of the car mileage data. The first plot is a scatterplot of Y versus

X1; the second is that between Y and X2. The next four scatterplots are  for
successive re-analyses with some observations excluded.
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Figure 2.

Relevant plots for the salinity data example. The first, second, and sixth plots are the scatterplots

of for the original data, corrected data, and for the corrected data with a
quadratic WaterFlow term in the model, respectively. The third and fourth plot depict the

resulting values of  and the correlation between Salinity and WaterFlow for different
replacement values for WaterFlow in the 16th observation. The fifth is a scatterplot of Salinity
and WaterFlow using Atkinson's replacement value of 23.443.
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Table 4

Summary statistics for the car mileage data set, where FQ and TQ are the first and third quartiles, respectively

Statistic X2 = NumDays Between Y=Number Gallons X1 =MilesLast Fill AveMiles Gal

Min 1 8.199 207.0 18.37

FQ 3 12.459 362.3 28.28

Med 4 12.909 379.3 29.46

TQ 5 13.344 394.5 30.58

Max 26 14.209 447.0 33.47

Mean 4.1 12.823 375.5 29.29

SD 2.7 0.778 31.7 1.89
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