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Abstract

Community structures are ubiquitous in various complex networks, implying that the net-

works commonly be composed of groups of nodes with more internal links and less external

links. As an important topic in network theory, community detection is of importance for

understanding the structure and function of the networks. Optimizing statistical measures

for community structures is one of most popular strategies for community detection in com-

plex networks. In the paper, by using a type of self-loop rescaling strategy, we introduced a

set of global modularity functions and a set of local modularity functions for community

detection in networks, which are optimized by a kind of the self-consistent method. We care-

fully compared and analyzed the behaviors of the modularity-based methods in community

detection, and confirmed the superiority of the local modularity for detecting community

structures on large-size and heterogeneous networks. The local modularity can more

quickly eliminate the first-type limit of modularity, and can eliminate or alleviate the second-

type limit of modularity in networks, because of the use of the local information in networks.

Moreover, we tested the methods in real networks. Finally, we expect the research can pro-

vide useful insight into the problem of community detection in complex networks.

Introduction

Community structures are ubiquitous in various complex networks, examples including the

biological networks, social networks and technological networks [1]. This means that the net-

works generally consist of communities (or modules) with dense internal connections and

sparse external connections. Generally, the communities (or modules) in networks are closely

related to functional units in real-world networks, such as cycles and pathways in metabolic

networks and protein complexes in the protein-protein interaction networks [1, 2], and they

may have quite different topological properties from those at the level of the entire networks

[2–5] and affect the dynamics in the networks[6]. Therefore, identifying the communities is of

importance for understanding the structures and functions of the networks.
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As an important topic in network theory, many methods have been proposed for detecting

community structures in the networks based on various approaches. For example, some meth-

ods are based on similarity measures [7], some methods make use of dynamics on networks

such as random walk dynamics [8, 9] and label propagation [10–12], while some methods are

based on statistical models [13, 14] (see refs [1, 15, 16] for reviews). Especially, many of popu-

lar community-detection methods generally consist of the optimization of quality functions [1,

17–19]. For example, the famous Newman-Girvan modularity (Mod) [20] can be used as an

objective way to estimate the quality of community partitions, and thus it also implies a type of

community-detection strategy, i.e., modularity optimization. Indeed, community detection

can be regarded to be one kind of optimization problem, given the quality functions for evalu-

ating community structures. Therefore, optimizing the quality functions has been one of the

most popular strategies for community detection in complex networks[13, 20–23].

Modularity optimization has become a kind of popular way to discover communities in

complex networks, while the original modularity has the resolution limit–some (small-size)

communities may not be detected in large-size networks, even if communities are very obvious

[24–26]. Specifically, communities will be merged if the inequality of resolution kskt<2M�est is

satisfied, where ks and kt are the total degrees of communities, est is the number of links

between the communities, andM is the total number of links in the network. To avoid confu-

sion with the latter, we called it as the first-type limit of resolution. Many improvement strate-

gies as well as its variants have been proposed to deal with the resolution limit. For example,

the edge re-weighting is an interesting strategy for enhancing community-detection methods

[27–30]. In general, by assigning different weight to intra- and inter-community edges, com-

munity structure becomes more obvious, especially this will lead the (relative) decrease of the

number (est) of links between communities, and thus the resolution limit can be eliminated or

alleviated. Recently, by focusing on the related shortcomings of modularity, a variant of modu-

larity called modularity density was proposed, by adding two components (split penalty and

community density) into original modularity [31–33]. The introduction of community density

is helpful for eliminating the above resolution limit, while the split penalty can prevent exces-

sive splitting of communities. The above approaches can improve the resolution of modularity,

but it is not easy to adjust the resolution of modularity. Another kind of more simple and effec-

tive approach to this resolution limit is to add a resolution parameter into the definitions of

the original modularity directly or indirectly, leading to the multi-resolution modularity [13,

34–37]. By adjusting the resolution parameter, communities of different sizes can be identified,

and thus the resolution limit is naturally resolved. Different from the former approaches, add-

ing the resolution parameter is equivalently to vary the background of communities to change

the resolution of modularity. However, the multi-resolution modularity may encounter

another problem–with the increase of resolution parameter, (large-size) communities may

split into small parts before all (small-size) communities are revealed [37, 38]. We called this

phenomenon as the second-type limit of resolution. Moreover, according to different con-

cerns, there are many other extended definitions of modularity. For example, an alternative

way of defining the resolution parameter in multilayer modularity was introduced in [39],

while other extensions of modularity were proposed to deal with directed networks [40],

weighted networks [41], signed networks [42], and overlapping communities [43].

As we know, modularity is defined generally by evaluating the fraction of links within com-

munities minus the expected values in the null model [13, 20, 21]. The null model is crucial,

which affects the definitions of modularity and the results in community detection. There

existed several classical choices of the null models, such as the configuration model as well as

the Erdös-Rényi model [13, 44–46]. Traditional modularity functions using these null models

are generally called global modularity, because the null models are based on the assumption of
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the global connectivity of communities in the networks, that is, the connections between all

pairs of nodes are possible. Previous studies have shown that the global modularity is easily to

encounter the first-type resolution limit, and even by using its multi-resolution version, it may

still encounter the second-type limit [37, 44]. Interestingly, many networks have communities

(or modules) that are linked only with a small number of communities. This phenomenon can

be called the local connectivity of communities in the networks. Modularity functions that take

into account this information may provide a view of different depth into the community struc-

tures in the networks. Generally, this type of modularity functions can therefore be called as

local modularity [47, 48]. Differently from the global modularity, different communities are

generally assigned different backgrounds in local modularity. It has been shown that this

enables local modularity to tolerate the above resolution limits better than global modularity

[47].

Recently, based on the general self-loop rescaling strategy, we developed one uniform

framework for the multi-resolution modularity [46]. The self-loop rescaling strategy has sev-

eral advantages. (a) By assigning a self-loop (self-link) to each vertex, the resolution of modu-

larity can be adjusted easily to identify communities at different levels. Because, for example,

positive self-loop can increase (inner) degrees of communities (or say link density within com-

munities), but does not change the link density between communities. This will increase the

difference between the intra- and inter-community link-densities, leading that the communi-

ties can be disconnected more easily. From another viewpoint, this will increase the relative

sizes of communities, leading that modularity can escape from the resolution limit (see exam-

ple for analysis in Appendix). (b) The self-loop rescaling strategy can control the formation of

the null model easily, and thus various (multi-resolution) modularity, including local modu-

larity, can be derived based on the original modularity [34, 44, 46]. (c) The derived modularity

by the self-loop rescaling can be maximized by existing modularity optimization algorithms

[17, 49, 50], which can extend the application of the existing algorithms.

In this paper, as an extension of our previous works, we firstly introduce two sets of modu-

larity functions for community detection in complex networks, including two global modular-

ity functions and four local modularity functions respectively, by the self-loop rescaling

strategy. By a kind of the self-consistent method for optimizing modularity, the modularity

functions are applied to community detection. We evaluate the performance of the modularity

and carefully compare their behaviors in community detection. The results confirm the superi-

ority of the local modularity in detecting community structures on large-size and heteroge-

neous networks.

Methods

Global and local modularity for community detection

For a given community division in a network, the mathematical form of generalized (multi-

resolution) modularity is denoted by

Q ¼
1

2M

X

i;j

Aij � g
k
eff
i k

eff
j

2M
eff
Ci

 !

dðCi;CjÞ

¼
1

2M

X

s

kins � g
ðkeffs Þ

2

2M
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� �

; ð1Þ

where γ is a tunable resolution parameter; Aij is the adjacent matrix of the network (Aij =1 if

there exists a link between nodes i and j, and zero otherwise); Ci is the community to which

node i belongs; the Kronecker delta function δ(Ci,Cj) = 1 if nodes i and j belong to the same
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community, and zero otherwise;M = ∑ijAij/2 is the number of links in network; kins is the inner

degree of community s; keffi is the effective degree of node i in the null model (e.g., it is the

degree of node in the CM-based model), while keffs ¼
X

k
eff
i � dðCi; sÞ, which is the sum of the

effective degree of nodes in community s, denotes the effective total degree of community s,

and 2M ¼
X

keffs ;Meff
s denotes the effective number of links that is related to community s in

the null model. Please see Table 1 for different formations of keffi andMeff
s , by which the defini-

tions of modularity are determined.

Here, we introduce two sets of modularity functions, which include two globalmodularity

functions and four localmodularity functions respectively (see Eq (1) and Table 1 for defini-

tions). The null model of modularity is critical to the definition of modularity, where the form

ofMeff
s is the most important factor of determining the difference between local and global

modularity. For global modularity,Meff
s ¼ M, i.e., the links in whole network are considered,

and for local modularity,Meff
s is determined by the neighborhood of community s, when esti-

mating the probability of edge between vertices in random graphs under certain constraints,

i.e. in null model. The more locally the communities of a network are connected with the rest

of the network (that is, the local connectivity of communities is more apparent), the more obvi-

ous the difference between local and global modularity is. Conversely,Meff
s will be equal toM,

and γs will be equal to γ when all communities in a network have global community connectiv-

ity, that is, all communities directly connect each other. In this case, the local modularity

degenerates into the global modularity. The basic null models have two choices: the configura-

tion null model (CM) and the Erdös-Rényi null model (ER). Because CM considers the hetero-

geneity of degree, while ER only uses the mean degree of node, we use CM and ER to denote

the modularity with k
eff
i ¼ ki and k

eff
i ¼ k.

The equivalent (multi-resolution)modularity can also be constructed by the self-loop

rescaling strategy (see Appendix and Table 1), because the modularity is affected by the net-

work structure, the community division and the null model. The self-loop rescaling strategy

can indirectly affect the null model and its weight in the modularity. The derived multi-resolu-

tion modularity can be maximized by the existing modularity optimization algorithms, which

clearly extend the application of the algorithms.

Modularity optimization is a popular method for discovering communities in networks.

However, according to previous studies, modularity (with fixed resolution parameter) cannot

disconnect some (small-size) communities when the size of a network is very large, even if

they are cliques [26]. Take the global CM-based modularity (note that it is equal to the New-

man-Girvan modularity if γ = 1) as example, communities will be merged when kskt<2M�est/γ,
where ks and kt are the total degrees of communities, est is the number of links between the

Table 1. Various definitions of global and local modularity.MO(s) andM
OðsÞ ¼ k � N

OðsÞ=2 denote the number of links and the mean number of links in community s

and the neighborhood of it, where k denotes the mean degree of network and NO(s) denotes the number of nodes in community s and the neighborhood of it. Please
refer to Methods section for γs.

Modularity Meff
s k

eff
i

keffs Self-loop rescaling

Global Q
ðgÞ
CM

M ki ks γs�ki−ki

Q
ðgÞ
ER

M k ks gs � k � ki

Local Q
ðlÞ
CM

MO(s). ki ks γs�ki−ki

Q
ðlÞ
ER

MO(s) k ks gs � k � ki

Q
ð<l>Þ
CM

M
OðsÞ

ki ks γs�ki−ki

Q
ð<l>Þ
ER

M
OðsÞ k ks gs � k � ki

https://doi.org/10.1371/journal.pone.0205284.t001
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communities, andM is the total number of links in the network [46]. The phenomenon is also

called as the first-type limit of resolution. The problem above can be resolved by adjusting the

resolution parameter, because with the increase of γ, the critical degrees of communities in the

above inequality decrease gradually, and thus more (small-size) communities can be discov-

ered. But, the modularity may still encounter another problem——with the increase of γ, some

(large-size) communities may begin to split into some small parts before small-size communi-

ties are revealed completely [37, 38]. This is what we call the second-type limit of resolution.

Compared to global modularity, the use of local information in local modularity may be able

to improve the second-type limit of resolution.

Network data

To compare the behaviors of the modularity optimization in detecting communities in the net-

works, we will apply the global and localmodularity to a set of classical artificial networks with

community structures (Lancichinetti-Fortunato-Rachicchi (LFR) networks) and a set of real-

world networks. The LFR model has tunable sizes of networks and considers the heterogeneity

in realistic networks [51]. In the networks, there are several parameters.

1. N denotes the number of nodes in the networks.

2. km and kmax denote the mean degree and maximum degree respectively.

3. cmin and cmax denote the minimum and maximum community sizes respectively.

4. t1 and t2 are respectively the power-law exponents of the distribution of degrees and com-

munity sizes.

5. μ denotes the mixing parameter which determines the ratio of the external degree of each

node to the total degree of the node with respect to its community.

For real data, the real-world networks used in the study include the karate club network

[52], polbooks network(http://www-personal.umich.edu/~mejn/netdata/), Football[53], the

dolphin network[54], and Yeast [55].

Results

The difference between the local and global modularity depends on the level of the local con-

nectivity of communities in networks under study, while the difference between CM and ER

depends on the heterogeneity in networks. To compare the behaviors of various modularity

(Table 1), we conducted extensive simulations by tuning various parameters (Table 2). We use

the normalized mutual information (NMI) to evaluate the performance of different modularity

for detecting communities in the networks [22]. NMI can reflect the similarity between two

community divisions, revealing the amount of extracted community information in a network

with known community structures. NMI=1 if two community divisions are matched perfectly,

and NMI<1 otherwise.

Effect of community-size difference

Firstly, we show the effect of community-size difference (cmin-cmax) on the methods (see Fig

1). In the networks, the values of NMI for most methods are less than 1. This is because some

communities merge due to the first-type resolution limit of modularity with fixed resolution

parameter. The inset graphs showed the fraction of nodes affected by the merging of commu-

nities, and the larger the fraction of affected nodes, the less the values of NMI. This confirmed

that the methods indeed encountered the resolution limit. As we see, NMI of local modularity

Global vs local modularity for network community detection
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is larger than that of global modularity in the networks, at least for the corresponding CM or

ER models. This means that the local modularity can mitigate the effect of the resolution limit

and thus outperform the corresponding global modularity, because it makes use of the local

connectivity of (small-size) communities. This confirmed the advantage of the local modular-

ity with this local information.

For global modularity, NMI increases with the increase of community-size difference. This

is because the appearance of large-size communities results in the decrease of the number of

small-size communities, leading to the decrease of the fraction of the merged (small-size) com-

munities by the global modularity (see inset graphs in Fig 1). For local modularity, NMI

decreases with the increase of community-size difference, because the number of (small-size)

communities with local connectivity decreases. Moreover, when km=kmax (see Fig 1(A) and 1

(C)), these networks are homogeneous in vertex degree, and thus the CM and ER-based null

models will be equivalent. As expected, they generate similar results respectively for global or

local modularity, while the heterogeneity of vertex degree will increase the difference of them.

Effect of vertex-degree difference

Fig 1(B) and 1(D) show the existence of the difference of the CM and ER-based methods in the

networks due to the vertex-degree difference. Further, Fig 2 shows how the vertex-degree het-

erogeneity affects the methods, and enlarges the difference of the methods. In small-size net-

works (e.g., N=1000), the curves of the methods have differences, but have also overlapping. In

larger-size networks (e.g., N=5000), the phenomena is more obvious. Firstly, by fixing the het-

erogeneity in community size (see Fig 2(A) and 2(B)), for the CM-based methods (QðgÞ
CM, Q

ðlÞ
CM

and Q
ð<l>Þ
CM ), regardless of global or local ones, NMI decreases with the vertex-degree heteroge-

neity, especially in large-size networks (Fig 2(B)). This may be because the vertex-degree het-

erogeneity disturbs them, and especially makes the number of small-size communities (note

that “small size” denotes small total degree) increases, which worsens the first-type resolution

limit of CM-based modularity. However, for the ER-based modularity, it is not the case.

Because they make use of the mean community degree ks, instead of the community degree ks.

Table 2. Networks used in the experiments. [A, B] denotes the parameter will vary from A to B. “1.5 kmax” denotes that cmax changes with kmax in the given proportion,
while “0.015 N” denotes that the parameter varies with N in the given proportion. t1=2, t2=2, μ=0.2.

Networks N km kmax cmin cmax

NET1 (a) 1000 10 10 10 [10, 100]

(b) 1000 10 30 10 [30, 100]

(c) 5000 10 10 10 [10, 100]

(d) 5000 10 30 10 [30, 100]

NET2 (a) 1000 10 [10, 100] 10 150

(b) 5000 10 [10, 100] 10 150

(c) 1000 10 [10, 100] 10 1.5 kmax

(d) 5000 10 [10, 100] 10 1.5 kmax

NET3 (a) [1000, 10000] 10 30 10 50

(b) [1000, 10000] 10 30 10 150

(c) [1000, 10000] 10 100 10 150

(d) [1000, 10000] 10 0.015 N 10 0.020 N

NET4 (a) 5000 10 30 10 150

(b) 5000 10 100 10 150

(c) 5000 10 30 10 600

(d) 5000 10 100 10 600

https://doi.org/10.1371/journal.pone.0205284.t002
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And the stronger the vertex-degree heterogeneity is, the more obvious the difference between

ks and ks is, and the less the links of the small-size communities to others is. This makes the

ER-based modularity more quickly to disconnect small-size communities than the CM-based

ones, so with the degree heterogeneity, NMI for ER increases on the whole and the ER-based

methods are getting more and more different from the CM-based ones.

Then, we let the heterogeneity of vertex degree and community size vary simultaneously

(see Fig 2(C) and 2(D)). In this case, the first-type resolution limit of all modularity is to be mit-

igated, because of the increase of the number of large-size communities. For the global meth-

ods (QðgÞ
CM and Q

ðgÞ
ER), this is the main reason that leads to the clear increase of NMI, and exceeds

clearly other interference factors. However, for QðlÞ
CM and Q

ð<l>Þ
CM , the increase of large-size com-

munities also weakens the local connectivity of communities, and this exceeds the other factors

for them, leading to the decrease of NMI. Moreover, because of the increase of the heterogene-

ity of vertex degree, the difference between CM and ER becomes larger and larger, especially

for global modularity.

Fig 1. Normalized mutual information (NMI) obtained by different modularity as a function of community-size difference (cmin-cmax) in the NET1
networks. Parameters of networks: (a) N=1000, kmax=10; (b) N=1000, kmax=30; (c) N=5000, kmax=10; (d) N=5000, kmax=30 (see Table 1 for details of network
parameters). Inset graphs show the fraction (fr) of affected nodes due to the merging of communities (i.e., the first-type resolution limit) by different methods
as a function of community-size difference in the networks.

https://doi.org/10.1371/journal.pone.0205284.g001

Global vs local modularity for network community detection
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Effect of network size

Fig 3 compares the behaviors of various methods by varying the network size. For all methods,

NMI decreases with the increase of network size, mainly due to the resolution limit of modu-

larity. Increasing the vertex-degree heterogeneity will obviously increase the difference of the

methods. On the whole, local modularity with fixing resolution parameter exceeds global ones,

due to the use of local information. Further, by tuning the resolution parameter, the methods

can better identify the underlying community structures in networks.

Varying resolution parameter

Firstly, in the networks with weak heterogeneity of community size (see Fig 4(A) and 4(B)),

NMI=1 for suitable γ-values, meaning that the embedded community structures are revealed.

That is to say, the first-type resolution limit of modularity has been resolved.

Secondly, the comparison between local and global modularity shows that the local modu-

larity can reach the point of NMI=1 or the top of the curves of NMI more quickly than global

Fig 2. NMI obtained by different modularity as a function of vertex-degree difference (kmax-km) in the NET2 networks. Parameters of networks: (a)
N=1000, cmax=150; (b) N=5000, cmax=150; (c) N=1000, cmax=1.5 kmax; (d) N=5000, cmax=1.5 kmax (see Table 1 for details of network parameters).

https://doi.org/10.1371/journal.pone.0205284.g002

Global vs local modularity for network community detection
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ones, meaning that the local modularity can reveal the community structures more quickly,

because they can earlier disconnect the small-size communities. However, the local modularity

will also make the breakup of (large-size) communities more early, leading to the quicker

decline of NMI.

Thirdly, in the networks with stronger heterogeneity of community sizes (see Fig 4(C) and

4(D)), because of the second-type resolution limit of modularity [37, 38, 44], for some methods

(especially the global methods), the community structures cannot be revealed only by tuning

the resolution parameter, because (large-size) communities have broken before (small-size)

communities disconnect. In the cases, the local methods still have better results than global

ones.

Fourthly, in the networks with larger vertex-degree heterogeneity (see Fig 4(B) and 4(D)),

the difference between various methods is exhibited more clearly. For example, the ER-based

methods (e.g. Qð<l>Þ
ER or QðlÞ

ER) can quicken the disconnecting of (small-size) communities, but

also leads to the breakup of communities more early. By comparison, the CM-based methods

Fig 3. NMI obtained by different modularity as network size in the NET3 networks. Parameters of networks: (a) kmax=30, cmax=50; (b) kmax=30, cmax=150; (c)
kmax=100, cmax=150; (d) kmax=0.015N, cmax=0.020N. (see Table 1 for details of network parameters).

https://doi.org/10.1371/journal.pone.0205284.g003

Global vs local modularity for network community detection
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(e.g. Qð<l>Þ
CM or QðlÞ

CM) delay the disconnecting of (small-size) communities, but also delay the

breakup of communities. Whether there exists a kind of method by which the disconnecting

of (small-size) communities can be quickened while the breakup of communities can be

delayed? It is an interesting topic.

Composite comparison in the LFR networks

Fig 5 shows the composite comparison of various methods for various μ-values in the LFR net-

works. By increasing value of μ, community structures will be more and more fuzzy. As a

result, the NMI of the methods decreases with the increase of μ. The tunable resolution of

modularity can help find the community partitions better than other methods. For example, it

seems that QðgÞ
ER and Q

ðlÞ
ER can generate the higher NMI than others on average.

Moreover, some statistical measures for community structures, such as Modularity [20],

Surprise[19, 56–58] and Significance [59], are used to evaluate the quality of community struc-

tures especially when the real community partitions are unknown. Here, we also display the

Fig 4. NMI of different methods as a function of γ in the NET4 networks with different heterogeneity of degree and community size (i.e., different values
of kmax and cmax). Parameters of networks: (a) kmax=30, cmax=150; (b) kmax=100, cmax=150; (c) kmax=30, cmax=600; (d) kmax=100, cmax=600. (see Table 1 for
details of network parameters).

https://doi.org/10.1371/journal.pone.0205284.g004
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optimal values of the statistical measures for evaluating community structures by the methods,

though the predefined community partitions are known in the networks (see Fig 5(B)–5(D)).

For different evaluation indexes and different networks, the best results are obtained by differ-

ent methods. While, according to the statistical measures, the multi-resolution modularity

methods can have the ability to find the better results. For example, on average, QðgÞ
CM, Q

ðlÞ
CM and

Q
ð<l>Þ
CM can generate the higher values of Modularity; QðgÞ

ER , Q
ðlÞ
ER and Q

ð<l>Þ
ER can generate the

higher values of Surprise; QðgÞ
ER , Q

ðlÞ
ER and Q

ð<l>Þ
ER can generate the higher values of Significance.

Real-world networks

Finally, the methods are applied to real-world networks. For convenience of quantitative com-

parison, we assess the quality of community partitions in the network by statistical approaches,

Modularity, Surprise [19, 56–58] and Significance [59]. Fig 6 shows the composite results in

the real-world networks.

For Modularity (see Fig 6), the (global and local) modularity-based methods can obtain

high values of modularity. Especially, the four CM-based methods (Q(CM, g), Q(CM, l), Q

(CM,<l>) andMod) can obtain similar and relatively higher values of modularity than others

in the karate, dolphin and yeast networks. In the polbook network, all the modularity-based

methods can obtain similar and high values of modularity. In football network, Q(CM, g) and

Q(CM, l) can obtain higher values of modularity than others.

For Surprise (see Fig 7), these ER-based methods (Q(ER, g), Q(ER, l) and Q(ER,<l>)) have

significantly higher values of Surprise in the karate, dolphin and polbook networks; the modu-

larity-based methods (except original Mod) have similar results in the football network; Q(ER,

g) has the best result in the yeast network.

For Significance (see Fig 8), these ER-based methods (Q(ER, g), Q(ER, l) and Q(ER,<l>))

can generate relatively higher values of significance in the karate, dolphin and polbook net-

works, while Q(ER, g) obtains the best results in the karate and dolphin networks. All the mod-

ularity-based methods (except original Mod) have similar and higher values of significance in

the football and yeast networks, and especially Q(ER, g) can generate the best results in yeast

network.

Fig 5. Composite comparison of different methods in the LFR networks with different μ-values. Parameters of
networks: N=5000, km=10, kmax=100, cmin=10, and cmax=150 (see Table 1 for details of network parameters). “Mod”
denotes the original Modularity. The optimal results is given for the modularity.

https://doi.org/10.1371/journal.pone.0205284.g005
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Conclusion and discussion

Optimizing statistical measures for community structures is one of most important strategies

for community detection in complex networks. In the paper, by using a type of self-loop rescal-

ing strategy, we introduced a set of global modularity functions and a set of local modularity

functions for community detection in networks. By a kind of the self-consistent method, the

modularity functions are optimized for community detection.

We compared and analyzed the behaviors of the modularity-based methods in community

detection. On the one hand, compared with the global modularity, the local modularity has the

notable advantage, which closely depends on the local connectivity of communities that univer-

sally exists in the large-size networks. Particularly, the local modularity can eliminate the first-

Fig 6. Modularity obtained by different methods in real-world networks.

https://doi.org/10.1371/journal.pone.0205284.g006
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type limit of modularity more quickly, and can eliminate or alleviate the second-type limit of

modularity in networks, because of the use of the local information in networks.

On the other hand, for the second-type limit of modularity, the ideal methods should be

able to quickly disconnect (small-size) communities while delay the breakup of (large-size)

communities. By comparing the CM and ER-based modularity, each of them exhibits one of

the above properties respectively—the ER-based modularity can quicken the disconnecting of

(small-size) communities, while the CM-based modularity delays the breakup of communities.

This may provide a useful insight for community detection: combining various methods may

be able to generate interesting results.

Systematical comparisons and analysis of community detection methods are of help for the

understanding of the existing methods’ behaviors, the improvement of the methods, as well as

Fig 7. Surprise obtained by different methods in real-world networks.

https://doi.org/10.1371/journal.pone.0205284.g007
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the proposal of new methods. We give an attempt for this purpose. With regard to the modu-

larity in the paper, the local modularity only takes into account the directly connected commu-

nities. Maybe, other factors, e.g. the connection strength between communities, can provide

more useful information for community detection. Similarly, many other methods may also

benefit from the use of more useful topological information. Moreover, the local modularity

has advantages in general networks, but there still exist rooms for improvement. For example,

if networks without the local connectivity of (small-size) communities are given, the local

modularity’s advantages will disappear. In this case, the localization of communities should

deserve in-depth studies further. Finally, we expect the research can enrich the knowledge for

modularity optimization methods in community detection and provide useful insight into the

problem of community detection in complex networks.

Fig 8. Significance obtained by different methods in real-world networks.

https://doi.org/10.1371/journal.pone.0205284.g008
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Appendix A

Self-loop rescaling strategy

The self-loop rescaling strategy is to rescale the network topology structure by assigning a suit-

able self-loop to each node, which can affect the null model of modularity and its weight [34].

As we know, the modularity is affected by the topology structure, the community division and

the null model. Therefore, various modularity can be derived based on the Newman-Girvan

modularity by self-loop rescaling strategy. The derived modularity can be maximized by the

existing modularity optimization algorithms, which extend the application of the algorithms.

General modularity based on self-loop rescaling. The self-loop rescaling strategy is to

assign each vertex a self-loop gs � k
eff
i � ki, where γs, a factor of tuning the self-loop, depends on

community s that vertex i belongs to, ki is the degree of node i in the original network, keffi is

the effective degree of node i in null model. Then, the original modularity of Newman and Gir-

van can be re-written as,

QðgÞ ¼
1

X

s
gsk

eff
s

X

i;j

Aij þ ðgsk
eff
i � kiÞIij �

gsk
eff
i � gsk

eff
j

X

s
gsk

eff
s

 !

dðCi;CjÞ

¼
1

X

s
gsk

eff
s

X

s

kins þ gs � k
eff
s � ks � g2s

ðkeffs Þ
2

X

s
gsk

eff
s

 !

¼
b� 1

b
þ

1

b
�
1

2M

X

s

kins � g
ðkeffs Þ

2

2M
eff
s

� �

; ð2Þ

whereM is the total number of edges in the network, kins is the inner degree of community s, ks
is the total degree of community s, γ is a tunable resolution parameter; Iij is the identity matrix;
X

k
eff
i � dðCi; sÞ ¼ keffs is the total effective degree of group s, and

X

keffs ¼ 2M. γs is discussed

below. Please see Table 1 for details of keffi andMeff
s .

For global modularity, the parameters of the self-loop rescaling are very simple:Meff
s ¼ M,

γs = γ and k
eff
i ¼ ki for CM-based modularity (keffi ¼ k for ER-based modularity). For local

modularity, the rescaling scheme is a little complicate, because we need special treatment to

constrainMeff
s to expected forms. In order to consider the local connectivity of communities,

let,

g2s
ðkeffs Þ

2

X

s
gsk

eff
s

¼ g
ðkeffs Þ

2

2M
eff
s

: ð3Þ

The right-hand side in the equation is the expected form in null model, while the left-hand

side is the original expresion from the self-loop rescaling. Here, we need to find suitable γs so
that the two sides of the equation are equal. To get the value of γs, some tricks are used. By Eq

(3),

gsk
eff
s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g
X

s
gsk

eff
s

q

keffs
ffiffiffiffiffiffiffiffiffiffiffi

2M
eff
s

p : ð4Þ

By summing Eq (4) over all communities and suitable transformation, we obtain,

X

s
gsk

eff
s ¼ g

X

s

keffs
ffiffiffiffiffiffiffiffiffiffiffi

2M
eff
s

p

 !2

¼ 2Mb; ð5Þ
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where b ¼ g

2M

X

s

keffs
ffiffiffiffiffiffiffiffiffiffiffi

2M
eff
s

p

 ! !2

(for simplification). By substituting Eq (5) into Eqs (3) or

(4), we obtain the final expression,

gs ¼ g
1
ffiffiffiffiffiffiffiffiffiffiffi

2M
eff
s

p

X

s

keffs
ffiffiffiffiffiffiffiffiffiffiffi

2M
eff
s

p : ð6Þ

Here keffs is determined by the form of keffi in the self-loop rescaling, andMeff
s is determined by

the local connectivity of community and expected null model (see Table 1 for details). For

example, in Q
ðlÞ
CM,M

eff
s is the total number of links in community s and the neighborhood of it,

while keffi ¼ ki. By Eq (6), one can specify the self-loop to get expected modularity. Moreover,

the self-loop rescaling for global modularity can be regarded as a special case of the above

scheme. For global modularity,Meff
s ¼ M.

By combining the self-consistent optimization for the local modularity, the factors before

the summation in Q(γ) is independent of the optimization procedure for given γ-value and
community partition. So the (multi-resolution)modularity based on the self-loop rescaling is

equivalent to the modularity in text.

Analysis of resolution of modularity based on self-loop rescaling. As discussed previ-

ously, the modularity has resolution limit, and the resolution inequality of the Newman-Gir-

van modularity can be denoted as kskt<2M�est, where ks is the total degree of community, est is

the number of links between communities, andM is the total number of links in the network

[26]. If the inequality is satisfied, the communities cannot be identified by the modularity. The

self-loop rescaling can change the relative size of communities, so as to change the resolution

of modularity. For example, by assigning each vertex i a self-loop α�ki (where α is a parameter

and ki is the original degree of vertex), the degree of community changes to be (1+α)ks, and
thus the above inequality changes to be kskt<2M�est/(1+α). Increasing α-value can makes the

inequality more difficult to be satisfied. So more (small-size) communities can be revealed by

increasing the α-value. By adjusting the α-value, one may discover communities at different

levels.

Self-consistent optimization for local modularity

Similarly to the global modularity, communities in networks can be revealed by optimizing the

above local modularity. Here, because of the self-containing property of local modularity

based on the self-loop strategy, we have proposed a self-consistent optimization for the local

modularity, which is inspired by the self-consistent field theory in physics.

The self-consistent method is the basic iterative method for solving the complicate equa-

tions in quantum mechanics. The basic idea is to first give an estimate of the solution accord-

ing to a certain method, and then use this estimate to calculate the related parameters to get an

improved estimate. The process is repeated to improve the estimate until it becomes stable.

We use similar strategy to optimize the local modularity based on self-loop rescaling. We first

give an initial community division, and then use it to calculate the neighborhood of communi-

ties and the related parameters of self-loop rescaling. Then we run the modularity-optimiza-

tion algorithm in the rescaled network to get improved community division. Here, the

Louvain algorithm is used in the rescaled network, which is a kind of fast and efficient algo-

rithm for modularity optimization [17], though any effective algorithms for maximizing mod-

ularity can be used in principle.

The optimization procedure for local modularity needs an initial community assignment.

There are two simple choices: all vertices are assigned into one group and each vertex is given
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an independent community label. In detail, the general optimization procedure for the local

modularity is as following.

a. Give the value of γ and initial community assignment of nodes in the network under study.

b. Calculate the γs-values by the community division and assign the new self-loop to each

vertex.

c. The network with the new self-loop is re-divided into communities by the optimization

algorithm.

d. Repeat from step (b) until community partition is unchanged or the iteration time is larger

than a maximal iteration time.

There exist sub-optimal community partitions in many networks [24]. Scanning the search

space to find the optimum of modularity is NP-hard in a large network. As a result, it is diffi-

cult to find an exact and consistent partition for each γ-value. Thus, a maximal iteration time

(Tm) is set for the self-consistent optimization. If the value of modularity is unchanged, the

self-consistent algorithm is terminated. If the iteration time T> Tm but the value of modular-

ity is still unstable, the algorithm is also terminated and the partition of the Tth iteration is out-

putted as the final partition.

For the local modularity, when the resolution parameter varies, the scale of the community

structure will change accordingly. With the increase of γ, they can detect the community struc-

tures from macro- to micro-scales. When γ!0, they will assign all nodes into a single and

large community. The network will split into a set of single-node communities, each of which

only contains one node, if γ is very large.

Assessment standards

For networks with known community structures, Normalized mutual information (NMI) [22]

is used to evaluate the performance of methods; for networks with unknown community

structures, Surprise [19, 56–58] and Significance to select a suitable resolution parameter and

evaluate the quality of found partitions.

Normalized mutual information. Normalized mutual information (NMI) evaluates the

similarity between two community divisions[22]. NMI can reflect the amount of extracted

community information correctly by different methods in networks with known community

structures. NMI=1 if two partitions are matched perfectly, and zero otherwise. The value of

NMI will decrease with the decrease of the matching. So NMI can evaluate the performance of

methods in community detection.

Surprise. Surprise is a statistical approach to assess the quality of a community partition

in network, with higher values corresponding to better partitions[19, 56–58]. It was shown

that Surprise can give better characterization for community structures in networks than mod-

ularity in several complex benchmarks. Given a community partition in a network, based on

cumulative hyper-geometric distribution, Surprise is defined as the minus logarithm of the

probability of observing the number of intra-community links or more in Erdös-Rényi graphs,

Surprise ¼ �log
X

minðm;MintÞ

j¼mint

Mint

j

 !

M �Mint

m� j

 !

M

m

 ! ; ð7Þ

whereM denotes the maximal number of all possible links in a network;Mint denotes the
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maximal number of possible intra-community links of the given partition;m denotes the num-

ber of existing links in the network; whilemint denotes the number of existing intra-commu-

nity links in the partition.

Significance

Similar to Surprise, significance is a recently proposed measure for estimating the quality of

community partitions[59], which evaluates the possibility that dense communities occur in

random graphs. The definition of it is,

Significance ¼
X

s

ns

2

 !

DðpsjpÞ; ð8Þ

Here the sum runs over all communities; ps is the density of links within the community; p is

the density of links in the network; Kullback-Leibler divergence is D(ps|p) = pslog(ps/p)+(1−ps)

log(1−ps)/(1−p)). Significance could be used to choose resolution parameters so as to deter-

mine suitable community partitions, and cloud also be directly optimized as objective function

to find the optimal community partitions.
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