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GLOBAL WEAK SOLUTIONS TO A GENERALIZED
HYPERELASTIC-ROD WAVE EQUATION

G. M. COCLITE, H. HOLDEN, AND K. H. KARLSEN

Abstract. We consider a generalized hyperelastic-rod wave equation (or generalized Camassa–

Holm equation) describing nonlinear dispersive waves in compressible hyperelastic rods. We
establish existence of a strongly continuous semigroup of global weak solutions for any initial

data from H1(R). We also prove a “weak equals strong” uniqueness result.

1. Introduction and statement of main results

In recent years the so-called Camassa–Holm equation [3] has caught a great deal of attention.
It is a nonlinear dispersive wave equation that takes the form

(1.1)
∂u

∂t
− ∂3u

∂t∂x2
+ 2κ

∂u

∂x
+ 3u

∂u

∂x
= 2

∂u

∂x

∂2u

∂x2
+ u

∂3u

∂x3
, t > 0, x ∈ R.

When κ > 0 this equation models the propagation of unidirectional shallow water waves on a flat
bottom, and u(t, x) represents the fluid velocity at time t in the horizontal direction x [3, 21].
The Camassa–Holm equation possesses a bi-Hamiltonian structure (and thus an infinite number
of conservation laws) [19, 3] and is completely integrable [3, 1, 11, 6]. Moreover, when κ = 0 it
has an infinite number of solitary wave solutions, called peakons due to the discontinuity of their
first derivatives at the wave peak, interacting like solitons:

u(t, x) = ce−|x−ct|, c ∈ R.

The solitary waves with κ > 0 are smooth, while they become peaked when κ → 0. From a
mathematical point of view the Camassa–Holm equation is well studied. Local well-posedness
results are proved in [7, 20, 23, 29]. It is also known that there exist global solutions for a
particular class of initial data and also solutions that blow up in finite time for a large class of
initial data [5, 7, 10]. Here blow up means that the slope of the solution becomes unbounded while
the solution itself stays bounded. More relevant for the present paper, we recall that existence and
uniqueness results for global weak solutions of (1.1) with κ = 0 have been proved by Constantin
and Escher [8], Constantin and Molinet [12], and Xin and Zhang [31, 32], see also Danchin [16, 17].

Here we are interested in the Cauchy problem for the nonlinear equation

(1.2)
∂u

∂t
− ∂3u

∂t∂x2
+

∂

∂x

(
g(u)

2

)
= γ

(
2
∂u

∂x

∂2u

∂x2
+ u

∂3u

∂x3

)
, t > 0, x ∈ R,

where the function g : R → R and the constant γ ∈ R are given. Observe that if g(u) = 2κu+3u2

and γ = 1, then (1.2) is the classical Camassa–Holm equation. With g(u) = 3u2, Dai [14, 13, 15]
derived (1.2) as an equation describing finite length, small amplitude radial deformation waves in
cylindrical compressible hyperelastic rods, and the equation is often referred to as the hyperelastic-
rod wave equation. The constant γ is given in terms of the material constants and the prestress
of the rod. We coin (1.2) the generalized hyperelastic-rod wave equation.
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In the derivation of the Camassa–Holm equation in the context of the shallow water waves
[3, 21], the constant κ is proportional to the square root of water depth. Thus under normal
circumstances it is not physical to set κ = 0. Although strictly speaking one does not have peakons
in the shallow water model (κ > 0), one has them in Dai’s model for compressible hyperelastic
rods, since in this model g(u) = 3u2 and γ ∈ R. For γ = 0 and g(u) = 3u2, the equation (1.2)
becomes the regularized wave equation describing surface waves in channel [2]. The solutions are
global, the equation has an Hamiltonian structure but is not integrable, and its solitary waves are
not solitons.

A difference between the Camassa–Holm equation (1.1) (with κ = 0) and the generalized
hyperelastic-rod wave equation (1.2) is that (the slope of) solitary wave solutions to (1.2) can
blow up, while they cannot for (1.1). Solitary waves are bounded solutions of (1.2) of the form
u(t, x) = ϕ(x − ct), where c is the wave speed. It is not hard to check that ϕ(ζ), ζ = x − ct,
satisfies the ordinary differential equation (ϕ′)2 = cϕ2−G(φ)

c−γϕ , where G(ξ) =
∫ ξ

0
g(ξ)dξ. From this

expression it is clear that |ϕ′| can become infinite. Notice however that for the Camassa–Holm
equation (1.1) (with κ = 0), for which G(u) = u3, it follows from the above equation that (ϕ′)2 = ϕ
(if ϕ 6= c/γ) and thus any solitary wave (peakon) ϕ belongs to W 1,∞. Notice also that for (1.2)
with g(u) = 2κu + 3u2, the above ordinary differential equation becomes (ϕ′)2 = φ2 (c−κ)−ϕ

c−γϕ , and
choosing γ = c

c−κ , c 6= κ, we find the peakon solution

(1.3) ϕ(ξ) = (c− κ)e−
√

c−κ
c |ξ|.

From a mathematical point of view the generalized hyperelastic-rod wave equation (1.2) is much
less studied than (1.1). Recently, Yin [33, 34, 35] (see also Constantin and Escher [9]) proved local
well-posedness, global well-posedness for a particular class of initial data, and in particular that
smooth solutions blow up in finite time (with a precise estimate of the blow-up time) for a large
class of initial data. Lopes [27] proved stability of solitary waves for (1.2) with γ = 1, while
Kalisch [22] studied the stability when g(u) = 2κu + 3u3 and γ ∈ R. Qian and Tang [28] used the
bifurcation method to study peakons and periodic cusp waves for (1.2) with g(u) = 2κu + au2,
κ, a ∈ R, γ = 1. When a 6= 3, a > 0, κ 6= 0, they found the following two peakon type solutions:
u(t, x) = 6κ

3−ae−
√

a
3 |x− 6κt

3−a | and u(t, x) = 2κ
a+1 (3ae−

√
a
3 |x− 2κt

a+1 |−2). When a = 3 and κ 6= 0 they also

found a peakon type solution of the form u(t, x) = 3κ
2 e−|x−

κt
2 | −κ. For (1.2) with g(u) = 3u2, Dai

[15] has constructed explicitly a variety of traveling waves, including solitary shock (or peakon like)
waves. To give an example, suppose 0 < γ < 3 and pick any constant c > 0. Then the following
peakon like function is a travelling wave solution: u(t, x) = 1

2 (1 − 1
γ )c + c

2 ( 3
γ − 1)e−

1√
γ |x−ct−ζ|,

where ζ is a particular constant. Dai refers to this as a supersonic solitary shock wave. Although
all the above displayed peakon type solutions belong to W 1,∞ they do not all belong to H1(R)
(some of them do not decay to zero at ±∞) and these cannot be encompassed by our theory.

Up to now there are no global existence results for weak solutions to the generalized hyperelastic-
rod wave equation (1.2). Here we establish the existence of a global weak solution to (1.2) for any
initial function u0 belonging to H1(R). Furthermore, we prove the existence of a strongly contin-
uous semigroup, which in particular implies stability of the solution with respect to perturbations
of data in the equation as well as perturbation in the initial data. Our approach is based on a
vanishing viscosity argument, showing stability of the solution when a regularizing term vanishes.
This stability result is new even for the Camassa-Holm equation (1.1). Finally, we prove a “weak
equals strong” uniqueness result. Here we follow closely the approach of Xin and Zhang [31] for
the Camassa–Holm equation (1.1) with κ = 0.

Let us be more precise about our results. We shall assume

(1.4) u|t=0 = u0 ∈ H1(R
)
,

and

(1.5) g ∈ C∞(R), g(0) = 0, γ > 0.

Observe that the case γ = 0 is much simpler than the one we are considering. Moreover, if
γ < 0, peakons become antipeakons, so we can use a similar argument. The assumption of infinite
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differentiability of g is made just for convenience. In fact, locally Lipschitz continuity would be
sufficient. Define

h(ξ) :=
1
2
(
g(ξ)− γξ2

)
for ξ ∈ R. Formally, equation (1.2) is equivalent to the elliptic-hyperbolic system

(1.6)
∂u

∂t
+ γu

∂u

∂x
+

∂P

∂x
= 0, −∂2P

∂x2
+ P = h(u) +

γ

2

(
∂u

∂x

)2

.

Moreover, since e−|x|/2 is the Green’s function of the operator − ∂2

∂x2 + 1, the equation (1.2) is
equivalent to the integro-differential system

(1.7)
∂u

∂t
+ γu

∂u

∂x
+

∂P

∂x
= 0, P (t, x) =

1
2

∫
R

e−|x−y|

(
h(u(t, y)) +

γ

2

(
∂u

∂x
(t, y)

)2
)

dy.

Motivated by this, we shall use the following definition of weak solution.

Definition 1.1. We call u : [0,∞)× R → R a weak solution of the Cauchy problem for (1.2) if
(i) u ∈ C([0,∞)× R) ∩ L∞

(
(0,∞);H1(R)

)
;

(ii) u satisfies (1.6) in the sense of distributions;
(iii) u(0, x) = u0(x), for every x ∈ R;
(iv) ‖u(t, · )‖H1(R) ≤ ‖u0‖H1(R), for each t > 0.

If, in addition, there exists a positive constant K1 depending only on ‖u0‖H1(R) such that

(1.8)
∂u

∂x
(t, x) ≤ 2

γt
+ K1, (t, x) ∈ (0,∞)× R,

then we call u an admissible weak solution of the Cauchy problem for (1.2).

Our existence results are collected in the following theorem:

Theorem 1.2. There exists a strongly continuous semigroup of solutions associated to the Cauchy
problem (1.2). More precisely, let

S : [0,∞)× (0,∞)× E ×H1(R) −→ C([0,∞)× R) ∩ L∞
(
[0,∞);H1(R)

)
,

where
E :=

{
g ∈ Liploc(R) | g(0) = 0

}
be such that

(j) for each u0 ∈ H1(R), γ > 0, g ∈ E the map u(t, x) = St(γ, g, u0)(x) is an admissible weak
solution of (1.2);

(jj) it is stable with respect to the initial condition in the following sense, if

(1.9) u0,n −→ u0 in H1(R), γn −→ γ, g′n −→ g′ in L∞(I),

then

(1.10) S(γn, gn, u0,n) −→ S(γ, g, u0) in L∞([0, T ];H1(R)),

for every {u0,n}n∈N ⊂ H1(R), {γn}n∈N ⊂ (0,∞), {gn}n∈N ⊂ E, u0 ∈ H1(R), γ > 0,
g ∈ E, T > 0, where

I :=
1√
2

[
− sup

n
‖u0,n‖H1(R), sup

n
‖u0,n‖H1(R)

]
.

Moreover, the following statements hold:

(k) Estimate (1.8) is valid with K1 :=
√

2
γ

(
2 max
|ξ|≤

√
2‖u0‖H1(R)

∣∣h(ξ)
∣∣+ γ

2
‖u0‖2H1(R)

)1/2

.

(kk) There results

(1.11)
∂

∂x
S(γ, g, u0) ∈ Lp

loc([0,∞)× R),

for each 1 ≤ p < 3.
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(kkk) The following identity holds in the sense of distributions on [0,∞)× R

(1.12)
∂

∂t

(
1
2
[
u2 + q2

])
+

∂

∂x

(
u
[γ
2
q2 + P

]
+

γ

3
u3 −H(u)

)
= −µ,

where u = S(γ, g, u0), q = ∂
∂xS(γ, g, u0), H ′ = h, the defect measure µ is a nonnegative

Radon measure such that as R →∞ there holds Rq (q + R) χ(−∞,−R)(q)
?
⇀ µ in the sense

of measures and µ([0,∞)× R) ≤ 1
2‖u0‖H1(R).

We stress that the existence of a strongly continuous semigroup is new, even for the Camassa–
Holm equation itself. In particular, this includes the stability of the solution with respect to
perturbations in the initial data and the coefficients in the equation.

As in Xin and Zhang [31, 32] and their study of the Camassa–Holm equation (1.1) with κ = 0,
we prove existence of a global weak solution by establishing convergence as ε → 0 of a sequence
of smooth viscous approximate solutions uε (see equation (2.1) below). Regarding the limiting
process there is a an interesting mathematical issue: we need to prove that the derivative qε =
∂uε/∂x, which a priori is only weakly compact, in fact converges strongly (along a subsequence).
Strong convergence of qε is needed if we want to send ε to zero in the viscous problem and recover
(1.2). To improve the weak convergence of qε to strong convergence we follow [31] closely when
using renormalization theory for linear transport equations with non-smooth coefficients. The idea
of renormalization goes back to DiPerna and Lions [18], and it has been developed further and
applied by many authors (see Lions [25, 26], Xin and Zhang [31], and the references given therein
for relevant information). In the process of improving weak convergence to strong convergence,
the higher integrability estimate (1.11) for qε is crucial. It ensures that the weak limit of q2

ε does
not contain singular measures (there are no concentration effects).

Regarding the optimality of (1.11), one should keep in mind that when a solution u blows up
(necessarily in the sense that |∂u/∂x| → ∞), say at x = 0, then u must behave like x2/3 and ∂u/∂x
like x−1/3, since u(t, ·) ∈ H1(R), in which case ∂u/∂x belongs to Lp

loc if and only if 1 ≤ p < 3.
Denote by u an (admissible) weak solution. If the associated defect measure µ defined in (1.12)

vanishes, then we call u an energy conservative (admissible) weak solution. Xin and Zhang [32]
proved a “weak equals strong” uniqueness result for energy conservative admissible weak solutions
of the Camassa–Holm equation (1.1) when κ = 0. Their result also contains the uniqueness result
of Constantin and Molinet [12] as a special case. Herein we adapt the arguments of Xin and
Zhang to prove a “weak equals strong” uniqueness result for the generalized hyperelastic-rod wave
equation.

Theorem 1.3. Suppose there exists a function u such that (i), (ii), and (iii) of Definition 1.1
hold and that there exists a function β ∈ L2([0, T )) for all T > 0 such that

∥∥∂u
∂x (t, · )

∥∥
L∞(R)

≤ β(t)
for any t ≥ 0. Then energy conservative admissible weak solutions are unique.

Whenever a sufficiently regular solution to (1.2) can be found (see [9, 15, 28, 33, 34, 35] for
some situations where this happens), then Theorem 1.3 ensures that this solution is unique in the
class energy conservative admissible weak solutions. Note that peakons are “sufficiently regular”.
For example, the peakon solution (1.3) is covered by our theory. One should compare Theorem
1.3 with the uniqueness/stability assertion in Theorem 1.2, which states that there is uniqueness
in the class of vanishing viscosity solutions.

In passing, we mention that it is apparently not easy to prove existence and uniqueness results
for (1.2) by adapting the methods in [8, 12] for the Camassa–Holm equation, which are based on
studying the equation for the “vorticity” m :=

(
1− ∂2

∂x2

)
u. In the present context the equation

for m reads

(1.13)
∂m

∂t
+ γu

∂m

∂x
+ 2γ

∂u

∂x
m = −1

2
∂

∂x

(
g(u)− 3γu2

)
.

In the case of the Camassa–Holm equation (that is, g(u) = 3u2 and γ = 1), the right-hand side of
(1.13) vanishes, and assuming that m|t=0 is a bounded nonnegative measure it is not difficult to
see that m(t, · ) ∈ L1 remains nonnegative at later times and consequently one can bound ∂u/∂x
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in L∞ and ∂2u/∂x2 in L1. Using these bounds one can in fact prove the existence and uniqueness
of an energy conservative weak solution [8, 12]. In the general case (g(u) is not equal to 3γu2) it
seems difficult to implement this strategy for proving existence and uniqueness results, and this
fact has motivated us to use the “weak convergence” approach.

The remaining part of this paper is organized as follows: Section 2 is devoted to stating the
viscous problem and a corresponding well-posedness result. In Sections 3 and 4 we establish respec-
tively an Oleinik type estimate and a higher integrability estimate for the viscous approximants.
Section 5 is devoted to proving basic compactness properties for the viscous approximants. Strong
compactness of the derivative of the viscous approximants is obtained in Section 6, where also an
existence result for (1.2) is stated. In Section 7 we prove the uniqueness of the vanishing viscosity
limit, this defines a semigroup of solutions as stated in Theorem 1.2. In Section 8 we prove the
continuity properties of the semigroup. Finally, in Section 9 we prove the uniqueness statement
in Theorem 1.3.

2. Viscous approximants: Existence and energy estimate

We will prove existence of a weak solution to the Cauchy problem for (1.2) by proving com-
pactness of a sequence of smooth functions {uε}ε>0 solving the following viscous problems (see [4,
Theorem 2.3]):

(2.1)


∂uε

∂t
+ γuε

∂uε

∂x
+

∂Pε

∂x
= ε

∂2uε

∂x2
, t > 0, x ∈ R,

−∂2Pε

∂x2
+ Pε = h(uε) +

γ

2

(
∂uε

∂x

)2

, t > 0, x ∈ R,

uε(0, x) = uε,0(x), x ∈ R.

We shall assume that

(2.2) ‖uε,0‖H1(R) ≤ ‖u0‖H1(R), ε > 0, and uε,0 → u0 in H1(R).

The starting point of our analysis is the following well-posedness result for (2.1).

Theorem 2.1. Assume (1.4) and (2.2). Let ε > 0, uε,0 ∈ H`(R) and ` ≥ 2. Then there exists a
unique solution uε ∈ C

(
R;H`(R)

)
to the Cauchy problem (2.1). Moreover, for each t ≥ 0,∫

R

(
u2

ε +
(

∂uε

∂x

)2
)

(t, x)dx

+ 2ε

∫ t

0

∫
R

((
∂uε

∂x

)2

+
(

∂2uε

∂x2

)2
)

(s, x)dxds = ‖uε,0‖2H1(R),

(2.3)

or

‖uε(t, · )‖2H1(R) + 2ε

∫ t

0

‖qε(s, · )‖2H1(R) ds = ‖uε,0‖2H1(R).

Remark 2.2. Due to [24, Theorem 8.5], (2.2) and (2.3), we have for each t ≥ 0

(2.4) ‖uε(t, · )‖L∞(R) ≤
1√
2
‖uε(t, · )‖H1(R) ≤

1√
2
‖u0‖H1(R).

Proof of Theorem 2.1. From Theorem 2.3 in [4] we infer that (2.1) has a solution uε ∈ C(R;H`(R)).
Define

qε(t, x) :=
∂uε

∂x
(t, x).

By (2.1), qε = qε(t, x) is the solution of

(2.5)
∂qε

∂t
+ γuε

∂qε

∂x
− ε

∂2qε

∂x2
+

γ

2
q2
ε = h(uε)− Pε, qε(0, x) =

∂uε,0

∂x
(x),
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for t > 0 and x ∈ R. Multiply (2.1) by uε, (2.5) by qε, and add the resulting equations. After
rearranging a bit, we derive the conservation law

∂

∂t

(
1
2
[
u2

ε + q2
ε

])
+

∂

∂x

(
uε

[γ
2
q2
ε + Pε

]
+

γ

3
u3 −H(u)

)
=

ε

2
(u2

ε + q2
ε)xx − εq2

ε − ε

(
∂qε

∂x

)2

,

where H ′ = h. From this (2.3) follows easily. �

3. Viscous approximants: Oleinik type estimate

Lemma 3.1. For each t > 0 and x ∈ R,

(3.1)
∂uε

∂x
(t, x) ≤ 2

γt
+ C2,

where uε = uε(t, x) is the unique solution of (2.1), and

C2 :=
√

2
γ

(
2 max
|ξ|≤

√
2‖u0‖H1(R)

∣∣h(ξ)
∣∣+ γ

2
‖u0‖2H1(R)

)1/2

.

Proof. From (2.4),

(3.2)
∥∥h(uε)

∥∥
L∞([0,∞)×R)

≤ max
|ξ|≤

√
2‖u0‖H1(R)

∣∣h(ξ)
∣∣ := L1 < ∞.

Moreover, since

(3.3)
∫

R
e−|x−y|dy = 2, x ∈ R,

again using (2.4), for each t ≥ 0 and x ∈ R,

|Pε(t, x)| ≤ L1 +
γ

4

∥∥∥∥∂uε

∂x
(t, · )

∥∥∥∥2

L2(R)

≤ L1 +
γ

4
‖u0‖2H1(R) := L2.

So, denoting L := L1 + L2, we have, from (2.5),

(3.4)
∂qε

∂t
+ γuε

∂qε

∂x
− ε

∂2qε

∂x2
+

γ

2
q2
ε ≤ L.

Let f = f(t) be the solution of

(3.5)
df

dt
+

γ

2
f2 = L, t > 0, f(0) =

∥∥∥∂uε,0

∂x

∥∥∥
L∞(R)

. .

Since, by (2.4) and (3.4), f = f(t) is a super-solution of the parabolic initial value problem (2.5),
due to the comparison principle for parabolic equations, we get

(3.6) qε(t, x) ≤ f(t), t ≥ 0, x ∈ R.

Finally, consider the map F (t) := 2
γt+

√
2
γ L, t > 0. Observe that dF

dt (t)+ γ
2 F 2(t)−L = 2

√
2L/γ

t > 0,
for any t > 0, so that F = F (t) is a super-solution of (3.5). Due to the comparison principle for
ordinary differential equations, we get f(t) ≤ F (t) for all t > 0. Therefore, by this and (3.6), the
estimate (3.1) is proved. �

4. Viscous approximants: Higher integrability estimate

Lemma 4.1. Let 0 < α < 1, T > 0, and a, b ∈ R, a < b. Then there exists a positive constant C3

depending only on ‖u0‖H1(R), α, T > 0, a and b, but independent of ε, such that

(4.1)
∫ T

0

∫ b

a

∣∣∣∣∂uε

∂x
(t, x)

∣∣∣∣2+α

dtdx ≤ C3,

where uε = uε(t, x) is the unique solution of (2.1).
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Proof. The proof is a variant of the proof found in Xin and Zhang [31]. Let χ ∈ C∞(R) be a
cut-off function such that

0 ≤ χ ≤ 1, χ(x) =

{
1, if x ∈ [a, b],
0, if x ∈ (−∞, a− 1] ∪ [b + 1,∞).

Consider also the map θ(ξ) := ξ
(
|ξ|+ 1

)α, ξ ∈ R, and observe that, since 0 < α < 1,

θ′(ξ) =
(
(α + 1)|ξ|+ 1

)(
|ξ|+ 1

)α−1
,

θ′′(ξ) = α sign (ξ)
(
|ξ|+ 1

)α−2((α + 1)|ξ|+ 2
)

= α(α + 1) sign (ξ)
(
|ξ|+ 1

)α−1 + (1− α)α sign (ξ)
(
|ξ|+ 1

)α−2
,∣∣θ(ξ)∣∣ ≤ |ξ|α+1 + |ξ|,

∣∣θ′(ξ)∣∣ ≤ (α + 1)|ξ|+ 1,
∣∣θ′′(ξ)∣∣ ≤ 2α,(4.2)

ξθ(ξ)− 1
2
ξ2θ′(ξ) =

1− α

2
ξ2
(
|ξ|+ 1

)α +
α

2
ξ2
(
|ξ|+ 1

)α−1 ≥ 1− α

2
ξ2
(
|ξ|+ 1

)α
.(4.3)

Multiplying (2.5) by χθ′(qε), using the chain rule, and integrating over ΠT := [0, T ]×R, we get∫
ΠT

γχ(x)qεθ(qε)dtdx− γ

2

∫
ΠT

q2
εχ(x)θ′(qε)dtdx(4.4)

=
∫

R
χ(x)

(
θ
(
qε(T, x)

)
− θ
(
qε(0, x)

))
dx−

∫
ΠT

γuεχ
′(x)θ(qε)dtdx

+ ε

∫
ΠT

∂qε

∂x
χ′(x)θ′(qε)dtdx + ε

∫
ΠT

(
∂qε

∂x

)2

χ(x)θ′′(qε)dtdx

−
∫

ΠT

(h(uε)− Pε) χ(x)θ′(qε)dtdx.

Observe that, by (4.3),∫
ΠT

γχ(x)qεθ(qε)dtdx− γ

2

∫
ΠT

q2
εχ(x)θ′(qε)dtdx =

∫
ΠT

γχ(x)
(
qεθ(qε)−

1
2
q2
εθ′(qε)

)
dtdx

≥ γ(1− α)
2

∫
ΠT

χ(x)q2
ε

(
|qε|+ 1

)α
dtdx.(4.5)

Let t ≥ 0, since 0 < α < 1, using the Hölder inequality, (2.4) and the first part of (4.2),∣∣∣∣∫
R

χ(x)θ(qε)dx

∣∣∣∣ ≤ ∫
R

χ(x)
(
|qε|α+1 + |qε|

)
dx(4.6)

≤ ‖χ‖L2/(1−α)(R)‖qε(t, · )‖α+1
L2(R) + ‖χ‖L2(R)‖qε(t, · )‖L2(R)

≤ (b− a + 2)(1−α)/2‖u0‖α+1
H1(R) + (b− a + 2)1/2‖u0‖H1(R),

and ∣∣∣∣∫
ΠT

γuεχ
′(x)θ(qε)dtdx

∣∣∣∣ ≤ ∫
ΠT

γ|uε||χ′(x)|
(
|qε|α+1 + |qε|

)
dtdx(4.7)

≤
∫

ΠT

γ‖uε(t, · )‖L∞(R)|χ′(x)|
(
|qε|α+1 + |qε|

)
dtdx

≤ γ
‖u0‖H1(R)√

2

∫ T

0

(
‖χ′‖L2/(1−α)(R)‖qε(t, · )‖α+1

L2(R)

+ ‖χ′‖L2(R)‖qε(t, · )‖L2(R)

)
dt

≤ γT
‖u0‖H1(R)√

2

(
‖χ′‖L2/(1−α)(R)‖u0‖α+1

H1(R) + ‖χ′‖L2(R)‖u0‖H1(R)

)
.

Moreover, observe that

ε

∫
ΠT

∂qε

∂x
χ′(x)θ′(qε)dtdx = −ε

∫
ΠT

θ(qε)χ′′(x)dtdx,
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so, again by the Hölder inequality, (2.4) and the first part of (4.2),∣∣∣∣ε ∫
ΠT

∂qε

∂x
χ′(x)θ(qε)dtdx

∣∣∣∣ ≤ ε

∫
ΠT

|θ(qε)||χ′′(x)|dtdx

≤ ε

∫
ΠT

(
|qε|α+1 + |qε|

)
|χ′′(x)|dtdx(4.8)

≤ ε

∫ T

0

(
‖χ′′‖L2/(1−α)(R)‖qε(t, · )‖α+1

L2(R) + ‖χ′′‖L2(R)‖qε(t, · )‖L2(R)

)
dt

≤ εT
(
‖χ′′‖L2/(1−α)(R)‖u0‖α+1

H1(R) + ‖χ′′‖L2(R)‖u0‖H1(R)

)
.

Since 0 < α < 1, using (2.3) and the third part of (4.2),

ε

∣∣∣∣∣
∫

ΠT

(
∂qε

∂x

)2

χ(x)θ′′(qε)dtdx

∣∣∣∣∣ ≤ 2αε

∫
ΠT

(
∂qε

∂x

)2

dtdx ≤ α‖u0‖2H1(R).(4.9)

As we showed in the proof of Lemma 3.1, there exists a constant L > 0 depending only on
‖u0‖H1(R) such that

∥∥h(uε) − Pε

∥∥
L∞([0,∞)×R)

≤ L, so, since 0 < α < 1, using the second part of
(4.2), ∣∣∣∣∫

ΠT

(h(uε)− Pε) χ(x)θ′(qε)dtdx

∣∣∣∣ ≤ L

∫
ΠT

χ(x) ((α + 1)|qε|+ 1) dtdx(4.10)

≤ L

∫ T

0

(
(α + 1)‖χ‖L2(R)‖qε(t, · )‖L2(R) + ‖χ‖L1(R)

)
dt

≤ LT
(
(α + 1)(b− a + 2)1/2‖u0‖H1(R) + (b− a + 2)

)
.

From (4.4), (4.5), (4.6), (4.7), (4.8), (4.9) and (4.10), there exists a constant c > 0 depending only
on ‖u0‖H1(R), α, T > 0, a, and b, but independent of ε, such that

(4.11)
γ(1− α)

2

∫
ΠT

|qε|2χ(x)
(
|qε|+ 1

)α
dtdx ≤ c.

Then ∫ T

0

∫ b

a

∣∣∣∣∂uε

∂x
(t, x)

∣∣∣∣2+α

dtdx ≤
∫

ΠT

|qε|χ(x) (|qε|+ 1)α+1
dtdx ≤ 2c

γ(1− α)
,

hence estimate (4.1) is proved. �

5. Viscous approximants: Basic compactness

Lemma 5.1. There exists a positive constant C4 depending only on ‖u0‖H1(R) such that

(5.1) ‖Pε(t, · )‖L∞(R), ‖Pε(t, · )‖L2(R),

∥∥∥∥∂Pε

∂x
(t, · )

∥∥∥∥
L∞(R)

,

∥∥∥∥∂Pε

∂x
(t, · )

∥∥∥∥
L2(R)

≤ C4,

where uε = uε(t, x) is the unique solution of (2.1). In particular, {Pε}ε is uniformly bounded in
L∞([0,∞);W 1,∞(R)) and L∞([0,∞);H1(R)).

Proof. Define

P1,ε(t, x) :=
γ

4

∫
R

e−|x−y|q2
εdy, P2,ε(t, x) :=

1
2

∫
R

e−|x−y|h
(
uε(t, y)

)
dy,(5.2)

and notice that Pε = P1,ε + P2,ε. By (2.4) and (3.3),

|P1,ε(t, x)| ≤ γ

4
‖uε(t, · )‖2H1(R) ≤

γ

4
‖u0‖2H1(R),(5.3)

|P2,ε(t, x)| ≤ max
|ξ|≤‖u0‖H1(R)/

√
2

∣∣h(ξ)
∣∣.(5.4)
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Moreover, using (3.3) and the Tonelli theorem,∫
R
|P1,ε(t, x)|dx ≤ γ

2
‖uε(t, · )‖2H1(R) ≤

γ

2
‖u0‖2H1(R).(5.5)

From (3.3), (5.3), (5.5) and the Hölder inequality,∫
R
|P1,ε(t, x)|2dx ≤ ‖P1,ε‖L∞([0,∞)×R)‖P1,ε(t, · )‖L1(R) ≤

γ2

8
‖u0‖4H1(R),

so that

(5.6) ‖P1,ε(t, · )‖L2(R) ≤
γ

2
√

2
‖u0‖2H1(R).

Using (1.4), (2.4), (3.3), the Tonelli theorem and the Hölder inequality,∫
R
|P2,ε(t, x)|2dx ≤ 1

2

∫
R

(∫
R

e−|x−y|dx

)
(h(uε(t, y)))2 dy(5.7)

≤

(
max

|ξ|≤‖u0‖H1(R)/
√

2
(h′(ξ))2

)∫
R

u2
ε(t, y)dy

≤

(
max

|ξ|≤‖u0‖H1(R)/
√

2
(h′(ξ))2

)
‖u0‖2H1(R).

Finally, observing

∂P1,ε

∂x
(t, x) =

γ

4

∫
R

sign (y − x) e−|x−y| (qε(t, y))2 dy,

∂P2,ε

∂x
(t, x) =

1
2

∫
R

sign (y − x) e−|x−y|h
(
uε(t, y)

)
dy,

and recalling Pε = P1,ε +P2,ε, the claim is a direct consequence of (5.3), (5.4), (5.6), and (5.7). �

Lemma 5.2. There exists a sequence {εj}j∈N tending to zero and a function u ∈ L∞([0,∞);H1(R))∩
H1([0, T ]× R), for each T ≥ 0, such that

uεj ⇀ u in H1([0, T ]× R), for each T ≥ 0,(5.8)

uεj → u in L∞loc([0,∞)× R),(5.9)

where uε = uε(t, x) is the unique solution of (2.1).

Proof. Fix T > 0. Observe that, from (2.1), ∂uε

∂t = ε∂2uε

∂x2 −γuε
∂uε

∂x − ∂Pε

∂x , so, by (2.4), (2.3), (5.1),
and the Hölder inequality,∥∥∥∥∂uε

∂t

∥∥∥∥
L2([0,T ]×R)

≤
√

ε

2
‖u0‖L∞(R) +

γ
√

T√
2
‖u0‖2L∞(R) + C4

√
T .(5.10)

Hence {uε} is uniformly bounded in H1([0, T ]× R) ∩ L∞([0,∞);H1(R)), and (5.8) follows.
Observe that, for each 0 ≤ s, t ≤ T ,

‖uε(t, ·)− uε(s, ·)‖2L2(R) =
∫

R

(∫ t

s

∂uε

∂t
(τ, x)dτ

)2

dx ≤
√
|t− s|

∫
Π(T )

(∂uε

∂t
(τ, x)

)2

dτdx.

Moreover, {uε} is uniformly bounded in L∞([0, T ];H1(R)) and H1(R) ⊂⊂ L∞loc(R) ⊂ L2
loc(R),

then (5.9) is consequence of [30, Theorem 5]. �

Lemma 5.3. The sequence {Pε}ε is uniformly bounded in W 1,1
loc ([0,∞)×R). In particular, there

exists a sequence {εj}j∈N tending to zero and a function P ∈ L∞([0,∞);W 1,∞(R)) such that for
each 1 < p < ∞

(5.11) Pεj
→ P strongly in Lp

loc([0,∞)× R).
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Proof. We begin by proving that
{

∂Pε

∂t

}
ε

is uniformly bounded in L1
loc([0,∞) × R). Fix T > 0.

We claim that {
∂P1,ε

∂t

}
ε

is uniformly bounded in L1([0, T ]× R),(5.12) {
∂P2,ε

∂t

}
ε

is uniformly bounded in L2([0, T ]× R),(5.13)

where P1,ε and P2,ε are defined in (5.2). We begin by proving (5.12). Observe that, from (2.5),

∂P1,ε

∂t
(t, x) =

γ

2

∫
R

e−|x−y|qε
∂qε

∂t
dy(5.14)

=
γ

2

∫
R

e−|x−y|
(
− γqεuε

∂qε

∂x
+ εqε

∂2qε

∂x2
− γ

2
q3
ε + qε (h(uε)− Pε)

)
dy.

Using γ
2

∂
∂x (uεq

2
ε) = γ

2 q3
ε + γqεuε

∂qε

∂x , ∂
∂x

(
qε

∂qε

∂x

)
= qε

∂2qε

∂x2 +
(

∂qε

∂x

)2

, (5.14), and integration by
parts, we get

∂P1,ε

∂t
(t, x) =

γ

4

∫
R

e−|x−y|

(
−γ

2
∂

∂x
(uεq

2
ε) + ε

∂

∂x

(
qε

∂qε

∂x

)
− ε

(
∂qε

∂x

)2

+ qε (h(uε)− Pε)

)
dy

=
γ

4

∫
R

e−|x−y|

(
sign (y − x)

[
γ

2
uεq

2
ε − εqε

∂qε

∂x

]
− ε

(
∂qε

∂x

)2

+ qε (h(uε)− Pε)

)
dy.

Using (1.4), (2.3), (2.4), (5.1), the Tonelli theorem, and the Hölder inequality,∫
R×R

e−|x−y||uε|q2
εdxdy ≤

√
2‖u0‖H1(R)‖uε(t, · )‖2H1(R) ≤

√
2‖u0‖3H1(R),

ε

∫
ΠT×R

e−|x−y||qε|
∣∣∣∣∂qε

∂x

∣∣∣∣ dtdxdy ≤ ε

∫ T

0

‖uε(t, · )‖2H1(R)dt + ε

∫ T

0

∥∥∥∥∂uε

∂x
(t, · )

∥∥∥∥2

H1(R)

dt

≤
(

εT +
1
2

)
‖u0‖2H1(R),

ε

∫
ΠT×R

e−|x−y|
(

∂qε

∂x

)2

dtdxdy ≤ 2ε

∫ T

0

∥∥∥∥∂uε

∂x
(t, · )

∥∥∥∥2

H1(R)

dt ≤ ‖u0‖2H1(R),

∫
R×R

e−|x−y||qε||h(uε)|dxdy ≤
∫

R
q2
εdy + max

|ξ|≤‖u0‖H1(R)/
√

2
(h′(ξ))2

∫
R

u2
εdy

≤

(
1 + max

|ξ|≤‖u0‖H1(R)/
√

2
(h′(ξ))2

)
‖u0‖2H1(R),

∫
R×R

e−|x−y||qε||Pε|dxdy ≤ ‖uε(t, · )‖2H1(R) + ‖Pε(t, · )‖2L2(R) ≤ ‖u0‖2H1(R) + C2
4 .

It follows from these estimates that (5.12) holds.
We continue by proving (5.13). Observe that

(5.15)
∂P2,ε

∂t
(t, x) =

1
2

∫
R

e−|x−y|h′(uε)
∂uε

∂t
dy,

so, using (1.4), (2.4), the Tonelli theorem and the Hölder inequality,∥∥∥∥∂P2,ε

∂t

∥∥∥∥2

L2(ΠT )

≤ max
|ξ|≤‖u0‖H1(R)/

√
2
(h′(ξ))2

∥∥∥∥∂uε

∂t

∥∥∥∥2

L2(ΠT )

.(5.16)

Then (5.13) is a direct consequence of (5.10).
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Since the bound on
{

∂Pε

∂t

}
ε

is a consequence of (5.12) and (5.13), the family {Pε}ε is bounded

in W 1,1
loc ([0,∞)× R).

Finally, using also Lemma 5.1, we have the existence of a pointwise converging subsequence
that is uniformly bounded in L∞([0,∞)× R). Clearly, this implies (5.11). �

Lemma 5.4. There exists a sequence {εj}j∈N tending to zero and two functions q ∈ Lp
loc([0,∞)×

R), q2 ∈ Lr
loc([0,∞)× R) such that

qεj
⇀ q in Lp

loc([0,∞)× R), qεj

?
⇀ q in L∞loc([0,∞);L2(R)),(5.17)

q2
εj

⇀ q2 in Lr
loc([0,∞)× R),(5.18)

for each 1 < p < 3 and 1 < r < 3
2 . Moreover,

(5.19) q2(t, x) ≤ q2(t, x) for almost every (t, x) ∈ [0,∞)× R

and

(5.20)
∂u

∂x
= q in the sense of distributions on [0,∞)× R.

Proof. Formulas (5.17) and (5.18) are direct consequences of Theorem 2.1 and Lemma 4.1. In-
equality (5.19) is true thanks to the weak convergence in (5.18). Finally, (5.20) is a consequence
of the definition of qε, Lemma 5.2, and (5.17). �

In the following, for notational convenience, we replace the sequences {uεj}j∈N, {qεj}j∈N,
{Pεj}j∈N by {uε}ε>0, {qε}ε>0, {Pε}ε>0, respectively.

In view of (5.17), we conclude that for any η ∈ C1(R) with η′ bounded, Lipschitz continuous
on R and any 1 < p < 3 we have

(5.21) η(qε) ⇀ η(q) in Lp
loc([0,∞)× R), η(qε)

?
⇀ η(q) in L∞loc([0,∞);L2(R)).

Throughout this paper we use overbars to denote weak limits (the spaces in which these weak
limits are taken should be clear from the context and thus they are not always explicitly stated).

Multiplying the equation in (2.5) by η′(qε), we get

(5.22)
∂

∂t
η(qε) +

∂

∂x
(γuεη(qε))− ε

∂2

∂x2
η(qε)− εη′′(qε)

(
∂

∂x
η(qε)

)2

= γqεη(qε)−
γ

2
η′(qε)q2

ε + (h(uε)− Pε) η′(qε).

From (5.22), (2.3), and (2.4) it is not difficult to see that t 7→
∫

R φ(x)η(qε)(t, x) dx is uniformly
bounded and continuous for any φ ∈ C∞(R) with compact support. In view of this and the second
part of (5.21), it follows from, e.g., [25, App. C] that

(5.23) η(qε) ⇀ η(q) in C([0, T ];L2(R)w), for any T > 0,

where L2(R)w is the Lebesgue space L2(R) endowed with the weak topology.

Lemma 5.5. For any convex η ∈ C1(R) with η′ bounded, Lipschitz continuous on R, we have

(5.24)
∂η(q)

∂t
+

∂

∂x

(
γuη(q)

)
≤ γqη(q)− γ

2
η′(q)q2 + (h(u)− P )η′(q),

in the sense of distributions on [0,∞)×R. Here qη(q) and η′(q)q2 denote the weak limits of qεη(qε)
and η′(qε)q2

ε in Lr
loc([0,∞)× R), 1 < r < 3

2 , respectively. In addition, t 7→
∫

R φ(x)η(q)(t, x) dx is
continuous for any φ ∈ C∞(R) with compact support.

Proof. In (5.22), by convexity of η, (1.4), (5.9), (5.17), and (5.18), sending ε → 0 yields (5.24). �
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Remark 5.6. From (5.17) and (5.18), it is clear that

q = q+ + q− = q+ + q−, q2 = (q+)2 + (q−)2, q2 = (q+)2 + (q−)2,

almost everywhere in [0,∞) × R, where ξ+ := ξχ[0,+∞)(ξ), ξ− := ξχ(−∞,0](ξ), ξ ∈ R. Moreover,
by (3.1) and (5.17),

(5.25) qε(t, x), q(t, x) ≤ 2
γt

+ C2, t ≥ 0, x ∈ R.

Lemma 5.7. There holds

(5.26)
∂q

∂t
+

∂

∂x
(γuq) =

γ

2
q2 + h(u)− P in the sense of distributions on [0,∞)× R.

Proof. Using (1.4), (5.9), (5.11), (5.17), and (5.18), the result (5.26) follows by ε → 0 in (2.5). �

The next lemma contains a renormalized formulation of (5.26).

Lemma 5.8. For any η ∈ C1(R) with η′ ∈ L∞(R),

(5.27)
∂η(q)

∂t
+

∂

∂x
(γuη(q)) = γqη(q) +

(γ

2
q2 − γq2

)
η′(q) + (h(u)− P ) η′(q),

in the sense of distributions on [0,∞)×R. In addition, t 7→
∫

R φ(x)η(q)(t, x) dx is continuous for
any φ ∈ C∞(R) with compact support.

Proof. Let {ωδ}δ be a family of mollifiers defined on R. Denote qδ(t, x) := (q(t, · ) ? ωδ)(x). Here
and in the following all convolutions are with respect to the x variable. According to Lemma II.1
of [18], it follows from (5.26) that qδ solves

(5.28)
∂qδ

∂t
+ γu

∂qδ

∂x
=

γ

2
q2 ? ωδ − γq2 ? ωδ + h(u) ? ωδ − P ? ωδ + ρδ,

where the error ρδ tends to zero in L1
loc([0,∞)× R). Multiplying (5.28) by η′(qδ), we get

∂η(qδ)
∂t

+
∂

∂x
(γuη(qδ)) = qη(qδ) +

γ

2

(
q2 ? ωδ

)
η′(qδ)− γ

(
q2 ? ωδ

)
η′(qδ)

+ (h(u) ? ωδ) η′(qδ)− (P ? ωδ) η′(qδ).
(5.29)

Using the boundedness of η, η′, we can send δ → 0 in (5.29) to obtain (5.27). The weak time
continuity is standard. �

6. Strong convergence of qε and existence for (1.2)

Following [31], in this section we wish to improve the weak convergence of qε in (5.17) to strong
convergence (and then we have an existence result for (1.2)). Roughly speaking, the idea is to
derive a “transport equation” for the evolution of the defect measure

(
q2 − q2

)
(t, · ) ≥ 0, so that

if it is zero initially then it will continue to be zero at all later times t > 0. The proof is complicated
by the fact that we do not have a uniform bound on qε from below but merely (5.25) and that in
Lemma 4.1 we have only α < 1.

Lemma 6.1. There holds

(6.1) lim
t→0+

∫
R

q2(t, x)dx = lim
t→0+

∫
R

q2(t, x)dx =
∫

R

(
∂u0

∂x

)2

dx.

Proof. Since u ∈ C([0,∞) × R) (see Lemma 5.2) and thanks to (5.20), it is not hard to see that
q(t, · ) ⇀ ∂u0

∂x in L2(R) as t → 0+, so that

(6.2) lim inf
t→0+

∫
R

q2(t, x)dx ≥
∫

R

(∂u0

∂x
(x)
)2

dx.

Moreover, from (2.2), (2.3), (5.9) and (5.18),∫
R

u2(t, x)dx +
∫

R
q2(t, x)dx ≤

∫
R

u2
0(x)dx +

∫
R

(
∂u0

∂x

)2

dx,
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and, again using the continuity of u (see Lemma 5.2), lim
t→0+

∫
R u2(t, x)dx =

∫
R u2

0dx. Hence

(6.3) lim sup
t→0+

∫
R

q2(t, x)dx ≤
∫

R

(
∂u0

∂x

)2

dx.

Clearly, (5.19), (6.2), and (6.3) imply (6.1). �

Lemma 6.2. For each R > 0,

lim
t→0+

∫
R

(
η±R(q)(t, x)− η±R(q(t, x))

)
dx = 0,(6.4)

where

(6.5) ηR(ξ) :=


1
2
ξ2, if |ξ| ≤ R,

R|ξ| − 1
2
R2, if |ξ| > R,

and η+
R(ξ) := ηR(ξ)χ[0,+∞)(ξ), η−R(ξ) := ηR(ξ)χ(−∞,0](ξ), ξ ∈ R.

Proof. Let R > 0. Observe that

ηR(q)− ηR(q) =
1
2
(q2 − q2)−

(
fR(q)− fR(q)

)
,

where fR(ξ) := 1
2ξ2 − ηR(ξ), ξ ∈ R. Since ηR and fR are convex,

0 ≤ ηR(q)− ηR(q) =
1
2

(
q2 − q2

)
−
(
fR(q)− fR(q)

)
≤ 1

2

(
q2 − q2

)
.

Then, from (6.1), lim
t→0+

∫
R

(
ηR(q)(t, x)− ηR(q(t, x))

)
dx = 0. Since, η±R(q)−η±R(q) ≤ ηR(q)−ηR(q),

the proof is done. �

Remark 6.3. Let R > 0. Then for each ξ ∈ R

ηR(ξ) =
1
2
ξ2 − 1

2
(R− |ξ|)2χ(−∞,−R)∪(R,∞)(ξ), η′R(ξ) = ξ + (R− |ξ|) sign (ξ) χ(−∞,−R)∪(R,∞)(ξ),

η+
R(ξ) =

1
2
(ξ+)2 − 1

2
(R− ξ)2χ(R,∞)(ξ), (η+

R)′(ξ) = ξ+ + (R− ξ)χ(R,∞)(ξ),

η−R(ξ) =
1
2
(ξ−)2 − 1

2
(R + ξ)2χ(−∞,−R)(ξ), (η−R)′(ξ) = ξ− − (R + ξ)χ(−∞,−R)(ξ).

Lemma 6.4. Assume (1.4) and (2.2). Then for each t ≥ 0

(6.6)
∫

R

(
(q+)2 − (q+)2

)
(t, x)dx ≤ 2

∫ t

0

∫
R

S(s, x) [q+(s, x)− q+(s, x)] dsdx,

where S(s, x) := h
(
u(s, x)

)
− P (s, x).

Proof. Let R > C2 (see Lemma 3.1). Subtract (5.27) from (5.24) using the entropy η+
R (see Lemma

6.2). The result is
∂

∂t

(
η+

R(q)− η+
R(q)

)
+

∂

∂x

(
γu
[
η+

R(q)− η+
R(q)

])
≤ γ

[
qη+

R(q)− qη+
R(q)

]
− γ

2

[
q2(η+

R)′(q)− q2(η+
R)′(q)

]
− γ

2

(
q2 − q2

)
(η+

R)′(q) + S(t, x)
[
(η+

R)′(q)− (η+
R)′(q)

]
.

(6.7)

Since η+
R is increasing and γ ≥ 0, by (5.19),

(6.8) −γ

2

(
q2 − q2

)
(η+

R)′(q) ≤ 0.

Moreover, from Remark 6.3,

γqη+
R(q)− γ

2
q2(η+

R)′(q) = −γR

2
q(R− q)χ(R,∞)(q),
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γqη+
R(q)− γ

2
q2(η+

R)′(q) = −γR

2
q(R− q)χ(R,∞)(q).

Therefore, due to (5.25),

(6.9) γqη+
R(q)− γ

2
q2(η+

R)′(q) = qη+
R(q)− 1

2
q2(η+

R)′(q) = 0, in ΩR :=
(

1
2 (R− C2),∞

)
× R.

Then from (6.7), (6.8), and (6.9) the following inequality holds in ΩR:

∂

∂t

(
η+

R(q)− η+
R(q)

)
+

∂

∂x

(
γu
[
η+

R(q)− η+
R(q)

])
≤ S(t, x)

[
(η+

R)′(q)− (η+
R)′(q)

]
(6.10)

for each t > 1/(2(R− C2)). In view of Remark 5.6 and due to (5.25),

η+
R(q) =

1
2
(q+)2, (η+

R)′(q) = q+, η+
R(q) =

1
2
(q+)2, (η+

R)′(q) = q+, in ΩR.

Inserting this into (6.10) and integrating the result over ( 1
2(R−C2)

, t)× R gives

1
2

∫
R

[
(q+)2(t, x)− (q+(t, x))2)

]
dx ≤

∫
R

[
η+

R(q)( 1
2 (R− C2), x)− η+

R(q)( 1
2 (R− C2), x)

]
dx

+
∫ t

1
2 (R−C2)

∫
R

S(s, x) [q+(s, x)− q+(s, x)] dsdx,

for each t > 1
2 (R− C2). Sending R →∞ and using Lemma 6.2, we get (6.6). �

Lemma 6.5. For any t ≥ 0 and any R > 0,∫
R

[
η−R(q)− η−R(q)

]
(t, x)dx(6.11)

≤ γR2

2

∫ t

0

∫
R

(R + q)χ(−∞,−R)(q)dsdx

− γR2

2

∫ t

0

∫
R
(R + q)χ(−∞,−R)(q)dsdx + γR

∫ t

0

∫
R

[
η−R(q)− η−R(q)

]
dsdx

+
γR

2

∫ t

0

∫
R

[
(q+)2 − q2

+

]
dsdx +

∫ t

0

∫
R

S(s, x)
[
(η−R)′(q)− (η−R)′(q)

]
dsdx.

Proof. Let R > 0. By subtracting (5.27) from (5.24), using the entropy η−R (see Lemma 6.2), we
deduce

∂

∂t

(
η−R(q)− η−R(q)

)
+

∂

∂x

(
γu
[
η−R(q)− η−R(q)

])
≤ γ

[
qη−R(q)− qη−R(q)

]
− γ

2

[
q2(η−R)′(q)− q2(η−R)′(q)

]
− γ

2
(q2 − q2)(η−R)′(q) + S(t, x)

[
(η−R)′(q)− (η−R)′(q)

]
.

(6.12)

Since −R ≤ (η−R)′ ≤ 0 and γ ≥ 0, by (5.19),

(6.13) −γ

2

(
q2 − q2

)
(η−R)′(q) ≤ γR

2

(
q2 − q2

)
.

Using Remarks 5.6 and 6.3

γqη−R(q)− γ

2
q2(η−R)′(q) = −γR

2
q(R + q)χ(−∞,−R)(q),(6.14)

γqη−R(q)− γ

2
q2(η−R)′(q) = −γR

2
q(R + q)χ(−∞,−R)(q).(6.15)

Inserting (6.13), (6.14), and (6.15) into (6.12) gives

∂

∂t

(
η−R(q)− η−R(q)

)
+

∂

∂x

(
γu
[
η−R(q)− η−R(q)

])
≤ −γR

2
q(R + q)χ(−∞,−R)(q) +

γR

2
q(R + q)χ(−∞,−R)(q)
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+
γR

2

(
q2 − q2

)
+ S(t, x)

[
(η−R)′(q)− (η−R)′(q)

]
.

Integrating this inequality over (0, t)× R yields∫
R

[
η−R(q)− η−R(q)

]
(t, x)dx(6.16)

≤ −R

2

∫ t

0

∫
R

q(R + q)χ(−∞,−R)(q)dsdx

+
R

2

∫ t

0

∫
R

q(R + q)χ(−∞,−R)(q)dsdx +
R

2

∫ t

0

∫
R

[
q2 − q2

]
dsdx

+
∫ t

0

∫
R

S(s, x)
[
(η−R)′(q)− (η−R)′(q)

]
dsdx.

Using Remark 6.3,

η−R(q)− η−R(q) =
1
2

(
(q−)2 − (q−)2

)
+

1
2
(R + q)2χ(−∞,−R)(q)−

1
2
(R + q)2χ(−∞,−R)(q).

Hence, from Remark 5.6 and (6.16),∫
R

[
η−R(q)− η−R(q)

]
(t, x)dx

≤ −γR

2

∫ t

0

∫
R

q(R + q)χ(−∞,−R)(q)dsdx

+
γR

2

∫ t

0

∫
R

q(R + q)χ(−∞,−R)(q)dsdx + γR

∫ t

0

∫
R

[
η−R(q)− η−R(q)

]
dsdx

− γR

2

∫ t

0

∫
R
(R + q)2χ(−∞,−R)(q)dsdx +

γR

2

∫ t

0

∫
R

(R + q)2χ(−∞,−R)(q)dsdx

+
γR

2

∫ t

0

∫
R

[
(q+)2 − q2

+

]
dsdx +

∫ t

0

∫
R

S(s, x)
[
(η−R)′(q)− (η−R)′(q)

]
dsdx,

and applying twice the identity R
2 (R + q)2 − R

2 q(R + q) = R2

2 (R + q) we deduce (6.11). �

Lemma 6.6. There holds

(6.17) q2 = q2 almost everywhere in [0,∞)× R.

Proof. Adding (6.6) and (6.11) yields∫
R

(1
2
[
(q+)2 − (q+)2

]
+
[
η−R(q)− η−R(q)

])
(t, x)dx(6.18)

≤ γR2

2

∫ t

0

∫
R

(R + q)χ(−∞,−R)(q)dsdx− γR2

2

∫ t

0

∫
R
(R + q)χ(−∞,−R)(q)dsdx

+ γR

∫ t

0

∫
R

[
η−R(q)− η−R(q)

]
dsdx +

γR

2

∫ t

0

∫
R

[
(q+)2 − q2

+

]
dsdx

+
∫ t

0

∫
R

S(s, x)
(
[q+ − q+] +

[
(η−R)′(q)− (η−R)′(q)

])
dsdx.

Arguing as in the proof of Lemma 3.1, there exists a constant L > 0, depending only on ‖u0‖H1(R),
such that

(6.19) ‖S‖L∞([0,∞)×R) =
∥∥h(u)− P

∥∥
L∞([0,∞)×R)

≤ L.

By Remark 5.6 and 6.3,

q+ + (η−R)′(q) = q − (R + q)χ(−∞,−R)(q), q+ + (η−R)′(q) = q − (R + q)χ(−∞,−R)(q),

so by the convexity of the map ξ 7→ ξ+ + (η−R)′(ξ),

0 ≤ [q+ − q+] +
[
(η−R)′(q)− (η−R)′(q)

]
= (R + q)χ(−∞,−R)(q)− (R + q)χ(−∞,−R)(q),
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and, by (6.19),

S(s, x)
(
[q+(s, x)− q+(s, x)] +

[
(η−R)′(q)− (η−R)′(q)

])
≤ −L

(
(R + q)χ(−∞,−R)(q)− (R + q)χ(−∞,−R)(q)

)
.

Since ξ 7→ (R + ξ)χ(−∞,−R)(ξ) is concave and choosing R large enough,

γR2

2
(R + q)χ(−∞,−R)(q)−

γR2

2
(R + q)χ(−∞,−R)(q)

+ S(s, x)
(
[q+(s, x)− q+(s, x)] +

[
(η−R)′(q)− (η−R)′(q)

])
(6.20)

≤
(

γR2

2
− L

)(
(R + q)χ(−∞,−R)(q)− (R + q)χ(−∞,−R)(q)

])
≤ 0.

Then, from (6.18) and (6.20),

0 ≤
∫

R

(
1
2

[
(q+)2 − (q+)2

]
+
[
η−R(q)− η−R(q)

])
(t, x)dx

≤ γR

∫ t

0

∫
R

(
1
2

[
(q+)2 − q2

+

]
+
[
η−R(q)− η−R(q)

])
dsdx,

and using the Gronwall inequality and Lemmas 6.1 and 6.2 we conclude that∫
R

(
1
2

[
(q+)2 − (q+)2

]
+
[
η−R(q)− η−R(q)

])
(t, x)dx = 0, for each t > 0.

By the Fatou lemma, Remark 5.6, and (5.19), sending R →∞ yields

(6.21) 0 ≤
∫

R

(
q2 − q2

)
(t, x)dx ≤ 0, t > 0,

and we see that (6.17) holds. �

Lemma 6.7. Assume (1.4) and (2.2). Then there exists an admissible weak solution of (1.2),
satisfying (k), (kk) and (kkk) of Theorem 1.2.

Proof. The conditions (i), (iii), (iv) of Definition 1.1 are satisfied, due to (2.2), (2.3) and Lemma
5.2. We have to verify (ii). Due to (6.17), we have

(6.22) qε → q in L2
loc([0,∞)× R).

Clearly (5.9), (5.11), and (6.22) imply that u is a distributional solution of (1.6). Finally, (k) and
(kk) are consequence of Lemmas 3.1 and 4.1, respectively. For (kkk) we can argue as in [31], so let
us just sketch the proof. Since u ∈ L∞([0, T ];H1(R)), we can differentiate (1.2) to get an equation
for q. Multiplying this equation by η′R(q) (for the definition of ηR, see Lemma 6.2) to get

(6.23)
∂ηR(q)

∂t
+

∂

∂x
(γuηR(q)) = γqηR(q)− γ

2
q2η′R(q) + (h(u)− P ) η′R(q).

From the definition of ηR,

γ

(
qηR(q)− 1

2
q2η′R(q)

)
=

γR

2
(
q2 −Rq

)
χ(R,∞)(q)−

γR

2
(
q2 + Rq

)
χ(−∞,−R)(q) =: SR

− + SR
+ .

By (1.8), it follows as in [31] that
∫∫

[0,∞)×R SR
+dxdt ≤ C‖u0‖H1(R) and thus, by integrating (6.23),∫∫

[0,∞)×R SR
−dxdt ≤ C. The latter bound implies that along a subsequence SR

−
?
⇀ µ in the sense

of measures as R →∞, for some nonnegative Radon measure µ. By (1.8),
∫∫

[0,∞)×R SR
+dxdt → 0

as R → ∞. Hence sending R → ∞ in (6.23) and adding the result to the equation obtained by
multiplying (1.2) by u, we get (1.12). Finally, integrating (1.12) shows that the total mass of µ is
bounded by ‖u0‖H1(R). �
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Remark 6.8. It is possible to prove results similar to those obtained for (1.6) for slightly more
general equations of the form

(6.24)
∂u

∂t
+ γu

∂u

∂x
+

∂P

∂x
= 0, −α2 ∂2P

∂x2
+ P = h(u) +

γα2

2

(
∂u

∂x

)2

,

where γ ≥ 0, α > 0, and h : R → R is any locally Lipschitz continuous function with h(0) = 0. The
Green function of the operator −α2 ∂2

∂x2 + 1 is e−|x|/α/2. Formally, by letting α → 0, we recover
the conservation law ∂u

∂t + ∂
∂xF (u) = 0, where the flux F (u) is given by F ′(u) = γu−h′(u). Hence

(6.24) may be viewed as a new type of regularization for one-dimensional conservation laws. We
are currently investigating this singular limit problem.

7. Uniqueness of the viscous limit: the semigroup

Here we prove the existence of the semigroup.

Lemma 7.1. There exists a strongly continuous semigroup of solutions associated with the Cauchy
problem (1.2)

S : [0,∞)× (0,∞)× (E ∩ C∞(R))×H1(R) −→ C([0,∞)× R) ∩ L∞
(
[0,∞);H1(R)

)
,

namely, for each u0 ∈ H1(R), γ > 0, g ∈ E the map u(t, x) = St(γ, g, u0)(x) is an admissible weak
solution of (1.2). Moreover, (k), (kk), and (kkk) of Theorem 1.2 are satisfied.

Clearly, this lemma is a direct consequence of the following lemma and of the lemmas in the
previous sections.

Lemma 7.2. Assume (1.4), (1.5). Let {εj}j∈N, {µj}j∈N ⊂ (0,∞) and u, v ∈ L∞([0,∞);H1(R))∩
H1([0, T ]× R), for each T ≥ 0, be such that εj , µj → 0 and

(7.1) uεj → u, uµj → v, strongly in L∞([0,∞); R),

then

u = v.

Proof. Let t > 0, it is not restrictive to assume that

(7.2) ‖u0,ε − u0,µ‖H1(R) ≤ |ε− µ|, ε, µ > 0.

From [4, Theorem 3.1] and (7.2), we have that

‖uεj
(t, · )− uµj

(t, · )‖H1(R)(7.3)

≤ A(t, εj + µj)‖u0,εj
− u0,µj

‖H1(R) + B(t, εj + µj)|εj − µj |
≤
(
A(t, εj + µj) + B(t, εj + µj)

)
|εj − µj |,

with

A(t, εj + µj) = O
(
et/(εj+µj)

)
, B(t, εj + µj) = O

(
et/(εj+µj)

)
.

Choose now a subsequence {εjn
}n∈N of {εj}j∈N such that

µn ≤ εjn
≤ µn + e−1/µ2

n , n ∈ N.

Clearly,

(7.4) ‖uεjn
(t, · )− uµn

(t, · )‖H1(R) → 0,

which concludes the proof. �
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8. Stability of the semigroup and proof of Theorem 1.2

Here we prove the stability of the semigroup and then conclude the proof of Theorem 1.2.

Lemma 8.1. The semigroup S defined on [0,∞) × (0,∞) × (E ∩ C∞(R)) × H1(R) satisfies the
stability property (jj) of Theorem 1.2.

Proof. Fix ε > 0. Denote Sε the semigroup associated to the viscous problem (2.1). Choose
{u0,n}n∈N ⊂ H1(R), {γn}n∈N ⊂ (0,∞), {gn}n∈N ⊂ E∩C∞(R), u0 ∈ H1(R), γ > 0, g ∈ E∩C∞(R)
satisfying (1.9). The initial data satisfy u0,ε,n, u0,ε ∈ H`(R), ` ≥ 2, the condition (2.2), and

(8.1) ‖u0,ε,n − u0,ε‖H1(R) ≤ ‖u0,n − u0‖H1(R).

Finally, write

uε,n := Sε(γn, gn, u0,n), un := S(γn, gn, u0,n), u := S(γ, g, u0).

Let t > 0, then

‖un(t, · )− u(t, · )‖H1(R) ≤ ‖un(t, · )− uε,n(t, · )‖H1(R)(8.2)

+ ‖uε,n(t, · )− uε(t, · )‖H1(R) + ‖uε(t, · )− u(t, · )‖H1(R),

so

0 ≤ lim inf
n

‖un(t, · )− u(t, · )‖H1(R) ≤ lim inf
ε,n

‖un(t, · )− uε,n(t, · )‖H1(R)(8.3)

+ lim inf
ε,n

‖uε,n(t, · )− uε(t, · )‖H1(R)

+ lim inf
ε

‖uε(t, · )− u(t, · )‖H1(R).

From Lemma 5.2 we know that

lim inf
ε,n

‖un(t, · )− uε,n(t, · )‖H1(R) = 0,(8.4)

lim inf
ε

‖uε(t, · )− u(t, · )‖H1(R) = 0.(8.5)

We claim that

(8.6) lim inf
ε,n

‖uε,n(t, · )− uε(t, · )‖H1(R) = 0.

Using [4, Theorem 3.1] and (8.1), we have that

(8.7) ‖uε,n(t, · )− uε(t, · )‖H1(R) ≤ A(t, ε)‖u0,n − u0‖H1(R) + B(t, ε)
(
‖gn − g‖L∞(I) + |γn − γ|

)
,

with
A(t, ε) = O(eT/ε), B(t, ε) = O(eT/ε), t ∈ [0, T ].

Define

εn :=
T

| log(kn)|
, kn := max

{
‖u0.n − u0‖1/2

H1(R), ‖gn − g‖1/2
L∞(I), |γn − γ|1/2

}
,

clearly

(8.8) lim inf
ε,n

‖uε,n(t, · )− uε(t, · )‖H1(R) ≤ lim inf
n

‖uεn,n(t, · )− uεn(t, · )‖H1(R),

and

(8.9) lim
n

A(εn, t)‖u0,n − u0‖H1(R) = lim
n

B(εn, t)‖gn − g‖L∞(I) = 0.

Then (8.6) is consequence of (8.7), (8.8), and (8.9). From (8.3), (8.4), (8.5), and (8.6), we get

lim
n
‖un(t, · )− u(t, · )‖H1(R) = 0.

�

Proof of Theorem 1.2. It is direct consequence of Lemmas 7.1 and 8.1. �
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9. Proof of Theorem 1.3

By inspecting the proof of Lemma 1 in [32], we see that the following lemma holds:

Lemma 9.1. Let u ∈ L∞([0,∞);H1(R)) ∩ C([0,∞)× R) satisfy ∂u
∂x (t, x) ≤ p

γt + C for all t > 0,
x ∈ R. If p ∈ [0, 2), then there exists a unique solution Φt(x) ∈ L∞loc([0,∞);C1−p/2(R)) of

(9.1)
d

dt
Φt(x) = γu(t,Φt(x)), Φt(x)|t=0 = x.

If p = 2 and in addition there holds

(9.2) lim
t→0+

‖u(t, · )− u0‖H1(R) = 0,

then (9.1) possesses a unique solution Φt(x) ∈ L∞loc([0,∞);C(R)).

We remark that for an admissible weak solution u there automatically holds u(t, · ) → u0 in
H1(R). To see this, notice first that u(t, · ) ⇀ u0 in H1(R). This is an easy consequence of (1.2)
and Appendix C in [25]. Hence lim inft→0+ ‖u(t, · )‖H1(R) ≥ ‖u0‖H1(R). In view of this and (iv)
of Definition 1.1, we conclude that limt→0+ ‖u(t, · )‖H1(R) = ‖u0‖H1(R). Our claim now follows
thanks to the well known fact that “weak plus norm convergence” implies strong convergence.

By inspecting the proof of Lemma 2 in [32], we see that also the following lemma holds:

Lemma 9.2. Let u satisfy the assumptions of Lemma 9.1, and consider the problem

(9.3)
∂f

∂t
+ γu

∂f

∂x
= g, f |t=0 = f0.

Suppose either
f ∈ L∞([0,∞);H1

loc(R)), g ∈ L1
loc([0,∞);L∞(R))

or

f ∈ L∞([0,∞);W 1,1(R)), lim
t→0+

∥∥∥∥∂f

∂x
(t, · )− ∂f0

∂x

∥∥∥∥
L1(R)

= 0,

g ∈ L1
loc([0,∞);Lp(R)) for all p ≥ p0 with p0 sufficiently large.

Then, for any t > 0, ‖f(t, · )‖L∞(R) ≤ ‖f0‖L∞(R) +
∫ t

0
‖g(s, · )‖L∞(R)ds.

Proof of Theorem 1.3. Since the proof is very similar to that in Xin and Zhang [32], we will only
sketch it and refer to [32] for further details.

Let u1 be an energy conservative admissible weak solution of the Cauchy problem for (1.2). Let
u2 be a weak solution of the Cauchy problem for (1.2) and suppose there exists a function β2(t)
in L2([0, T )) for all T > 0 such that

∥∥∂u2
∂x (t, · )

∥∥
L∞(R)

≤ β2(t). Let us use the notation qi = ∂ui

∂x ,
i = 1, 2. It is an easy calculation to see that u2 is in fact an energy conservative weak solution.
Indeed, we have (see [32, p. 1834])

lim
R→∞

∫ T

0

∫
R

R q2
2 χ{ξ||ξ|≥R}(q2) dx dt ≤ lim

R→∞

∫ T

0
(β2(t))

2
dt

R
‖q2‖L∞([0,∞);L2(R)) = 0

for all T > 0. By (1.2), w := u1 − u2 satisfies

(9.4)
∂w

∂t
+ γu1

∂w

∂x
= −γw

∂u2

∂x
− ∂

∂x
(P1 − P2), w|t=0 ≡ 0.

As w ∈ L∞([0,∞);H1(R)), we can apply Lemma 9.2 to obtain

(9.5) ‖w(t, · )‖L∞(R) ≤
∫ t

0

(
β2(s)‖w(s, · )‖L∞(R) +

∥∥∥∥ ∂

∂x
(P1 − P2)(s, · )

∥∥∥∥
L∞(R)

)
ds.

Let
ei :=

1
2
(
u2

i + q2
i

)
, e := e1 − e2,

and observe that
h(ui) +

γ

2
q2
i = ei +

1
2
g(ui)− γu2

i , i = 1, 2.



20 G. M. COCLITE, H. HOLDEN, AND K. H. KARLSEN

In what follows, let Λ−1 denote the pseudo-differential operator ∂
∂x

(
1− ∂2

∂x2

)−1

. Since

Pi =
(

1− ∂2

∂x2

)−1 (
h(ui) +

γ

2
q2
i

)
,

we find
∂

∂x
(P1 − P2) = γΛ−1e + Λ−1

{
1
2

(g(u1)− g(u2))− γ
(
u2

1 − u2
2

)}
,

using the identity

(9.6) Λ−1 ∂

∂x
=

∂

∂x
Λ−1 =

(
1− ∂2

∂x2

)−1

− I.

Clearly, ∥∥∥∥Λ−1

{
1
2

(g(u1)− g(u2)) (s, · )− γ
(
u2

1 − u2
2

)
(s, · )

}∥∥∥∥
L∞(R)

≤ C‖w(s, · )‖L∞(R).

Therefore

(9.7) ‖w(t, · )‖L∞(R) ≤
∫ t

0

(∥∥Λ−1e(s, · )
∥∥

L∞(R)
+ (C + β2(s)) ‖w(s, · )‖L∞(R)

)
ds.

We now set out to estimate
∥∥Λ−1e(s, · )

∥∥
L∞(R)

. By definition, the energy density ei satisfies

(9.8)
∂ei

∂t
+

∂

∂x
(γuiei) = − ∂

∂x

(
ui

[
Pi −

γ

2
u2

i

]
+

γ

3
u3

i −H(ui)
)

. i = 1, 2,

and thus e satisfies
∂e

∂t
+

∂

∂x
(γu1e + γwe2) = − ∂

∂x

(
u1

[
P1 −

γ

2
u2

1

]
− u2

[
P2 −

γ

2
u2

2

]
+

γ

3
u3

1 −
γ

3
u3

2 −H(u1) + H(u2)
)
.(9.9)

Furthermore, we find that f := Λ−1e satisfies ∂f
∂t + γu1

∂f
∂x = g, where

g := −γwe2 +
(
u1

[
P1 −

γ

2
u2

1

]
− u2

[
P2 −

γ

2
u2

2

]
+

γ

3
u3

1 −
γ

3
u3

2 −H(u1) + H(u2)
)

−
(

1− ∂2

∂x2

)−1 {
γu1e + γwe2 +

(
u1

[
P1 −

γ

2
u2

1

]
− u2

[
P2 −

γ

2
u2

2

]
+

γ

3
u3

1 −
γ

3
u3

2 −H(u1) + H(u2)
)}

+ γu1

(
1− ∂2

∂x2

)−1

e.

Since Λ−1e ∈ L∞([0,∞);W 1,1(R)) and, in view of (9.6) and (9.2), limt→0+

∥∥ ∂
∂xΛ−1e(t, · )

∥∥
L1(R)

=
0. Hence we can apply Lemma 9.2 to deduce

(9.10) ‖Λ−1e(t, · )‖L∞(R) ≤
∫ t

0

‖g(s, · )‖L∞(R)ds.

To estimate ‖g(s, · )‖L∞(R), we can proceed as in [32]. The final result is

‖Λ−1e(t, · )‖L∞(R) ≤ C

∫ t

0

(
‖Λ−1e(s, · )‖L∞(R) + (1 + β2(s)) ‖w(s, · )‖L∞(R)

+ ‖(P1 − P2)(s, · )‖L∞(R)

)
ds.

(9.11)

We have

(9.12) ‖(P1 − P2)(s, · )‖L∞(R) ≤ C

∥∥∥∥∥
(

1− ∂2

∂x2

)−1

e(s, · )

∥∥∥∥∥
L∞(R)

+ ‖w(s, · )‖L∞(R)

 .
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Repeating the calculations in [32] we find

(9.13)

∥∥∥∥∥
(

1− ∂2

∂x2

)−1

e(s, · )

∥∥∥∥∥
L∞(R)

≤ C

‖Λ−1e(s, · )‖L∞(R) +

∥∥∥∥∥
(

1− ∂2

∂x2

)−2

e(s, · )

∥∥∥∥∥
L2(R)

 .

To estimate the last term on the right-hand side, we apply
(
1− ∂2

∂x2

)−2

to equation (9.9). We

then obtain ∂
∂t

(
1− ∂2

∂x2

)−2

e = g̃, where

g̃ := − ∂

∂x

(
1− ∂2

∂x2

)−2 {
γu1e + γwe2 +

(
u1[P1 −

γ

2
u2

1]− u2[P2 −
γ

2
u2

2]

+
γ

3
u3

1 −
γ

3
u3

2 −H(u1) + H(u2)
)}

.

From this it follows that
∥∥∥∥(1− ∂2

∂x2

)−2

e(s, · )
∥∥∥∥

L2(R)

≤
∫ t

0
‖g̃(s, · )‖L2(R). To estimate ‖g̃(s, · )‖L2(R),

we proceed once more as in [32]. The final result is∥∥∥∥∥
(

1− ∂2

∂x2

)−2

e(t, · )

∥∥∥∥∥
L2(R)

≤ C

∫ t

0

‖w(s, · )‖L∞(R) + ‖Λ−1e(s, · )‖L∞(R)

∥∥∥∥∥
(

1− ∂2

∂x2

)−2

e(s, · )

∥∥∥∥∥
L2(R)

 ds.

(9.14)

Introduce the quantity

y(t) = ‖w(t, · )‖L∞(R) + ‖Λ−1e(t, · )‖L∞(R) +

∥∥∥∥∥
(

1− ∂2

∂x2

)−2

e(t, · )

∥∥∥∥∥
L2(R)

.

Then, from (9.7), (9.10), (9.11), (9.12), (9.13), and (9.14),

y(t) ≤ C

∫ t

0

(
1 + (β2(s))

2
)

y(s)ds,

and thus by Gronwall’s inequality we conclude that y(t) = 0.
�
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