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Abstract

In this paper we study a sixth order Cahn-Hilliard type equation that arises as a model for the

faceting of a growing surface. We show global in time existence of weak solutions and uniform in

time a priori estimates in the H3 norm. These bounds enable us to show the uniqueness of weak

solutions.

1 Introduction

During the last two or three decades it has become popular to model the evolution of thin solid

films in terms of continuum theory. One example for a thin film approximation of a surface diffusion

based process that describes the faceting of a growing surface has been given by Savina et al.

[3]. It can be extended to more complex self-assembly systems such as quantum dots [5-8].

However here, we stick to the one-material model established before. Additional information on

self-arranging nano-surfaces, quantum dots and faceting of growing surfaces can be found in the

references mentioned above.

Mathematically, the problem is interesting and challenging, since the regularizing Wilmore

term in the surface energy results, when applying a long wave approximation, in a sixth order term

that dominates the semilinear partial differential equation. More precisely, the model describes

an evolving surface, a graph of function h : Ω ⊂ R
2 × [0, T ] → R. The surface is governed in

Ω by

ht =
D

2
|∇h|2+∆2h+∆3h−∆[β(h2

yhxx+h2
xhyy+4hxhyhxy)+α(h2

xhxx+h2
yhyy)]. (1)

Here, α, β > 0 are anisotropy coefficients, D > 0 is a parameter related to the deposition

rate, ∆ is the standard Laplacian and subscripts indicate differentiation with respect to the noted

variables. Furthermore, as described in the derivation of this equation (see Savina et al. [3] or

Korzec [6]), the overall surface is in a moving frame. As usually, an initial condition supplements

the problem,

h(x, y, 0) = h0(x, y), for (x, y) ∈ Ω (2)

and also boundary conditions have to be imposed. There are various possibilities, but the two

most common ones are given by defining the domain as

Ω = R
2 or Ω = T

2 ,

where T
2 is the flat torus. The latter one yields a periodic surface, it seems as realistic as an

infinite domain. Hence we choose the bounded version to gain additional technical advantages in

the analysis.

We establish the existence of global weak solutions, i.e. we show that there exists a function

h ∈ C([0, T ],H3) with ht ∈ L∞((0, T ),H−3), such that h satisfies (1) in the distributional

sense.

The main result is stated below, it will be proved in Section 3.
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Theorem 1 Let us assume that h0 ∈ H3(T2), then there exists a unique weak solution (1),

which is well-defined on [0,∞).

Before we proceed with the proof, we want to record the structure of the problem, which has also

been found in the originating paper [3]. Basically, equation (1) is a perturbed gradient system

ht =
D

2
|∇h|2 + ∆H. (3)

For a proper definition of H, see (4) below.

It turns out that getting an a priori estimate in H3 is the crucial part of the work, this is the

content of Theorem 4. We achieve that by a bootstrapping argument, where we use the constant

variation formula representation of the solution. On the other hand the H2 estimates are much

easier to establish. We take advantage of the boundedness of the domain and availability of the

Sobolev inequalities. It turns out that we cannot repeat this part of the argument on an unbounded

domain, e.g. R
2.

Once we set the objectives, we describe the methods to achieve that goal. We use the notation

and the guidance of the semigroup theory, see [3]. From our perspective, problem (1) does not

justify the full-fledged theory. We choose an easier approach that bases on Fourier series.

Here, we are content with establishing global in time existence. We do not study the asymptotic

behavior of the system and postpone this task for a future work.

We should also mention, that [6], [7] and [8] are the only closely related papers we are aware

of. In [6] the authors are concerned with the one-dimensional version of the same problem.

However, the approach applied there is completely different, for the authors use the Galerkin

method. This general tool is not best suited for the regularity study, so that they have to overcome

additional technical difficulties which are absent here, in their uniqueness result. Moreover, [6]

presents also numerical results on coarsening and stationary states.

The other papers are [7] and [8]. The authors study a similar sixth order problem, which

also belongs to a class of Cahn-Hilliard equations. The motivation to study that problem comes

from a different physical phenomenon, namely the phase transitions in ternary oil-water-surfactant

systems considered in a bounded domain. They obtain similar results by different methods, i.e.

the typical tools of the theory of parabolic equations due to Solonnikov [9].

Notation We will clarify the notation we use. We identify the flat torus T
2 with [0, 2π)2, (x, y)

is a generic point of T
2. By dV = dxdy we denote the Lebesgue measure. For h : T

2 → R,

we will write

‖h‖ = ‖h‖L2(T2), ‖∇h‖ =

(∫

T2

((hx)2 + (hy)
2) dV

)1/2

.

Since we work on the torus, in place of the Fourier transform we consider the Fourier series,

which may be written formally as

h(x, y) =
∑

(k,l)∈Z2

e−i(xk+yl)ĥ(k, l) =

∫

R2

e−i(xk+yl)ĥ(k, l) dµ(k, l),

where µ is the standard counting measure supported on Z
2. In this formula we use

ĥ(k, l) =
1

(2π)2

∫

T2

h(x, y)ei(xk+yl) dV (x, y).
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For the sake of consistency we also recall the inverse Fourier transform for f : Z
2 → R. Namely,

we define

f̌(x, y) =
∑

(k,l)∈Z2

e−i(xk+yl)f(k, l).

Moreover, we notice that for any s ∈ R, the norm in the Sobolev space Hs(T2) is equivalent to

‖f‖Hs(T2) = ‖(1 + | · |2)s/2f̂(·)‖L2(µ).

2 Local in time existence

We want to discover as much structure of (1) as possible. For this purpose we define a vector

field

F =
α

3
(h3

x, h3
y) + β(h2

yhx, h2
xhy)

and the functions

Ψ = β(h2
yhxx + h2

xhyy + 4hxhyhxy) + α(h2
xhxx + h2

yhyy),

Φ =
1

2
(hxx + hyy)

2 −
1

2
(h2

x + h2
y) +

α

12

(
h4

x + h4
y

)
+

β

2
h2

xh2
y.

Note that div F = Ψ. Subsequently we shall write

H = ∆h + ∆2h − Ψ = div (∇h + ∇∆h − F ). (4)

Thus, indeed (1) takes the form (3). We notice that due to the periodic boundary condition the

average of H vanishes,
∫

T2 H dV = 0.

Finally, we define the functional

L =

∫

T2

Φ dV. (5)

The first stage of our analysis of (1) is a study of the following linear equation

ht = ∆3h + f, h(0, ·) = h0(·), (6)

where f : T
2 → R is a given function whose regularity has to be specified yet. Although we first

treat (6), we keep in mind that we finally want to consider

f(h) =
D

2
|∇h|2 + ∆2h − ∆Ψ(h). (7)

We proceed formally by applying the Fourier transform to both sides, this yields,

d
dt

ĥ(t, ξ) = −|ξ|6ĥ(t, ξ) + f̂ , ĥ(0, ξ) = ĥ0(ξ).

After solving this ODE we obtain an explicit formula for the Fourier transform of the solution,

ĥ(t, ξ) = e−|ξ|6tĥ0(ξ) +

∫ t

0
e−|ξ|6(t−s)f̂(s, ξ) ds.

Thus, we can write

h(t, (x, y)) =

(
e−|ξ|6tĥ0(ξ) +

∫ t

0
e−|ξ|6(t−s)f̂(s, ξ) ds

)∨

(x, y).
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After introducing the following shorthand

e∆3tf =
(
e−|·|6tf̂(·),

)∨
(8)

we can write a solution of (6) in the form:

h(t) = e∆3th0 +

∫ t

0
e∆3(t−s)f(s) ds.

Once we derived the above constant variation formula for solutions to (6), we introduce the oper-

ator

F(h)(t, ·) = (e∆3th0)(·) +

∫ t

0
e∆3(t−s)f(h(s, ·)) ds (9)

with f given by (7). We notice that the above F is well-defined on the following space

XT = C
(
[0, T ];H3(T2)

)
.

The ball centered at zero with radius M will be denoted by XM
T ,

XM
T = XT ∩ {v : sup

t∈[0,T ]
||v(t)||H3 ≤ M}.

Theorem 2 Let us assume that h0 ∈ H3 and let us fix M/2 > ||h0||H3 . Then, there exists

T > 0 such that F : XM
T → XM

T and F is a contraction on XM
T . In particular, there exists a

unique solution of the integral equation F(h) = h in XM
T .

Remark. The solution constructed in the above theorem will be called a mild solution to (1).

Proof. We shall write L2 for L2(µ), where µ is the counting measure. For any s ∈ R we will use

Hs = Hs(T2). We shall first check that the operator defined by (8) is continuous on Hs for any

s and all t > 0. Indeed,

‖e∆3th0‖Hs = ‖(1 + |ξ|2)s/2(e∆3th0)
∧(ξ)‖L2 = ‖(1 + |ξ|2)s/2e−|ξ|6tĥ0(ξ)‖L2

≤ ‖(1 + |ξ|2)s/2ĥ0(ξ)‖L2 = ‖h0‖Hs .

We also want to use continuity of the function, t 7→ e∆3th0 ∈ C([0, T ];Hs). It follows from the

Lebesgue’s dominated convergence theorem, namely

lim
t→t0

‖(e∆3t − e∆3t0)h0‖Hs = lim
t→t0

‖(1 + |ξ|2)s/2(e−|ξ|6t − e−|ξ|6t0)ĥ0(ξ)‖L2 = 0.

We shall establish a regularizing property of F which is a crucial point in our theory. We claim

that for any p ∈ R, 0 < ε, 0 ≤ t0 ≤ t and a function v ∈ C([t0, t],H
p−6(1−ε)) we have

‖

∫ t

t0

e∆3(t−s)v(s, ·) ds‖Hp ≤ C(ε) et(t − t0)
ε ‖v‖C([0,t];Hp−6(1−ε)). (10)

Indeed, let us notice

‖

∫ t

t0

e∆3(t−s)v(s, ·) ds‖Hp = ‖(1 + |ξ|2)p/2

(∫ t

t0

e∆3(t−s)v(s, ·) ds

)∧

(ξ)‖L2

= ‖(1 + |ξ|2)p/2

∫ t

t0

e−|ξ|6(t−s)v̂(s, ξ) ds‖L2

≤

∫ t

t0

‖(1 + |ξ|2)p/2e−|ξ|6(t−s)v̂(s, ξ)‖L2 ds.
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At this point we make a simple observation, for t > s > 0

−|ξ|6(t − s) ≤ t − (1 + |ξ|6)(t − s) ≤ t −
1

4
(1 + |ξ|2)3(t − s).

As a result, for any ε ∈ (0, 1] we have

‖

∫ t

t0

e∆3(t−s)v(s, ·) ds‖Hp ≤

et

∫ t

t0

‖e−
1
4
(1+|ξ|2)3(t−s)(t − s)1−ε (1 + |ξ|2)3(1−ε)

(t − s)1−ε
(1 + |ξ|2)

p
2
−3(1−ε)v̂(s, ξ)‖L2 ds.

If y = (1 + |ξ|2)3(t − s), then

e−
1
4
(1+|ξ|2)3(t−s)(t − s)1−ε(1 + |ξ|2)3(1−ε) = e−

1
4
yy1−ε ≤ C(ε),

where C(ε) is a constant that may vary during the proof. Therefore,

‖

∫ t

t0

e∆3(t−s)v(s, ·) ds‖Hp ≤ etC(ε)

∫ t

t0

‖
1

(t − s)1−ε
(1 + |ξ|2)

p
2
−3(1−ε)v̂(s, ξ)‖L2 ds

≤ et C(ε)

ε
(t − t0)

ε sup
s∈[0,t]

‖v(s, ·)‖Hp−6(1−ε) .

Thus, we have derived (10).

Subsequently, we take p = 3 and we consider (10) with t0 = 0. In order to prove that F
maps XT into XT one has to verify that for any h ∈ XM

T , the following bound holds

sup
t∈[0,T ]

‖f(h(t, ·))‖H3−6(1−ε) ≤ C(M) < ∞, (11)

where C(M) is independent of h.

We select 0 < ε < 1/3. Obviously, by the definition of the norm and our choice of ε, we see

that

‖∆2h‖H3−6(1−ε) ≤ C‖h‖H7−6(1−ε) ≤ C‖h‖H3 .

Since the embedding

H2(T2) →֒ C(T2) ∩ L∞(T2) (12)

is valid (see [1]), then for any element h ∈ XM
T we have

‖h2
x‖

2
H3−6(1−ε) ≤ ‖h2

x‖
2
L2

=

∫

T2

h4
x dV ≤ ‖hx‖

2
∞

∫

T2

h2
x dV ≤ C‖h‖2

H3‖hx‖
2
L2

≤ C‖h‖4
H3 ≤ CM4.

We conclude that

sup
t∈[0,T ]

‖|∇h(t)|2‖C([0,t];H3−6(1−ε)) ≤ CM2.

Finally, if we restrict ε even further by requiring that ε < 1/6, then we have the following estimate

for the nonlinearity,

‖∆(hxhyhxy)‖H3−6(1−ε) ≤ C‖hxhyhxy‖H5−6(1−ε) ≤ C‖hxhyhxy‖L2

≤ C‖hx‖∞‖hy‖∞‖hxy‖L2 ≤ C‖h‖3
H3 .
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After combining these observation, we conclude that

sup
t∈[0,T ]

‖∆Ψ(h)‖C([0,t];H3−6(1−ε)) ≤ C(M2 + M3).

This implies that F : XM
T → XM

T , where T is so chosen, that for given M the inequality

C(ε)eT T ε(M + M2 + M3) < M/2 is satisfied.

Our next goal is to prove that F : XM
T → XM

T is a contraction for sufficiently small T > 0.

For this purpose, because of (10) it is enough to show that f is Lipschitz continuous in XM
T ,

‖f(v) − f(u)‖C([0,t];H3−6(1−ε)) ≤ C(M)‖u − v‖C([0,t];H3) (13)

for a positive ε ∈ (0, 1/3). Once we establish (13), taking eT T ε < 1
2C(M)C(ε) will finish the

proof.

Now we show (13). Here the linear term ∆2v does not cause any problems, while some more

work has to be invested for the nonlinearities. In order to deal with the term |∇v|2, we observe

that for ε < 1/2 the number s = 3 − 6(1 − ε) is negative. Therefore,

‖u2
x − v2

x‖Hs ≤ ‖u2
x − v2

x‖L2 ≤ C‖ux − vx‖L∞
‖ux + vx‖L∞

≤ CM‖u − v‖H3 .

In the above estimates we used the embedding (12). In order to finish the proof we consider the

nonlinear term ∆(vxvyvxy). We have

‖∆uxuyuxy − ∆vxvyvxy‖Hs ≤ ‖uxuyuxy − vxvyvxy‖Hs+2

≤ ‖(ux − vx)uyuxy‖Hs+2 + ‖vxuxy(uy − vy)‖Hs+2 + ‖vxvy(uxy − vxy)‖Hs+2 .

Note that for ε ∈ (0, 1/6) we have s + 2 < 0, hence ‖ · ‖Hs+2 ≤ C‖ · ‖L2 . Therefore

‖(ux − vx)uyuxy‖Hs+2 ≤ C‖(ux − vx)uyuxy‖L2 ≤ C‖ux − vx‖∞‖uy‖∞‖uxy‖L2

≤ CM2‖u − v‖H3

and similarly

‖vxuxy(uy − vy)‖Hs+2 ≤ CM2‖u − v‖H3 .

Finally, we have

‖vxvy(uxy − vxy)‖Hs+2 ≤ C‖vxvy(uxy − vxy)‖L2 ≤ C‖vx‖∞‖vy‖∞‖uxy − vxy‖L2

≤ CM2‖u − v‖H3 .

The same technique may be used to estimate the other two terms. We have derived (13). �

Once we have established existence of a unique fixed point ofF , we will prove that the solution

of the equation F(h) = h enjoys some additional regularity. Namely, any fixed point is locally

Hölder continuous in the norm ‖ · ‖H3(T2) with respect to time.

Lemma 1 Let us take any p ∈ R. For every 0 < a ≤ 1 there exists a constant Ca > 0 such

that for δ > 0

‖(e∆3δ − Id)g‖Hp ≤
Ca

a
δa‖g‖H6a+p .
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Proof. We begin with an observation about the exponential function. Namely, there exists a

constant Ca such that for x ≥ 0 we have

1 − e−x ≤
Ca

a
xa.

Indeed, for x = 0 both sides are equal, hence it is enough to show the inequality for the deriva-

tives e−x ≤ Cax
a−1 for some Ca > 0. But this is obvious, since for a = 1 we have e−x ≤ 1

and for a ∈ (0, 1) the function (0,∞) ∋ x 7→ exxa−1 has infinite limits when x → 0+ and

x → ∞.

We use this observation in the following estimate,

‖(e∆3δ − I)g‖Hp = ‖(e−|ξ|6δ − 1)ĝ(1 + |ξ|2)p/2‖L2 ≤
Ca

a
δa‖ĝ|ξ|6a(1 + |ξ|2)p/2‖L2

≤
Ca

a
δa‖g‖H6a+p . �

Now we can show better regularity of the fixed point constructed in the previous theorem. Here

is the first step in this direction.

Lemma 2 The unique solution of the equation F(h) = h, where F is given by formula (9), is

locally Hölder continuous in the norm ‖ · ‖H3(T2) with respect to time. More precisely, there exist

constants a, ε1 > 0 such that

‖h(t + δ) − h(t)‖H3 ≤ C(δt−1 + δatε1 + δε1)

for a constant C = C(ε1,M, a).

Proof. We have the following estimate

‖h(t + δ, ·) − h(t, ·)‖H3 ≤ ‖(e∆3δ − I)e∆3th0‖H3

+ ‖

∫ t

0
(e∆3δ − I)e∆3(t−s)f(h(s, ·)) ds‖H3

+ ‖

∫ t+δ

t
e∆3(t+δ−s)f(h(s, ·)) ds‖H3 .

We observe that the first term on the RHS can be bounded as follows,

‖(e∆3t+δ − e∆3t)h0‖H3 = ‖(1 + |ξ|2)3/2e−|ξ|6t(1 − e−|ξ|6δ)ĥ0‖L2

≤ C‖(1 + |ξ|2)3/2e−|ξ|6t|ξ|6tδ
1

t
ĥ0‖L2

≤ C
δ

t
‖(1 + |ξ|2)3/2ĥ0‖L2 = C

δ

t
‖h0‖H3 ≤ CM

δ

t
.

This means that the first term is even locally Lipschitz continuous. From (10) and (11) we deduce

‖

∫ t+δ

t
e∆3(t+δ−s)f(h(s, ·)) ds‖H3 ≤ C(ε)Mδε.

Finally, using Lemma 1 for any positive a and formula (10) with t0 = 0 and any ε1 > 0, we obtain

‖

∫ t

0
(e∆3δ − I)e∆3(t−s)f(h(s, ·)) ds‖H3 ≤

∫ t

0
Ca

δa

a
‖e∆3(t−s)f(h(s, ·))‖H3+6a ds

≤ Ca
δa

a
tε1‖f(h)‖C([0,t];H3+6a−6(1−ε1)).
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Once we apply (11) with a + ε1 < ε < 1/6 to the above term, we will come to the desired

conclusion, i.e.

‖

∫ t

0
(e∆3δ − I)e∆3(t−s)f(h(s, ·)) ds‖H3 ≤ Ca

δa

a
tε1C(M). �

It follows our regularity theorem, which explains that h, the mild solution to (1), is in fact a

weak solution to (1), in the sense that h ∈ C([0, T ];H3) and ht ∈ C((0, T );H−3) and the

equation is satisfied in the distributional sense.

Theorem 3 The solution h ∈ XM
T of the integral equation F(h) = h is differentiable with

respect to time in the H−3 norm and

ht(t, ·) = ∆3h(t, ·) + f(h(t, ·))

in the distributional sense, with initial condition h(0, ·) = h0(·). As a result, it is a weak solution

of (1).

Proof. We shall show that h is a limit (in the C1([a, T − a];H3) norm) of functions with the

desired property. This approach was used in the proof of [3, Lemma 3.2.1].

For t > δ > 0 we define

hδ(t, ·) = e∆3th0(·) +

∫ t−δ

0
e∆3(t−s)f(h(s, ·)) ds.

Then,

dhδ

dt
(t, ·) = ∆3e∆3th0(·) + e∆3δf(h(t − δ, ·)) +

∫ t−δ

0
∆3e∆3(t−s)f(h(s, ·)) ds,

where we treat the above functions like elements of H−3(T2). Indeed, using our standard argu-

ments we notice

‖∆3e∆3th0(·)‖H−3 < CM, ‖e∆3δf(h(t − δ, ·))‖H−3 < CM.

Moreover, for any s ∈ R

‖∆3e∆3tg(·)‖Hs ≤ ‖|ξ|6e−|ξ|6t(1+ |ξ|2)s/2ĝ(·)‖L2 ≤
C

t
‖(1+ |ξ|2)

s
2 ĝ(·)‖L2 =

C

t
‖g‖Hs .

Hence the norm of ∆3e∆3t in L(Hs,Hs) may be bounded by C/t. As a result we arrive at

‖

∫ t−δ

0
∆3e∆3(t−s)f(h(s, ·)) ds‖H−3 ≤ sup

s∈[0,t−δ]
‖f(h(s, ·))‖H−3

∫ t−δ

0

1

t − s
ds

≤ sup
s∈[0,t−δ]

‖f(h(s, ·))‖H3−6(1−ε) ln |δ/t|

≤ C(M) ln |δ/t| < ∞.

We have
dhδ

dt
(t, ·) = e∆3δf(h(t − δ, ·)) + ∆3hδ(s, ·).

In order to finish the proof we have to show that

‖hδ(t, ·) − h(t, ·)‖H−3 −−−→
δ→0

0,
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e∆3δf(h(t − δ, ·))
‖·‖H−3
−−−−→

δ→0
f(h(t, ·)), ∆3hδ(s, ·)

‖·‖H−3
−−−−→

δ→0
∆3h(s, ·)

and use the limit differentiation theorem.

Our first observation is

‖h(t, ·) − hδ(t, ·)‖H3 = ‖

∫ t

t−δ
e∆3(t−s)f(h(s, ·)) ds‖H3

≤ C(T, ε)δε sup
s∈[0,t]

‖f(h(s, ·))‖H3−6(1−ε) ≤ C(T,M)δε −−−→
δ→0

0.

Secondly, we note

‖e∆3δf(h(t − δ, ·)) − f(h(t, ·))‖H−3 ≤ ‖(e∆3δ − Id)f(h(t − δ, ·))‖H−3

+ ‖f(h(t − δ, ·)) − f(h(t, ·))‖H−3 .

Due to (13), we arrive at

‖f(h(t − δ, ·)) − f(h(t, ·))‖H−3 ≤ C(M)‖h(t − δ, ·) − h(t, ·)‖H3 −−−→
δ→0

0,

because h ∈ C([0, T ];H3). Moreover, using Lemma 1 we have

‖(e∆3δ − I)f(h(t − δ, ·))‖H−3 ≤
Cb

b
δb‖f(h(t − δ, ·))‖H6b−3 ≤ C

Cb

b
δb −−−→

δ→0
0,

because 6b − 3 ≤ 3 − 6(1 − ε) for sufficiently small b > 0. Finally, Theorem 2 implies that,

‖∆3hδ(t, ·) − ∆3h(t, ·)‖H−3 = ‖

∫ t

t−δ
∆3e∆3(t−s)f(h(s, ·)) ds‖H−3

= ‖

∫ t

t−δ
∆3e∆3(t−s)(f(h(s, ·)) − f(h(t, ·))) ds

+

∫ t

t−δ
∆3e∆3(t−s)f(h(t, ·))) ds‖H−3

≤

∫ t

t−δ
‖∆3e∆3(t−s)‖(H−3→H−3)‖f(h(s, ·)) − f(h(t, ·))‖H−3 ds

+‖

∫ t

t−δ
−

d
ds

(
e∆3(t−s)f(h(t, ·)))

)
ds‖H−3

≤

∫ t

t−δ

C

t − s
‖h(t, ·) − h(s, ·)‖H3 ds + ‖(e∆3δ − I)f(h(t, ·))‖H−3

≤

∫ t

t−δ

C(T )

t − s

(
(t − s)θ +

t − s

t − δ

)
ds + C

Ca

a
δa

=
C

θ
C(T )

(
δε1

ε1
+

δ

t − δ

Ca

a
δa

)
−−−→
δ→0

0.

Moreover, the convergence is uniform for t in compact subsets of (0, T ). �

3 A priori estimates, global existence

In this Section we derive an a priori estimate in the space L2([0, T ];H3(T2)). Before we present

this main result, let us prove a useful bound
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Lemma 3 For ρ, τ ≥ 0 we have

sup
y≥0

(1 + y)τe−ρy3
≤ C(τ)max{1, ρ−τ/3}. (14)

Proof. If y ≤ 1 then

(1 + y)τe−ρy3
≤ 2τ

and if y ≥ 1 then

(1 + y)τe−ρy3
≤ (2y)τ e−ρy3

= 2τρ−τ/3(ρy3)τ/3e−ρy3
≤ C(τ)ρ−τ/3. �

Theorem 4 Let us assume that h is a weak solution to (1) and (2), which was constructed in

Theorem 2. In addition, we assume that h0 ∈ H3. Then, h ∈ L∞(0, T ;H3) and

‖h‖L∞(0,T ;H3) ≤ C3(h0, T ),

where the constant C(h0, T ) depends only of T and the initial data h0.

Proof. Step 1. Differentiating L with respect to time (see (5)) and integrating by parts we obtain

dL
dt

=

∫

T2

(
∆h∆ht − (hxhxt + hyhyt) +

α

3

(
h3

xhxt + h3
yhyt

)
+ β

(
h2

yhxhxt + h2
xhyhyt

))
dV

=

∫

T2

(
∆2h + (hxx + hyy) − α

(
h2

xhxx + h2
yhyy

)
− β

(
4hxhyhxy + h2

yhxx + h2
xhyy

))
ht dV

=

∫

T2

Hht dV.

Thus, since h is a weak solution of (1), then

dL
dt

=

∫

T2

H

(
D

2
|∇h|2 + ∆H

)
dV = −

∫

T2

|∇H|2 dV +
D

2

∫

T2

H|∇h|2 dV.

Since
∫

T2 H dV = 0, we have the Sobolev inequality

∫

T2

H2 dV ≤ 2π

∫

T2

|∇H|2 dV.

Moreover,
D

2
H|∇h|2 ≤

1

2π
H2 +

πD2

8
|∇h|4.

As a result,
dL
dt

≤
πD2

8

∫

T2

|∇h|4 dV ≤ C1 + C2L, (15)

where Ci = Ci(D,α, β) > 0, i = 1, 2, because we can find Di = Di(α, β) > 0, i = 1, 2
such that

|∇h|4 ≤ D1 + D2

(
−

1

2
(h2

x + h2
y) +

α

12

(
h4

x + h4
y

)
+

β

2
h2

xh2
y

)
≤ D1 + D2Φ.

Due to the Gronwall inequality we deduce from (15) that

L(t) ≤

(
C1

C2
+ L(0)

)
eC2t −

C1

C2
,

10



so h is bounded in L∞([0, T ];H2(T2)) for a fixed T < ∞. Let us notice that this bound is not

uniform with respect to T > 0.

We keep the following observation in mind,

K−1‖u‖H2α ≤ ‖(Id − ∆)αu‖L2 ≤ K‖u‖H2α . (16)

It will be used below.

Step 2. If α < 3
2 , then

‖h‖L∞(0,T ;H2α) ≤ C2α(h0, T ).

In order to show this bound we apply (Id−∆u)α to both sides of the constant variation formula

h(t) = e∆3th0(·) +

∫ t

0
e∆3(t−s)f(h(s, ·))s, (17)

where f is given by (7). Taking the L2 norms yields,

‖h‖H2α ≤ ‖h0‖H2α +
DK

2

∫ t

0
‖(Id − ∆)αe∆3(t−s)|∇h(s, ·)|2‖ ds

+ K

∫ t

0
‖(Id − ∆)α+1e∆3(t−s)∆h‖ ds + K

∫ t

0
‖(Id − ∆)αe∆3(t−s)∆h‖ ds

+ K

∫ t

0
‖(Id − ∆)α+1e∆3(t−s)div F‖ ds + K

∫ t

0
‖(Id − ∆)αe∆3(t−s)div F‖ ds

= ‖h0‖H2α + I1 + I2 + I3 + I4 + I5,

where Ik, k = 1, . . . , 5 are ordered abbreviations for the five time integral terms. We have

I3 ≤ I2 and I5 ≤ I4. We will estimate separately the terms I1, I2 and I4.

With (14) it is easy to estimate I2,

|I2| = K

∫ t

0
‖(1 + | · |2)1+αe−|·|6(t−s)(∆h)∧(s, ·)‖ ds

≤ C(α) essupt∈[0,T ]‖h‖H2(t)

∫ t

0
max{1, (t − s)−(1+α)/3} ds ≤ C2(h0, T ) < ∞.

Here we use (1 + α)/3 < 1.

We shall deal with a representative term h3
x in I4, estimates for other three terms h3

y, h2
yhx, h2

xhy

in F are similar,

K

3

∫ t

0
(t − s)−

α+3/2
3 ‖h3

x‖ ds ≤
K

3

∫ t

0
(t − s)−

α+3/2
3 ‖hx‖

3
L6

ds

≤ CK
(

essupt∈[0,T ]‖h‖H2(t)
)3

∫ t

0
(t − s)−

α+3/2
3 ds ≤ C4(h0, T ) < ∞.

We used here the assumption that α < 3/2 and the two-dimensional Sobolev embedding

‖∇h‖Lp(T2) ≤ C‖∇2h‖L2(T2), p < ∞.

We estimate I1 as follows,

I1 ≤ C(essupt∈[0,T ]‖|∇h|2‖(t))

∫ t

0
(t − s)−

α
3 ds ≤ C(α)(essupt∈[0,T ]‖∇h‖L4(t))

2

≤ C(α)(essupt∈[0,T ]‖h‖H2(t))2 ≤ C1(h0, T ) < ∞.
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If we combine above results, then we come to the following conclusion,

‖h‖L∞(0,T ;H2α) ≤ C2α(h0, T ),

as desired.

Step 3. For α < 2 we show

‖h‖L∞(0,T ;H2α) ≤ C2α(h0, T ) + Ct
3−2α

6 ‖h0‖H3 ,

with the same method. We continue our calculations

‖h‖H2α ≤ ‖e∆3th0‖H2α +
DK

2

∫ t

0
‖(Id − ∆)αe∆3(t−s)|∇h(s, ·)|2‖ ds

+ K

∫ t

0
‖(Id − ∆)α+2e∆3(t−s)h‖ ds + K

∫ t

0
‖(Id − ∆)α+1e∆3(t−s)div F‖ ds

= ‖e∆3th0‖H2α + I1 + I2 + I4.

Observe that

‖e∆3th0‖H2α ≤ ‖(1 + | · |2)α−
3
2 e−|·|6t(1 + | · |2)

3
2 ĥ0(·)‖ ≤ C(α)t−α/3+1/2.

Moreover,

|I2| ≤ K

∫ t

0
‖(1 + | · |2)α+1e−|·|6(t−s)(1 + | · |2)ĥ(s, ·)‖ ds

≤ C(α)essupt∈[0,T ]‖h‖H2(t)

∫ t

0
(t − s)−

α+1
3 ds ≤ C2α(h0, T ),

since α < 2. Fix δ such that α < 2 − δ. We then have

|I3| ≤
K

3

∫ t

0
‖(1 + | · |2)α+1+δe−|·|6(t−s)(1 + | · |2)1/2−δĥ3

x(s, ·)‖ ds

≤ Cessupt∈[0,T ]‖h
3
x‖H1−2δ (t)

∫ t

0
(t − s)−

α+1+δ
3 ds ≤ C(α, δ)essupt∈[0,T ]‖h‖H3−2δ (t).

We estimate I1 as before.

In particular, if α = 3
2 we obtain the desired result. �

Summing up, we can give a proof of Theorem 1. Namely, Theorem 3 yields local in time

existence of weak solutions while the estimates provided by Theorem 4 imply global existence of

solutions. Hence, it only remains to show uniqueness.

4 Uniqueness of the solutions

In this section we show that the weak solutions we constructed are indeed unique.

Theorem 5 Let us assume that h is a weak solution to (1) with the initial condition (2), where

h0 ∈ H3. Then, this is a unique solution.

12



Proof. By Theorem 4, any weak solution will be in L∞(0, T ;H3) provided that the initial con-

dition is in H3. Consider the equation for the difference, h = h1 − h2, where h1 and h2 are

two weak solutions with the same initial condition. Testing this equation with h we arrive at the

following identity,

1

2

d

dt
‖h‖2 + ‖∇∆h‖2 = ‖∆h‖2 +

∫

T2

[
D

2
(|∇h2|

2 − |∇h1|
2)h + (F (h1) − F (h2))∇∆h].

(18)

It is sufficient to estimate the nonlinear generic terms on the RHS. Let us look at

I =

∫

T2

((h3
2,x − h3

1,x)∆hx = −

∫

T2

hx(h2
2,x + h2,xh1,x + h2

1,x)∆hx.

The term in the parenthesis may be bounded by 3K2, where

K = ‖h‖L∞(0,T ;H3).

Thus,

|I| ≤
9

4ǫ
K4‖hx‖

2 + ǫ‖∆hx‖
2

where ǫ shall be chosen later.

We may bound the remaining cubic and the quadratic terms in the same way. This yields the

estimates,
∣∣∣∣
∫

T2

(F (h2) − F (h1))∇∆h

∣∣∣∣ ≤
C3(K)

ǫ
‖∇h‖2 + ǫ(

α

3
+ β)‖∇∆h‖2,

∣∣∣∣
D

2

∫

T2

[(|∇h2|
2 − |∇h1|

2)h

∣∣∣∣ ≤ C2(K)
D

2
‖∇h‖2 +

D

4
‖h‖2.

As a result we obtain:

1

2

d

dt
‖h‖2+‖∇∆h‖2 ≤ ‖∆h‖2+

D

4
‖h‖2+C2(K)

D

2
‖∇h‖2+

C3(K)

ǫ
‖∇h‖2+ǫ(

α

3
+β)‖∇∆h‖2.

(19)

We now choose ǫ so that (α
3 + β)ǫ = 1/2.

In order to continue, we need the interpolation lemma below.

Lemma 4 Let us suppose that u ∈ H3, then for any ǫ > 0 there is a constant Cǫ > 0 so that

‖∆u‖ ≤ Cǫ‖u‖ + ǫ‖∇∆u‖.

Proof. Let Cε = supx∈[0,∞) x2 − εx3 < ∞. Then,

‖∆u‖ = ‖| · |2û(·)‖ ≤ ‖Cεû(·) + ε| · |3û(·)‖ ≤ Cε‖u‖ + ε‖∇∆u‖. �

Combining this Lemma with ‖∇h‖ ≤ C(T2)‖∆u‖ we conclude

1

2

d

dt
‖h‖2 +

1

2
‖∇∆h‖2 ≤ Kǫ‖h‖

2 + Mǫ‖∇∆h‖2.

We choose again ǫ, so that Mǫ = 1
2 . We apply Gronwall inequality to the resulting estimate,

1

2

d

dt
‖h‖2 ≤ Kǫ‖h‖

2.

Since h(0) = 0, we obtain h(t) = 0 for all t ∈ [0, T ]. Uniqueness follows. �
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