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Abstract. We prove the existence of global weak solutions to the Navier-Stokes
equations for a one-dimensional viscous polytropic ideal gas. We require only that the
initial density is in L°°r\Lfoc with positive infimum, the initial velocity is in Lfoc, and the
initial temperature is in Lloc with positive infimum. The initial density and the initial
velocity may have differing constant states at x = ±00. In particular, piecewise constant
data with arbitrary large jump discontinuities are included. Our results show that neither
vacuum states nor concentration states can form and the temperature remains positive
in finite time.

1. Introduction. We study the global existence of weak solutions to the Cauchy
problem for the Navier-Stokes equations for a one-dimensional viscous polytropic ideal
gas:

Pt + (pv)x = 0, (1.1)

(pv )x Px ~ PVxxt (1'^)

— ~t~ p{vVx)x (l*^)P Icv0+ — v ' PT + Cypd + P

with initial conditions

(p(x, 0), v(x, 0), 9(x, 0)) = (/00(a;), v0(:e), #o(x))> x £ (I-4)
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Here p, v, and 9 denote the density, the velocity, and the absolute temperature, respec-
tively, P = P(p, 9) is the pressure having the form (ideal gases)

P = Rp9, (1.5)

p,cy,n,R are positive constants, and at infinity, the initial data po,vo,9o satisfy

lim (p0(x),v0(x),e0{x)) = (p±,v±,9), (1.6)
x—>±00

where p^,9 are positive constants and v± are constants satisfying v~ <v+.
To describe the assumptions on the initial data, we define smooth functions 0 < ~p(x),

v(x) € C°°(R) satisfying

-( \ Ip+' x~1' -r \ jv+t X>1,p(x) = < v(x) = { (1.7)
I p , X < —1, \v , x < — 1.

Then our hypotheses upon the initial data are that

(p0 £ L°°(R), infRPo(-) >0, p0-p, v0 - v 6 L2(R),
||_ln|_ieL1(E); infR6»0(-)>0.

Since the first work of Kazhikhov and Shelukhin [14] on the global existence in the
dynamics of a one-dimensional compressible viscous heat-conducting fluid for large initial
data, significant progress has been made on the mathematical aspect of the initial and
initial boundary value problems for (1.1)—(1.3). For initial data in H1, the existence
and uniqueness of global generalized (strong) solutions to the Cauchy problem and to
different initial boundary value problems have been known. Moreover, the global solution
is asymptotically stable as time tends to infinity; see, for example, [13, 1, 16, 17, 18, 6,
10, 11] and others, where p+ = p~ and = 0 are assumed. In [9] global generalized
solutions to the Cauchy problem were studied for the initial data in H1 where differing
end states p±,v± with v~ < v+ are allowed.

Concerning weak solutions, Serre in 1986 [20] proved the global existence of weak
solutions to the Cauchy problem under the conditions that po £ BV, p+ = p~, and
v± = 0. For the initial data satisfying (po, vo, 9q) € L°° x L2 x L1, inf po > 0, and 9q > 0
a.e., Amosov and Zlotnik [2, 3, 21] obtained global weak solutions of initial boundary
value problems in bounded intervals (see also [6] for nonnegative initial density and
[12, 7] for small initial data). Recently, Hoff [8] studied the Navier-Stokes equations
of compressible isentropic flow and proved the existence of global weak solutions for
Po G L°° with positive infimum, vo G L2 with differing end states. And Chen, Hoff,
and Trivisa [4] proved the global existence and large-time behaviour of weak solutions to
(1.1-1.3) in bounded domain. To our best knowledge, the problem concerning the global
existence of weak solutions to the Cauchy problem (1.1)—(1.4) under (1.6) and (1.8) still
remains open.

Our aim in this paper is to prove a global existence theorem on weak solutions to
(1.1)—(1.4). In particular, our result allows piecewise constant data with arbitrary large
jump discontinuities. An important physical consequence of our result is that neither
vacuum states (p = 0) nor concentration states (p = oo) can occur in the solution and
the temperature remains positive, no matter how large the oscillation of initial data.
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Before stating the main result of the present paper we introduce the notation used
throughout this paper: Let s be a real number and let 1 < p < oo. By Ws'p we denote
the usual Sobolev space defined over R with norm || ■ Hs = Ws'2 with norm || • H^s,

LP = w°'p with norm || • \\LP. W£cp, H(oc, and Lfoc denote Wf*(R), Hfoc(R), and Lfoc(R),
respectively. LP(I, B) resp. || • ||denotes the space of all strongly measurable, pth-
power integrable (essentially bounded if p — oo) functions from I to B resp. its norm,
I C R an interval, B a Banach space. We also use R+ := [0,oo). The same letter C
(sometimes used as C(X,...) to emphasize the dependence of C on X,...) will denote
various positive constants which may depend on T but not on e.

Now we introduce the definition of weak solutions.
definition. We say that (p(x,t),v(x,t),8(x,t)) is a global weak solution of (1.1)-

(1.4), if, for any T > 0, p(x,t) > 0 and 9(x,t) > 0 on [0,T] x R, and

p £ L%c(R+,L°°),p - p,v - V £ L£c(R+,L2),<; e Lfoc(R+, H{oc),

e= - log 9= - 1 e L1-(R+, L1), 9 £ L^c(R+,L;oc) n L2oc(R+ x R) n L,1oc(R+, <c),

and the following equations hold:

/ / {p<Pt + pv<j>x}dxdt = / po<t>(x,0)dx,
JK_l_ JK J1R

/ / {pv(j>t + pv2<f)x + P<t>x - p.vx(f)x}dxdt = / poVo^ix, 0)dx,
Jr Jr

Ir Ir{p (Cv^ + ~2^)^t + v y + Cypd + p) ~ kSx(^x + ^xx} dxdt

= J Po (cv0o + y) (l>{x,0)dx

for any <j> £ Cq°(R+ x R).
Thus, the main result of this paper reads:

Theorem 1.1. Assume that po,vo,9o satisfy (1.8). Then there exists a global weak
solution (p,v,9) of (1.1)—(1.4), such that for all p < 3/2, 9X £ Lfoc(K+ x R), and for any
T > 0, vx £ L2oc(R+, L2(R)),

Ci < p(x, t) < C2, C\ < 8(x, t), for a.e. igR,te[0, T],

^ - log^ - 1^ + ^ - log | - 1^ + (y - w)2| (x,t)dx (1.10)

<C We[0,T],
where C\, C2, C are positive constants which may depend on T.

The proof of Theorem 1.1 is based on passing to the limit for the smooth approximate
solutions and a basic energy estimate which is deduced by using some relations associated
with the second law of thermodynamics. Due to the differing end states, some difficulties
arise in the derivation of the energy estimate. We can overcome these difficulties by
exploiting the facts that v~ < v+ and that the end states for 90 are the same. The
boundedness of p from below and above can be obtained by using arguments similar
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to those in [13, 1] while lower bounds of 9 can be achieved by applying the maximum
principle for linear parabolic equations in unbounded domains. In order to pass to the
limit for the smooth approximate solutions we apply Lemma 5.1 of Lions [15, p. 12]
on weak compactness. This needs the estimates of some derivatives of (p, v, 9) in some
Lp spaces, and we use the basic energy estimate and the interpolation theory to derive
the estimates of the derivatives. In Sec. 2 we derive uniform a priori estimates for the
approximate solutions and the proof of Theorem 1.1 is given in Sec. 3.

2. Uniform a priori estimates for the approximate solutions. In this section
we derive some uniform a priori estimates for the approximate solutions which are ob-
tained by mollifying the initial data.

Let je(x) denote the standard Friedrichs' mollifier, let pg(x) := po*je, Vq(x) := vq * j,,
Oq(x) := 9o * je- Then under the conditions of Theorem 1.1, let us consider the Cauchy
problem (1.1)—(1.4) with (pq,vq,6q) replaced by (Pq,Vq,9q).

Firstly applying Jensen's inequality and (1.8), and taking into account C\ < 9q(x) <
C(e) that follows from lim^i^oo 6°(x) = 9 and the properties of mollifier, we have

Lii ~ iogj ~ ̂ dx ~ L(j ~ bT ~ ̂  *j,dx ~ L(j ~ bT ~ ̂ ix"
[ (6e0 - 9)2dx < C(e) [ \9f(i - 6\dx < C(e).

J R J R
(2.1)

Noting that \x — logx — 1| < C\x — 1|2 for 5 < x < C\, we get

[ (4 _ loS 4 - 0 dx ̂  C f {p£0 - p)2dx
JR VP0 P0 / JR

<
(2.2)

c [ {(/9o - p)2 + (p*jc ~ p)2}dx < C.
JR

For the sake of simplicity we will drop the subscript e throughout this section.
To construct the approximate solutions (p(x,t),v(x1t),6(x1t)) and to derive the a

priori estimates, it is convenient to use Lagrangian coordinates instead of Eulerian coor-
dinates (x,t). We introduce the coordinate transformation:

y = [ p{t,t)d£- [ (pv)(0,T)dT = r(x,t), r = t. (2.3)
Jo Jo

We will prove later that p(x,t) is bounded and strictly away from 0, then for each t > 0
the mapping (the inverse mapping of r(x, t)) x = x(y, t): R —> R is surjective. Hence, we
can reformulate the problem (1.1) (1.4) in Lagrangian coordinates (y,r); that is, if we
denote u := 1/p, the specific volume, and use t instead of r in the case without confusion,
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then the problem (1.1)—(1.4) with (1.6) is transformed into

ut = vy, (2.4)

vt-ay, (a:=p--R-^\ (2.5)

CyOt = OVy + K (2.6)

with the initial data

(u(y,Q),v(y,0),d(y,0)) = {u0(.y),v0(y),Qo(y)), (2-7)

and the conditions at infinity

lim {u(y,t),v(y,t),e(y,t)) = (u±,v±,6) with u± := l/p±. (2.8)
y—>± oo

Now we take functions u(y),v(y) G C°°(M) with u > 0, vy > 0 and

, ju+, y> 1, fv+, y>l,u(y) = < _ ^ , v(y) = < (2.9)
[u , y < -1, [v , y < -1.

Then, by (1.8), similar conditions to (1.8) still hold for {uo(y),vo(y),90(y)). It should be
pointed out here that because of > 0 and v~ <v+ we can easily construct functions
u and v which satisfy u > 0, vy > 0.

Thus by the following Lemma 2.1, Lemma 2.2, and modifying the method of [9], we
can prove that (2.4)-(2.8) possesses a unique global strong solution (u,v,9); moreover, u
is bounded and strictly away from 0. Thus by (2.3), we get a unique global strong solution
(p(x,t),v(x,t),6(x,t)) for the Cauchy problem (1.1)—(1.4) with initial data (pq,Vq,9q).

We have the following basic energy estimate which is obtained by using some relations
associated with the second law of thermodynamics and which embodies the dissipation
induced by viscosity and thermal diffusion.

Lemma 2.1. Let

W(y, t) := m (| - log I - l) + cvd (| - log | - l)

Then we have

[ W(y,t) + ^(v(y,t) -v(y))2 dy+ 6 [ [
Js. L z J Jo JR

vy , °y
dyds < C (2-10)

for all t € [0, T}.

Proof. Using Eqs. (2.4)-(2.6), we obtain, after a straightforward calculation, that

(v - tJ)2"1W + i
t

v2 62,,11. + Kzy_
u0 ud2

= R = Vy + [<j(V - f)]y + (JVy + K rv [ i_i
u
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Recalling the definition of u and v, we integrate the above equality over R x (0, t) to infer
that

(v-v)2\ , . - [* [ ( vl ®l\V ) \ , a I l-t-±+K-JL \dydsW + ̂)(y,tyy+0ll^
~ Ir + | dy + J0 jK + dyds

= En + [ [< R—vv + R— (v — v)v + avv 1 dydsJo Jr I u u J

(2.11)

< E0 + C - R
0 JU V

(v — v)dyds + / avy dyds
Jo JR y'

K

where (1.8), (2.1), (2.2), and the coordinate transformation (2.3) yield

E°L {w{v'o)+{vo 2v)2}{y)dy

< C f {(it0 - uf + |0O - 0oI + (vo ~ v)2}(y)dy + 1
Jr

< c [ {(P0 - p)2 + 100 - 0| + {v0 - v)2}(x)dx + 1 < C.
Jr

Observing that vy > 0, 9/u > 0, and supply C {y \ \y\ < 1}, we obtain by Eq. (2.4) that

navvdyds = —R [ [ —vvdyds + n [ [ —vvdyds
: Jo Jr u Jo Jr "

< n / / (\ogu)tvydyds
Jo Ju

= H vy\og =dy - n / vy log ^-rrdy
Jr u Jr u

= M / Vy log =dy + n I Vylog =dy + C
J {y\u(y,t)<u(y)} u J {y\u(y,t)>u(y)} u

■/J{y\u(

11
<C + n I Vy log -dy

l{y\u(y,t)>u(y)} u

< C + C f log =dy.
J {y\u(y,t)>u(y),\y\<l} u

Note that for x > 1, logx < \/2(x — log a: — l)1^2, we get from the above inequality that

ncrvydyds < C f f— — log — — l) dy + C
J{y\u(y,t)>u(y),\y\<l} Ku U J

u
u ~ u

< £ — log " — 1 \ dy + Ce 1 (0 < e < 1).
u J
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Substituting (2.12) into (2.11), taking e appropriately small, taking into account suppuy C
{y I \y\ < 1}, and applying Cauchy-Schwarz's inequality, we conclude that

f (W + (v-v)2)(y,t)dy+ f j + -^j dyds < C + C f f (v - vfdyds,
JR JO JR \ J JO JR

which, by applying Gronwall's inequality, immediately gives the lemma. The proof is
complete. □

With the above basic energy estimate, we are able to bound the specific volume u(y, t)
and the temperature 6(y,t).

Lemma 2.2. There are positive constants Ci,C% which may depend on T, such that

C\ < u(y,t) < C2,Ci < 0(x,t) \/x € R, t £ [0,T]. (2-13)

Proof. The proof of the boundedness of p is parallel to that for generalized (strong)
solutions (see, e.g., [1, 13]). For the sake of completeness we present the proof here.

It is easy to see that Lemma 2.1 implies

£ (| "log| _ l) (V>t)dy, (t - log| - l) (y,t)dy < C, fe[0,T]. (2.14)

Since x — log x — 1 is convex, one sees that

r+1 u ri+1 u fi+18 ri+l o
/ -dy -log/ -dy- 1, / =dy - log / =dy-l<C, t e [0,T], (2.15)

J i H Ji ^ Ji v Ji v

The estimates (2.14), (2.15) show that
ni-\-1 ri-\-1

"i < J u(y,t)dy, 6(y,t)dy < Pi, i = 0, ±1, ±2,..., t € [0, T], (2.16)

and that by virtue of the mean value theorem, for each t 6 [0, T] there are ai(t),bi(t) £
[z, i + 1], such that

< u(a.i(t),t), $(bi(t),t) < Pi, i = 0,±1,±2,..., (2-17)
where cti,/?i are the positive roots of the equation x — logx — 1 = C.

We may write Eq. (2.5) as vt = —R[6/u\y + ii[\ogu\ty. Integrating this equation first
over (0, t) with respect to t, then over (a,i(t),y)(y £ [i,i + 1]) with respect to y, and
taking exponential on both sides of the resulting equation, we obtain

/~7YexP (— / -7¥^\ds\ = Bi(y,t)Yi(t), y£[i,i + 1], (2.18)u{y,t) [nJo u(y, s) J
where

D / ^ Uo(OiW) / 1 [ fBi(y,t) := —j-t exp < — / (v— v0)d£d,
u{a,i(t), t)uo(y) [ nJai(t)

{R [l 0(oi(t),s) J
Yi{t) := exp < — / ds

[nJ0 u{ai(t),s)
Multiplying (2.18) by R9//I and integrating over [0, t], we arrive at

r rexp •| f = i + — f Bi(y, s)Yi(s)6(y, s)ds.
IJo u(y,s) J m Jo
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Inserting the above identity into (2.18), we immediately get the following representation
for u(y,t):

+ B<(v.smwe(v. »)<*»} (2-W)
for y G [i, i + 1], t > 0 and i = 0, ±1, ±2,.... Recalling the definition of Bz and Yi, using
Cauchy-Schwarz's inequality, Lemma 2.1, and (2.17), we see that

0<C-1 <Bi(y,t)<C, Yi(t)> 1, y G [i,» + l],t € [0,T], t = 0, ±1, ±2,... . (2.20)

Now we integrate (2.19) over (i, i+1) with respect to y and make use of (2.16) and (2.20)
to obtain Yi(t) < C + C f* Yi(s)ds, which together with Gronwall's inequality gives

Yi(t) < C for all t G [0, T], i = 0, ±1, ±2,... . (2.21)

It follows from (2.17) that

%, t) < C{0l'2{y, t) - i))2 + C

r 1^
- C + C ( / 0i/2dy) (2.22)

i+1 el< f1+1 oA
C + C —%zdy max u(-,t), y G [i,z + 1].Ji u6z [»,»+!]

Inserting (2.20)-(2.22) into (2.19), we find that

no2—jLdy max u(-, s)ds My G \i,i + 1 },t G [0, T],
, u82 [i,i+i]

Prom this, Gronwall's inequality, and Lemma 2.1, we obtain u(y,t) < C2 for all y G
[i, i + l],t G [0,T] and i = 0, ±1,±2,.... On the other hand, from (2.19)-(2.21), one
easily gets u(y,t) > C\ for all y G [i, i + 1], t G [0, T] and i = 0, ±1,±2,  Thus, we
have proved the lower and upper boundedness of p.

To show that the temperature is bounded below away from zero, we apply the maxi-
mum principle. To this end we write Eq. (2.6), using the estimate C\ < u(y,t) < C%, as
follows:

Cy
Vv

,=r^+*i+K u\e
dl

2k—-

^ C + K
1 /I
u

u63
(2.23)

y G R, t G [0,T],

where the positive constant C is independent of e. Applying the maximum principle for
parabolic equations in unbounded domains [19, Chapter 3], we obtain 1 /6(y,t) < C for
all x G R and t G [0, T], which gives the lower boundedness of 8. This completes the
proof of the lemma. □

Based on the results established in Lemmas 2.1-2.2, we show the following estimates
which will be important in the limit procedure in the next section.
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Lemma 2.3. Let M € N. Then we have

f sup 9(t,-)dt<C, ( f Vydydt<Cx,
Jo R Jo J R

pT pT pM
/ sup v2(-,t)dt + / / 92dydt<C(M), (2.24)

Jo [—m,m] J o J-M
pT pM
/ / < C(M,p) for all p < 3/2.

Jo J-M
Proof. By virtue of (2.16)—(2.17), (2.13), and Lemma 2.1, one finds that

t*T rT
f max 9(-, t)dt < C + [ max |0(-, t) — 9(bi(t), t)\dt

Jo [«,»+!] Jo [M+l]
pT pi-\-1

< C + / / \6y\dydt
JO Ji

-°+{i r rd*dt) {i re2dydt)

<cjl+(/ raax^6(-,t)dt^j i = 0, ±1,±2,....

which implies (2.24)i. Moreover, from (2.16) and (2.24)j, one gets

rT pM rT rMr-l r-M pill

/ / 92dydt< / sup0(-,i) / 9dydt<C(M), (2.25)
Jo J-m Jo J-M

which yields

(2.26)

,T ri+1 / fT ,i+1 02 \ !/2 / ,r ,i+i \ x/211 s UI pd>d') u I edydj
<C, i = 0,±1,±2,....

On the other hand, motivated by [9], we multiply (2.5) by (v — v) and integrate over
to get

f (v - v)2dy + n [ —dy + R [ -vydy
JgL JR u JR u

fVy_ f 9= At / —Vydy + R / -Vydy.
J rU JrU

(2.27)

Next we split up the second integral of (2.27) as follows:

p q p q  ~q p ~q
/ -Vydy = /  Vydy + / -vydy = h + I2. (2.28)

J& u JR u JR u
For I\, we consider the following domains:

= {x\6(t,y)> CQ0}, Co » 1,
fl2(t) = {x | 9(t,y) < C09}.



444 SONG JIANG and PING ZHANG

Then one trivially has

I - 1
(f — log = — 1) |

and by the second inequality of (2.13), we have

1-1

<\ =, xefii(t), (2.29)

< C, xe n2(t). (2.30)
'(§-logf-1)

Thus by combining (2.10), (2.13), (2.29) with (2.30), we get

ll1

< f sfi ^ log i - lylx~ Ja^t) « V 0

+ C

„2

dx

' f 9 ^ i/(£ — log £ — l)dar
in2(t) « VV0

/* 1?^
<6 / — dy + C(<5) max# + C.

While

h = — [ Olnudx = ~ f 8\n^dx
^ J r dt JR
d [ -= (u , it \, /' 0 „
— / 0(=-ln--l)dx + / =dtudy,dt JR \u u J JRu

notice that

[ zzdtudy = [ ®-vvdy
JR u JR u

= - f (=) (v-v)dy+ [ =vydy.
JR ./r "

(2.32) together with (2.33) yields that
d

h-~dt
Summing up (2.28), (2.31) with (2.34), we get

(2.31)

(2.32)

(2.33)

/ 0 (ii — In " — l) dx + C. (2.34)JR \u u )

f f 9 f f v C
/ / —Vydydt <25 / —dydt + C(S) / maxflcft + CT, (2.35)

Jo Jr m Jo iR« 70 1

notice that vy > 0. Thus by summing up Lemma 2.1, Lemma 2.2, (2.27), and (2.35), we
get

[ f v2ydydt <C{T). (2.36)
J 0 J R
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And from (2.10), the Sobolev imbedding theorem, and (2.36), it follows that

f If vidy + sup v2(-,t)\ dt < C(M) f sup v2dt
J0 I J-M I JO [—M,M]

pT pM
< C(M) / / (v2 + v2)dydt,

JO J-M
< C(M).

(2.37)

For M G N, let (j> e Co°(]R) with cj)(y) = 1 for \y\ < M — 1/2 and (j)(y) = 0 for \y\ > M.
Multiplying Eq. (2.6) by 0, we get

Cv[<i>0}t = K
(4>6)y 6(j)y

u
— K 'yVy

aVy(f>.

Hence, we can decompose 4>6 into <fi9 = 0 + 0 where 0 and 0 satisfy the linear parabolic
equations in the domain (—M, M) :

Cv&t = K
0„
u

0 = 0 at x = ±M

0|t=o = 0^0,

and
' 0

— k y y + avv(b,
v u

(2.38)

Cv&t = K
'y — K

y (1 3Q")
0 = o at x = ±M,

9|t=o=0.

Notice that [1 /u]t = —vy/u2 € ij!oc(]R+ x K), and dy<py,avy<j> € L11oc(M+ x R) by (2.36)
and (2.26). Therefore, we can apply Theorem 2.5 in [21, the estimate (2.26)] to obtain

I|0i/||x^((o,t)x(-m,m)) < C(M,p){\\60\\l1(-m,m) + WiOy&yi o"%0)IIl1((o,t)x(-m,m))
< C(M), for all p < 2>/2.

(2.40)

To bound 0, we multiply (2.39) by © in L2((—M,M) x (0,T)), integrate by parts, and
employ (2.25) to arrive at

pT pM nT r>M

/ / Q2dydt <C / 92dydt < C(M), (2.41)
Jo J-M Jo J-M

which, combined with (2.40), results in (2.24)3. This completes the proof. □

3. Proof of Theorem 1.1. In this section, using the a priori estimates established
in Sec. 1 and the method of weak convergence, we pass to the limit and consequently
prove the existence of global weak solutions to (1.1)—(1.4).
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Let (pe(x,t),ve(x,t),9e(x,t)) denote the approximate solutions of (1.1)—(1.4) given at
the beginning of Sec. 1 by mollifying the initial data. First we observe that in Eulerian
coordinates (x,t), Lemma 2.2 implies

C\ < pe(x,t) < C2)Ci < 9e(x,t) Vx G R, t £ [0, T], (3.1)

and (3.1), (2.16), Lemmas 2.3 and 2.1 imply that for any M G N,

f sup9e(-,t)dt < C, ( f \vex\2dxdt < C(T),
Jo K Jo J R

rT rM

/ / {\ve\4 + \ee\2}dxdt, <C(M), (3.2)
JO J-M

rT pM

/ / \eex\pdxdt<C{M,p), p < 3/2,
Jo J-M

and

/Jr
^x' ^ - log - l) + (_ log _ 1

where

/9e(a;,<) pe(M) J \ 9

+ {ve(x, t) — v(x, t))2|dx < C Vt € [0, T\

/ \ 1 1 , 1 1
p{x,t) := —-—-rr = v{x,t) := —

(3.3)

u(r(x,t)) u(y)' ' ' v(r(x,t)) v(y)'
and r(x,t) is defined by (2.3) with p replaced by pe.

Recalling the definition of r(x,t) and (p(x),v(x)) in the introduction, using (3.1),
one finds that (p(x,t),v(x,t)) = (p(x),v(x)) = (p±,v±) for all ±x > K and t € [0, T]
uniformly in e, where K is some large constant. Hence, from (3.3) and (3.1), it follows
that

/JR pe{x,t) pe(x,t) J \ 9 6
, (3-4)

+ (ve(x, t) — v(x))2 \dx < C Vfe[0, T].

By (3.1) and (3.2) we can extract a subsequence of (pe,ve,9e), still denoted by (pe,ve,0e),
such that as e j 0, the following weak or weak-* convergence holds:

p^ pin L£c( R+, L°°), 9^9 in L2oc( R+ x R) n Lfoc(R+, W^) (p < 3/2),
- v in L&(R+, Lfoc) n LL(R+, tfioc) n Lfoc( R+ x R),

and
peve -+pvm L£C(R+, L2oc), /3e(ve)2 ->■ /w2 in Zqoc(K+ x R)>

->■ p9 in Lfoc(R+ x R), -» ^9 in Lf07c3(R+ x R), (3.6)
r 4/3
^loc 1^(w<)3 ^3 in L4/3(r+ x

where pv, pv2, /w#, and /w3 denote the weak or weak-* limit of peve,pe(ve)2,pe9e,peve9e,
and pe(ve)3, respectively.
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By the convexity of the function x — log x — 1 and (3.4), the inequality (3.4) still holds
for the limit functions; that is

/.!(
- — log - — 1 I + ( = — log = — 1 ) + (y — v)2 } (x, t)dx < C (3.7)

,P P
for t € [0,T], which, combined with (3.1) and Taylor's expansion, gives

/JR
(p — p)2(x,t)dx < C Vie[0,T].

(3.8)

Now in order to justify that (p,v,9) is indeed a weak solution of (1.1)-(1.4), in view
of the definition of the weak solutions we have to show that

~pv = pv, pv2 = pv2, p9 = p9, pv6 = pvO, pv3 = pv3,

(ve)2 —» v2 strongly in L2oc(R+ x R)

hold. In the following we apply Lemma 5.1 in [15, p. 12] to justify (3.8).
First, by Eqs. (1.1), (3.1), and (3.4), we find that

dtpe = dx{pevc) uniformly bounded in L°°(R+, H^), (3.9)

and by (3.2)3, we have

IK - ve(- + £,t)||L2([o,T],L£>c) -> 0 as |£| -> 0, uniformly in e. (3.10)

Thus by (3.5), (3.9), (3.10), and Lemma 5.1 in [15], we conclude that peve —>• pv in the
sense of distributions, and therefore ~pv — pv. Since by virtue of (3.1), (3.2), and (3.4),
{peve} is uniformly bounded in Lj^c(R+, L2oc) and

dt(peve) = -dx[p€(ve)2] - Rdx(pe6c) + pdlve (3.11)

is uniformly bounded in L2oc(R+, HZz), we obtain in the same manner that pv2 = pv2.
By virtue of (3.2)3 and the mean value theorem, ||0£ — 8C{- + £, £)||z,p([o,T],Lf° ) —* 0

(p < 3/2) as |f| —»■ 0, uniformly in e. Thus again applying (3.5), (3.11), and Lemma 5.1
of [15], one obtains peve9e —L pvO in the sense of distributions. Hence pv9 = pvO. In the
same way we can show that p9 — p9.

By (3.1), (3.2), and Eq. (1.3), one sees that dt{pe{—j- + cy$e)} is uniformly bounded
in

4/c3(R+, W^1'4'3) + Llc(R+,H~%
and p€{—+ cyOe) is uniformly bounded in Lfoc(R+ x R). Thus by (3.10) and Lemma
5.1 in [15],

fe2 + c vr).v.^J*2.+cve).v = J^+e].v,

which implies pv3 = pv3, where we have used the fact peve9e —>■ pv9, and p(^- + Cy9)

denotes the weak limit of p£(^y—h 9e).
Finally, we show (ve)2 v2. By (3.10) and (3.4), one sees that

\\(vn2-(v*)2(- + u)\\L2([0,T],L?oc)

< 2||ve - ve(- + C;OIU2([0,T],Lg'c)lke|lL«=([0,T],L12oc) (3-12)
< C||ve - w£(- +C^)IIl2([o,t],l1~ ) ^ 0 as |£| -> 0, uniformly in e.
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From (3.12), (3.9), Lemma 5.1 in [15], and the fact that p£(ve)2 —* pv2 and p > 0, one
gets

pv2 ■<— pc(ye)2 —*■ /w2,

which gives v2 — v2. Hence, by Theorem 1 of [5], ve(x,t) —> v(x,t) strongly in L2oc(R+ x
R). We have proved (3.8).

Now we multiply the system (1.1)—(1.3) with (p,v,9) replaced by (pe,ve,9e) by 0 e
Co°(M+ x R), integrate over (0, oo) x R, and integrate by parts. Letting e j 0, applying
(3.5), (3.6), and (3.8), and summing up the results for (p, v, 6) obtained above, we see that
(,p,v,9) obtained in (3.5) is indeed a weak solution of (1.1)—(1.4). Finally, the estimate
(1.10) follows from (3.1) and (3.7). This completes the proof of Theorem 1.1. □
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