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Abstract. We give an elementary proof of the global well-posedness for the
critical 2D dissipative quasi-geostrophic equation. The argument is based on
a non-local maximum principle involving appropriate moduli of continuity.

1. Introduction and main results

The 2D quasi-geostrophic equation attracted quite a lot of attention lately
from various authors. Mainly it is due to the fact that it is the simplest
evolutionary fluid dynamics equation for which the problem of existence of
smooth global solutions remains unsolved. In this paper we will consider
the so-called dissipative quasi-geostrophic equation

{
θt = u · ∇θ − (−∆)αθ

u = (u1, u2) = (−R2θ, R1θ)

where θ : R2 → R is a scalar function, R1 and R2 are the usual Riesz
transforms in R2 and α > 0. It is well known (see [5,8]) that for α > 1

2 (the
so-called subcritical case), the initial value problem θ(x, 0) = θ0(x) with
C∞-smooth periodic initial data θ0 has a global C∞ solution.

For α = 1
2 , this equation arises in geophysical studies of strongly rotat-

ing fluid flows (see e.g. [2] for further references). Therefore, a significant
amount of research focused specifically on the critical α = 1

2 case. In par-
ticular, Constantin, Cordoba, and Wu in [3] showed that the global smooth
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solution exists provided that ‖θ0‖∞ is small enough. Cordoba and Cor-
doba [6] proved that the viscosity solutions are smooth on time intervals
t � T1 and t � T2. The aim of this paper is to demonstrate that, in the
critical case, smooth global solutions exist for any C∞ periodic initial data
θ0, with no additional qualifications or assumptions. What happens in the
supercritical case 0 � α < 1

2 remains an open question.
The main idea of our proof is quite simple: we will construct a special

family of moduli of continuity that are preserved by the dissipative evolution,
which will allow us to get an a priori estimate for ‖∇θ‖∞ independent of
time. More precisely, we will prove the following theorem.

Theorem. The critical quasi-geostrophic equation with periodic smooth
initial data θ0(x) has a unique global smooth solution. Moreover, the fol-
lowing estimate holds:

‖∇θ‖∞ � C‖∇θ0‖∞ exp exp{C‖θ0‖∞} .(1)

At this moment we do not know how sharp the upper bound (1) is.
On the other hand, any a-priori bound for ‖∇θ‖∞ is sufficient for the
proof of well-posedness. Indeed, local existence and regularity results then
allow to extend the unique smooth solution indefinitely. For the critical
and supercritical quasi-geostrophic equation, such results can be found for
example in [9] (Theorems 3.1 and 3.3). Hence, the rest of the paper is
devoted to the proof of (1).

We remark that this paper is built upon the ideas discovered in a related
work on the dissipative Burgers equation [7].

2. Moduli of continuity

Let us remind the reader that a modulus of continuity is just an arbitrary
increasing continuous concave function ω : [0,+∞) → [0,+∞) such
that ω(0) = 0. Also, we say that a function f : Rn → R

m has modulus of
continuity ω if | f(x) − f(y)| � ω(|x − y|) for all x, y ∈ Rn.

Singular integral operators like Riesz transforms do not preserve moduli
of continuity in general but they do not spoil them too much either. More
precisely, we have

Lemma. If the function θ has modulus of continuity ω, then u =
(−R2θ, R1θ) has modulus of continuity

Ω(ξ) = A

(∫ ξ

0

ω(η)

η
dη + ξ

∫ ∞

ξ

ω(η)

η2
dη

)

with some universal constant A > 0.

The proof of this result is elementary but since we could not readily locate
it in the literature, we provide a sketch in the appendix.
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The flow term u · ∇θ in the dissipative quasi-geostrophic equation tends
to make the modulus of continuity of θ worse while the dissipation term
(−∆)αθ tends to make it better. Our aim is to construct some special moduli
of continuity for which the dissipation term always prevails and such that
every periodic C∞-function θ0 has one of these special moduli of continuity.

Note that the critical (α = 1
2 ) equation has a simple scaling invariance:

if θ(x, t) is a solution, then so is θ(Bx, Bt). This means that if we manage
to find one modulus of continuity ω that is preserved by the dissipative
evolution for all periodic solutions (i.e., with arbitrary lengths and spacial
orientations of the periods), then the whole family ωB(ξ) = ω(Bξ)of moduli
of continuity will also be preserved for all periodic solutions.

Observe now that if ω is unbounded, then any given C∞ periodic function
has modulus of continuity ωB if B > 0 is sufficiently large. Also, if the
modulus of continuity ω has finite derivative at 0, it can be used to estimate
‖∇θ‖∞. Thus, our task reduces to constructing an unbounded modulus of
continuity with finite derivative at 0 that is preserved by the dissipative
evolution.

From now on, we will also assume that, in addition to unboundedness
and the condition ω′(0) < +∞, we have limξ→0+ ω′′(ξ) = −∞. Then, if
a C∞ periodic function f has modulus of continuity ω, we have

‖∇ f ‖∞ < ω′(0) .

Indeed, take a point x ∈ R2 at which max |∇ f | is attained and consider the
point y = x + ξe where e = ∇ f

|∇ f | . Then we must have f(y) − f(x) � ω(ξ)

for all ξ � 0. But the left hand side is at least |∇ f(x)|ξ − Cξ2 where C =
1
2‖∇2 f ‖∞ while the right hand side can be represented as ω′(0)ξ − ρ(ξ)ξ2

with ρ(ξ) → +∞ as ξ → 0+. Thus |∇ f(x)| � ω′(0) − (ρ(ξ) − C)ξ for all
ξ > 0 and it remains to choose some ξ > 0 satisfying ρ(ξ) > C.

3. The breakthrough scenario

Now assume that θ has modulus of continuity ω for all times t < T . Then θ
remains C∞ smooth up to T and, according to the local regularity theorem,
for a short time beyond T . By continuity, we see that θ must also have
modulus of continuity ω at the moment T . Suppose that |θ(x, T )−θ(y, T )| <
ω(|x − y|) for all x �= y. We claim that then θ has modulus of continuity
ω for all t > T sufficiently close to T . Indeed, by the remark above, at
the moment T we have ‖∇θ‖∞ < ω′(0). By continuity of derivatives,
this also holds for t > T close to T , which immediately takes care of the
inequality |θ(x, t) − θ(y, t)| < ω(|x − y|) for small |x − y|. Also, since
ω is unbounded and ‖θ‖∞ doesn’t grow with time, we automatically have
|θ(x, t)− θ(y, t)| < ω(|x − y|) for large |x − y|. The last observation is that,
due to periodicity of θ, it suffices to check the inequality |θ(x, t)−θ(y, t)| <
ω(|x − y|) for x belonging to some compact set K ⊂ R2. Thus, we are
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left with the task to show that, if |θ(x, T ) − θ(y, T )| < ω(|x − y|) for all
x ∈ K , δ � |x − y| � δ−1 with some fixed δ > 0, then the same inequality
remains true for a short time beyond T . But this immediately follows from
the uniform continuity of θ.

This implies that the only scenario in which the modulus of continuity ω
may be lost by θ is the one in which there exists a moment T > 0 such that
ω has modulus of continuity ω for all t ∈ [0, T ] and there are two points
x �= y such that θ(x, T ) − θ(y, T ) = ω(|x − y|). We shall rule this scenario
out by showing that, in such case, the derivative ∂

∂t (θ(x, t)−θ(y, t))|t=T must
be negative, which, clearly, contradicts the assumption that the modulus of
continuity ω is preserved up to the time T .

4. Estimate of the derivative: the flow term

Assume that the above scenario takes place. Let ξ = |x − y|. Observe that
(u · ∇θ)(x) = d

dh θ(x + hu(x))
∣∣
h=0 and similarly for y. But

θ(x +hu(x))−θ(y+hu(y)) � ω(|x − y|+h|u(x)−u(y)|) � ω(ξ +hΩ(ξ))

where, as before,

Ω(ξ) = A

(∫ ξ

0

ω(η)

η
dη + ξ

∫ ∞

ξ

ω(η)

η2
dη

)
.

Since θ(x) − θ(y) = ω(ξ), we conclude that

(u · ∇θ)(x) − (u · ∇θ)(y) � Ω(ξ)ω′(ξ) .

5. Estimate of the derivative: the dissipation term

Recall that the dissipative term can be written as d
dh Ph ∗ θ|h=0 where Ph

is the usual Poisson kernel in R2, (again, this formula holds for all smooth
periodic functions regardless of the lengths and spatial orientation of the
periods, which allows us to freely use the scaling and rotation tricks below).
Thus, our task is to estimate (Ph ∗ θ)(x)− (Ph ∗ θ)(y) under the assumption
that θ has modulus of continuity ω. Since everything is translation and
rotation invariant, we may assume that x = (

ξ

2 , 0) and y = (− ξ

2 , 0).
Write

(Ph ∗ θ)(x) − (Ph ∗ θ)(y)

=
∫∫
R2

[
Ph

(
ξ

2 − η, ν
) − Ph

( − ξ

2 − η, ν
)]

θ(η, ν) dηdν

=
∫
R

dν

∫ ∞

0

[
Ph

(
ξ

2 − η, ν
) − Ph

( − ξ

2 − η, ν
)][θ(η, ν) − θ(−η, ν)] dη
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�
∫
R

dν

∫ ∞

0

[
Ph

(
ξ

2 − η, ν
) − Ph

( − ξ

2 − η, ν
)]

ω(2η) dη

=
∫ ∞

0

[
Ph

(
ξ

2 − η
) − Ph

( − ξ

2 − η
)]

ω(2η) dη

=
∫ ξ

0
Ph

(
ξ

2 − η
)
ω(2η) dη +

∫ ∞

0
Ph

(
ξ

2 + η
)[ω(2η + 2ξ) − ω(2η)] dη

where Ph is the 1-dimensional Poisson kernel. Here we used symmetry
and monotonicity of the Poisson kernels together with the observation that∫
R

Ph(η, ν) dν = Ph(η). The last formula can also be rewritten as

∫ ξ
2

0
Ph(η)[ω(ξ+2η)+ω(ξ−2η)] dη+

∫ ∞

ξ
2

Ph(η)[ω(2η+ξ)−ω(2η−ξ)] dη .

Recalling that
∫ ∞

0 Ph(η) dη = 1
2 , we see that the difference (Ph ∗ θ)(x) −

(Ph ∗ θ)(y) − ω(ξ) can be estimated from above by

∫ ξ
2

0
Ph(η)[ω(ξ + 2η) + ω(ξ − 2η) − 2ω(ξ)] dη

+
∫ ∞

ξ
2

Ph(η)[ω(2η + ξ) − ω(2η − ξ) − 2ω(ξ)] dη .

Recalling the explicit formula for Ph , dividing by h and passing to the limit
as h → 0+, we finally conclude that the contribution of the dissipative term
to our derivative is bounded from above by

1

π

∫ ξ
2

0

ω(ξ + 2η) + ω(ξ − 2η) − 2ω(ξ)

η2
dη(2)

+ 1

π

∫ ∞

ξ
2

ω(2η + ξ) − ω(2η − ξ) − 2ω(ξ)

η2
dη .

Note that due to concavity of ω, both terms are strictly negative.

6. The explicit formula for the modulus of continuity

We will construct our special modulus of continuity as follows. Choose two
small positive numbers δ > γ > 0 and define the continuous function ω by

ω(ξ) = ξ − ξ
3
2 when 0 � ξ � δ

and
ω′(ξ) = γ

ξ(4 + log(ξ/δ))
when ξ > δ .
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Note that, for small δ, the left derivative of ω at δ is about 1 while the right
derivative equals γ

4δ
< 1

4 . So ω is concave if δ is small enough. It is clear
that ω′(0) = 1, limξ→0+ ω′′(ξ) = −∞ and that ω is unbounded (it grows
at infinity like double logarithm). The hard part, of course, is to show that,
for this ω, the negative contribution to the time derivative coming from
the dissipative term prevails over the positive contribution coming from the
flow term. More precisely, we have to check the inequality

A

[∫ ξ

0

ω(η)

η
dη + ξ

∫ ∞

ξ

ω(η)

η2
dη

]
ω′(ξ)

+ 1

π

∫ ξ
2

0

ω(ξ + 2η) + ω(ξ − 2η) − 2ω(ξ)

η2
dη

+ 1

π

∫ ∞

ξ
2

ω(2η + ξ) − ω(2η − ξ) − 2ω(ξ)

η2
dη < 0 for all ξ > 0 .

7. Checking the inequality: case 0 � ξ � δ

Let 0 � ξ � δ. Since ω(η) � η for all η � 0, we have
∫ ξ

0
ω(η)

η
dη � ξ and∫ δ

ξ

ω(η)

η2 dη � log δ
ξ
. Now,

∫ ∞

δ

ω(η)

η2
dη = ω(δ)

δ
+ γ

∫ ∞

δ

1

η2(4 + log(η/δ))
dη � 1 + γ

4δ
< 2 .

Observing that ω′(ξ) � 1, we conclude that the positive part of the left hand
side is bounded by Aξ(3 + log δ

ξ
).

To estimate the negative part, we just use the first integral in (2). Note
that ω(ξ + 2η) � ω(ξ) + 2ω′(ξ)η due to concavity of ω, and ω(ξ − 2η) �
ω(ξ) − 2ω′(ξ)η − 2ω′′(ξ)η2 due to the second order Taylor formula and
monotonicity of ω′′ on [0, ξ]. Plugging these inequalities into the integral,
we get the bound

1

π

∫ ξ
2

0

ω(ξ + 2η) + ω(ξ − 2η) − 2ω(ξ)

η2
dη � 1

π
ξω′′(ξ) = − 3

4π
ξξ− 1

2 .

But, obviously, ξ(A(3 + log δ
ξ
)− 3

4π
ξ− 1

2 ) < 0 on (0, δ] if δ is small enough.

8. Checking the inequality: case ξ � δ

In this case, we have ω(η) � η for 0 � η � δ and ω(η) � ω(ξ) for
δ � η � ξ . Hence∫ ξ

0

ω(η)

η
dη � δ + ω(ξ) log

ξ

δ
� ω(ξ)

(
2 + log

ξ

δ

)
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because ω(ξ) � ω(δ) > δ
2 if δ is small enough.

Also∫ ∞

ξ

ω(η)

η2
dη = ω(ξ)

ξ
+ γ

∫ ∞

ξ

dη

η2(4 + log(η/δ))
� ω(ξ)

ξ
+ γ

ξ
� 2ω(ξ)

ξ

if γ < δ
2 and δ is small enough.

Thus, the positive term on the left hand side is bounded from above by
the expression Aω(ξ)(4 + log ξ

δ
)ω′(ξ) = Aγ ω(ξ)

ξ
.

To estimate the negative term, note that, for ξ � δ, we have

ω(2ξ) � ω(ξ) + γ

4
� 3

2
ω(ξ)

under the same assumptions on γ and δ as above. Also, due to concavity,
we have ω(2η + ξ) − ω(2η − ξ) � ω(2ξ) for all η � ξ

2 . Therefore,

1

π

∫ ∞

ξ
2

ω(2η + ξ) − ω(2η − ξ) − 2ω(ξ)

η2
dη � − 1

2π

∫ ∞

ξ
2

ω(ξ)

η2
dη

= − 1

π

ω(ξ)

ξ
.

But ω(ξ)

ξ
(Aγ − 1

π
) < 0 if γ is small enough.

9. Concluding remarks

We’ll start with quoting (with necessary minor modifications) a paragraph
from [6]. Note that it was written just 2 years ago.

The case α = 1
2 is specially relevant because the viscous term (−∆)

1
2 θ

models the so-called Eckmann’s pumping, which has been observed in
quasi-geostrophic flows. On the other hand, several authors have empha-
sized the deep analogy existing between the dissipative quasi-geostrophic
equation with α = 1

2 and the 3D incompressible Navier-Stokes equations.
This paper provides an elementary treatment of the α = 1

2 case. Unfortu-
nately, the argument does not seem to extend to the Navier-Stokes equations
due to the different structure of nonlinearity. So, while our paper resolves
the global existence and regularity question in a physically relevant model,
it also suggests that there is a significant structural difference between the
critical 2D quasi-geostrophic equation and 3D Navier–Stokes equations.

After this article has been submitted, we learned of a preprint by Caf-
farelli and Vasseur [1], where the global regularity of solutions of the
critical dissipative quasi-geostrophic equation was established by a com-
pletely different method using the DiGiorgi type techniques. The results
of that paper differ from ours in two main respects: they start with just
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L2 initial data and they do not use the smoothing out of the drift to es-
tablish the smoothing out of the solution. To reduce technicalities, in this
paper we did not attempt to treat most general initial data. However, per-
haps it is worth mentioning that our “good moduli of continuity” method,
properly modified and combined with a few fairly simple and well-known
ideas, allows to recapture at least the first of those advantageous features
of [1].

Currently, the strongest existence theorem for the solutions of the critical
dissipative quasi-geostrophic equation with periodic initial data we can
prove seems to be the following: if θ0 ∈ L p with 1 < p < +∞, then
there exists a function θ(x, t) that is real analytic in x and C∞ in t for all
t > 0 and such that it satisfies the equation for all t > 0 in the classical
sense and limt→0+ ‖θ(·, t) − θ0‖L p = 0. A very interesting question we
still cannot answer is whether such a solution is always unique. Another
unsolved problem is whether, for every initial data in Hs (0 < s < 1), there
exists a solution such that limt→0+ ‖θ(·, t) − θ0‖Hs = 0.

10. Appendix

Here we provide a sketch of the proof of the Lemma.

Proof. The Riesz transforms are singular integral operators with kernels
K(r, ζ) = r−2Ω(ζ), where (r, ζ) are the polar coordinates. The function
Ω is smooth and

∫
S1 Ω(ζ)dσ(ζ) = 0. Assume that the function f satisfies

| f(x)− f(y)| ≤ ω(|x − y|) for some modulus of continuity ω. Take any x, y
with |x − y| = ξ, and consider the difference

P.V.

∫
K(x − t) f(t) dt − P.V.

∫
K(y − t) f(t) dt(3)

with integrals understood in the principal value sense. Note that

∣∣∣∣P.V.

∫
|x−t|≤2ξ

K(x − t) f(t) dt

∣∣∣∣ =
∣∣∣∣P.V.

∫
|x−t|≤2ξ

K(x − t)( f(t) − f(x)) dt

∣∣∣∣
≤ C

∫ 2ξ

0

ω(r)

r
dr.

Since ω is concave, we have

∫ 2ξ

0

ω(r)

r
dr ≤ 2

∫ ξ

0

ω(r)

r
dr.
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A similar estimate holds for the second integral in (3). Next, let x̃ = x+y
2 .

Then∣∣∣∣
∫

|x−t|≥2ξ

K(x − t) f(t) dt −
∫

|y−t|≥2ξ

K(y − t) f(t) dt

∣∣∣∣
=

∣∣∣∣
∫

|x−t|≥2ξ

K(x − t)( f(t) − f(x̃)) dt −
∫

|y−t|≥2ξ

K(y − t)( f(t) − f(x̃)) dt

∣∣∣∣
≤

∫
|x̃−t|≥3ξ

|K(x − t) − K(y − t)|| f(t) − f(x̃)| dt

+
∫

3ξ/2≤|x̃−t|≤3ξ

(|K(x − t)| + |K(y − t)|)| f(t) − f(x̃)| dt.

Since

|K(x − t) − K(y − t)| ≤ C
|x − y|
|x̃ − t|3

when |x̃−t| ≥ 3ξ, the first integral is estimated by Cξ
∫ ∞

3ξ

ω(r)
r2 dr. The second

integral is estimated by Cω(3ξ), and hence is controlled by 3C
∫ ξ

0
ω(r)

r dr.
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