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Global well-posedness of the Euler-Korteweg system for small

irrotational data

Corentin Audiard ∗†and Boris Haspot ‡

Abstract

The Euler-Korteweg equations are a modification of the Euler equations that takes into
account capillary effects. In the general case they form a quasi-linear system that can
be recast as a degenerate Schrödinger type equation. Local well-posedness (in subcritical
Sobolev spaces) was obtained by Benzoni-Danchin-Descombes in any space dimension,
however, except in some special case (semi-linear with particular pressure) no global well-
posedness is known. We prove here that under a natural stability condition on the pressure,
global well-posedness holds in dimension d ≥ 3 for small irrotational initial data. The proof
is based on a modified energy estimate, standard dispersive properties if d ≥ 5, and a careful
study of the nonlinear structure of the quadratic terms in dimension 3 and 4 involving the
theory of space time resonance.

Résumé

Les équations d’Euler-Korteweg sont une modification des équations d’Euler prenant en
compte l’effet de la capillarité. Dans le cas général elles forment un système quasi-linéaire
qui peut se reformuler comme une équation de Schrödinger dégénérée. L’existence locale de
solutions fortes a été obtenue par Benzoni-Danchin-Descombes en toute dimension, mais
sauf cas très particuliers il n’existe pas de résultat d’existence globale. En dimension au
moins 3, et sous une condition naturelle de stabilité sur la pression on prouve que pour toute
donnée initiale irrotationnelle petite, la solution est globale. La preuve s’appuie sur une
estimation d’énergie modifiée. En dimension au moins 5 les propriétés standard de disper-
sion suffisent pour conclure tandis que les dimensions 3 et 4 requièrent une étude précise de
la structure des nonlinéarités quadratiques pour utiliser la méthode des résonances temps
espaces.
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1 Introduction

The compressible Euler-Korteweg equations read




∂tρ+ div(ρu) = 0, (x, t) ∈ Rd × I

∂tu+ u · ∇u+∇g(ρ) = ∇
(
K(ρ)∆ρ+ 1

2K
′(ρ)|∇ρ|2

)
, (x, t) ∈ Rd × I

(ρ, u)|t=0 = (ρ0, u0), x ∈ Rd.

(1.1)

Here ρ is the density of the fluid, u the velocity, g the bulk chemical potential, related to the
pressure by p′(ρ) = ρg′(ρ). K(ρ) > 0 corresponds to the capillary coefficient. On the left hand
side we recover the Euler equations, while the right hand side of the second equation contains
the so called Korteweg tensor, which is intended to take into account capillary effects and mod-
els in particular the behavior at the interfaces of a liquid-vapor mixture. The system arises
in various settings: the case K(ρ) = κ/ρ corresponds to the so-called equations of quantum
hydrodynamics (which are formally equivalent to the Gross-Pitaevskii equation through the
Madelung transform, on this topic see the survey of Carles et al [10]).
As we will see, in the irrotational case the system can be reformulated as a quasilinear
Schrödinger equation, this is in sharp contrast with the non homogeneous incompressible
case where the system is hyperbolic (see [9]). For a general K(ρ), local well-posedness was
proved in [6]. Moreover (1.1) has a rich structure with special solutions such as planar trav-
eling waves, namely solutions that only depend on y = t − x · ξ, ξ ∈ Rd, with possibly
lim∞ ρ(y) 6= lim−∞ ρ(y). The orbital stability and instability of such solutions has been largely
studied over the last ten years (see [7] and the review article of Benzoni-Gavage [8]). The
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existence and non uniqueness of global non dissipative weak solutions 1 in the spirit of De
Lellis-Szekelehidi[12]) was tackled by Donatelli et al [13], while weak-strong uniqueness has
been very recently studied by Giesselman et al [18].
Our article deals with a complementary issue, namely the global well-posedness and asymptot-
ically linear behaviour of small smooth solutions near the constant state (ρ, u) = (ρ, 0). To our
knowledge we obtain here the first global well-posedness result for (1.1) in the case of a general
pressure and capillary coefficient. This is in strong contrast with the existence of infinitely
many weak solutions from [13].
A precise statement of our results is provided in theorems 2.1,2.2 of section 2, but first we will
briefly discuss the state of well-posedness theory, the structure of the equation, and the tools
available to tackle the problem. Let us start with the local well-posedness result from [6].

Theorem 1.1. For d ≥ 1, let (ρ, u) be a smooth solution whose derivatives decay rapidly at
infinity, s > 1 + d/2. Then for (ρ0, u0) ∈ (ρ, u) +Hs+1(Rd)×Hs(Rd), ρ0 bounded away from
0, there exists T > 0 and a unique solution (ρ, u) of (1.1) such that (ρ − ρ, u − u) belongs
to C([0, T ], Hs+1 × Hs) ∩ C1([0, T ], Hs−1 × Hs−2) and ρ remains bounded away from 0 on
[0, T ]× Rd.

We point out that [6] includes local well-posedness results for nonlocalized initial data (e.g.
theorem 6.1). The authors also obtained several blow-up criterions. In the irrotational case it
reads:

Blow-up criterion: for s > 1 + d/2, (ρ, u) solution on [0, T )× Rd of (1.1), the solution
can be continued beyond T provided

1. ρ([0, T )× Rd) ⊂ J ⊂ R+∗, J compact and K is smooth on a neighbourhood of J .

2.
∫ T
0 (‖∆ρ(t)‖∞ + ‖divu(t)‖∞)dt <∞.

These results relied on energy estimates for an extended system that we write now. If L
is a primitive of

√
K/ρ, setting L = L(ρ), w =

√
K/ρ∇ρ = ∇L, a =

√
ρK(ρ), from basic

computations we verify (see [6]) that the equations on (L, u,w) are





∂tL+ u · ∇L+ adivu = 0,
∂tu+ u · ∇u− w · ∇w −∇(adivw) = −∇g,
∂tw +∇(u · w) +∇(adivw) = 0,

or equivalently for z = u+ iw

{
∂tL+ u · ∇L+ adivu = 0,
∂tz + u · ∇z + i(∇z) · w + i∇(adivz) = ∇g̃(L). (1.2)

Here we set ã(L) = a ◦ L−1(L), g̃(L) = g ◦ L−1(L) which are well-defined since
√
K/ρ > 0

thus L is invertible.
This change of unknown clarifies the underlying dispersive structure of the model as the second

1These global weak solution do not verify the energy inequality
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equation is a quasi-linear degenerate Schrödinger equation. It should be pointed out however
that the local existence results of [6] relied on Hs energy estimates rather than dispersive
estimates. On the other hand, we constructed recently in [4] global small solutions to (1.1)
for d ≥ 3 when the underlying system is semi-linear, that is K(ρ) = κ/ρ with κ a positive
constant and for g(ρ) = ρ − 1. This case corresponds to the equations of quantum hydro-
dynamics. The construction relied on the so-called Madelung transform, which establishes a
formal correspondance between these equations and the Gross-Pitaevskii equation, and recent
results on scattering for the Gross-Pitaevskii equation [20][22]. Let us recall for completeness
that 1 + ψ is a solution of the Gross-Pitaevskii equation if ψ satisfies

i∂tψ +∆ψ − 2Re(ψ) = ψ2 + 2|ψ|2 + |ψ|2ψ. (1.3)

For the construction of global weak solutions (no uniqueness, but no smallness assumptions)
we refer also to the work of Antonelli-Marcati [1, 2].
In this article we consider perturbations of the constant state ρ = ρc, u = 0 for a general
capillary coefficient K(ρ) that we only suppose smooth and positive on an interval containing
ρc. In order to exploit the dispersive nature of the equation we need to work with irrotational
data u = ∇φ so that (1.2) reduces to the following system (where Lc = L(ρc) which has
obviously similarities with (1.3) (more details are provided in sections 3 and 4):

{
∂tφ−∆(L− Lc) + g̃′(Lc)(L− Lc) = N1(φ, L),
∂t(L− Lc) + ∆φ = N2(φ, L)

(1.4)

The sytem satisfies the dispersion relation τ2 = |ξ|2(g̃′(Lc) + |ξ|2), and the Nj are at least
quadratic nonlinearities that depend on L, φ and their derivatives (the system is thus quasi-
linear). We also point out that the stability condition g̃′(Lc) ≥ 0 is necessary in order to ensure
that the solutions in τ of the dispersion relation are real.
The existence of global small solutions for nonlinear dispersive equations is a rather classical
topic which is impossible by far to describe exhaustively in this introduction. We shall yet
underline the main ideas that are important for our work here.

Dispersive estimates For the Schrödinger equation, two key tools are the dispersive esti-
mate

‖eit∆ψ0‖Lq(Rd) .
‖ψ0‖L2

td(1/2−1/q)
, (1.5)

and the Strichartz estimates

‖eit∆ψ0‖Lp(R,Lq(Rd)) . ‖ψ0‖L2 ,
2

p
+
d

q
=
d

2
, (1.6)

‖
∫ t

0
ei(t−s)∆f(s)ds‖Lp(R,Lq(Rd)) . ‖f‖

Lp′1 (R,Lq′1 (Rd)
,

2

p1
+
d

q1
=
d

2
. (1.7)

Both indicate decay of the solution for long time in Lp(Lq) spaces, it is of course of interest
when we wish to prove the existence of global strong solution since it generally require some
damping behavior for long time. Due to the pressure term the linear structure of our system
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is actually closer to the one of the Gross-Pitaevskii equation (see (1.3)), but the estimates are
essentially the same as for the Schrödinger equation. Local smoothing is also an interesting
feature of Schrödinger equations, in particular for the study of quasilinear systems. A result
in this direction was obtained by the first author in [3] but we will not need it here. The main
task of our proof will consist in proving dispersive estimates of the type (1.5) for long time, it
is related to the notion of scattering for the solution of the dispersive equations. Let us recall
now some classical result on the theory of the scattering for the Schrödinger equations and the
Gross Pitaevskii equation.

Scattering Let us consider the following nonlinear Schrödinger equation

i∂tψ +∆ψ = N (ψ).

Due to the dispersion, when the nonlinearity vanishes at a sufficient order at 0 and the initial
data is sufficiently small and localized, it is possible to prove that the solution is global and the
integral

∫
e−is∆N (ψ(s))ds converges in L2(Rd), so that there exists ψ+ ∈ L2(Rd) such that

‖ψ(t)− eit∆ψ+‖L2 −→t→∞ 0.

In this case, it is said that the solution is asymptotically linear, or scatters to ψ+.
In the case where N is a general power-like non-linearity, we can cite the seminal work of
Strauss [27]. More precisely if N (a) = O0(|a|p), global well-posedness for small data in H1 is
merely a consequence of Strichartz estimates provided p is larger than the so-called Strauss
exponent

pS(d) =

√
d2 + 12d+ 4 + d+ 2

2d
. (1.8)

For example scattering for quadratic nonlinearities (indepently of their structure φ2, φ
2
, |φ|2...)

can be obtained for d ≥ 4, indeed pS(3) = 2. The case p ≤ pS is much harder and is discussed
later.

Mixing energy estimates and dispersive estimates If N depends on derivatives of φ,
due to the loss of derivatives the situation is quite different and it is important to take more
precisely into account the structure of the system. In particular it is possible in some case to
exhibit energy estimates which often lead after a Gronwall lemma to the following situation:

∀N ∈ N, ‖φ(t)‖HN ≤ ‖φ0‖HN exp

(
CN

∫ t

0
‖φ(s)‖p−1

Wk,∞ds

)
, k “small” and independent on N.

A natural idea consists in mixing energy estimates in the HN norm, N “large”, with dispersive
estimates : if one obtains

∥∥∥∥
∫ t

0
ei(t−s)∆Nds

∥∥∥∥
Wk,∞

.
‖ψ‖p

HN∩Wk,∞

tα
, α(p− 1) > 1,
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then setting ‖ψ‖XT
= sup[0,T ] ‖ψ(t)‖HN + tα‖ψ(t)‖Wk,∞ the energy estimate yields for small

data
‖ψ‖XT

. ‖ψ0‖HN exp(C‖ψ‖p−1
X ) + ‖ψ‖pXT

+ ε,

so that ‖ψ‖XT
must remain small uniformly in T . This strategy seems to have been initiated

independently by Klainerman and Ponce [24] and Shatah [25]. If the energy estimate is true,
this method works “straightforwardly” and gives global well-posedness for small initial data
(this is the approach from section 4) if

p > p̃(d) =

√
2d+ 1 + d+ 1

d
> pS(d). (1.9)

Again, there is a critical dimension: p̃(4) = 2, thus any quadratic nonlinearity can be handled
with this method if d ≥ 5.

Normal forms, space-time resonances When p ≤ pS (semi-linear case) or p̃ (quasi-linear
case), the strategies above can not be directly applied, and one has to look more closely at the
structure of the nonlinearity. For the Schrödinger equation, one of the earliest result in this
direction was due to Cohn [11] who proved (extending Shatah’s method of normal forms [26])
the global well-posedness in dimension 2 of

i∂tψ +∆ψ = i∇ψ · ∇ψ. (1.10)

The by now standard strategy of proof was to use a normal form that transformed the quadratic
nonlinearity into a cubic one, and since 3 > p̃(2) ≃ 2.6 the new equation could be treated with
the arguments from [24]. In dimension 3, similar results (with very different proofs using vector

fields method and time non resonance) were then obtained for the nonlinearities ψ2 and ψ
2
by

Hayashi, Nakao and Naumkin [23] (it is important to observe that the quadratic nonlinearity
is critical in terms of Strauss exponent for the semi-linear case when d = 3). The existence
of global solutions for the nonlinearity |ψ|2 is however still open (indeed it corresponds to a
nonlinearity where the set of time and space non resonance is not empty, we will give more
explanations below on this phenomenon) .
More recently, Germain-Masmoudi-Shatah [16][15][14] and Gustafson-Nakanishi-Tsai [21][22]
shed a new light on such issues with the concept of space-time resonances. To describe it, let
us rewrite the Duhamel formula for the profile of the solution f = e−it∆ψ, in the case (1.10):

f = ψ0+

∫ t

0
e−is∆N (eis∆ψ)ds⇔ f̂ = ψ̂0+

∫ t

0

∫

Rd

eis(|ξ|
2+|η|2+|ξ−η|2)η · (ξ−η)f̂(η)f̂(ξ−η)dηds

(1.11)
In order to take advantage of the non cancellation of Ω(ξ, η) = |ξ|2 + |η|2 + |ξ − η|2 one might
integrate by part in time, and from the identity ∂tf = −ie−it∆N (ψ), we see that this procedure
effectively replaces the quadratic nonlinearity by a cubic one, ie acts as a normal form.
On the other hand, if N (ψ) = ψ2 the phase becomes Ω(ξ, η) = |ξ|2 − |η|2 − |ξ − η|2, which
cancels on a large set, namely the “time resonant set”

T = {(ξ, η) : Ω(ξ, η) = 0} = {η ⊥ ξ − η}. (1.12)
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The remedy is to use an integration by part in the η variable using eisΩ =
∇ηΩ

is|∇ηΩ|2∇η(e
isΩ), it

does not improve the nonlinearity, however we can observe a gain of time decay in 1/s. This
justifies to define the “space resonant set” as

S = {(ξ, η) : ∇ηΩ(ξ, η) = 0} = {η = −ξ − η}, (1.13)

as well as the space-time resonant set

R = S ∩ T = {(ξ, η) : Ω(ξ, η) = 0, ∇ηΩ(ξ, η) = 0}. (1.14)

For N (ψ) = ψ2, we simply have R = {ξ = η = 0}; using the previous strategy Germain et al
[16] obtained global well-posedness for the quadratic Schrödinger equation.
Finally, for N (ψ) = |ψ|2 similar computations lead to R = {ξ = 0}, the “large” size of this set
might explain why this nonlinearity is particularly difficult to handle.

Smooth and non smooth multipliers The method of space-time resonances in the case
(∇φ)2 is particularly simple because after the time integration by part, the Fourier transform
of the nonlinearity simply becomes

η · (ξ − η)

|ξ|2 + |η|2 + |ξ − η|2∂sψ̂(η)ψ̂(ξ − η),

where the multiplier η·(ξ−η)
|ξ|2+|η|2+|ξ−η|2 is of Coifman-Meyer type, thus in term of product laws it

is just a cubic nonlinearity. We might naively observe that this is due to the fact that η ·(ξ−η)
cancels on the resonant set ξ = η = 0. Thus one might wonder what happens in the general
case if the nonlinearity writes as a bilinear Fourier multiplier whose symbol cancels on R. In
[14], the authors treated the nonlinear Schrödinger equation for d = 2 by assuming that the
nonlinearity is of type B[ψ, ψ] or B[ψ, ψ], with B a bilinear Fourier multiplier whose symbol is
linear at |(ξ, η)| ≤ 1 (and thus cancels on R). Concerning the Gross-Pitaevskii equation (1.3),
the nonlinear terms include the worst one |ψ|2 but Gustafson et al [22] managed to prove global
existence and scattering in dimension 3, one of the important ideas of their proof was a change
of unknown ψ 7→ Z (or normal form) that replaced the nonlinearity |ψ|2 by

√
−∆/(2−∆)|Z|2

which compensates the resonances at ξ = 0. To some extent, this is also a strategy that we
will follow here.
Finally, let us point out that the method of space-time resonances proved remarkably efficient
for the water wave equation [15] partially because the group velocity |ξ|−1/2/2 is large near
ξ = 0, while it might not be the most suited for the Schrödinger equation whose group velocity
2ξ cancels at ξ = 0. The method of vector fields is an interesting alternative, and this approach
was later chosen by Germain et al in [17] to study the capillary water waves (in this case the
group velocity is 3|ξ|1/2/2). Nevertheless, in our case the term g̃(Lc) in (1.4) induces a lack of
symetry which seems to limit the effectiveness of this approach.

Plan of the article In section 2 we introduce the notations and state our main results.
Section 3 is devoted to the reformulation of (1.1) as a non degenerate Schrödinger equation, and
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we derive the energy estimates in “high”Sobolev spaces. We use a modified energy compared
with [6] in order to avoid some time growth of the norms. In section 4 we prove our main
result in dimension at least 5. Section 5 begins the analysis of dimensions 3 and 4, which is
the heart of the paper. We only detail the case d = 3 since d = 4 follows the same ideas with
simpler computations. We first introduce the functional settings, a normal form and check
that it defines an invertible change of variable in these settings, then we bound the high order
terms (at least cubic). In section 6 we use the method of space-time resonances (similarly to
[22]) to bound quadratic terms and close the proof of global well-posedness in dimension 3.
The appendix provides some technical multipliers estimtes required for section 6.

2 Main results, tools and notations

The results As pointed out in the introduction, we need a condition on the pressure.

Assumption 2.1. Throughout all the paper, we work near a constant state ρ = ρc > 0, u = 0,
with g′(ρc) > 0.

In the case of the Euler equation, this standard condition implies that the linearized system

{
∂tρ+ ρcdivu = 0,
∂tu+ g′(ρc)∇ρ = 0.

is hyperbolic, with eigenvalues (sound speed) ±
√
ρcg′(ρc).

Theorem 2.1. Let d ≥ 5, ρc ∈ R+∗, u0 = ∇φ0 be irrotational. For (n, k) ∈ N, k > 2 +
d/4, 2n+ 1 ≥ k + 2 + d/2, there exists δ > 0, such that if

‖u0‖H2n∩Wk−1,4/3 + ‖ρ0 − ρc‖H2n+1∩Wk,4/3 ≤ δ

then the unique solution of (1.1) is global with ‖ρ− ρc‖L∞(R+×Rd) ≤ ρc
2 .

Theorem 2.2. Let d = 3 or 4, u = ∇φ0 irrotational, k > 2 + d/4, there exists δ > 0, ε > 0,

small enough, n ∈ N large enough, such that for
1

p
=

1

2
− 1

d
− ε, if

‖u0‖H2n + ‖ρ0 − ρc‖H2n+1 + ‖xu0‖L2 + ‖x(ρ0 − ρc)‖L2 + ‖u0‖Wk−1,p′ + ‖ρ0 − ρc‖Wk,p′ ≤ δ,

then the solution of (1.1) is global with ‖ρ− ρc‖L∞(R+×Rd) ≤ ρc
2 .

Remark 2.1. While the proof implies to work with the velocity potential, we only need as-
sumptions on the physical variables velocity and density.

Remark 2.2. Actually we prove a stronger result: in the appropriate variables the solution scat-
ters. Let L be the primitive of

√
K/ρ such that L(ρc) = 1, L = L(ρ), H =

√
−∆(g̃′(1)−∆),

U =
√

−∆/(g̃′(1)−∆) , f = e−itH(Uφ+ iL), then there exists f∞ such that

∀ s < 2n+ 1, ‖f(t)− f∞‖Hs∩L2/〈x〉 →t→∞ 0.
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The analogous result is true in dimension ≥ 5 with t−d/2+1 for the convergence rate in L2. See
section 6.4 for a discussion in dimension 3. It is also possible to quantify how large n should
be (at least of order 20, see remark 6.3). In both theorems, the size of k and n can be slightly
decreased by working in fractional Sobolev spaces, but since it would remain quite large we
chose to avoid these technicalities.

Some tools and notations Most of our tools are standard analysis, except a singular
multiplier estimate.

Functional spaces The usual Lebesgue spaces are Lp with norm ‖·‖p, the Lorentz spaces
are Lp,q. If R+ corresponds to the time variable, and for B a Banach space, we write for short
Lp(R+, B) = LptB, similarly Lp([0, T ], B) = LpTB.
The Sobolev spaces are W k,p = {u ∈ Lp : ∀ |α| ≤ k, Dαu ∈ Lp}. We also use homogeneous
spaces Ẇ k,p = {u ∈ L1

loc : ∀ |α| = k, Dαu ∈ Lp}. We recall the Sobolev embedding

∀ kp < d, Ẇ k,p(Rd) →֒ Lq,p →֒ Lq, q =
dp

d− kq
, ∀ kp > d, W k,p(Rd) →֒ L∞.

If p = 2, as usualW k,2 = Hk, for which we have equivalent norm
∫
Rd(1+ |ξ|2)k|û|2dξ, we define

in the usual way Hs for s ∈ R and Ḣs for which the embeddings remain true. The following
dual estimate will be of particular use

∀ d ≥ 3, ‖u‖Ḣ−1 . ‖u‖L2d/(d+2) .

We will use the following Gagliardo-Nirenberg type inequality (see for example [28])

∀ l ≤ p ≤ k − 1 integers, ‖Dlu‖L2k/p . ‖u‖(k−p)/(k+l−p)
L2k/(p−l) ‖Dk+l−pu‖l/(k+l−p)

L2 . (2.1)

and its consequence

∀ |α|+ |β| = k, ‖DαfDβg‖L2 . ‖f‖∞‖g‖Ḣk + ‖f‖Ḣk‖g‖∞. (2.2)

Finally, we have the basic composition estimate (see [5]): for F smooth, F (0) = 0, u ∈
L∞ ∩W k,p then2

‖F (v)‖Wk,p . C(k, ‖u‖∞))‖u‖Wk,p . (2.3)

Non standard notations Since we will often estimate indistinctly z or z, we follow the
notations introduced in [22]: z+ = z, z− = z, and z± is a placeholder for z or z. The Fourier
transform of z is as usual ẑ, however we also need to consider the profile e−itHz, whose Fourier
transform will be denoted z̃± := e∓itH ẑ±.
When there is no ambiguity, we writeW

k, 1
p (or L

1
p ) instead ofW k,p (or Lp) since it is convenient

to use Hölder’s inequality.

2k ∈ R+ is allowed, but not needed.
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Multiplier theorems We remind that the Riesz multiplier ∇/|∇| is bounded on Lp, 1 <
p <∞. A bilinear Fourier multiplier is defined by its symbol B(η, ξ), it acts on (f, g) ∈ S(Rd)

B̂[f, g](ξ) =

∫

Rd

B(η, ξ − η)f̂(η)ĝ(ξ − η)dη.

Theorem 2.3 (Coifman-Meyer). If ∂αξ ∂
β
ηB(ξ, η) . (|ξ|+ |η|)−|α|−|β|, for sufficiently many α, β

then for any 1 < p, q ≤ ∞, 1/r = 1/p+ 1/q,

‖B(f, g)‖r . ‖f‖p‖g‖q.

If moreover supp(B(η, ξ − η)) ⊂ {|η| & |ξ − η|}, (p, q, r) are finite and k ∈ N then

‖∇kB(f, g)‖r . ‖∇kf‖p‖g‖q.

Mixing this result with the Sobolev embedding, we get for 2 < p ≤ ∞, 1
p +

1
q = 1

2

‖fg‖Hs . ‖f‖Lp‖g‖Hs,q + ‖g‖Lp‖f‖Hs,q . ‖f‖Lp‖g‖Hs+d/p + ‖g‖Lp‖f‖Hs+d/p . (2.4)

Due to the limited regularity of our multipliers, we will need a multiplier theorem with loss
from [19] (and inspired by corollary 10.3 from [22]). Let us first describe the norm on symbols:
for χj a smooth dyadic partition of the space, supp(χj) ⊂ {2j−2 ≤ |x| ≤ 2j+2}

‖B(η, ξ − η)‖L̃∞
ξ Ḃs

2,1,η
= ‖2jsχj(∇)ηB(η, ξ − η)‖l1(Z,L∞

ξ L2
η)

The norm ‖B(ξ − ζ, ζ)‖L̃∞
ξ Ḃs

2,1,ζ
is defined similarly. In practice, we rather estimate ‖B‖L∞

ξ Ḣs

and use the interpolation estimate (see [22])

‖B‖L̃∞
ξ Ḃs

2,1,η
. ‖B‖θ

L∞
ξ Ḣs1

‖B‖1−θ
L∞
ξ Ḣs2

, s = θs1 + (1− θ)s2.

We set ‖B‖[Bs] = min
(
‖B(η, ξ − η)‖L̃∞

ξ Ḃs
2,1,η

, ‖B(ξ − ζ, ζ)‖L̃∞
ξ Ḃs

2,1,ζ

)
. The rough multiplier

theorem is the following:

Theorem 2.4 ([19]). Let 0 ≤ s ≤ d/2, q1, q2 such that
1

q2
+

1

2
=

1

q1
+

(
1

2
− s

d

)
3, and

2 ≤ q′1, q2 ≤
2d

d− 2s
, then

‖B(f, g)‖Lq1 . ‖B‖[Bs]‖f‖Lq2‖g‖L2 .

Furthermore for
1

q2
+

1

q3
=

1

q1
+

(
1

2
− s

d

)
, 2 ≤ qi ≤ 2d

d−2s with i = 2, 3,

‖B(f, g)‖Lq1 . ‖B‖[Bs]‖f‖Lq2‖g‖Lq3 ,

3We write the relation between (q1, q2) in a rather odd way in order to emphasize the similarity with the
standard Hölder’s inequality.
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Dispersion for the group e−itH According to (1.4), the linear part of the equation
reads ∂tz − iHz = 0, with H =

√
−∆(g̃′(Lc)−∆) (see also section 4). We will use a change

of variable to reduce it to g̃′(Lc) = 2, set H =
√

−∆(2−∆), and use the dispersive estimate
from [20], the version in Lorentz spaces follows from real interpolation as pointed out in [22].

Theorem 2.5 ([20][22]). For 2 ≤ p ≤ ∞, s ∈ R, U =
√

−∆/(2−∆), we have

‖eitHϕ‖Ḃs
p,2

.
‖U (d−2)(1/2−1/p)ϕ‖Ḃs

p′,2

td(1/2−1/p)
,

and for 2 ≤ p <∞
‖eitHϕ‖Lp,2 .

‖U (d−2)(1/2−1/p)ϕ‖Lp′,2

td(1/2−1/p)

Remark 2.3. The slight low frequency gain U (d−2)(1/2−1/p) is due to the fact that H(ξ) =
|ξ|

√
2 + |ξ|2 behaves like |ξ| at low frequencies, which has a strong angular curvature and no

radial curvature.

Remark 2.4. Combining the dispersion estimate and the celebrated TT ∗ argument, Strichartz
estimates follow

‖eitHϕ‖LpLq . ‖U d−2
2

(1/2−1/p)ϕ‖L2 ,
2

p
+
d

q
=
d

2
, 2 ≤ p ≤ ∞,

however the dispersion estimates are sufficient for our purpose.

3 Reformulation of the equations and energy estimate

As observed in [6], setting w =
√
K/ρ∇ρ, L the primitive of

√
K/ρ such that L(ρc) = 1,

L = L(ρ), z = u+ iw the Euler-Korteweg system rewrites

∂tL+ u · ∇L+ a(L)divu = 0,

∂tu+ u · ∇u− w · ∇w −∇(a(L)divw) = −g̃′(L)w,
∂tw +∇(u · w) +∇(a(L)divu) = 0,

where the third equation is just the gradient of the first. Setting l = L − 1, in the potential
case u = ∇φ, the system on φ, l then reads

{
∂tφ+

1

2

(
|∇φ|2 − |∇l|2

)
− a(1 + l)∆l = −g̃(1 + l),

∂tl +∇φ · ∇l + a(1 + l)∆φ = 0,
(3.1)

with g̃(1) = 0 since we look for integrable functions. As a consequence of the stability condition
(2.1), up to a change of variables we can and will assume through the rest of the paper that

g̃′(1) = 2. (3.2)

The number 2 has no significance except that this choice gives the same linear part as for the
Gross-Pitaevskii equation linearized near the constant state 1.
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Proposition 3.1. Under the following assumptions

• (∇φ0, l) ∈ H2n ×H2n+1

• Normalized (2.1): g̃′(1) = 2

• L(x, t) = 1 + l(x, t) ≥ m > 0 for (x, t) ∈ Rd × [0, T ],

then for n > d/4 + 1/2, there exists a continuous function C such that the solution of (3.1)
satisfies the following estimate

‖∇φ‖H2n + ‖l‖H2n+1

≤
(
‖∇φ0‖H2n + ‖l0‖H2n+1

)
exp

(∫ t

0
C(‖l‖L∞ , ‖ 1

l + 1
‖L∞ , ‖z‖L∞)

× (‖∇φ(s)‖W 1,∞ + ‖l(s)‖W 2,∞)ds

)
,

where z(s) = ∇φ(s) + i∇w(s).

This is almost the same estimate as in [6] but for an essential point: in the integrand of
the right hand side there is no constant added to ‖∇φ(s)‖W 1,∞ + ‖l(s)‖W 2,∞ , the price to pay
is that we can not control φ but its gradient (this is naturel since the difficulty is related to
the low frequencies). Before going into the detail of the computations, let us underline on a
very simple example the idea behind it. We consider the linearized system

∂tφ−∆l + 2l = 0, (3.3)

∂tl +∆φ = 0. (3.4)

Multiplying (3.3) by φ, (3.4) by l, integrating and using Young’s inequality leads to the “bad”
estimate

d

dt

(
‖φ‖2L2 + ‖l‖2L2

)
. 2(‖φ‖2L2 + ‖l‖2L2),

on the other hand if we multiply (3.3) by −∆φ, (3.4) by (−∆+ 2)l we get

d

dt

∫

Rd

(
|∇l|2 + |∇φ|2

2
+ l2)dx = 0,

the proof that follows simply mixes this observation with the gauge method from [6].

Proof. Let us start with the equation on z = ∇φ+ i∇l = u+ iw, we remind that g̃′(1) = 2, so
that we write it

∂tz + z · ∇z + i∇(adivz) = −2w + (2− g̃′(1 + l))w. (3.5)

We shortly recall the method from [6] that we will slightly simplify since we do not need to work
in fractional Sobolev spaces. Due to the quasi-linear nature of the system (and in particular
the bad “non transport term” iw ·∇z), it is not possible to directly estimate ‖z‖H2n by energy
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estimates, instead one uses a gauge function ϕn(ρ) and control ‖ϕn∆nz‖L2 . When we take the
product of (3.5) with ϕn real, a number of commutators appear:

ϕn∆
n∂tz = ∂t(ϕn∆

nz)− (∂tϕn)∆
nz = ∂t(ϕn∆

nz) + C1 (3.6)

ϕn∆
n(u · ∇z) = u · ∇(ϕn∆

nz) + [ϕn∆
n, u · ∇]z := u · ∇(ϕn∆

nz) + C2 (3.7)

iϕn∆
n(w · ∇z) = iw · ∇(ϕn∆

nz) + [ϕn∆
n, w · ∇]z := iw · ∇(ϕn∆

nz) + C3, (3.8)

The term ∇(adivz) requires a bit more computations:

iϕn∆
n∇(adivz) = i∇(ϕn∆

n(adivz))− i(∇ϕn)∆n(adivz),

then using recursively ∆(fg) = 2∇f · ∇g + f∆g + (∆f)g we get

∆n(adivz) = adiv∆nz + 2n(∇a) ·∆nz + C,

where C contains derivatives of z of order at most 2n− 1, so that

iϕn∆
n∇(adivz) = i∇

(
ϕn

(
adiv∆nz + 2n(∇a) ·∆nz

))
− i∇ϕnadiv∆nz + i∇(ϕnC)

= i∇
(
adiv(ϕn∆

nz)
)
+ 2in∇a · ϕn∇∆nz − ia(∇+ Iddiv)∆

nz · ∇ϕn
+C4, (3.9)

where C4 contains derivatives of z of order at most 2n and by notation Iddiv∆
nz · ∇ϕn =

div∆nz∇ϕn. Finally, we define C5 = −ϕn∆n
(
(2− g̃′(1 + l))w

)
. The equation on ϕn∆

nz thus
reads

∂t(ϕn∆
nz) + u · ∇(ϕn∆

nz) + i∇
(
adiv(ϕn∆

nz)
)
+ iwu · ∇(ϕn∆

nz) + 2ϕn∆
nw = (3.10)

−
5∑

1

Ck − 2inϕn∇∆nz · ∇a+ ia(∇+ Iddiv)∆
nz · ∇ϕn (3.11)

Taking the scalar product with ϕn∆
nz, integrating and taking the real part gives for the first

three terms
1

2

d

dt

∫

Rd

(ϕn∆
nz)2dx− 1

2

∫

Rd

divu|ϕn∆nz|2dx. (3.12)

And we are left to control the remainder terms from (3.8, 3.9). Using w = a
ρ∇ρ, ϕn = ϕn(ρ),

we rewrite

iϕnw · ∇(∆nz) + 2niϕn∇(∆nz) · ∇a− ia∇(∆nz) · ∇ϕn − ia∇ϕn div∆nz

= iϕn

(
w · ∇ − a∇ϕn

ϕn
· ∇ − a∇ϕn

ϕn
div + 2n∇a · ∇

)
∆nz.

= iϕn

[(
a

ρ
− a

ϕ′
n

ϕn

)
∇ρ · ∇ − aϕ′

n

ϕn
∇ρ div + 2na′∇ρ · ∇

]
∆nz (3.13)
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If the div operator was a gradient, the most natural choice for ϕn would be to take

a

ρ
− 2aϕ′

n

ϕn
+ 2na′ = 0 ⇔ ϕ′

n

ϕn
=

1

2ρ
+
na′

a
⇐ ϕn(ρ) = an(ρ)

√
ρ.

For this choice the remainder (3.13) rewrites

[(
a

ρ
− a

ϕ′
n

ϕn

)
∇ρ · ∇ − aϕ′

n

ϕn
∇ρdiv + 2na′∇ρ · ∇

]
∆nz =

(
a

2ρ
+ na′

)
∇ρ · (∇− Iddiv)∆

nz.

Using the fact that ϕn(a/(2ρ) + na′)(ρ)∇ρ is a real valued gradient, and setting zn = ∆nz,
we see that the contribution of (3.13) in the energy estimate is actually 0 from the following
identity (with the Hessian HessH):

Im

∫

Rd

zn · (∇− Iddiv)zn · ∇H(ρ)dx = Im

∫

Rd

zi,n∂jzi,n∂jH − zi,n∂jzj,n∂iH

= Im

∫

Rd

znHessHzn −∆H|zn|2

−∂jHzi,n(∂jzi,n − ∂izj,n)dx

= 0.

We have used the fact that z is irrotationnal. Finally, we have obtained

1

2

d

dt

∫
‖ϕn∆nz‖2L2dx− 1

2

∫

Rd

(divu)|ϕn∆nz|2 = −
∫ 5∑

1

Ckϕn∆
nzdx− 2

∫
ϕ2
n∆

nw∆nu dx.

(3.14)
Note that the terms Ckϕn∆

nz are cubic while ϕn∆
nw∆nu is only quadratic, thus we will

simply bound the first ones while we will need to cancel the later.

Control of the Ck : From their definition, it is easily seen that the (Ck)2≤i≤4 only contain
terms of the kind ∂αf∂βg with f, g = u or w, |α|+ |β| ≤ 2n, thus

∀ 2 ≤ k ≤ 4,

∣∣∣∣
∫
Ckϕn∆

nzdx

∣∣∣∣ .
∑

|α|+|β|=2n, f,g=u or w

‖∂αf∂βg‖L2‖z‖H2n

When |α| = 0, |β| = 2n, we have obviously ‖f∂βg‖L2 . ‖f‖∞‖g‖H2n , while the general
case ‖∂αf∂βg‖2 . ‖f‖∞‖g‖H2n + ‖g‖∞‖f‖H2n is Gagliardo-Nirenberg’interpolation inequality
(2.2). We deduce

∀ 2 ≤ k ≤ 4,

∣∣∣∣
∫
Ckϕn∆

nzdx

∣∣∣∣ . ‖z‖∞‖z‖2H2n .

Let us deal now with C1 = −∂tϕn∆nz, since ∂tϕn = −ϕ′
ndiv(ρu) we have

∣∣∣∣
∫

Rd

C1ϕn∆
nzdx

∣∣∣∣ . F ((‖l‖L∞ , ‖ 1

l + 1
‖L∞)(‖u‖W 1,∞ + ‖z‖2L∞)‖z‖2H2n
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with F a continuous function.
We now estimate the contribution of C5 = −ϕn∆n

(
(2 − g̃′(1 + l))w

)
: since g̃′(1) = 2, from

the composition rule (2.3) we have ‖g̃′(1 + l) − 2‖H2n . F1(‖l‖L∞ , ‖ 1
l+1‖L∞)‖l‖H2n with F1 a

continuous function with F1(0, ·) = 0 so that
∣∣∣∣
∫

Rd

C5ϕn∆
nzdx

∣∣∣∣ . ‖(2− g̃′)w‖H2n‖z‖H2n . (‖(2− g̃′(1 + l))‖L∞‖z‖H2n

+ F1(‖l‖L∞ , ‖ 1

l + 1
‖L∞)‖l‖H2n‖z‖∞)‖z‖H2n .

To summarize, for any 1 ≤ k ≤ 5, we have∣∣∣∣
∫

Rd

Ckϕn∆
nzdx

∣∣∣∣ . F2(‖l‖L∞ , ‖ 1

l + 1
‖L∞)(‖l‖∞+‖z‖W 1,∞+‖z‖2L∞)(‖l‖2H2n+‖z‖2H2n), (3.15)

with F2 a continuous function.

Cancellation of the quadratic term We start with the equation on l to which we apply
ϕn∆

n, multiply by ϕn(∆
nl)/a and integrate in space

∫

Rd

ϕ2
n

a
∆nl∂t∆

nl +
ϕ2
n

a
(∆nl)∆n(∇φ · ∇l) + ϕ2

n∆
nl
∆n(a∆φ)

a
= 0.

Commuting ∆n and a, and using an integration by part, this rewrites

1

2

d

dt

∫

Rd

ϕ2
n

a
(∆nl)2dx−

∫

Rd

d

dt
(
ϕ2
n

2a
)|∆nl|2dx+

∫

Rd

ϕ2
n

a
(∆nl)∆n(∇φ · ∇l)

+

∫

Rd

ϕ2
n∆

nl∆∆nφdx+
ϕ2
n

a
∆nl[∆n, a]∆φdx

1

2

d

dt

∫

Rd

ϕ2
n

a
(∆nl)2dx−

∫

Rd

d

dt
(
ϕ2
n

2a
)|∆nl|2dx+

∫

Rd

ϕ2
n

a
(∆nl)∆n(∇φ · ∇l)

−
∫

Rd

ϕ2
n∇∆nl · ∇∆nφ dx−

∫

Rd

∆nl∇ϕ2
n · ∇∆nφ dx+

ϕ2
n

a
∆nl[∆n, a]∆φdx

We remark that the integrand in the right hand side only depends on l,∇φ and their derivatives,
therefore using the same commutator arguments as previously, we get the bound

1

2

d

dt

∫

Rd

ϕ2
n

a
(∆nl)2dx−

∫

Rd

ϕ2
n(∆

n∇φ)∆n∇ldx

. F3(‖l‖L∞ , ‖ 1

l + 1
‖L∞)(‖l‖∞ + ‖z‖W 1,∞ + ‖z‖2L∞)(‖l‖2H2n + ‖z‖2H2n),

(3.16)

with F3 a continuous function. Now if we add (3.14) to 2 × (3.16) and use the estimates on
(Ck) we obtain

1

2

d

dt

∫
‖ϕn∆nz‖2L2 + ‖∆nl‖2L2dx

. F4(‖l‖L∞ , ‖ 1

l + 1
‖L∞)(‖l‖∞ + ‖z‖W 1,∞ + ‖z‖2L∞)(‖l‖2H2n + ‖z‖2H2n),

with F4 a continuous function. The conclusion then follows from Gronwall’s lemma.
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4 Global well-posedness in dimension larger than 4

We first make a further reduction of the equations that will be also used for the cases d = 3, 4,
namely we rewrite it as a linear Schrödinger equation with some remainder. In addition to
g̃′(1) = 2, we can also assume a(1) = 1, so that (3.1) rewrites4

{
∂tφ−∆l + 2l = (a(1 + l)− 1)∆l − 1

2

(
|∇φ|2 − |∇l|2

)
+ (2l − g̃(1 + l)),

∂tl +∆φ = −∇φ · ∇l + (1− a(1 + l))∆φ.
(4.1)

The linear part precisely corresponds to the linear part of the Gross-Pitaevskii equation. In
order to diagonalize it, following [20] we set

U =

√
−∆

2−∆
, H =

√
−∆(2−∆), φ1 = Uφ, l1 = l.

The equation writes in the new variables




∂tφ1 +Hl1 = U

(
(a(1 + l1)− 1)∆l1 −

1

2

(
|∇U−1φ1|2 − |∇l1|2

)
+ (2l1 − g̃(1 + l1))

)
,

∂tl1 −Hφ1 = −∇U−1φ1 · ∇l1 − (1− a(1 + l1))HU
−1φ1.

(4.2)
More precisely, if we set ψ = φ1 + il1, ψ0 = (Uφ+ il)|t=0, the Duhamel formula gives

ψ(t) = eitHψ0 +

∫ t

0
ei(t−s)HN (ψ(s))ds, (4.3)

with N (ψ) = U
(
(a(1 + l1)− 1)∆l1 −

1

2

(
|∇U−1φ1|2 − |∇l1|2

)
+ (2l1 − g̃(1 + l1))

)

+i
(
−∇U−1φ1 · ∇l1 −

(
1− a(1 + l1)

)
Hφ

)
. (4.4)

We underline that for low frequencies the situation is more favorable than for the Gross-
Pitaevskii equation, as all the terms where U−1 appears already contain derivatives that com-
pensate this singular multiplier. Note however that the Gross-Pitaevskii equations are formally
equivalent to this system via the Madelung transform in the special case K(ρ) = κ/ρ, so our
computations are a new way of seeing that these singularities can be removed in appropriate
variables. Let us now state the key estimate:

Proposition 4.1. Let d ≥ 5, T > 0, k ≥ 2, N ≥ k+2+d/2, we set ‖ψ‖XT
= ‖ψ‖L∞([0,T ],HN )+

sup
t∈[0,T ]

(1 + t)d/4‖ψ(t)‖Wk,4, then the solution of (4.3) satisfies

∀ t ∈ [0, T ], ‖ψ(t)‖Wk,4 .
‖ψ0‖Wk,4/3 + ‖ψ0‖HN +G(‖ψ‖Xt , ‖ 1

1+l1
‖L∞

t (L∞))‖ψ‖2XT

(1 + t)d/4
,

with G a continuous function.

4The assumption a(1) = 1 should add some constants in factor of the nonlinear terms, we will neglect it as
it will be clear in the proof that multiplicative constants do not matter.
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Proof. We start with (4.3). From the dispersion estimate (2.5) and the Sobolev embedding,
we have for any t ≥ 0

(1+t)d/4‖eitHψ0‖W 2,4 . (1+t)d/4min

(‖U (d−2)/4ψ0‖W 2,4/3

td/4
, ‖ψ0‖HN

)
. ‖ψ0‖W 2,4/3+‖ψ0‖HN .

The only issue is thus to bound the nonlinear part. Let f, g be a placeholder for l1 or U−1φ1,
there are several kind of terms : ∇f · ∇g, (a(1 + l1) − 1)∆f , 2l1 − g̃(1 + l1), |∇f |2, |∇g|2,
(a(1 + l1) − 1)Hg. The estimates for 0 ≤ t ≤ 1 are easy (it corresponds to the existence of
strong solution in finite time), so we assume t ≥ 1 and we split the integral from (4.3) between
[0, t− 1] and [t− 1, t]. For the first kind we have from the dispersion estimate and (2.4):

∥∥∥∥
∫ t−1

0
ei(t−s)H∇f · ∇g ds

∥∥∥∥
Wk,4

.

∫ t−1

0

‖∇f · ∇g‖Wk,4/3

(t− s)d/4
ds

.

∫ t−1

0

‖∇f‖Hk‖∇g‖Wk−1,4

(t− s)d/4
ds,

. ‖ψ‖2Xt

∫ t−1

0

1

(t− s)d/4(1 + s)d/4
ds

.
‖ψ‖2Xt

td/4
.

(actually we should also add on the numerator ‖∇f‖Wk−1,4‖∇g‖Hk , but since f, g are sym-
metric placeholders we omit this term). We have used the fact that ∇U−1 is bounded on
W 1,p → Lp, 1 < p <∞ so that ‖∇f(s)‖Hk . ‖f‖Xt for s ∈ [0, t], (1+s)d/4‖∇g‖Wk−1,4 . ‖g‖Xt .
For the second part on [t− 1, t] we use the Sobolev embedding Hd/4 →֒ L4 and (2.4):

∥∥∥∥
∫ t

t−1
ei(t−s)H(∇f · ∇g)ds

∥∥∥∥
Wk,4

.

∫ t

t−1

∥∥∇f · ∇g
∥∥
Hk+d/4ds .

∫ t

t−1
‖∇f‖L4‖∇g‖Hk+d/2ds

. ‖ψ‖2Xt

∫ t

t−1

1

(1 + s)
d
4

ds

.
‖ψ‖2Xt

(1 + t)d/4
.

The terms of the kind (a(1 + l1) − 1)∆f are estimated similarly: splitting the integral over
[0, t− 1] and [t− 1, t],

∥∥∥∥
∫ t−1

0
ei(t−s)H(a(1 + l1)− 1)∆fds

∥∥∥∥
Wk,4

.

∫ t−1

0

‖a(1 + l1)− 1‖Wk,4‖∆f‖Hk

(t− s)d/4
ds

.

∫ t−1

0

‖a(1 + l1)− 1‖Wk,4‖∇f‖Hk+1

(t− s)d/4
ds.

As for the first kind terms, from the composition estimate we deduce that:

‖a(1 + l1)− 1‖Wk,4 . F (‖l1‖L∞
t (L∞), ‖

1

1 + l1
‖L∞

t (L∞))‖l1‖Wk,4 ,
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with F continuous, we can bound the integral above by F (‖ψ‖Xt , ‖ 1
1+l1

‖L∞
t (L∞))‖ψ‖2X/t5/4.

For the integral over [t − 1, t] we can again do the same computations using the composition
estimates ‖a(1+ l1)−1‖Hk+d/2 . F1(‖l1‖L∞

t (L∞), ‖ 1
1+l1

‖L∞
t (L∞))‖l1‖Hk+d/2 with F1 continuous.

The restriction N ≥ k + 2 + d/2 comes from the fact that we need ‖∆f‖Hk+d/2 . ‖f‖X .
Writing 2l1 − g̃(1+ l1) = l1(2− g̃(l1)/l1) we see that the estimate for the last term is the same
as for (a(1 + l1)− 1)∆f but simpler so we omit it. The other terms can be also handled in a
similar way.

End of the proof of theorem (2.1) We fix k > 2 + d/4, n such that 2n+ 1 ≥ k+ 2+ d/2,
and use these values for XT = L∞([0, T ], H2n+1 ∩ (1 + t)−d/4W k,4). First note that since L is
a smooth diffeomorphism near 1 and u0 = ∇φ0, we have

‖u0‖H2n∩Wk−1,4/3 + ‖ρ0 − ρc‖H2n+1∩Wk,4/3 ∼ ‖(Uφ0,L−1(1 + l0)− 1)‖(H2n+1∩Wk,4/3)2

∼ ‖ψ0‖H2n+1∩Wk,4/3 ,

if ‖l0‖∞ is small enough. In particular we will simply write the smallness condition in term of
ψ0. Now using the embedding W k,4 →֒W 2,∞, the energy estimate of proposition (3.1) implies

‖ψ(t)‖H2n+1 ≤ ‖ψ0‖H2n+1exp

(
C

∫ t

0
H(‖ψ‖Xs , ‖

1

l + 1
‖L∞)(‖ψ‖Wk,4 + ‖ψ‖2Wk−1,4)ds

)
.

Combining it with the decay estimate of proposition (4.1) we get with G and H continuous:

‖ψ‖XT
≤ C1

(
‖ψ0‖Wk,4/3 + ‖ψ0‖H2n+1 + ‖ψ‖2XT

G(‖ψ‖XT
, ‖ 1

1 + l1
‖L∞

T (L∞))

+ ‖ψ0‖HN exp

(
C

∫ T

0
H(‖ψ‖XT

, ‖ 1

l + 1
‖L∞

T (L∞))(‖ψ‖Wk,4 + ‖ψ‖2Wk−1,4)ds

≤ C1

(
‖ψ0‖Wk,4/3 + ‖ψ0‖HN + ‖ψ‖2XT

G(‖ψ‖XT
, ‖ 1

1 + l1
‖L∞

T (L∞))

+ ‖ψ0‖H2n+1exp
(
C ′‖ψ‖XT

H(‖ψ‖XT
, ‖ 1

l + 1
‖L∞

T (L∞))
))
.

From the usual bootstrap argument, we find that for ‖ψ0‖Wk,4/3 + ‖ψ0‖HN ≤ ε small enough
then for any T > 0, ‖ψ‖XT

≤ 3C1ε (it suffices to note that for ε small enough, the application
m 7→ C1(ε+ εeC

′m +m2) is smaller than m on some interval [a, b] ⊂]0,∞[ with a ≃ 2C1ε).
In particular ‖l‖∞ . ε and up to diminishing ε, we have

‖ρ− ρc‖L∞([0,T ]×Rd) = ‖L−1(1 + l)− ρc‖∞ ≤ ρc/2.

This estimate and the H2n+1 bound allows to apply the blow-up criterion of [6] to get global
well-posedness.
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5 The case of dimension d=3,4: normal form, bounds for cubic

and quartic terms

In dimension d = 4 the approach of section 4 fails, and d = 3 is even worse. Thus we need to
study more carefully the structure of the nonlinearity. We start with (4.2), that we rewrite in
complex form

∂tψ − iHψ = U
[
(a(1 + l)− 1)∆l − 1

2

(
|∇φ|2 − |∇l|2

)
+ (2l − g̃(1 + l))

]

+i
[
−∇φ · ∇l +

(
1− a(1 + l)

)
∆φ)

]

= UN1(φ, l) + iN2(φ, l) = N (ψ). (5.1)

As explained in the introduction (see (1.11)), we can rewrite the Duhamel formula in term of
the profile e−itHψ. In particular, (the Fourier transform of) quadratic terms read

Iquad = eitH(ξ)

∫ t

0
e−is

(
H(ξ)∓H(η)∓H(ξ−η)

)
B(η, ξ − η)ψ̃±(η)ψ̃±(ξ − η)dηds, (5.2)

where we remind the notation ψ̃± = e∓itH ψ̂±, and B is the symbol of a bilinear multiplier.
For some ε > 0 to choose later, 1/p = 1/6− ε, T > 0 we set with N = 2n+ 1:





‖ψ‖YT = ‖xe−itHψ‖L∞
T (L2) + ‖〈t〉1+3εψ‖L∞

T (Wk,p),

‖ψ‖X(t) = ‖ψ(t)‖HN + ‖xe−itHψ(t)‖L2 + ‖〈t〉1+3εψ(t)‖Wk,p ,

‖ψ‖XT
= sup

[0,T )
‖ψ‖X(t).

(5.3)

From the embedding W 3,p ⊂W 2,∞, proposition 3.1 implies

‖ψ‖L∞
T H2n+1 . ‖ψ0‖H2n+1exp

(
C(‖l‖L∞ , ‖ 1

l + 1
‖L∞)(‖ψ‖XT

+ ‖ψ‖2XT
)).

with C a continuous function. Thus the main difficulty of this section will be to prove
‖Iquad‖YT . ‖ψ‖2XT

, uniformly in T . Combined with the energy estimate (5) and similar
(easier) bounds for higher order terms, this provides global bounds for ψ which imply global
well-posedness.

In order to perform such estimates we can use integration by part in (5.2) either in s or η
(for the relevance of this procedure, see the discussion on space time resonances in the intro-
duction). It is thus essential to study where and at which order we have a cancellation of

Ω±,±(ξ, η) = H(ξ)±H(η)±H(ξ−η) or ∇ηΩ±±. We will denote abusively H ′(ξ) = 2+2|ξ|2√
2+|ξ|2

the

radial derivative of H and note that ∇H(ξ) = H ′(ξ)ξ/|ξ|, we also point out that H ′(r) = 2+2r2√
2+r2

is stricly increasing.
There are several cases that have some similarities with the situation for the Schrödinger
equation, see (1.121.13, 1.14) for the definition of the resonant sets T , S, R.

• Ω++ = H(ξ) +H(η) +H(ξ − η) & (|ξ| + |η| + |ξ − η|)(1 + |ξ| + |η| + |ξ − η|), the time
resonant set is reduced to T = {ξ = η = 0},
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• Ω−− = H(ξ) − H(η) − H(ξ − η), we have ∇ηΩ−− = H ′(η) η|η| + H ′(ξ − η) η−ξ|η−ξ| . From
basic computations

∇ηΩ−− = 0 ⇒
{
H ′(η) = H ′(ξ − η)
ξ−η
|η−ξ| =

η
|η|

⇒
{

|η| = |ξ − η|
ξ = 2η

On the other hand Ω−−(2η, η) = H(2η)− 2H(η) = 0 ⇔ η = 0, thus R = {ξ = η = 0}.

• Ω−+ = H(ξ)−H(η) +H(ξ − η), from similar computations we find that the space-time
resonant set is R = S = {ξ = 0}. The case Ω+− is symmetric.

The fact that the space-time resonant set for Ω+− is not trivial explains why it is quite intricate
to bound quadratic terms. An other issue pointed out in [22] for their study of the Gross-
Pitaevskii equation is that the small frequency “parallel” resonances are worse than for the
nonlinear Schrödinger equation. Namely near ξ = εη, η << 1 we have

H(εη)−H(η)+H((ε−1)η) ∼ −3ε|η|3
2
√
2

=
−3|ξ| |η|2

2
√
2

, while |εη|2−|η|2+ |(1−ε)η|2 ∼ −2|η| |ξ|,

we see that integrating by parts in time causes twice more loss of derivatives than prescribed
by Coifman-Meyer’s theorem, and there is no hope even for ξ/Ω to belong to any standard
class of multipliers. Thus it seems unavoidable to use the rough multiplier theorem 2.4.

5.1 Normal form

In view of the discussion above, the frequency set {(ξ, η) : ξ = 0} is expected to raise some
special difficulty. On the other hand the real part of the nonlinearity in (5.1) is better behaved
than the imaginary part since it has the operator U(ξ) in factor whose cancellation near ξ = 0
should compensate the resonances. In the spirit of [22] we will use a normal form in order
to have a similar cancellation on the imaginary part. In order to write the nonlinearity as
essentially quadratic we set a′(1) = α, and rewrite

Im(N )(ψ) = −αl∆φ−∇φ · ∇l +
[(
1 + αl − a(1 + l)

)
∆φ

]
= −αl∆φ−∇φ · ∇l +R. (5.4)

From now on, we will use the notation R as a placeholder for remainder terms that should be
at least cubic. The detailed analysis of R will be provided in section 5.2. At the Fourier level,
the quadratic terms −αl∆φ−∇φ · ∇l can be written as follows:

− αl∆φ−∇φ · ∇l = −αdiv(l∇φ) + (α− 1)∇φ · ∇l. (5.5)

We define the change of variables as l → l − B[φ, φ] + B[l, l], with B a symmetric bilinear
multiplier to choose later. We have

∂t
(
−B[φ, φ] +B[l, l]

)
= 2B[φ, (−∆+ 2)l] + 2B[−∆φ, l]

+ 2B
[
φ,N1(φ, l)

]
+ 2B

[
N2(φ, l), l

]

= 2B[φ, (−∆+ 2)l] + 2B[−∆φ, l] +R,

(5.6)
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where the quadratic terms amount to a bilinear Fourier multiplier B′[φ, l], with symbol B′(η, ξ−
η) = 2B(η, ξ − η)

(
|η|2 + 2 + |ξ − η|2

)
. The evolution equation on l1 = l − B(φ, φ) + B(l, l) is

using (5.5), (5.6)

∂tl1 +∆φ = B′′(φ, l)− αdiv(l∇φ) +R,

B′′(η, ξ − η) = 2B(η, ξ − η)(2 + |η|2 + |ξ − η|2) + (1− α)η · (ξ − η).

The natural choice is thus to take (note that if α = 1 the normal form is just the identity)

B(η, ξ − η) =
(α− 1)η · (ξ − η)

2 + |η|2 + |ξ − η|2 .

For this choice, we have then:

∂tl1 +∆φ = −αdiv(l∇φ) +R, (5.7)

In addition from (4.1) we get:

∂tφ−∆l1 + 2l1 = −∆b(φ, l) + 2b(φ, l) + (a(1 + l)− 1)∆l − 1
2

(
|∇φ|2 − |∇l|2

)

+(2l − g̃(1 + l)),
(5.8)

with l1 = l −B[φ, φ] +B[l, l] = l + b(φ, l). Setting φ1 = Uφ the system becomes:

∂tφ1 +Hl1 = U

(
α l∆l − 1

2

(
|∇U−1φ1|2 − |∇l|2

)
+ (−∆+ 2)b(φ, l)− g̃′′(1)l2

)
+R,

∂tl1 −Hφ1 = −αdiv(l∇φ) +R.

Final form of the equation Finally, if we replace in the quadratic terms l = l1 − b(φ, l)
and set z = φ1 + il1 we obtain

∂tz − iHz = U
(
α l1∆l1 −

1

2

(
|∇U−1φ1|2 − |∇l1|2 − g̃′′(1)l21

)
+ (−∆+ 2)b(φ, l1)

)
− iαdiv(l1∇φ)

+U
(
α(−b(φ, l)∆l1 − l1∆b(φ, l) + b(φ, l)∆b(φ, l)− 2∇b(φ, l) · ∇l + |∇b(φ, l)|2

+(−∆+ 2)(−2B[l1, b(φ, l)] +B[b(φ, l), b(φ, l)])− g̃′′(1)(b(φ, l))2 + 2g̃′′(1)l1b(φ, l)
))

+iαdiv(b(φ, l)∇φ) +R

= Q(z) +R := Nz, (5.9)

where Q(z) contains the quadratic terms (the first line), R the cubic and quartic terms.

Remark 5.1. It is noticeable that this change of unknown is not singular in term of the new
variable φ1 = Uφ, indeed B(φ, φ) = B̃(∇φ,∇φ) where B̃(η, ξ − η) = α−1

(2+|η|2+|ξ−η|2) is smooth,

so that B(φ, φ) = B̃(∇U−1φ1,∇U−1φ1) acts on φ1 as a composition of smooth bilinear and
linear multipliers.

It remains to check that the normal form is well defined in our functional framework. We
shall also prove that is cancels asymptotically.
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Proposition 5.2. For N > 4, k ≥ 2, the map φ1 + il 7→ z := φ1 + i(l+ b(φ, l)) is bi-Lipschitz
on the neighbourhood of 0 in X∞, Moreover, ψ = φ1 + il and z have the same asymptotic as
t→ ∞:

‖ψ − z‖X(t) = O(t−1/2).

Proof. The terms B[φ, φ] and B[l, l] are handled in a similar way, we only treat the first case
which is a bit more involved as we have the singular relation φ = U−1φ1. Note that B[φ, φ] =
B̃(∇φ,∇φ), with B̃[η, ξ − η] = (α − 1) 1

2+|η|2+|ξ−η|2 , and ∇U−1 = 〈∇〉 ◦ Ri so there is no real

issue as long as we avoid the L∞ space. Also,we split B = Bχ|η|&|ξ−η|+B(1−χ|η|&|ξ−η|) where
χ is smooth outside η = ξ = 0, homogeneous of degree 0, equal to 1 near {|ξ − η| = 0} ∩ S2d−1

and 0 near {|η| = 0} ∩ S2d−1. As can be seen from the change of variables ζ = ξ − η, these
terms are symmetric so we can simply consider the first case.
By interpolation, we have:

∀ 2 ≤ q ≤ p, ‖ψ‖Wk,q . ‖ψ‖X(t)/〈t〉3(1/2−1/q). (5.10)

For the HN estimate we have from the Coifman-Meyer theorem (since the symbol B̃ has the
form 1

2+|η|2+|ξ−η|2 ), the embedding H1 7→ L3 and the boundedness of the Riesz multiplier,

‖B[U−1φ1, U
−1φ1]‖HN .

∥∥∇U−1φ1
∥∥
WN−2,3

∥∥∇U−1φ1
∥∥
L6 . ‖φ1‖2X(t)/〈t〉.

For the weighted estimate ‖xe−itHB[φ, φ]‖L2 , since φ = U−1(ψ+ψ)/2, we have a collection of
terms that read in the Fourier variable:

F
(
xe−itHB[U−1ψ±, U−1ψ±]

)
= ∇ξ

∫
e−itΩ±±B1(η, ξ − η)ψ̃±(η)ψ̃±(ξ − η)dη,

where B1 =
ηU−1(η) · (ξ − η)U−1(ξ − η)

2 + |η|2 + |ξ − η|2 χ|η|&|ξ−η|, Ω±± = −H(ξ)∓H(η)∓H(ξ − η).

If the derivative hits B1, in the worst case it adds a singular term U−1(ξ − η), so that from
the embedding Ḣ1 →֒ L6

∥∥∥∥
∫
e−itΩ±±(∇ξB1)ψ̃

±(η)ψ̃±(ξ − η)dη

∥∥∥∥
L2

=
∥∥∇ξB1[ψ

±, ψ±]
∥∥
L2 . ‖U−1ψ‖W 1,6‖ψ‖W 1,3

. ‖ψ‖2X(t)/〈t〉1/2.

If the derivative hits ψ̃±(ξ − η) we use the fact that the symbol
〈ξ−η〉2χ|η|&|ξ−η|

2+|η|2+|ξ−η|2 is of Coifman-
Meyer type

∥∥∥∥
∫
eitΩ±±B1(η, ξ − η)ψ̃±(η)∇ξψ̃

±(ξ − η)dη

∥∥∥∥
L2

. ‖〈∇〉ψ‖L6‖〈∇〉−2〈∇〉eitHxe−itHψ‖L3

. ‖ψ‖2X(t)/〈t〉.
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Finally, if the derivative hits e−itΩ±± we note that ∇ξΩ±± = ∇ξH(ξ) ∓ ∇ξH(ξ − η), where
both term are multipliers of order 1 so

∥∥∥∥
∫
eitΩ±±it(∇ξΩ±±)B1ψ̃

±(η)ψ̃±(ξ − η)dη

∥∥∥∥
L2

. t‖ψ‖W 1,3‖ψ‖W 1,6

. ‖ψ‖2X(t)/〈t〉1/2.

The W k,p norm is also estimated using the Coifman-Meyer theorem and the boundedness of
the Riesz multipliers:

‖B1[ψ
±(t), ψ±(t)]‖Wk,p . ‖ψ‖2

Wk−1,1/12−ε/2 . ‖ψ‖2
Wk,1/6−ε .

‖ψ‖2X(t)

〈t〉2+6ε
.

Gluing all the estimates we have proved

‖B[U−1ψ,U−1ψ]‖2X(t) . ‖ψ‖2X(t)/〈t〉1/2, ‖B[U−1ψ,U−1ψ]‖2X . ‖ψ‖2X ,

thus using the second estimate we obtain from a fixed point argument that the map φ1 + il 7→
φ1 + i(l − B[φ, φ] + B[l, l]) defines a diffeomorphism on a neighbourhood of 0 in X. The first
estimate proves the second part of the proposition.

With similar arguments, we can also obtain the following:

Proposition 5.3. Let z0 = Uφ0+i(l0−B[φ0, φ0]+B[l0, l0]), the smallness condition of theorem
(2.2) is equivalent to the smallness of ‖z0‖H2n+1 + ‖xz0‖L2 + ‖z0‖Wk,p.

5.2 Bounds for cubic and quartic nonlinearities

Let us first collect the list of terms in R (see (5.4), (5.6), (5.9) ) with b = b(φ, l):

(1 + αl − (a(1 + l))∆φ, B[φ,N1(φ, l)], B[N2(φ, l), l], iαdiv(b∇φ),
U
(
α(−b∆l1 − l1∆b+ b∆b− 2∇b · ∇l + |∇b|2(−∆+ 2)b(φ,−b)− 2B[l1, b] +B[b, b]

)
.

We note that they are all either cubic (for example B[φ, |∇φ|2]) or quartic (for example B[b, b]).
B is a smooth bilinear multiplier and as we already pointed out, φ always appears with a
gradient, we can replace everywhere φ by φ1 = Uφ up to the addition of Riesz multipliers.
Since the estimates are relatively straighforward, we only detail the case of the cubic term
B[φ, |∇φ|2] which comes from B[φ,N1(φ)] (quartic terms are simpler). Since φ = U−1(ψ+ψ)/2
we are reduced to bound in YT (see 5.3) terms of the form

I(t) =

∫ t

0
ei(t−s)HB[U−1ψ±, |U−1∇ψ±|2]ds.

Proposition 5.4. For any T > 0, we have the a priori estimate

sup
[0,T ]

‖I(t)‖YT . ‖ψ‖3XT
.
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Proof. The weighted bound

First let us write

xe−itHI(t) =
∫ t

0
e−isH

(
(−is∇ξH)B[U−1ψ±, (U−1∇ψ±)2] +B[U−1ψ±, x(U−1∇ψ±)2]

+∇ξB[U−1ψ±, (U−1∇ψ±)2]
)
ds,

= I1(t) + I2(t) + I3(t).

Taking the L2 norm and using the Strichartz estimate with (p′, q′) = (2, 6/5) we get

‖I1‖L∞
T L2 . ‖(s∇ξH)B[U−1ψ±, (U−1∇ψ±)2]‖L2(L6/5)

. ‖sB[U−1ψ±, (U−1∇ψ±)2]‖L2(W 1,6/5),

‖I2‖L∞
T L2 . ‖B[U−1ψ±, x(U−1∇ψ±)2]‖L2(L6/5).

We have then from Coifman-Meyer’s theorem, Hölder’s inequality, continuity of the Riez op-
erator and (5.10)

‖sB[U−1ψ±, (U−1∇ψ±)2]‖L2
T (W 1,6/5) .

∥∥s‖ψ‖2W 2,6‖ψ‖H2

∥∥
L2
T
. ‖ψ‖3XT

,

‖I2‖L∞
T (L2) .

∥∥‖ψ‖W 1,6‖x(∇U−1ψ±)2‖
L

3
2

∥∥
L2
T
.

(5.11)

The loss of derivatives in I2 can be controlled thanks to a paraproduct: let (χj)j≥0 with∑
χj(ξ) = 1, supp(χ0) ⊂ B(0, 2), supp(χj) ⊂ {2j−1 ≤ ξ ≤ 2j+1}, j ≥ 1, and set ∆̂jψ := χjψ̂,

Sjψ =
∑j

0∆kψ. Then

(U−1∇ψ±)2 =
∑

j≥0

(∇U−1Sjψ
±)(∇U−1∆jψ

±) +
∑

j≥1

(∇U−1Sj−1ψ
±)(∇U−1∆jψ

±)

For any term of the first scalar product we have

x
(
(∂kU

−1Sjψ
±)(∂kU

−1∆jψ
±)

)
= (∂kU

−1Sjxψ
±)(∂kU

−1∆jψ
±)

+([x, ∂kU
−1Sj ]ψ

±)(∂kU
−1∆jψ

±).

From Hölder’s inequality, standard commutator estimates, the Besov embedding W 3,6 →֒ B2
6,1

and (6.1) we get

∑

j

‖(∂kU−1Sjxψ
±)(∂kU

−1∆jψ
±)‖L3/2 .

∑

j

2j‖xψ‖L22j‖∆jψ‖L6 . ‖xψ‖L2‖ψ‖W 3,6 , (5.12)

∑

j

‖([x, ∂kU−1Sj ]ψ
±)(∂kU

−1∆jψ
±)‖L3/2 . ‖U−1ψ‖H1‖ψ‖W 1,6 . ‖ψ‖2XT

/〈t〉.(5.13)

Moreover, xψ = xeitHe−itHψ = eitHxe−itHψ + it∇ξHψ so that :

‖xψ(t)‖L2 . 〈t〉‖ψ‖XT
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Similar computations can be done for
∑

j≥1(∇U−1Sj−1ψ
±)(∇U−1∆jψ

±), finally (5.12), (5.13)
and (5.10) imply

‖x(U−1∇ψ±)2‖L3/2 . ‖ψ‖2XT
.

Plugging the last inequality in (5.11) we can conclude

‖I2‖L∞
T L2 .

∥∥‖ψ‖3XT
/〈t〉‖L2

T
. ‖ψ‖3XT

.

The W k,p decay We can apply the dispersion estimate in the same way as in section 4:

∥∥∥∥
∫ t−1

0
ei(t−s)HB[U−1ψ±, (U−1∇ψ±)2]ds

∥∥∥∥
Wk,p

.

∫ t−1

0

‖B[U−1ψ±, (U−1∇ψ±)2]‖Wk,p′

(t− s)1+3ε
ds

.

∫ t−1

0

‖∇U−1ψ‖3
Wk,3p′

(t− s)1+3ε

.

∫ t−1

0

‖ψ‖3
Wk+1,3p′

(t− s)1+3ε
(5.14)

We then use interpolation and the estimate (5.10) with q = p′, we have then:

‖ψ‖Wk+1,3p′ . ‖ψ‖(J−1)/J

Wk,3p′
‖ψ‖1/J

Wk+J,3p′
, ‖ψ(t)‖Wk,3p′ .

‖ψ‖XT

(1 + t)2/3−ε
.

Since 3p′ < 6, we have ‖ψ‖Wk+J,3p′ . ‖ψ‖Hk+J+1 by Sobolev embedding, so that for ε small
enough, J large enough such that (2 − 3ǫ)(1 − 1

J ) ≥ 1 + 3ǫ (but J ≤ N − k − 1) we observe
that:

‖ψ‖3
Wk+1,3p′ .

‖ψ‖3XT

〈t〉1+3ǫ

Plugging this inequality in (5.14) we conclude that:

∫ t−1

0

‖ψ‖3
Wk+1,3p′

(t− s)1+3ε
.

‖ψ‖3XT

〈t〉1+3ε
.

For the integral on [t−1, t] it suffices to bound ‖
∫ t
t−1 e

i(t−s)HB[U−1ψ±, (U−1∇ψ±)2]ds‖Wk,p .

‖
∫ t
t−1 ‖B[U−1ψ±, (U−1∇ψ±)2]ds‖Hk+2 and follow the argument of the proof of proposition

4.1.

6 Bounds for quadratic nonlinearities in dimension 3, end of

proof

The following proposition will be repeatedly used (see proposition 4.6 [4] or [22]).

Proposition 6.1. We have the following estimates with 0 ≤ θ ≤ 1:

‖ψ(t)‖Ḣ−1 . ‖ψ(t)‖X(t), (6.1)
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‖U−2ψ‖L6 . ‖ψ(t)‖X(t) (6.2)

‖|∇|−2+ 5θ
3 ψ<1(t)‖L6 . min(1, t−θ)‖ψ(t)‖X(t),

‖|∇|θψ≥1(t)‖L6 . min(t−θ, t−1)‖ψ(t)‖X(t).
(6.3)

‖U−1ψ(t)‖L6 . 〈t〉− 3
5 ‖ψ(t)‖X(t), (6.4)

In this section, we will assume ‖ψ‖XT
<< 1, for the only reason that

∀m > 2, ‖ψ‖2XT
+ ‖ψ‖mXT

. ‖ψ‖2XT
.

All computations that follow can be done without any smallness assumption, but they would
require to always add in the end some ‖ψ‖mXT

, that we avoid for conciseness.

6.1 The L
p decay

We now prove decay for the quadratic terms in (5.9), namely

〈t〉1+3ε‖
∫ t

0
ei(t−s)HQ(z)(s)ds‖Wk,p . ‖z‖2XT

.

For t ≤ 1, the estimate is a simple consequence of the product estimate ‖Q(z)‖Hk+2 . ‖z‖2
HN

and the boundedness of eitH : Hs 7→ Hs. Thus we focus on the case t ≥ 1 and note that it is
sufficient to bound t1+3ε‖

∫ t
0 e

i(t−s)HQ(z)(s)ds‖Wk,p .
We recall that the quadratic terms have the following structure (see (5.9))

Q(z) = U
(
α l1∆l1 −

1

2

(
|∇U−1φ1|2 − |∇l1|2 − g̃′′(1)l21

)
+ (−∆+ 2)b(φ, l1)

)
− iαdiv(l1∇U−1φ1),

(6.5)

where b = −B[φ, φ] +B[l1, l1], B(η, ξ− η) = (α−1)η·(ξ−η)
2+|η|2+|ξ−η|2 so that any term in Q is of the form

(U ◦Bj)[z±, z±], j = 1 · · · 5 where Bj satisfies Bj(η, ξ − η) . 2 + |η|2 + |ξ − η|2.

6.1.1 Splitting of the phase space

We split the phase space (η, ξ) in non time resonant and non space resonant sets: let (χa)a∈2Z
standard dyadic partition of unity: χa ≥ 0, supp(χa) ⊂ {|ξ| ∼ a}, ∀ ξ ∈ R3\{0}, ∑a χ

a(ξ) = 1.

We define the frequency localized symbol Ba,b,c
j = χa(ξ)χb(η)χc(ζ)Bj .

Note that due to the relation ξ = η + ζ, we have only to consider Ba,b,c
j when a . b ∼ c, b .

c ∼ a or c . a ∼ b. We will define in the appendix two disjoint sets of indices NT ,NS such
that NT ∪NS = Z3 and which correspond, in a sense precised by lemma 6.1,6.2 to non time
resonant and non space resonant frequencies. Provided such sets have been constructed, we
write

∑

a,b,c

∫ t

0
ei(t−s)HUBa,b,c

j [z±, z±](s)ds =

∫ t

0
ei(t−s)H

∑

a,b,c∈NT
UBa,b,c,T

j +
∑

a,b,c∈NS
UBa,b,c,X

j ds

:=
∑

a,b,c∈NT
Ia,b,c,T +

∑

a,b,c∈NS
Ia,b,c,X
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For (a, b, c) ∈ NT (resp. NS) we will use an integration by parts in time (resp. in the “space”
variable η).

6.1.2 Control of non time resonant terms

The generic frequency localized quadratic term is

eitH(ξ)

∫ t

0

∫

Rd

(
e−is(H(ξ)∓H(η)∓H(ξ−η)U(ξ)Ba,b,c,T

j (η, ξ − η)z̃±(s, η)z̃±(s, ξ − η)

)
dη ds(6.6)

Regardless of the ±, we set Ω = H(ξ) ∓ H(η) ∓ H(ξ − η). An integration by part in s

gives using the fact that e−isΩ = −1
iΩ ∂s(e

isΩ) and ∂sz̃±(η) = e∓isH(η)(Nz)
±(η), ∂sz̃±(ξ − η) =

e∓isH(ξ−η)(Nz)
±(ξ − η):

Ia,b,c,T =F−1(eitH(ξ)

(∫ t

0

∫

RN

(
1

iΩ
e−isΩU(ξ)Ba,b,c,T

j (η, ξ − η)∂s
(
z̃±(η)z̃±(ξ − η)

))
dηds

)

−
[
F−1(eitH(ξ)

(∫

RN

(
1

iΩ
e−isΩ(ξ,η)U(ξ)Ba,b,c,T

j (η, ξ − η)
(
z̃±(η)z̃±(ξ − η)

))
dηds

)]t

0

=

∫ t

0
ei(t−s)H

(
Ba,b,c,T3 [(Nz)

±, z±] + Ba,b,c,T3 [z±, (Nz)
±]
)
ds

−
[
ei(t−s)HBa,b,c,T3 [z±, z±]

]t
0
,

(6.7)

with Ba,b,c,T3 (η, ξ − η) =
U(ξ)

iΩ
χa(ξ)χb(η)χc(ξ − η)Bj(η, ξ − η).

In order to use the rough multiplier estimate from theorem 2.4, we need to control Ba,b,c,T3 .
The following lemma extends to our settings the crucial multiplier estimates from [22].

Lemma 6.1. Let m = min(a, b, c), M = max(a, b, c), l = min(b, c). For 0 < s < 2, we have

if M & 1, ‖Ba,b,c,T3 ‖[Bs] .
〈M〉l 32−s

〈a〉 , if M << 1, ‖Ba,b,c,T3 ‖[Bs] . l1/2−sM−s. (6.8)

We postpone the proof to the appendix.

Remark 6.2. We treat differently M small and M large since we have a loss of derivative on
the symbol in low frequencies. Let us mention that the estimate (6.8) can be written simply
as follows:

‖Ba,b,c,T3 ‖[Bs] .
〈M〉〈l〉l 12−sU(M)−s

〈a〉
Lets us start by estimating the first term in (6.7): we split the time integral between [0, t−1]

and [t− 1, t]. The sum over a, b, c involves three cases: b . a ∼ c, c . a ∼ b and a . b ∼ c.
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The case b . a ∼ c: for k1 ∈ [0, k] we have from theorem 2.4 with σ = 1 + 3ε:

‖∇k1

∫ t−1

0
ei(t−s)H

∑

b.a∼c
Ba,b,c,T3 [N±

z , z
±]ds‖Lp

.

∫ t−1

0

1

(t− s)1+3ε

∑

b.a∼c
〈a〉k1‖Ba,b,c,T3 [N±

z , z
±]‖Lp′ds,

.

∫ t−1

0

1

(t− s)1+3ε

( ∑

b.a∼c.1

ab‖Ba,b,c,T3 ‖[Bσ ]‖U−1Q(z)‖L2‖U−1z‖L2

+
∑

b.a∼c,1.a
〈c〉−N+kU(b)‖Ba,b,c,T3 ‖[Bσ ]‖U−1Q(z)‖L2‖〈∇〉Nz‖L2

)
ds+R

(6.9)

where R =

∫ t−1

0

1

(t− s)1+3ε

∑

b.a∼c
〈a〉k1‖Ba,b,c,T3 [R±, z±]‖Lp′ds. Using lemma 6.1 we have, pro-

vided ǫ < 1
12 and N − k − 1

2 + 3ǫ > 0:

∑

b.a∼c.1

ab‖Ba,b,c,T3 ‖[Bσ ] .
∑

a.1

∑

b.a

abb1/2−1−3εa−1−3ε .
∑

a.1

a1/2−6ε . 1,

∑

b.a∼c, a&1

U(b)〈c〉−N+k‖Ba,b,c,T3 ‖[Bσ ] .
∑

a&1

∑

b.a

U(b)
b
1
2
−3ǫ

aN−k .
∑

a&1

1

aN−k +
∑

a&1

1

aN−k− 1
2
+3ǫ

. 1.

Using the gradient structure of Q(z) (see 5.9) :

‖U−1Q(z)‖L2 . ‖z‖2W 2,4 . ‖z‖
3
2

W 2,6‖z‖
1
2

H2 , (6.10)

so that if we combine these estimates with (6.1), we get

‖∇k1

∫ t−1

0
ei(s−t)H

∑

b.a∼c
Ba,b,c,T3 [Q(z)±, z]ds‖Lp . ‖z‖3X

∫ t−1

0

1

(t− s)1+3ε

1

〈s〉 3
2

ds

.
‖z‖3X
t1+3ε

.

We bound now R from (6.9): contrary to the quadratic terms, cubic terms have no gradient
structure, however the nonlinearity is so strong that we can simply use ‖1|η|.1U

−1R‖2 .

‖R‖L6/5 . Using the same computations as for quadratic terms we get

‖∇k1

∫ t−1

0
ei(t−s)H

∑

b.a∼c
Ba,b,c,T3 [R, z±]ds‖Lp

.

∫ t−1

0

1

(t− s)1+3ε

(
‖1{|η|.1}U

−1R‖L2‖U−1z‖L2 + ‖U−1R‖L2‖〈∇〉Nz‖L2

)
ds.
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According to (5.9) the cubic terms involve only smooth multipliers and do not contain deriva-
tives of order larger than 2, thus we can generically treat them like (〈∇〉2z)3 using the propo-
sition 5.2; we have then:

‖R‖L6/5 . ‖z‖H2‖z‖2W 2,6 .
‖z‖3X
〈t〉2 , ‖R‖L2 . ‖z‖3W 2,6 .

‖z‖3X
〈t〉2 .

This closes the estimate as

∫ t−1

0

1

(t− s)1+3ε〈s〉2ds .
1

t1+3ε
. We proceed similarly for the

quartic terms.
It remains to deal with the term

∫ t
t−1, using Sobolev embedding we have:

‖∇k1

∫ t

t−1
ei(t−s)H

∑

b.a∼c
Ba,b,c,T3 [N±

z , z
±]ds‖Lp .

∫ t

t−1
‖(· · · )‖Hk2ds,

with k2 = k+1+3ε. Again, with σ = 1+3ε we get using theorem 2.4 and Sobolev embedding:

‖∇k1

∫ t

t−1
ei(t−s)H

∑

b.a∼c
Ba,b,c,T3 [N±

z , z
±]ds‖Lp .

∫ t

t−1
‖

∑

b.a∼c
Ba,b,c,T3 [N±

z , z
±]‖Hk2ds

.

∫ t

t−1

( ∑

b.a∼c.1

ab‖Ba,b,c,T3 ‖[Bσ ]‖U−1Q‖L2‖U−1z‖Lp

+
∑

b.a∼c,1.a
U(b)ak2−(N−1−3ǫ)‖Ba,b,c,T3 ‖[Bσ ]‖U−1Q‖L2‖〈∇〉Nz‖L2

)
ds+R,

where R contains higher order terms that are easily controlled. Using ‖U−1z‖Lp . ‖z‖H2 and
the same estimates as previously, we can conclude provided that N is sufficiently large:

‖∇k1

∫ t

t−1
ei(t−s)H

∑

b.a∼c
Ba,b,c,T3 [N±

z , z
±]ds‖Lp . ‖u‖3X

∫ t

t−1

1

〈s〉3/2ds .
‖z‖3X
t1+3ε

.

The case c . a ∼ b As for b . a ∼ c we start with

‖∇k1

∫ t−1

1
ei(t−s)H

∑

c.a∼b
Ba,b,c,T3 [N±

z , z
±]ds‖Lp

.

∫ t−1

1

1

(t− s)1+3ε

( ∑

c.a∼b.1

bc‖Ba,b,c,T3 ‖[Bσ ]‖U−1Q(z)‖L2‖U−1z‖L2

+
∑

c.a∼b,1.a
〈b〉−1‖Ba,b,c,T3 ‖[Bσ ]‖〈∇〉k+1Q(z)‖L2‖z‖L2

)
ds+R.

with σ = 1 + 3ε and R contains the other nonlinear terms (which, again, we will not detail).
This case is symmetric from b . a ∼ c except for the term ‖〈∇〉k+1Q(z)‖L2 , which is estimated
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as follows. Let 1/q = 1/3 + ε, k3 = 1
2 − 3ε. If k + 2 + k3 ≤ N then using the structure of Q

(see (6.5)) and Gagliardo Nirenberg inequalities we get:

‖〈∇〉k+1Q(z)‖L2 . ‖z‖W 2,p‖z‖Wk+3,q . ‖z‖W 2,p‖z‖Hk+3+k3 . ‖z‖2X/〈t〉1+3ε,

Using the multiplier bounds as for the case b . a ∼ c, we obtain via the lemma 6.1:

‖∇k1

∫ t−1

0
ei(t−s)H

∑

c.a∼b
Ba,b,c,T3 [N±

z , z
±]ds‖Lp .‖z‖3X

∫ t−1

0

1

(t− s)1+3ε

1

〈s〉(1+3ε)
ds

.
‖z‖3X
t1+3ε

.

The bound for the integral on [t− 1, t] is obtained by similar arguments.

The case a . b ∼ c We have using theorem 2.4 and the fact that the support of
F(

∑
a.b a

k1Ba,b,c,T3 [N±
z , z

±]) is localized in a ball B(0, b) :

‖∇k1

∫ t−1

0
ei(t−s)H

∑

a.b∼c
Ba,b,c,T3 [N±

z , z
±]ds‖Lp

.

∫ t−1

0

1

(t− s)1+3ε
‖

∑

a.b∼c
ak1Ba,b,c,T3 [N±

z , z
±]‖Lp′ds

.

∫ t−1

0

1

(t− s)1+3ε

∑

b∼c

1

〈b〉N−2
U(b)U(c)‖

∑

a.b

〈a〉kBa,b,c,T3 ‖[Bσ ]‖U−1Q(z)‖L2‖U−1〈∇〉Nz‖L2ds

+R,

where as previously, R is a remainder of higher order terms that are not difficult to bound.
We observe that for any symbols (Ba(ξ, η)) such that

∀ η, |a1 − a2| ≥ 2 ⇒ supp(Ba1(·, η)) ∩ supp(Ba2(·, η)) = ∅,

then
‖
∑

a

Ba‖[Bσ ] . sup
a

‖Ba‖[Bσ ]. (6.11)

This implies using lemma 6.1 and provided that N is large enough:

∑

b∼c

1

〈b〉N−2
U(b)U(c)‖

∑

a.b

〈a〉kBa,b,c,T3 ‖[Bσ ] .
∑

b

1

〈b〉N−2
U(b)2 sup

a.b
〈a〉k b

1
2
−σU(M)−σ〈b〉〈M〉

〈a〉

.
∑

b

U(b)5/2−2σ

〈b〉N+σ−k−7/2
. 1.
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We have finally using (6.10):

‖∇k1

∫ t−1

0
ei(t−s)H

∑

a.b∼c
Ba,b,c,T3 [N±

z , z
±]ds‖Lp . ‖z‖3X

∫ t−1

0

1

(t− s)1+3ε

1

〈s〉3/2ds

.
‖u‖3X
t1+3ε

.

We proceed in a similar way to deal with the integral on [t − 1, t]. This end the estimate for
the first term in (6.7).

The second term is symmetric from the first, it remains to deal with the boundary term:
‖∇k1

[
ei(t−s)HBa,b,c,T3 [z±, z±]

]t
0
‖Lp . We have:

‖
[
∇k1ei(t−s)HBa,b,c,T3 [z±, z±]

]t
0
‖Lp ≤‖∇k1e−itHBa,b,c,T3 [z±0 , z

±
0 ]‖Lp

+ ‖∇k1Ba,b,c,T3 [z±(t), z±(t)]‖Lp

(6.12)

The first term on the right hand-side of (6.12) is easy to deal with using the dispersive estimates
of the theorem 2.5. For the second term we focus on the case b . a ∼ c, the other areas can be
treated in a similar way. Using proposition 6.1, Sobolev embedding and the rough multiplier
theorem 2.4 with s = 1 + 3ǫ, q1 = q2 = q3 = p (which verifies 2 ≤ p = 6

3−2ǫ) we have:

∑

b.a∼c.1

‖∇k1Ba,b,c,T3 [z±(t), z±(t)]‖Lp .
∑

b.a∼c
b−

1
2
−3ǫa−1−3ǫU(b)U(c)‖U−1z‖2Lp

.
∑

b.a∼c
b−

1
2
−3ǫa−1−3ǫU(b)U(c)‖U−1+3ǫz‖2L6 .

‖z‖2X
〈t〉 6

5
+6ǫ

,

∑

b.a∼c, a&1

‖∇k1Ba,b,c,T3 [z±(t), z±(t)]‖Lp .
∑

b.a∼c, a&1

〈a〉k1b1/2−3ǫ

〈a〉k1+1
‖z‖Lp‖z‖Wk1+1,p .

‖z‖2X
〈t〉 3

2
(1+ǫ)

where in the last inequality we also used ‖z‖2
Wk+1,6 . ‖z‖Wk,p‖z‖Wk+2,p . ‖z‖Wk,p‖z‖HN .

6.1.3 Non space resonance

In this section we treat the term
∑

a,b,c I
a,b,c,X . Since control for t small just follows from the

HN bounds, we focus on t ≥ 1, and first note that the integral over [0, 1] ∪ [t− 1, t] is easy to
estimate.

Bounds for (
∫ 1
0 +

∫ t
t−1)e

i(t−s)HQ(z)ds

In order to estimate ‖∇k1

∫ t

t−1
ei(t−s)HQ(z)ds‖Lp , with k1 ∈ [0, k] we can simply use Sobolev’s

embedding (Hk+2 →֒ W k,p, HN →֒ W k+4,q) and a Gagliardo-Nirenberg type inequality (2.4)
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with 1
2 = 1

q +
1
p :

‖
∫ t

t−1
∇k1ei(t−s)HQ(z)ds‖Lp .

∫ t

t−1
‖Q(z)‖Hk+2ds

.

∫ t

t−1
‖z‖Wk+4,q‖z‖Wk,pds

. ‖z‖2X
∫ t

t−1

1

〈s〉1+3ε
ds .

‖z‖2X
〈t〉1+3ε

.

The estimate on [0, 1] follows from similar computations using Minkowski’s inequality and the
dispersion estimate from theorem 2.5.

Frequency splitting

Since we only control xe−itHz in L∞L2, in order to handle the loss of derivatives we follow
the idea from [15] which corresponds to distinguish low and high frequencies with a threshold

frequency depending on t. Let θ ∈ C∞
c (R+), θ|[0,1] = 1, supp(θ) ⊂ [0, 2], Θ(t) = θ( |D|

tδ
), for

any quadratic term Bj [z, z], we write

Bj [z
±, z±] =

high frequencies︷ ︸︸ ︷
Bj [(1−Θ(t))z±, z±] +Bj [Θ(t)z±, (1−Θ)(t)z±] +

low frequencies︷ ︸︸ ︷
Bj [Θ(t)z±,Θ(t)z±] .

High frequencies

Using the dispersion theorem 2.5, Gagliardo-Nirenberg estimate (2.4) and Sobolev embedding
we have for 1

p1
= 1

3 + ε and for any quadratic term of Q writing under the form UBj [z
±, z±]:

∥∥∥∥
∫ t−1

1
ei(t−s)H

(
UBj [(1−Θ(t))z±, z±] + UBj [Θ(t)z, (1−Θ)(t)z±]

)
ds

∥∥∥∥
Wk,p

≤
∫ t−1

1

1

(t− s)1+3ε
‖z‖Wk+2,p1‖(1−Θ(s))z‖Hk+2ds

≤
∫ t−1

1

1

(t− s)1+3ε
‖z‖2HN

1

sδ(N−2−k)ds,

(6.13)

choosing N large enough so that δ(N − 2− k) ≥ 1 + 3ε, we obtain the expected decay.

Low frequencies

Following the section 6.1.2, we have to estimate quadratic term of the form UBj [z
±, z±] wich

leads to consider:

FIa,b,c,X3 = eitH(ξ)

∫ t−1

1

∫

RN

(
(e−isΩUBa,b,c,X

j (η, ξ − η)Θ̃z±(s, η)Θ̃z±(s, ξ − η)

)
dηds,
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with Ω = H(ξ) ∓H(η) ∓H(ξ − η). Using e−isΩ =
i∇ηΩ

s|∇ηΩ|2
· ∇ηe

−isΩ and denoting Ri = ∇
|∇|

the Riesz operator, Θ′(t) := θ′( |D|
tδ
), J = eitHxe−itH , an integration by part in η gives:

Ia,b,c,X3 =−F−1(eitH(ξ)

(∫ t−1

1

1

s

∫

RN

(
e−isΩ(ξ,η)Ba,b,c,X1,j (η, ξ − η) · ∇η[Θz̃±(η)Θz̃±(ξ − η)]

+ Ba,b,c,X2,j (η, ξ − η)Θ̃z±(η)Θ̃z±(ξ − η)dη
)
ds

)

=−
∫ t−1

1

1

s
ei(t−s)H

(
Ba,b,c,X1,j [Θ(s)(Jz)±,Θ(s)z±]− Ba,b,c,X1,j [Θ(s)z±,Θ(s)(Jz)±]

+ Ba,b,c,X2,j [Θ(s)z±,Θ(s)z±]
)
ds

−
∫ t−1

1

1

s
ei(t−s)H

(
Ba,b,c,X1,j [

1

sδ
RiΘ′(s)z±,Θ(s)z±]

− Ba,b,c,X1,j [Θ(s)z±,
1

sδ
RiΘ′(s)z±]

)
ds.

(6.14)
with:

Ba,b,c,X1,j =
U(ξ)∇ηΩ

|∇ηΩ|2
Ba,b,c,X
j , Ba,b,c,X2,j = ∇ηB

a,b,c,X
1,j .

The following counterpart of lemma 6.1 slightly improves the estimates from [22].

Lemma 6.2. Denoting M = max(a, b, c), m = min(a, b, c) and l = min(b, c) we have:

• If M << 1 then for 0 ≤ s ≤ 2:

‖Ba,b,c,X1,j ‖[Bs] . l
3
2
−sM1−s, ‖Ba,b,c,X2,j ‖Hs . l

1
2
−sM−s, (6.15)

• If M & 1 then for 0 ≤ s ≤ 2:

‖Ba,b,c,X1,j ‖[Bs] . 〈M〉2l3/2−s〈a〉−1, ‖Ba,b,c,X2,j ‖[Bs] . 〈M〉2l1/2−s〈a〉−1, (6.16)

We now use these estimates to bound the first term of (6.14). Since they are independent
of j we now drop this index for concision. As in paragraph 6.1.2 the j index is dropped for
conciseness, and there are three areas to consider: b . c ∼ a, c . c . a ∼ b, a . b ∼ c.

The case c . a ∼ b Let ε1 > 0 to be fixed later. Using Minkowski’s inequality,
dispersion and the rough multiplier theorem 2.4 with s = 1 + ε1,

1
q = 1/2 + ǫ − ǫ1

3 for a . 1,
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s = 4/3, 1
q1

= 7/18 + ǫ for a & 1 we obtain

∥∥∇k1

∫ t−1

1

1

s
ei(t−s)H

∑

c.a∼b
Ba,b,c,X1 [Θ(s)(Jz)±,Θ(s)z±]ds

∥∥
Lp

.

∫ t−1

1

1

s(t− s)1+3ε

∑

c.a∼b.1

‖Ba,b,c,X1 ‖[B1+ε1 ]‖Θ(s)Jz‖L2‖Θ(s)z]‖Lq

+
∑

c.a∼b, 1.a.sδ
ak‖Ba,b,c,X1 ‖[B4/3]‖Θ(s)Jz‖L2‖Θ(s)z]‖Lq1

)
ds

.

∫ t−1

1

1

s(t− s)1+3ε

(∑

a.1

∑

c.a∼b
‖Ba,b,a,X1 ‖[B1+ε1 ]‖Θ(s)Jz‖L2‖Θ(s)z]‖Lq

+
∑

1.a.sδ

ak
∑

c.a∼b
‖Ba,b,c,X1 ‖[B4/3]‖Θ(s)Jz‖L2‖Θ(s)z]‖Lq1

)
ds

Using lemma 6.2 and interpolation we have for ε1 < 1/4 and ε1 − 3ε > 0,

∑

a.1

∑

c.a∼b
‖Ba,b,c,X1 ‖[B1+ε1 ] .

∑

a.1

a1−(1+ε1)
∑

c.a

c
3
2
−(1+ε1) . 1,

‖ψ(s)‖Lq . ‖ψ(s)‖
ǫ1−3ǫ
1+3ǫ

Lp ‖ψ(s)‖1−
ǫ1−3ǫ
1+3ǫ

L2 .
‖ψ‖X
sε1−3ε

.

In high frequencies we have:

∑

1.a.sδ

ak
∑

c.a∼b

〈M〉2c3/2−4/3

〈a〉 . sδ(k+7/6), ‖ψ(s)‖Lq1 .
‖ψ‖X
s1/3−3ε

Finally we conclude that if min
(
ε1 − 3ε, 1/3 − 3ε − δ(k + 7/6)

)
≥ 3ε (this choice is possible

provided ε and δ are small enough):

‖∇k1

∫ t−1

1

1

s
e−i(t−s)H

(∑

a,b,c

Ba,b,c,X1 [Θ(s)(Jz)±,Θ(s)z±]ds‖Lp .

∫ t−1

1

‖z‖2X
s1+3ε(t− s)1+3ε

ds

.
‖z‖2X
t1+3ε

.

The case b . c ∼ a is very similar, the case a . b ∼ c involves an infinite sum over a
which can be handled as in the non time resonant case with observation (6.11). The term

∇k1

∫ t−1

1

1

s
ei(t−s)HBa,b,c,X1 [Θ(s)z±,Θ(s)(Jz)±]ds is symmetric while the terms

‖∇k1

∫ t−1

1

1

s
ei(t−s)H

(
Ba,b,c,X1 [

1

sδ
RiΘ′(s)z±,Θ(s)z±]

− Ba,b,c,X1 [Θ(s)z±,
1

sδ
RiΘ′(s)z±]

)
ds‖Lp ,
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are simpler since there is no weighted term Jz involved.

The last term to consider is

∥∥∇k1

∫ t−1

1

1

s
ei(t−s)H

∑

a,b,c

Ba,b,c,X2 [Θ(s)z±,Θ(s)z±]ds
∥∥
Lp .

Let us start with the zone b . a ∼ c. We use the same indices as for Ba,b,c1 : s = 1 + ε1,
1
q = 1/2 + ε− ε1/3, s1 = 4/3, 1

q1
= 7/18 + ε,

∥∥∇k1

∫ t−1

1

1

s
ei(t−s)H

∑

b.a

Ba,b,c,X2 [Θ(s)z±,Θ(s)z±]ds
∥∥
Lp

.

∫ t−1

1

1

s(t− s)1+3ε

(∑

a.1

∑

b.a∼c
U(b)U(c)‖Ba,b,c,X2 ‖[B1+ε1 ]‖U−1Θ(s)z‖L2‖U−1Θ(s)z]‖Lq

+
∑

1.a.sδ

ak
∑

b.a∼c

U(b)

〈c〉k ‖B
a,b,c,X
2 ‖[B4/3]‖U−1Θ(s)z‖L2‖〈∇〉kΘ(s)z]‖Lq1

)
ds

(6.17)
For M . 1 we have if ε1 < 1/4:

∑

a.1

∑

b.c∼a
U(b)U(c)‖Ba,b,c,X2 ‖[B1+ε1 ] .

∑

a.1

∑

b.c∼a
b1/2−ε1a−ε1 . 1.

Furthermore we have from proposition 6.1:

‖U−1ψ(s)‖L2 . ‖ψ‖X , ‖U−1ψ(s)‖Lq . ‖U−1ψ‖1−ε1+3ε
L2 ‖U−1ψ‖ε1−3ε

L6 .
‖ψ‖X
s

3(ε1−3ε)
5

,

Now for M & 1

∑

1.a.sδ

ak
∑

b.c∼a

U(b)〈M〉2b1/2−4/3

〈a〉〈c〉k .
∑

1.a.sδ

a . sδ, ‖〈∇〉kΘ(s)z‖Lq1 .
‖z‖X
s1/3−3ε

.

If min
(
3(ε1 − 3ε)/5, 1/3− 3ε− δ

)
& 3ε, injecting these estimates in (6.17) gives

∥∥∇k1

∫ t−1

1

1

s
ei(t−s)H

( ∑

b.c∼a
Ba,b,c,X2 [Θ(s)Jz,Θ(s)z]ds

∥∥
Lp .

∫ t−1

1

‖z‖2X
(t− s)1+3εs1+3ε

ds .
‖z‖2X
t1+3ε

.

The two other cases c . a ∼ b and a . b ∼ c can be treated in a similar way, we refer again to
the observation (6.11) in the case a . b ∼ c.
It concludes this section, the combination of paragraphs 6.1.2 and 6.1.3 gives

∥∥∥∥
∫ t

0
ei(t−s)HQ(z(s))ds

∥∥∥∥
Wk,p

.
‖z‖2X + ‖z‖3X

〈t〉1+3ε
.

Remark 6.3. From the energy estimate, we recall that we need k ≥ 3 (see (5.3)). The strongest
condition on N seems to be (N − 2 − k)δ > 1. In the limit ε → 0, we must have at least
1/3− δ(k + 7/6) > 0, so that N ≥ 18.
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6.2 Bounds for the weighted norm

The estimate for ‖x
∫ t
0 e

−isHBj [z, z]ds‖L2 can be done with almost the same computations as
in section 10 from [22]. The only difference is that Gustafson et al deal with nonlinearities
without loss of derivatives. As we have seen in paragraph 6.1, the remedy is to use appropriate
frequency truncation, so we will only give a sketch of proof for the bound in this paragraph.

First reduction Applying xe−itH to the generic bilinear term U ◦ Bj [z±, z±], we have for
the Fourier transform:

F
(
xe−itH

∫ t

0
ei(t−s)HUBj [z±, z±]

)
=

∫ t

0

∫

Rd

∇ξ

(
e−isΩUBj(η, ξ − η)z̃±(s, η)z̃±(s, ξ − η)

)
dη ds

(6.18)
As the XT norm only controls ‖Jz‖L2 , we have to deal with the loss of derivative in the
nonlinearities. It is then convenient that ξ − η . η in order to absorb the loss of derivatives;
to do this we use a cut-off function θ(ξ, η) which is valued in [0, 1], homogeneous of degree 0,
smooth outside of (0, 0) and such that θ(ξ, η) = 0 in a neighborhood of {η = 0} and θ(ξ, η) = 1
in a neighborhood of {ξ − η = 0} on the sphere. Using this splitting we get two terms

∫ t

0

∫

Rd

∇ξ

(
e−isΩUBj(η, ξ − η)θ(ξ, η)z̃±(s, η)z̃±(s, ξ − η)

)
dη ds,

∫ t

0

∫

Rd

∇ξ

(
e−isΩ(1− θ(ξ, η))UBj(η, ξ − η)z̃±(s, η)z̃±(s, ξ − η)

)
dη ds.

(6.19)

By symmetry it suffices to consider the first one which corresponds to a region where |η| &
|ξ|, |ξ − η| so that we avoid loss of derivatives for ∇ξ z̃±(s, ξ − η).

An estimate in a different space and high frequency losses Depending on which term
∇ξ lands, the following integrals arise:

FI1 =
∫ t

0

∫

RN

e−isΩ∇(η)
ξ (θ(ξ, η)UBj(η, ξ − η))z̃±(s, η)z̃±(s, ξ − η)dηds,

FI2 =
∫ t

0

∫

RN

e−isΩθ(ξ, η)UBj(η, ξ − η)z̃±(s, η)∇(η)
ξ z̃±(s, ξ − η)dηds,

FI3 =
∫ t

0

∫

RN

e−isΩ(is∇ξΩ)θ(ξ, η)UBj(η, ξ − η)z̃±(s, η)z̃±(s, ξ − η)dηds

:= F
(∫ t

0
e−isHsBj [z±, z±]ds

)
,

with:
Bj(η, ξ − η) = (is∇ξΩ)θ(ξ, η)UBj(η, ξ − η).

The control of the L2 norm of I1 and I2 is not a serious issue: basically we deal here with smooth
multipliers, and from the estimate ‖z xe−itHz‖L1

TL
2 . ‖z‖L1

TL
∞‖xe−itHz‖L∞

T L2 . ‖z‖2XT
it is

apparent that we can conclude. The only point is that we can control the loss of derivative
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on Jz via the truncation function θ1 and it suffices to absorb the loss of derivatives by z. Due
to the s factor, the case of I3 is much more intricate and requires to use again the method of
space-time resonances.
Let us set

‖z‖ST
= ‖z‖L∞

T H1 + ‖U−1/6z‖L2
TW

1,6 ,

‖z‖WT
= ‖xe−itHz‖L∞

T H1 .

Gustafson et al prove in [22] the key estimate

∥∥
∫ t

0
e−isHsB[z±, z±]ds

∥∥
L∞
T L2 . ‖z‖2ST∩WT

,

where B is a class of multipliers very similar to our Bj , the only difference being that they are
associated to semi-linear nonlinearities, and thus cause no loss of derivatives at high frequencies.
We point out that the ST norm is weaker than the XT norm, indeed ‖U−1/6z‖L2

TW
1,6 .

‖z‖L2
TW

2,9/2 . ‖z‖XT
‖1/〈t〉5/6‖L2

T
. ‖z‖XT

. Moreover we have already seen how to deal with

high frequency loss of derivatives by writing (see paragraph 6.1.3)

Bj [z±, z±] = Bj [1−Θ(t)z±, z±] + Bj [Θ(t)z±, z±]. (6.20)

Let 1/q = 1/3+ ε, the first term is estimated using Sobolev embedding and the fact that N is
large enough compared to δ:

∥∥
∫ t

0

∫

RN

e−isHsBj [z±, z±]ds
∥∥
L2 .

∫ t

0
s‖(1−Θ(s))z‖W 3,q‖z‖W 3,pds .

∫ t

0

‖z‖HN ‖z‖XT

〈s〉(N−4)δ
ds

. ‖z‖2XT
.

The estimate of the second term of (6.20) follows from the (non trivial) computations in [22],
section 10. They are very similar to the analysis of the previous section (based on the method
of space-time resonances), for the sake of completeness we reproduce hereafter a small excerpt
from their computations.
As in section 6.1, one starts by splitting the phase space

∫ t

0
ei(t−s)HsBj [Θ(s)z±, z±]ds =

∑

a,b,c

∫ t

0
ei(t−s)Hs

(
Ba,b,c,Tj + Ba,b,c,Xj

)
[Θ(s)z±, z±]ds

For the time non-resonant terms, an integration by parts in s implies:

∫ t

0
ei(t−s)HsBa,b,c,Tj [Θ(s)z±, z±]ds

= −
∫ t

0
eisH

(
(B′

j)
a,b,c,T [Θ(s)z±, z±]ds+ (B′

j)
a,b,c,T [sΘ(s)N±

z , z
±]

+(B′
j)
a,b,c,T [Θ(s)z±, sN±

z ] + (B′
j)
a,b,c,T [−δs−δΘ(s)|∇|z±, z±]

)
ds

+
[
eisH(B′

j)
a,b,c,T [sΘ(s)z±, z±]

]t
0
,

(6.21)
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with:

(B′
j)
a,b,c,T =

1

Ω
Ba,b,c,Tj =

i∇ξΩ

Ω
Ba,b,c,T
j θ(ξ, η),

We only consider the second term in the right hand side of (6.21), in the case c . b ∼ a. All
the other terms can be treated in a similar way. The analog of lemma 6.1 in these settings is
the following:

Lemma 6.3. Denoting M = max(a, b, c), m = min(a, b, c) and l = min(b, c) we have:

‖(B′
j)
a,b,c,T ‖[Hs] . 〈M〉2

(〈M〉
M

)s
l
3
2
−s〈a〉−1. (6.22)

We have then by applying theorem 2.4:

‖
∫ T

0
e−isH

∑

c.a∼b
(B′

j)
a,b,c,T [sΘ(s)N z±, z±]ds‖L2

.
∥∥ ∑

c.a∼b

U(c)

〈b〉2 ‖(B′
j)
a,b,c,T ‖[B1+ε]‖s〈∇〉2Nz‖L2‖U−1z‖L∞(L6)

∥∥
L1
T

(6.23)
From lemma 6.3 we find

∑

c.a∼b
U(c)‖(B′

3)
a,b,c,T ‖[B1] .

∑

c.a

U(c)

〈a〉2 〈a〉
2a−1c

1
2 ,

.
∑

a≤1

a1/2 +
∑

a≥1

a−1/2 . 1.
(6.24)

Next we have (as previously forgetting cubic and quartic nonlinearities)

‖〈∇〉2Nz‖L2 . ‖z‖2W 4,4 . ‖z‖2XT
/〈s〉3/2,

and from (6.4) ‖U−1z(s)‖L6 . 〈s〉−3/5 so that

‖
∫ T

0
e−isH

∑

c.a∼b
(B′

j)
a,b,c,T [sN z±, z±]ds‖L2 . ‖‖z‖3XT

〈s〉−21/10‖L1
T
. ‖z‖3XT

.

6.3 Existence and uniqueness

The global existence follows from the same argument as in dimension larger than 4: forN = 3, 4
combining the energy estimate (proposition 3.1), the a priori estimates for cubic, quartic
(section 5.2) and quadratic nonlinearities (section 6) and the proposition 5.2 we have uniformly
in T

‖ψ‖XT
≤ C1

(
‖ψ0‖Wk,4/3 + ‖ψ0‖HN + ‖ψ‖2XT

G(‖ψ‖XT
, ‖ 1

1 + l1
‖L∞

T (L∞))

+ ‖ψ0‖H2n+1exp
(
C ′‖ψ‖XT

H(‖ψ‖XT
, ‖ 1

l + 1
‖L∞

T (L∞))
))
.
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with G and H continuous functions so that from the standard bootstrap argument and the
blow up criterion (see page 3) the local solution is global.

6.4 Scattering

It remains to prove that e−itHψ(t) converges in Hs(R3), s < 2n+ 1. This is a consequence of
the following lemma:

Lemma 6.4. For any 0 ≤ t1 ≤ t2, we have

‖
∫ t2

t1

eisHNψds‖L2 .
‖ψ‖2X

(t1 + 1)1/2
. (6.25)

Proof. We focus on the quadratic terms since the cubic and quartic terms give even stronger
decay. From Minkowski and Hölder’s inequality and the dispersion ‖ψ‖Lp ≤ ‖ψ‖X

〈t〉+3(1/2−1/p) :

‖
∫ t2

t1

e−i(t−s)HNψds‖L2 .

∫ t2

t1

‖〈∇〉2ψ〈∇〉2ψ‖L2ds, .

∫ t2

t1

‖〈∇〉2ψ‖2L4ds,

. ‖ψ‖2X
∫ t2

t1

1

〈s〉d/2ds.

Interpolating between the uniform bound in H2n+1 and the decay in L2 we get

‖e−it1Hψ(t1)− e−it2Hψ(t2)‖Hs . 1/〈t1〉(2n+1−s)/(4n+2),

thus e−itHu converges in Hs for any s < 2n + 1. For d = 3, the convergence of xe−itHψ
in L2 follows from an elementary but cumbersome inspection of the proof of boundedness of

xe−itHψ. If one replaces everywhere
∫ t

0
xe−isHNzds by

∫ t2

t1

xe−isHNzds, every estimates ends

up with ‖ψ‖2X
∫ t2
t1
/(1 + s)1+ε

′
ds, k = 2, 3, 4, ε′ > 0, so that xe−itHψ is a Cauchy sequence in

L2. A careful inspection of the proof would also allow to quantify the value of ε′.

A The multiplier estimates

The aim of this section is to provide a brief sketch of proof of lemmas 6.2 and 6.1, let us recall
that B1, B2 and B3 depend on the phase Ω = H(ξ)∓H(η)∓H(ξ − η) in the following way

Ba,b,c,T3 =
Bj
Ω
U(ξ)χaχbχc,

Ba,b,c,X1,j =
Bj∇ηΩ

|∇ηΩ|2
U(ξ)χa(ξ)χb(η)χc(ξ − η),

Ba,b,c,X2,j = ∇η

(
Bj

∇ηΩ

|∇ηΩ|2
U(ξ)χa(ξ)χb(η)χc(ξ − η)

)
,
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Recall the notations:

|ξ| ∼ a, |η| ∼ b, |ζ| ∼ c,

M = max(a, b, c), m = min(a, b, c), l = min(b, c).
(A.1)

The function χa, resp. χb, χc, are smooth cut-off functions that localize near |ξ| ∼ a (resp
|η| ∼ b, |ζ| ∼ c). We set as in [22]:

α = |ζ̂ − ξ̂|, β = |ζ̂ + η̂|, η⊥ = ξ̂ × η. (A.2)

As a first reduction, we point out that the B′
js satisfy the pointwise estimate

∇kBj(η, ξ − η)| . 〈M〉2l−k (A.3)

We will see that the term l−k causes less loss of derivatives than if ∇η hits 1/Ω and |∇ηΩ|,
so that it will be sufficient to derive pointwise estimates for ∇k(U/Ω), ∇k(U∇ηΩ/|∇ηΩ|2, and
then multiply them by 〈M2〉 to obtain pointwise estimates for the full multiplier.

A.1 The +− case

If Ω = H(ξ) + H(η) − H(ξ − η) Gustafson et al in [22] decompose the (ξ, η, ζ) region (with
ζ = ξ − η) into the following five cases where each later case excludes the previous ones:

1. |η| ∼ |ξ| >> |ζ| (or c << b ∼ a) temporally non-resonant.

2. α >
√
3 temporally non-resonant.

3. |ζ| ≥ 1 spatially non-resonant.

4. |η⊥| << M |η| temporally non resonant.

5. Otherwise spatially non-resonant.

The estimates of lemmas 6.26.1 are essentially a consequence of the pointwise estimates in [22],
section 11, except in the fifth case where we provide a necessary improvement. We sketch all
five cases for completeness,

1. If |η| ∼ |ξ| >> |ζ|, we have

|Ω| = Ω = H(ξ) +H(η)−H(ζ) ≥ H(M) ∼M〈M〉. (A.4)

|∇ζΩ| . |∇H(η)| . 〈M〉, |∇2
ζΩ| .

〈m〉
m

. (A.5)

From these estimates, the Bj estimate (A.3), the volume bound |{|ζ| ∼ m}| ∼ m3 and

an interpolation argument we obtain
∥∥U(ξ)Bj

Ω
χaχbχc

∥∥
L∞
ξ (Ḣs

ζ )
. m

3
2
−s, which is better

than (6.8).
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2. In the second case α >
√
3 so that |ζ| ∼ |η| & |ξ|.

We cut-off the multipliers by: χ[α] = Γ(ξ̂− ζ̂), for a fixed Γ ∈ C∞(R3) satisfying Γ(x) = 1

for |x| ≥
√
3 and Γ(x) = 0 for |x| ≤ 3

2 . In this region,

|Ω| ≥ 〈M〉|ξ| ∼ 〈M〉m, |∇ηΩ| .
Mm

〈M〉 +
〈M〉m
M

.
|Ω|
M
, (A.6)

|∇2
ηΩ| = |∇2H(η)−∇2H(ζ)| = |∇2H(η)−∇2H(−ζ)| . 〈M〉m

M2
.

|Ω|
M2

. (A.7)

As a consequence:

‖U(ξ)

Ω
χ[α|χ

aχbχc‖L∞
ξ (Ḣs

η)
.

〈M〉2
m〈M〉

M
3
2

M s

m

〈m〉 =
〈M〉M 3

2
−s

〈m〉 ∼ 〈M〉l 32−s
〈a〉 . (A.8)

Remark A.1. The use of the normal form is essential here as for general Ba,b,c
j we

would obtain in equation (A.8):

‖U(ξ)

Ω
χ[α|χ

aχbχc‖L∞
ξ (Ḣs

η)
.

b3/2

m〈M〉M s〈m〉 (A.9)

and the term 1
m could not be controlled. The same issue applies for the next areas.

3. The case M ∼ |ζ| & 1 and α <
√
3. We remind that the symbols to estimate are:

∇ηΩ

|∇ηΩ|2
U(ξ)χa(ξ)χb(η)χc(ξ − η),∇η · ((Ba,b,c,X1 )′) (A.10)

According to [22], the pointwise estimates in this region are

|∇ηΩ| ∼ ||ζ| − |η||+ 〈η〉β & |ξ|, |∇k
ηΩ| .

〈ζ〉
|ζ| |ξ| |η|

1−k . |ξ| |η|1−k. (A.11)

Differentiating causes the same growth near |η| = 0 as in (A.3), we deduce for s ∈ [0, 2]

∥∥Bj
∇ηΩ

|∇ηΩ|2
χC[α]U(ξ)χa(ξ)χb(η)χc(ξ − η)

∥∥
Ḣs

η
.

〈M〉2b 3
2

abs
U(a) = 〈M〉2l 32−s〈a〉−1,

∥∥∇η ·
( ∇ηΩ

|∇ηΩ|2
·BjχC[α]U(ξ)χa(ξ)χb(η)χc(ξ − η)

)∥∥
Ḣs

η
. l

1
2
−s〈a〉−1.

(A.12)

4. The case |η⊥| << M |η| corresponds to a low frequency region, where the symbol has a
“wave-like” behaviour. In this region

1 >> M ∼ |ζ|, α <
√
3, |η⊥| = |η|| sin((̂η, ξ))| << M |η|, (A.13)

The localization uses the (singular) cut-off multiplier χ[⊥] = χ

( |η⊥|
100Mb

)
with χ ∈

C∞
0 (R) satisfying χ(u) = 1 for |u| ≤ 1 and χ(u) = 0 for |u| ≥ 2. In particular
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|∇k
ηχ[⊥]| .

( 1

Mb

)k
, for all k ≥ 1. The worst case is M = |ζ|, in this case Ω does

not cancel thanks to the slight radial convexity of H:

Ω = H(ξ + η)−H(ξ)−H(η) ∼ |ξ||η|(|ξ|+ |η|)
〈ξ〉+ 〈η〉 ∼M2m, |∇ηΩ| << |ξ|. (A.14)

For higher derivatives we have:

|∇1+k
η Ω| = |∇k+1H(η)−∇k+1H(ζ)| . |ξ|

M |η|k , |∇
k
ηBj | . l−k. (A.15)

For |η| ∼ b, |η⊥| << Mb, the region has for volume bound b(Mb)2 = M2b3, we get by
integration (for s integer) and interpolation

∥∥∥∥
U(ξ)

Ω
χ[⊥]χ

C
[α]χ

aχbχc
∥∥∥∥
L2
η

.
U(a)(M2b3)1/2

M2m(Mb)s
. l

1
2
−sM−s. (A.16)

5. In the last case we need a slight refinement of the symbol estimates from [22]: in the fifth
area, |η⊥| &Mb ∼ |ζ||η|, M ∼ |ζ| << 1, α = |ζ̂ − ξ̂| ≤

√
3.

We have |∇ηΩ| = |H ′(|η|)η̂ +H ′(|ζ|)ζ̂| ∼ H ′(|η|)−H ′(|ζ|) + |η̂ + ζ̂| ≥ |η̂ + ζ̂|, and

|η̂ + ζ̂| ≥ |η ∧ ζ|
|η||ζ| =

|η ∧ (ξ − η)|
|η||ζ| =

|η ∧ ξ|
|η||ζ| =

|η⊥||ξ|
|η||ζ| .

indeed, if η, ζ form an angle θ, |η ∧ ζ| = |η||ζ|| sin θ| and |η̂+ ζ̂| ≥ | sin θ)|. Thus |∇ηΩ| &
|ξ||η⊥|/(|η||ζ|) & |ξ| (in [22], the authors only used |∇ηΩ| & |ζ| |ξ|).
For the higher derivatives, we combine (A.15) with |∇ηΩ| & |ξ||η⊥|/|η||ζ| to get

∀ k ≥ 2,
|∇k

ηΩ|
|∇ηΩ|

.
|ξ|

M |η|k−1β
.

1

|η|k−2|η⊥| . (A.17)

so that we have the pointwise estimate

∣∣∣∣∇k
η

∇ηΩ

|∇ηΩ|2
∣∣∣∣ ∼

1

|∇Ω|

( |∇2
ηΩ|

|∇ηΩ|

)k
.

1

|ξ||η⊥|k .

Following [22], we then use a dyadic decomposition |η⊥| ∼ µ ∈ 2jZ, Mb . µ . b. For
each µ integrating gives a volume bound µb1/2 and using interpolation we get for s > 1

‖U(ξ)/|∇ηΩ|‖Ḣs
η
.

∑

Mb.µ.b

U(a)µb1/2

aµs
∼ l3/2−sM1−s

A.2 The other cases

The −+ case This case is clearly symmetric from the +− case.
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The −− case The decomposition follows the same line as in [22]. Note however that the
analysis is simpler at least for M ≥ 1. Indeed in this area |∇ηΩ| ∼ |H ′(η) − H ′(ζ)| + |η̂ −
ζ̂| &

∣∣|η| − |ζ|
∣∣ + |η̂ − ζ̂| ∼ |η − ζ| so that we might split it as {|η − ζ| & max(|η|, |ζ|)} and

{|η− ζ| << max(|η|, |ζ|)}. The first region is obviously space non resonant. The second region
is time non resonant, indeed since M & 1 we have in this region |ξ| ∼ |η| ∼ |ζ| & 1. Using a
Taylor development gives

H(ξ)−H(η)−H(ζ) = H(2η+ ζ − η)−H(η)−H(η+ ζ − η) = H(2η)− 2H(η)+O(〈a〉|ζ − η|),

this last quantity is bounded from below by |η|2 for |η| & 1, |ζ − η| small enough.
For M < 1, we can follow the same line as for ZZ by inverting the role of ξ and ζ. Note that
the improved estimate in the last area relied on |∇ηΩ+−| & |η̂ + ζ̂| ≥ |η⊥|ξ|/(|η||ζ|) and can

just be replaced by |∇ηΩ−−| & |η̂ − ζ̂| ≥ |η⊥|ξ|/(|η||ζ|).

The ++ case We have Ω = H(ξ) +H(η) +H(ζ) & (|ξ| + |η| + |ζ|)(1 + |ξ| + |η| + |ζ|), the
area is time non resonant.
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