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Global wellposedness and scattering for 3D energy critical
Schrödinger equation with repulsive potential and radial data
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Abstract. In this paper, we show that the Cauchy problem of the 3D nonlinear Schrödinger
equation with repulsive potential is globally wellposed if the initial data u0 is spherically sym-
metric and u0 A S ¼ f f ; f A H 1; xf A L2g. We also prove that the scattering operator is holo-
morphic from the radial functions in S to themselves. In order to preclude the possible energy
concentration, we first show the energy concentration may occur only at finite time by using
the decay estimate of potential energy kuðtÞk6, then we preclude the possible finite time energy
concentration by inductive arguments.
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1 Introduction

In this paper, we consider the Cauchy problem of defocusing energy critical equation
with repulsive potential,

iqt þ
D

2

� �
u ¼ � jxj2

2
u þ juj4u; ðx; tÞ A R3 �R;ð1:1Þ

uðx; 0Þ ¼ u0ðxÞ; x A R3;ð1:2Þ

where uðt; xÞ is a complex function on R3 �R, u0ðxÞ is a complex function on R3

satisfying

u0 A S ¼ fv; kvkS ¼ kvkH 1 þ kxvk2 < yg1:

We are concerned with the global existence and long time behavior of the global
solution.

The author is supported in part by N.S.F. grant No. 10426029 and the Morningside Center.
1 In three and higher dimension, the facts that xu A L2 and ‘u A L2 imply automatically that
u A L2, and of course imply that u A S by Hardy and Hölder inequality.



Nonlinear Schrödinger equation without potential has been extensively studied.
Here, we restrict our discussion to the Cauchy problem of the equation with power-
like nonlinearity:

iqt þ
D

2

� �
v ¼ mjvjp

v; m0 0;ð1:3Þ

vð0Þ ¼ v0 A H 1
x ;ð1:4Þ

m is a constant, the cases m > 0 and m < 0 correspond to defocusing and focusing
respectively. (1.3) has energy conservation,

EðtÞ ¼ 1

2
k‘vðtÞk2

2 þ
m

p þ 2
kvðtÞkpþ2

pþ2 ¼ const:

The local theory of the Cauchy problem (1.3)–(1.4) can be roughly summarized as
follows: (1.3) has a unique local solution in Cð½0;TÞ;H 1Þ, when p is smaller than or
equals to a certain exponent pc ¼ 4

n�2 (pc ¼ 4 when n ¼ 3) which is called energy
critical for the reason that the natural scale invariance

vðx; tÞ ! l�2=pvðl�1x; l�2tÞ

of the equation leaves the energy invariant. In the supercritical case p > pc, (1.3)
is locally illposed in the sense that the solution vðx; tÞ does not depend continuously
on the initial data v0ðxÞ in H 1 space. To get more details, see [4], [5], [10], [6] for
instance. In the defocusing and subcritical case, the global existence is a direct con-
sequence of the energy conservation. In the focusing case m < 0, blow up in finite
time may occur, especially when the influence of potential energy kvkpþ2

pþ2 surpasses
that of kinetic energy k‘vk2

2, see [9], [4] to get more details. The case of energy critical
becomes rather di‰cult because the pure energy conservation is not enough to ensure
the finite energy solution to exist globally. In other words, even the total energy of the
solution is finite, part of it may possibly concentrate somewhere in space, so that the
solution blows up in finite time.

The first important work in this area is due to J. Bourgain [1] and M. Grillakis [12].
They pointed out that the solution will concentrate somewhere in Rd unless the so-
lution exists globally. To preclude this possibility, they use a Morawetz type estimate,

ð
I

ð
K jI j1=2

jvjpcþ2ðx; tÞ
jxj dx dtaCKEðvÞjI j1=2; K b 1:ð1:5Þ

The estimates of this type is originally due to J. Lin and W. Strauss in [14], and is
adapted here to better suit the energy critical problem of NLS. Actually, (1.5) is useful
for preventing the concentration of vðt; xÞ at origin x ¼ 0. This is especially helpful
when the solution is radially symmetric since in this case, one can use the bounded
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energy estimate to show that v will not concentrate at any other location than the
origin. Their results are restricted to d ¼ 3; 4. Recently in [16], T. Tao proved the
energy critical Cauchy problem with radial data is globally wellposed and scattering
result holds in all dimensions d b 3 by a sightly simple approach.

A great breakthrough was made by J. Colliander, M. Keel, G. Sta‰lani, H. Ta-
kaoka, and T. Tao in [7], where they obtained the global wellposedness and scatter-
ing for 3D energy critical NLS with arbitrary initial data. The results were extended
to 4D by E. Ryckman and M. Visan in [15] and were extended to all dimensions
nb 5 by M. Visan [18].

Schrödinger equation with harmonic potential and power-like nonlinearity can be
written in the form,

iqt þ
D

2

� �
u ¼ ojxj2

2
u þ mjujpu:ð1:6Þ

Being similar with the NLS equation without potential, we call (1.6) is energy sub-
critical and critical if p < pc and p ¼ pc, with the same pc defined before. In both
subcritical and critical case, because of the presence of the potential term, it’s natural
to seek for the solution of the Cauchy problem for this equation with suitable decay
in space, ie,

u A CtðSÞ:ð1:7Þ

Indeed, recently in [2], [3], R. Carles systematically studied the Cauchy problem for
equation (1.6) with subcritical nonlinearity. He found that in the defocusing case and
when a repulsive potential (ie., o ¼ �1) is involved, the solution will be global and a
scattering theory is available. In the focusing case, a su‰cient strong repulsive po-
tential will even prevent blow up in finite time. By ‘‘strong repulsive’’ potential, he
means that o < 0 and joj is su‰ciently large.

The problem remains open as to what will happen when the nonlinearity is energy
critical, that is, p ¼ pc ¼ 4

n�2 , nb 3. In this paper, we restrict our attention to the
case n ¼ 3, o ¼ �1, m ¼ 1 and the radial solution. The higher dimensional case will
be considered elsewhere. We will show that the Cauchy problem (1.1)–(1.2) is glob-
ally wellposed, and the scattering operator is holomorphic from the radial function in
S to itself. In the remaining part of this introduction, we will sketch the proofs.

To begin with, we see that the equation (1.1) has mass and energy conservation,

kuðtÞk2 ¼ const;ð1:8Þ

EðuðtÞÞ ¼ 1

2
k‘uðtÞk2

2 �
1

2
kxuðtÞk2

2 þ
1

3
kuðtÞk6

6 ¼ const;ð1:9Þ

the energy (1.9) is non-positive, so we split it into two positive parts:
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ð1:10Þ
E1ðuðtÞÞ ¼

1

2
k‘uðtÞk2

2 þ
1

3
kuðtÞk6

6;

E2ðuðtÞÞ ¼
1

2
kxuðtÞk2

2;

and consider the Cauchy problem with E1ðuð0ÞÞ ¼ E1, E2ðuð0ÞÞ ¼ E2 for some fixed
constant E1 > 0, E2 > 0. Occasionally, we may drop u from the notation EiðuðtÞÞ for
simplicity.

Although E1ðtÞ and E2ðtÞ are nonnegative all the time, we don’t have any easily
obtained information about their evolution. For this reason, we introduce another
way that is provided by R. Carles [2], [3] to split the energy:

ð1:11Þ
E1ðtÞ ¼

1

2
kJðtÞuðtÞk2

2 þ
1

3
cosh2 tkuðtÞk6

6;

E2ðtÞ ¼
1

2
kHðtÞuðtÞk2

2 þ
1

3
sinh2 tkuðtÞk6

6;

E1ðtÞ � E2ðtÞ ¼ EðtÞ and they coincide with E1ðtÞ and E2ðtÞ only at t ¼ 0. The benefit
of this decomposition is that neither of E1ðtÞ, E2ðtÞ increases in time, also, the poten-
tial energy decays fast. (See Section 2 for details). Using these facts in addition to
Strichartz estimate, it’s not di‰cult to get global solution in the subcritical case.
However, in the critical case, the decay estimates of E1ðtÞ and E2ðtÞ can’t prevent
immediately the occurrence of the finite time blow up.

Next, we will establish the local wellposedness, give as well the blow up criterion
which says that the local solution will blow up in finite time unless it has certain
spacetime bound. In principle, there are many choices about the spacetime bound, we
prefer to working on the L10 spacetime bound for the simplicity of the exposition
(L10 bound here will be defined clearly later). In addition, we get the global well-
posedness provided the kinetic energy of the initial data k‘u0k2 is su‰ciently small.

To extend the local solution to a global one, we will prove the ‘‘good local well-
posedness’’ which means the time length of the local solution will be proved to de-
pend on the S norm of the initial data only. On the other hand, since the quantities
E1ðtÞ, E2ðtÞ have at most exponentially growth by using the boundedness of E1ðtÞ,
E2ðtÞ and the relationship between them, we conclude that the solution is global and
has finite spacetime control on any spacetime slab I �Rn, jI j < y.

Once the global solution is obtained, the scattering theory is easily available by the
fast decay of the potential decay.

Now, let’s make precisely the ‘‘good local wellposedness’’. It means that: There
exists a small constant h1 ¼ h1ðE1;E2Þ > 0 such that the Cauchy problem (1.1), (1.2)
is at least wellposed on ½�h4

1 ; h
4
1 � and

kukL10ð½�h4
1
;h4

1
�;L10Þ aCðE1;E2Þ:
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Thanks to the local solution theory, we need only to prove the above estimate by
assuming apriori that the solution has existed on the interval ½�h4

1 ; h
4
1 �. And we will

prove this by adopting the idea in [1], [16].
Fix the small constant h1 such that it satisfies all the conditions that will appear in

the proof, we subdivide ½0; h4
1 � into J1 intervals and ½�h4

1 ; 0� into J2 intervals such that
on each subinterval Ij, kukL10ðIj ;L10Þ is comparable with h1. We do analysis forward in
time and only give the estimate of J1 for simplicity. By some technical computation
and the radial assumption, we get energy localization: there exists a time in each
subinterval such that the local kinetic energy and the local mass near the origin is not
small, we often refer this as a ‘‘bubble’’ at origin when it occurs. If the volume of
every bubble is sizeable by the length of the corresponding time interval, then the
solution is soliton-like and J1 can be estimated by using Morawetz estimate. Other-
wise, there is concentration for E1ðuðt�ÞÞ at some t� A ð0; h4

1Þ. Now we need to esti-
mate J1 in this case.

By removing the small bubble (because of the concentration), we get a new function
wðt�Þ for which E1ðwðt�ÞÞaE1ðuðt�ÞÞ � ch3

1 . The di¤erence in size between E1ðuðt�ÞÞ
and E1ðuð0ÞÞ can be controlled roughly by Ch4

1 , therefore, we get E1ðwðt�ÞÞa
E1 � Ch4

1 . At the same time, the size E2ðwðt�ÞÞ will have slight increment Ch4
1 com-

paring with E2ðuð0ÞÞ, therefore, we get E2ðwðt�ÞÞaE2 þ Ch4
1 .

Now, we are almost near the end of the argument if we can make an inductive
assumption like following: the Cauchy problem of (1.1) is wellposed at least on
½�h4

1 ; h
4
1 �, if the initial data satisfies that E1ðu0ÞaE1 � Ch4

1 , E2ðu0ÞaE2 þ Ch4
1 .

An obvious flaw of this assumption is that the constant may not be uniform in
the process of the induction because of the slight increment of the size of E2ð�Þ,
however, since the total increment of the process is at most E1, (when the size of E1ð�Þ
becomes very tiny), we can choose a constant h1 depending on E1, E1 þ E2 to avoid
such problem. Now, let’s clarify the inductive process: we begin with a Cauchy
problem with initial E1ð0Þ < � and E2ð0Þ < E1 þ E2, which is globally wellposed by
small global theory; then we claim the Cauchy problem with initial E1ð0Þ < �þ h4

1 ,
E2ð0Þ < E1 þ E2 � h4

1 is at least wellposed on ½�h4
1 ; h

4
1 � by the same concentration

analysis; after finite steps, we can cover the case for which the initial E1ð0ÞaE1 and
E2ð0ÞaE2.

Combining the inductive assumption and the perturbation arguments, we
finally give the control of J1 and J2, therefore concluding the proof of the main
theorems.

The remaining part of this paper is arranged as follows: In Section 2, we give some
notations and some basic estimates. They include: Littlewood-Paley decomposition,
Galilean operators, Strichartz estimates for the linear operator with potential, basic
properties of Galilean operator, etc. In the first part of Section 3, we give the local
wellposedness and global small solution theory. In the second part, we use the decay
estimate to reduce the problem to proving a ‘‘good local wellposedness’’ result.
Section 4 through Section 8 are devoted to prove this good local wellposedness. In
Section 4, we prove Morawetz estimate of the solution of (1.1). In Section 5, we use
Littlewood-Paley and paraproduct decomposition to prove the existence of a se-
quence of bubbles. In Section 6, we control J1 and J2 in the case of solitonlike solu-
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tion. In Section 7, we control J1 and J2 if there is concentration by using the inductive
assumption and close the induction by a perturbation analysis in Section 8.

2 Notations and basic estimates

Notations:
Let h1, h2, h3 be small constants satisfying 0 < h3 f h2 f h1 f 1 and to be defined

in the proof, cðh1Þ, cðh2Þ, cðh3Þ be small constants satisfying 0 < cðh3Þf cðh2Þf
cðh1Þf 1; Cðh1Þ, Cðh2Þ, Cðh3Þ be large constants such that 1fCðh1ÞfCðh2Þf
Cðh3Þ. C, c are absolute constants and may be di¤erent from one line to another.

For any time slab I , we define the mixed spacetime Lebesgue space

LqðI ;LrÞ ¼
�

uðt; xÞ; kukL qðI ;LrÞ ¼
�Ð

I

� Ð
Rn

juðt; xÞj r
dx

�q=r

dt

�1=q

< y:

�

with the usual modification when q ¼ y.
We also define admissible pairs corresponding to linear Schrödinger operator with

repulsive potentials as follows,

Definition 2.1. A pair ðq; rÞ is admissible if 2a ra 6 and 2
q
þ 3

r
¼ 3

2 .

Occasionally, we will use S0ðIÞ to denote the Banach space
T

ðq; rÞ admissible LqðI ;LrÞ,
and I is dropped when I ¼ R.

Next, we give the definition of Littlewood-Paley projection. Let ffjðxÞg
j¼y
j¼�y be a

sequence of smooth functions and each supported in an annulus fx; 2 j�1a jxja2 jþ1g,
and

Py
j¼�y

fjðxÞ ¼ 1; Ex0 0:

For any N ¼ 2 j, we define Littlewood-Paley projection as follows:

PN ¼ P2 j ¼ F�1ðfjÞ � �;

PaN ¼ Pa2 j ¼ F�1

� P
j 0a j

fj 0

�
� �;

P>N ¼ I � PaN :

In the subsequent chapter, we may use fN to denote fj when N ¼ 2 j. Following is
part of the properties of the projection.

� For any 1a pay, and sb 0,
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k j‘js
PNf kp @N skPNf kp;

k j‘js
PaNkp aCN skPaNkp:

� Bernstein estimate: For any 1a qa pay,

kPNf kp aCN nð1=q�1=pÞkPNf kq;

kPaNf kp aCN nð1=q�1=pÞkPaNf kq:

Let uðt; xÞ be the solution of 3-d free Schrödinger equation with repulsive potential:

ð2:1Þ
iqt þ

D

2

� �
u ¼ � jxj2

2
u;

uð0Þ ¼ u0;

then it can be expressed through Mehler’s formula (see [8]),

ð2:2Þ uðt; xÞ ¼ UðtÞu0 ¼ e�ðit=2Þð�D�jxj2Þu0

¼ e�ði3p=4Þ sgn t 1

2p sinh t

���� ����3=2ð
R3

eði=sinh tÞðððx2þy2Þ=2Þ cosh t�x�yÞu0ðyÞ dy;

one sees from the above that the kernel of UðtÞ has the better dispersive estimate
than the kernel of Schrödinger operator without potential. By using Mehler’s formula
(2.2), and noting that Uð�Þ is unitary on L2, one has the following decay estimate

kUðtÞu0ky aCjtj�3=2ku0k1;ð2:3Þ

kUðtÞu0kp aCjtjð3=2Þð1=p�1=p 0Þku0kp 0 ; 2a pay;ð2:4Þ

which, by [13], imply,

Lemma 2.2. For any admissible pair ðq; rÞ, there exists Cr > 0 such that

kUð�ÞfkLqðR;LrÞ aCrkfk2:

For any admissible pairs ðq1; r1Þ, ðq2; r2Þ and any time interval I , there exists some

constant Cr1; r2
, such that���� Ð

IXfs<tg
Uðt � sÞFðsÞ ds

����
L q1 ðI ;Lr1 Þ

aCr1r2
kFk

L
q 0

2 ðI ;Lr 0
2 Þ
:
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There are Galilean type operators associated with the equation (2.1),

JðtÞ ¼ x sinh t þ i cosh t‘x; HðtÞ ¼ x cosh t þ i sinh t‘x;ð2:5Þ

from which x and ‘x can be recovered,

x ¼ cosh tHðtÞ � sinh tJðtÞ; i‘x ¼ cosh tJðtÞ � sinh tHðtÞ:ð2:6Þ

In addition, JðtÞ and HðtÞ enjoy the following properties,

Lemma 2.3. 1. They are Heisenberg observables and consequently commute with the

linear operator,

JðtÞ ¼ UðtÞi‘xUð�tÞ; HðtÞ ¼ UðtÞxUð�tÞ;

iqt þ
D

2
þ jxj2

2
; JðtÞ

" #
¼ iqt þ

D

2
þ jxj2

2
;HðtÞ

" #
¼ 0:

2. They can be factorized as follows, for t0 0,

JðtÞ ¼ i cosh teiðjxj2=2Þ tanh t‘xðe�iðjxj2=2Þ tanh t�Þ;

HðtÞ ¼ i sinh teiðjxj2=2Þ coth t‘xðe�iðjxj2=2Þ coth t�Þ:

3. Let F A C1ðC;CÞ and FðzÞ ¼ Gðjzj2Þz, then,

JðtÞF ðuÞ ¼ qzFðuÞJðtÞu � qzFðuÞJðtÞu;

HðtÞF ðuÞ ¼ qzF ðuÞHðtÞu � qzF ðuÞHðtÞu:

4. There are embeddings (for instance),

k f kr � a kJðtÞf k _HH 1; r ;
1

r
� 1

n
¼ 1

r� ; r� < y:

Proof. The first point is easily checked thanks to (2.5). The second one holds by direct
computation, and implies the last two ones. r

Formally, the solution of (1.1)–(1.2) satisfies the following two conservation laws,

Mass: M ¼ kuðtÞk2 ¼ ku0k2;

Energy: EðtÞ ¼ 1

2
k‘uðtÞk2

2 �
1

2
kxuk2

2 þ
1

3
kuðtÞk6

6 ¼ const:
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As mentioned in the introduction, we split EðtÞ by two ways. First, define

E1ðuðtÞÞ ¼
1

2
k‘uðtÞk2

2 þ
1

3
kuðtÞk6

6; E2ðuðtÞÞ ¼
1

2
kxuk2

2;

it follows easily that,

EðuðtÞÞ ¼ E1ðuðtÞÞ � E2ðuðtÞÞ:

Next, we define

ð2:7Þ
E1ðtÞ :¼

1

2
kJðtÞuðtÞk2

L2 þ
1

3
cosh2 tkuðtÞk6

6;

E2ðtÞ :¼
1

2
kHðtÞuðtÞk2

L2 þ
1

3
sinh2 tkuðtÞk6

6;

then E1ðtÞ and E2ðtÞ coincide with E1ðtÞ and E2ðtÞ only at t ¼ 0. Furthermore, we
have,

Lemma 2.4. 1. E1ðtÞ and E2ðtÞ satisfy,

E1ðtÞ � E2ðtÞ ¼ EðtÞ;ð2:8Þ

dE1ðtÞ
dt

¼ dE2ðtÞ
dt

¼ � 2

3
sinhð2tÞkuðtÞk6

6:ð2:9Þ

2. The potential energy kuðtÞk6
6 has exponentially decay in time:

kuðtÞk6
6 a 3E1ð0Þ cosh�6 t; Et A R:

3. Et A R,

E1ðtÞaE1ð0Þ ¼ E1ð0Þ;ð2:10Þ

kHðtÞuðtÞk2
2 a kHð0Þuð0Þk2

2 ¼ kxu0k2
2 ¼ 2E2ð0Þ:ð2:11Þ

Proof. The first point can be verified by (2.5) and the equation (1.1), see [2] for details.
Now let us prove the second point. Integrating in time from 0 to t, we see from (2.9)
that

E1ðtÞ ¼ E1ð0Þ �
2

3

ð t

0

sinhð2sÞkuðsÞk6
6 ds:
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By (2.7), we have

cosh2 tkuðtÞk6
6 a 3E1ð0Þ � 2

ð t

0

sinhð2sÞkuðsÞk6
6 ds

¼ 3E1ð0Þ � 2

ð t

0

sinhð2sÞ
cosh2 s

cosh2 skuðsÞk6
6 ds:

Applying the Gronwall inequality yields:

cosh2 tkuðtÞk6
6 a 3E1ð0Þ exp

�
�2
Ðt
0

sinhð2sÞ
cosh2 s

ds

�
:

Noting by direct computation,ð t

0

sinhð2sÞ
cosh2 s

ds ¼ ln cosh t;

we have

cosh2 tkuðtÞk6
6 a 3E1ð0Þ cosh�4 t;

and

kuðtÞk6
6 a 3E1ð0Þ cosh�6 t:

Now, let’s prove the third point. First, (2.10) is easily verified by using (2.9). Next,
noting (2.7), (2.6) and energy conservation, we see that,

1

2
kHðtÞuðtÞk2

2 þ
1

3
sinh2 tkuðtÞk6

6

¼ E1ðtÞ � EðtÞ

aE1ð0Þ � Eð0Þ

¼ 1

2
k‘u0k2

2 þ
1

3
ku0k6

6 �
1

2
k‘u0k2

2 �
1

2
kxu0k2

2 þ
1

3
ku0k6

6

� �

¼ 1

2
kxu0k2

2:

Thus we get
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kHðtÞuðtÞk2 a kxu0k2;

which is exactly (2.11). r

Before ending this section, we give the main theorems of this paper.

Theorem 2.5. Let u0 A S be radial, then the Cauchy problem (1.1)–(1.2) has a unique

global solution in ClocðR;SÞXL10ðR;L10Þ which satisfies

kukL10ðR;L10Þ aCðk‘u0k2; kxu0k2Þ;ð2:12Þ

max
A A fJ;H; Ig

kAð�ÞukS 0 aCðku0kSÞ;ð2:13Þ

where AðtÞ denotes any of the operators JðtÞ, HðtÞ, or the identity I . For any com-

pact interval 0 A I HR, the data-solution map u0 A S ! u A CðI ;SÞ is Lip continuous.

Furthermore, there exits a unique uG A S such that

kUð�tÞuðtÞ � uGkS ! 0; as t !Gy:

Theorem 2.6. Let uG A S be radial, then there exists a unique solution uðx; tÞ of equa-

tion (1.1) satisfying

kukL10ðR;L10Þ aCðE1ðuþÞ;E2ðuþÞÞ;

max
A A fJ;H; Ig

kAð�ÞukS 0 aCðkuþkSÞ;

and

kUð�tÞuðtÞ � uGkS ! 0; as t !Gy:

Remark 2.7. In view of the two theorems, we can define scattering operator WG from
the radial functions in S to themselves by WGu� ¼ uþ, where u� and uþ are asso-
ciated through the unique solution of uðt; xÞ to (1.1) such that

kUð�tÞuðtÞ � uGkS ! 0; t !Gy:ð2:14Þ

Furthermore, it’s also not hard to verify through Theorem 2.5 and Theorem 2.6 as
well as (2.14) that W is one to one, and continuous in S, therefore is a holomorphic
from the radial functions in S to themselves. The proof of non-potential NLS coun-
terpart can be found in, for instance, [4].

3 Local wellposedness and global small solution

The goal of this section is to get local solution and small global solution to (1.1),
(1.2), which by Duhamel, satisfies the integral equation
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uðtÞ ¼ Uðt � t0Þuðt0Þ � i

ð t

t0

Uðt � sÞjuj4uðsÞ ds:ð3:1Þ

To begin with, let’s introduce a lemma which will be used throughout the paper.

Lemma 3.1. Let I be a time slab, u be the solution of (1.1), (1.2) in the sense of (3.1)
such that

kukL10ðI ;L10Þ aC1;ð3:2Þ

then we have

kAukS 0ðIÞ aCðC1; ku0kSÞ; for A A fJ;H; Ig:

Remark 3.2. It should be noticed that the L10 norm control in condition (3.2) is not
specially chosen and can be replaced by other spacetime bounds. For example, by
assuming the boundedness of kukL6ðI ;L18Þ or kJukL2ðI ;L6Þ, one can get the same results
by some minor changes of the following proof.

Proof. Divide I into subintervals I ¼
SJ

j¼1 Ij such that kukL10ðIj ;L10Þ@ h, then on
Ij ¼ ½tj�1; tj �, u satisfies the equation,

uðtÞ ¼ Uðt � tj�1Þuðtj�1Þ � i

ð t

tj�1

Uðt � sÞjuj4uðsÞ ds;

by Strichartz, we have

kAukS 0ðIjÞ aCkAðtj�1Þuðtj�1Þk2 þ Ckuk4
L10ðIj ;L10ÞkAukS 0ðIjÞ

aCkAðtj�1Þuðtj�1Þk2 þ Ch4kAukS 0ðIjÞ

which implies that

kAukS 0ðIjÞ a 2CkAðtj�1Þuðtj�1Þk2;

if h is small. This finally gives Lemma 3.1 by the boundedness of kAðtÞuðtÞk2 and
inductive arguments. r

By time reversal symmetry, we state the following result only in the positive time
direction.

For I a time slab, define the space
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XðIÞ ¼ L10=3ðI ;L10=3ÞXL10ðI ;L30=13Þ;

then we have

Proposition 3.3. Let u0 A S, then there exists a h0 > 0 such that when the linear flow

satisfies

kJUu0kX ð½0;T �Þ a h0;

(1.1)–(1.2) has a unique solution uðx; tÞ satisfying

kAukS0ð½0;T �Þ < Cðku0kSÞ; EA A fJ;H; Ig:ð3:3Þ

Let T � ¼ supT>0f(1.1) � (1.2) has a unique solution on ½0;T �g, and if T � < y, then

kukL10ð½0;T �Þ;L10Þ ¼ y:

Proof. Define the solution map by

FðuÞðtÞ ¼ UðtÞu0 � i

ð t

0

Uðt � sÞjuj4uðsÞ ds;

and denote I ¼ ½0;T �, then we show F is contractive on the compact set

B ¼ fuðx; tÞ; kJukX ðIÞ a 2h0; kHukX ðIÞ a 2Ckxu0k2; kukX ðIÞ a 2Cku0k2g

under the weak topology XðIÞ if h0 is small enough. Taking u A B, by Strichartz
estimate, we have that

kJFukXðIÞ a kJUu0kXðIÞ þ Ckuk4
L10ðI ;L10ÞkJukXðIÞ

a h0 þ CkJuk5
X ðIÞ a h0 þ Cð2h0Þ

5
a 2h0;

if h0 is such that Cð2h0Þ
5
a 1

8 h0. By the same token, we have,

kHFukX ðIÞ a kHUu0kX ðIÞ þ Ckuk4
L10ðI ;L10ÞkHukX ðIÞ

aCkxu0k2 þ Cð2h0Þ
4ð2Ckxu0k2Þa 2Ckxu0k2;

kFukX ðIÞ a 2Cku0k2;
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for the same h0. Let u1; u2 A B, then it’s easily seen that

kFðu1Þ �Fðu2ÞkX ðIÞ aCðku1k4
L10ðI ;L10Þ þ ku2k4

L10ðI ;L10ÞÞku1 � u2kX ðIÞ

a 2Cð2h0Þ
4ku1 � u2kXðIÞ a

1

2
ku1 � u2kXðIÞ:

Applying the fixed point theorem gives a unique solution of (1.1)–(1.2) on the inter-
val I . The norm control (3.3) follows from Strichartz estimate.

Before proving the blow up criterion, let’s say a couple of words about how to
extend the solution from t0 forward in time. We need the smallness condition on the
linear flow as follows,

kJð�ÞUð� � t0Þuðt0ÞkXð½t0; t0þT �Þ a h0;

which allows us to establish the contraction mapping on the compact set,

B ¼ fuðx; tÞ; kJukX ð½t0; t0þT �Þ a 2h0;

kHukXð½t0; t0þT �Þ a 2CkHðt0Þuðt0Þk2; kukX ð½t0; t0þT �Þ a 2Ckuðt0Þk2g

by repeating the same proof before.
Now, let’s prove the blow up criterion. If otherwise T � < y and

kukL10ð½0;T �Þ;L10Þ < y, we aim to get a contradiction by extending the solution beyond

T �. Let t0 be very close to T �, then it’s enough to find a small d > 0 such that the
linear flow is small, more precisely,

kJð�ÞUð� � t0Þuðt0ÞkXð½t0;T �þd�Þ a h0:ð3:4Þ

First we notice that the finite L10 norm control implies that

kAukS 0ð½0;T �ÞÞ < y;

by Lemma 3.1.
On the one hand, by Strichartz, we have that

kJð�ÞUð� � t0Þuðt0ÞkXð½t0;T �ÞÞ k kJukXð½t0;T �ÞÞ þ kJuk5
Xð½t0;T �ÞÞ;

which a
h0

2 if t0 is close enough to T �. On the other hand, once t0 is fixed, we can
choose d > 0 small enough such that,

kJð�ÞUð� � t0Þuðt0ÞkXð½T �;T �þd�Þ a
h0

2
;
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by noting that

kJð�ÞUð� � t0Þuðt0ÞkX ðRÞ a kJðt0Þuðt0Þk2 < y;

lim
d!0

kJð�ÞUð� � t0Þuðt0ÞkXð½T �;T �þd�Þ ¼ 0:

(3.4) then follow from trivial triangle inequality. r

For T su‰ciently small (but may depend on the initial profile), we will get a unique
solution on ½0;T �. However, if the initial kinetic energy is small, then by Strichartz
estimate,

kJUu0kX ðRÞ a k‘u0k2 a h0;

we get immediately the global small solution.

Corollary 3.4. Let u0 A S, then there exists a small constant e0 > 0 such that when

k‘u0k2 a e0;

(1.1)–(1.2) has a unique solution uðt; xÞ satisfying

sup
A A fJ;H; Ig

kAukS 0ðRÞ kCðku0kSÞ:

Furthermore, there exists a unique function uG A S such that

kUð�tÞuðtÞ � uGkS ! 0; as t !Gy:

Proof. It’s only left to construct the asymptotic state for the global solution u. Let
uþ ¼ u0 � i

Ðy
0 Uð�sÞjuj4uðsÞ ds, one sees that

Uð�tÞuðtÞ � uþðtÞ ¼ i

ðy
t

Uð�sÞjuj4uðsÞ ds:

Noting that by Lemma 2.3, there holds

i‘xðUð�tÞuðtÞ � uþðtÞÞ ¼ i

ðy
t

Uð�sÞJðsÞjuj4uðsÞ ds;

xðUð�tÞuðtÞ � uþðtÞÞ ¼ i

ðy
t

Uð�sÞHðsÞjuj4uðsÞ ds:

We see that
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kUð�tÞuðtÞ � uþðtÞkS a max
A A fJ;H; Ig

����Ðy
t

Uð�sÞAðsÞjuj4uðsÞ ds

����
2

:

Noting that the operator Uð�Þ is unitary on L2, we can bound the right side of the
above equation by

kuk4
L10ððt;yÞ;L10ÞkAð�ÞukL10=3ððt;yÞ;L10=3Þ

which tends to 0 as t tends to y. The scattering in the negative direction follows the
same way. r

Assume for the moment that the solution is global, then we will show that the decay
of the potential energy imply the decay of this global solution, and from which the
scattering follows.

Lemma 3.5. Assume u is a global solution and for any time slab I A R, kukL10ðI ;L10Þ <
CðjI j; ku0kSÞ, then u satisfies

max
A A fJ;H; Ig

kAð�ÞukS 0 aCðku0kSÞ;ð3:5Þ

and there is scattering.

Proof. Fixing a small constant e and taking T bT0 ¼ 3E1ð0Þ
e6

	 
1=6

, we have

3E1ð0Þ cosh�6 T a e6;

thus by the decay estimate Lemma 2.4, one has

kukLyð½T ;yÞ;L6Þ a e:ð3:6Þ

By Duhamel’s formula, on ½T ;yÞ, u satisfies the equation

uðtÞ ¼ Uðt � TÞuðTÞ � i

ð t

T

Uðt � sÞjuj4uðsÞ ds:

Applying Strichartz estimate gives,

kJð�ÞukL2ð½T ;yÞ;L6Þ aCkJðTÞuðTÞk2 þ CkJð�Þjuj4ukL2ð½T ;yÞ;L6=5Þ

aCkJðTÞuðTÞk2 þ Ckuk4
Lyð½T ;yÞ;L6ÞkJukL2ð½T ;yÞ;L6Þ

aCE1ðu0Þ1=2 þ Ce4kJukL2ð½T ;yÞ;L6Þ
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Therefore,

kJð�ÞukL2ð½T ;yÞ;L6Þ a 2CE1ðu0Þ1=2:

By time reversing and the assumption, we have

kJð�ÞukL2ðR;L6Þ a kJð�ÞukL2ðð�y;T �;L6Þ

þ kJð�ÞukL2ð½�T ;T �;L6Þ þ kJð�ÞukL2ð½T ;yÞ;L6Þ aC:

This implies that

kAð�ÞukS 0 aC:

The scattering result follows from this global spacetime bound as shown in Corollary
3.4. r

On the other hand, since by (2.6) and Lemma 2.4, E1ðtÞ and E2ðtÞ grows exponentially
in time, in order to prove Theorem 2.5, we need only to show the following ‘‘good
local wellposedness’’,

Proposition 3.6. Let E1ðu0Þ ¼ E1, E2ðu0Þ ¼ E2, then there exists a small constant h1

depending only on ðE1;E2Þ such that the Cauchy problem of (1.1), (1.2) is at least

wellposed on ½�h4
1 ; h

4
1 � and the solution u satisfies

kukL10ð½�h4
1
;h4

1
�;L10Þ aCðE1;E2Þ:

The remaining part of the paper is devoted to the proof of Proposition 3.6, however,
before proceeding to the next section, let’s give a sketchy proof of Theorem 2.6.

Proof. We need only to show the integral equation

uðtÞ ¼ UðtÞuþ þ i

ðy
t

Uðt � sÞjuj4uðsÞ ds;ð3:7Þ

has a unique global solution with global spacetime estimates. First of all, we
seek for some local solution. Define the solution map by FðuÞðtÞ ¼ UðtÞuþþ
i
Ðy

t
Uðt � sÞjuj4uðsÞ ds, and denote R ¼ k‘uþk2. By choosing T ¼ TðRÞ large

enough, say, cosh T bCR, we see that F is a contraction map on the set

X ¼ uðx; tÞ;
kukL10=3ð½T ;yÞ;L10=3Þ a 2Ckuþk2;

kHð�ÞukL10=3ð½T ;yÞ;L10=3Þ a 2Ckxuþk2;

kJð�ÞukL10=3ð½T ;yÞ;L10=3ÞXL10ð½T ;yÞ;L30=13Þ a 2CR

8><>:
9>=>;;
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endowed with the metric dðu1; u2Þ ¼ ku1 � u2kL10=3ð½T ;yÞ;L10=3Þ. The proof is routine, ex-

cept needing to notify that the gain cosh�1 T from the embedding kukL10ð½T ;yÞ;L10Þ
aC cosh�1 TkJð�ÞukL10ð½T ;yÞ;L30=13Þ gives the dependence of T on R. Once we get the

local solution, we can find a finite time T ¼ TðE1ðuþÞÞ such that uðTÞ A S. At this
moment, we can apply Theorem 2.5 to get a unique global solution with global
spacetime bound satisfying also (3.7). The scattering part of Theorem 2.6 then fol-
lows easily from the global spacetime bound of uðx; tÞ. r

4 Morawetz estimate for solutions of (1.1)

We first give the local mass conservation of u. We’d notice that the Local mass con-
servation for Schrödinger equation without potential has appeared in [1], [11], and
[16].

Taking a smooth function wðxÞ A Cy
0 ðR3Þ such that wðxÞ ¼ 1 if jxja 1

2 and
wðxÞ ¼ 0 if jxjb 1. Then we have,

Proposition 4.1. Let u be the smooth solution of (1.1), and define local mass of u to be

MassðuðtÞ;Bðx0;RÞÞ ¼
�Ð

w2 x � x0

R

� �
juðt; xÞj2 dx

�1=2

;

then,

qt MassðuðtÞ;Bðx0;RÞÞa kuðtÞk _HH 1

R
;ð4:1Þ

and

MassðuðtÞ;Bðx0;RÞÞaRkuðtÞk _HH 1 :ð4:2Þ

Proof. Noting that u satisfies the equation (1.1), we have

qt MassðuðtÞ;Bðx0;RÞÞ2

¼
ð
w2 x � x0

R

� �
2 Re u

i

2
Du þ i

2
jxj2u � ijuj4u

� �� �
ðxÞ dx;

¼ �
ð
w2 x � x0

R

� �
ImðuDuÞðxÞ dx:

Integrating by parts, we get

qt MassðuðtÞ;Bðx0;RÞÞ2 ¼ 2

R

ð
w

x � x0

R

� �
ð‘wÞ x � x0

R

� �
Imðu‘uÞðx; tÞ dx:
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By Hölder inequality, the right hand side can be controlled by

2

R
MassðuðtÞ;Bðx0;RÞÞk‘uðtÞk2;

from which (4.1) follows. Now, let’s prove (4.2). Using Hardy’s inequality, one has

MassðuðtÞ;Bðx0;RÞÞ2 ¼
ð
w2 x � x0

R

� �
juðt; xÞj2 dx

a sup
x AR3

w2 x � x0

R

� �
jx � x0j2

ð juðt; xÞj2

jx � x0j2
dx

aR2kuðtÞk2
_HH 1 :

Thus, we get (4.2). r

Proposition 4.2. Let u be the solution of (1.1) with finite energy. Then we have

ð4:3Þ
ð

I

ð
jxjaK jI j1=2

juðt; xÞj6

jxj dx dt

aCK jI j1=2ðk‘uk2
LyðI ;L2Þ þ kxuk2

LyðI ;L2Þ þ kuk6
LyðI ;L6ÞÞ for all K b 1:

Proof. We prove this result by following the idea in [16]. However, we should notice
that in the case of NLS without potential, the computation of such localized esti-
mate is first due to [14] and was adapted later by J. Bourgain and M. Grillakis to
better suit the critical case. The common approach is di¤erentiating the quantityÐ
Rn Im x

jxj � ‘uðt; xÞuðt; xÞ
	 


dx.

Assume without loss of generality that u is a smooth solution of (1.1). First, by a
direct computation, we get

qt ImðqkuuÞ ¼ 1

4
qkDðjuj2Þ � Re qjðukujÞ �

2

3
qkðjuj6Þ þ xkjuj2;ð4:4Þ

here, we use qk f or fk to denote
qf

qxk
. Let aðxÞ be a smooth radial function to be

chosen later. Multiplying (4.4) by akðxÞ and integrating on R3, we get

ð4:5Þ qt

ð
R3

ImðqkuuÞðxÞakðxÞ dx ¼
ð

ajkðxÞReðukujÞðxÞ dx � 1

4

ð
DDaðxÞjuj2ðxÞ dx

þ 2

3

ð
DaðxÞjuj6ðxÞ dx þ

ð
akðxÞxkjuj2ðxÞ dx:
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Taking wðxÞ A Cy
0 ðR3Þ satisfying wðxÞ ¼ 1 as jxja 1 and wðxÞ ¼ 0 as jxjb 2. Letting

aðxÞ ¼ ðe2 þ jxj2Þ1=2
w x

R

� �
, we claim that, on jxjaR,

aðxÞ ¼ ðe2 þ jxj2Þ1=2; akðxÞ ¼
xk

ðe2 þ jxj2Þ1=2
;

DaðxÞ ¼ 2

ðe2 þ jxj2Þ1=2
þ e2

ðe2 þ jxj2Þ3=2
; DDaðxÞ ¼ � 15e2

ðe2 þ jxj2Þ7=2
;

ajkðxÞReðukujÞðxÞb 0; akðxÞxk ¼ jxj2

ðe2 þ jxj2Þ1=2
b 0:

The first four points follow by directly di¤erentiating aðxÞ on jxjaR. The fifth one
follows from

ð4:6Þ ajkðxÞReðukujÞðxÞ

¼ djk

ðe2 þ jxj2Þ1=2
� xjxk

ðe2 þ jxj2Þ3=2

 !
ReðukujÞðxÞ

¼ j‘uj2

ðe2 þ jxj2Þ1=2
� ReðxjujxkukÞ
ðe2 þ jxj2Þ3=2

¼ j‘uj2

ðe2 þ jxj2Þ1=2
� jxj2jurj2

ðe2 þ jxj2Þ3=2
;

and the simple fact that jurja j‘uj. Plugging all the estimates in (4.5) yields that

4

3

ð
jxjaR

juj6

ðe2 þ jxj2Þ1=2
dx

a qt

ð
R3

ImðqkuuÞðxÞakðxÞ dx þ
ð

Rajxja2R

jajkðxÞReðukujÞðxÞj

þ 1

4
jDDaðxÞj juj2ðxÞ þ 2

3
jDaðxÞj juj6ðxÞ þ jakðxÞxkj juj2ðxÞ dx:

Integrating in time on I , we get

ð4:7Þ 4

3

Ð
I

Ð
jxjaR

juj6ðx; tÞ
ðe2 þ jxj2Þ1=2

dx

a sup
t A I

���� Ð
R3

ImðuukÞðxÞakðxÞ dx

����þ jI j sup
t A I

� Ð
Rajxja2R

jajkðxÞukujðx; tÞj

þ 1

4
jDDaðxÞj juj2ðx; tÞj þ 2

3
jDaðxÞj juj6ðx; tÞj þ jakðxÞxkj juj2ðx; tÞj dx

�
:
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Note on Ra jxja 2R,

jakðxÞjaC
ðe2 þ R2Þ1=2

R
;

jajkðxÞjaC
ðe2 þ R2Þ1=2

R2
;

jDDaðxÞjaC
ðe2 þ R2Þ1=2

R4
;

we have ð
I

ð
jxjaR

jujðx; tÞ
ðe2 þ jxj2Þ1=2

dx dt

aC ðe2 þ R2Þ1=2 þ jI j ðe
2 þ R2Þ1=2

R2

 !

� ðk‘uk2
LyðI ;L2Þ þ kxuk2

LyðI ;L2Þ þ kuk6
LyðI ;L6ÞÞ:

Choosing R ¼ K jI j1=2 and letting e ! 0 gives

ð
I

ð
jxjaK jI j1=2

juj6ðx; tÞ
jxj dx dt

aCðK jI j1=2 þ K�1jI j1=2Þðk‘uk2
LyðI ;L2Þ þ kxuk2

LyðI ;L2Þ þ kuk6
LyðI ;L6ÞÞ

aCK jI j1=2ðk‘uk2
LyðI ;L2Þ þ kxuk2

LyðI ;L2Þ þ kuk6
LyðI ;L6ÞÞ;

since K b 1. This is exactly (4.3). r

As a direct consequence of Proposition 4.2, we have

Corollary 4.3. Let u be a solution on time slab I satisfying,

E1ðuðtÞÞaC1; E2ðuðtÞÞaC2; Et A I ;

then we haveð
I

ð
jxjaK jI j1=2

juðt; xÞj6

jxj dx dtaCðC1;C2ÞKjI j1=2
for all K b 1:ð4:8Þ
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5 Energy localization

Let h1ðE1;E2Þ be a small constant that meets all the conditions to appear in the sub-
sequent proof, we aim to show the wellposedness on ½�h4

1 ; h
4
1 �. Thanks to the local

theory, we can assume the solution has existed on it and aim to show

kukL10ð½�h4
1
;h4

1
�;L10Þ < CðE1;E2Þ:

Now, fix this h1, we divide ½0; h4
1 � into J1 subintervals and ½�h4

1 ; 0� into J2 subintervals
such that on each subinterval Ij, h1 a kukL10ðIj ;L10Þ a 2h1. So we are left to control J1,
J2 by constant CðE1;E2Þ. Without loss of generality, we only do analysis in the posi-
tive time direction. Following J. Bourgain [1], we classify the subintervals into three
components I ð1Þ, I ð2Þ, I ð3Þ, and each contains

J1

3 consecutive subintervals. It’s on the
intermediate component that we do most analysis. Our first aim is to show the local-
ization of the energy. To begin with, we see that

k‘ukL10=3ðIj ;L10=3Þ þ kxukL10=3ðIj ;L10=3Þ aCðE1;E2Þ;

which follows from (2.6) and Lemma 3.1.
We have the following localized results.

Proposition 5.1. Let Ij be one of the subintervals, that is Ij A ½0; h4
1 � and h1 a

kukL10ðIj ;L10Þ a 2h1. Then there exists tj A Ij , xj A R3 and N bNj0A jIj j�1=2h5
1 such that

kuðtjÞkL6ðjx�xj j<Cðh1ÞN�1
j

Þ b ch
3=2
1 ;ð5:1Þ

k‘uðtjÞkL2ðjx�xj j<Cðh1ÞN�1
j

Þ b ch
3=2
1 ;ð5:2Þ

kuðtjÞkL2ðjx�xj j<Cðh1ÞN�1
j

Þ b ch
3=2
1 N�1

j :ð5:3Þ

Proof. By Bernstein estimate, EN A 2Z, we have

kPaNuky aN1=2kPaNuk6 aCN1=2;

which allows us to control the L10 norm of low frequency by interpolation,

kPaNuk10 a kPaNuk4=10
y kPaNuk6=10

6 aCN1=5;

hence, using Hölder inequality in time, we have

kPaNukL10ðIj ;L10Þ aCjIjj1=10
N1=5:

Taking N ¼ Nj0 ¼ CjIjj�1=2h5
1 , one sees that

kPaNj0
ukL10ðIj ;L10Þ <

h1

2
;
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and thus

kPbNj0
ukL10ðIj ;L10Þ >

h1

2
:

Using Littlewood-Paley theorem, we have

h1

2

� �10

a kPbNj0
uk10

L10ðIj ;L10Þ

¼
ð

Ij

kPbNj0
uðtÞk10

10 dt

¼
ð

Ij

����� P
NbNj0

jPNuðtÞj2
�1=2����10

10

dt

¼ C

ð
Ij

ð
R3

P
N1b���bN5bNj0

jPN1
uðtÞj2 � � � jPN5

uðtÞj2 dx dt:

Letting sN ¼ N1=2kPNukLy
xt A Ij�R3

, we see the last line is smaller than

ð5:4Þ C sup
NbNj0

s
20=3
N

ð
Ij

ð
R3

P
N1b���bN5bNj0

jPN1
uðtÞj2jPN2

uðtÞj4=3
N

1=3
2 N3N4N5 dx dt

aC sup
NbNj0

s
20=3
N

ð
Ij

ð
R3

P
N1bN2bNj0

N
10=3
2 jPN1

uðtÞj2jPN2
uðtÞj4=3

dx dt;

by summing N5, N4 and N3. Using Hölder inequality and Young’s inequality, (5.4)
can be controlled by

C sup
NbNj0

s
20=3
N

P
N1bN2bNj0

N
10=3
2 kPN1

uk2

L
10=3
xt

kPN2
uk4=3

L
10=3
xt

aC sup
NbNj0

s
20=3
N

P
N1bN2bNj0

N 2
2 N�2

1 k‘PN1
uk2

L
10=3
xt

k‘PN2
uk4=3

L
10=3
xt

aC sup
NbNj0

s
20=3
N

P
NbNj0

k‘PNuk10=3

L10=3ðIj ;L10=3Þ

aC sup
NbNj0

s
20=3
N k‘uk10=3

L10=3ðIj ;L10=3Þ

aC sup
NbNj0

s
20=3
N :
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This implies that,

sup
NbNj0

sN b ch
3=2
1 ;

thus there exists tj A Ij, xj A R3 and Nj bNj0 such that

jPNj
uðxj; tjÞjb ch

3=2
1 N

1=2
j :ð5:5Þ

Now we deduce (5.1), (5.2), (5.3) from (5.5). By the definition of PNj
, we see that

ð5:6Þ ch
3=2
1 N

1=2
j a jPNj

uðxj; tjÞj

¼ j
Ð
�ffNj

ðxj � xÞuðtj ; xÞ dxj

a

���� Ð
jx�xj j<Cðh1ÞN�1

j

�ffNj
ðxj � xÞuðtj; xÞ dx

����
þ
���� Ð
jx�xj j>Cðh1ÞN�1

j

�ffNj
ðxj � xÞuðtj; xÞ dx

����
a

� Ð
R3

j �ffNj
ðxj � xÞj6=5

dx

�5=6� Ð
jx�xj j<Cðh1ÞN�1

j

juðtj; xÞj6 dx

�1=6

þ
� Ð

jx�xj j>Cðh1ÞN�1
j

j �ffNðxj � xÞj6=5
dx

�5=6� Ð
R3

juðtj ; xÞj6 dx

�1=6

:

Noting �ffNð�Þ ¼ N 3 �ff �
N

� �
and �ff is rapidly decreasing, one obtains

ð5:6ÞaCN
1=2
j

� Ð
jx�xj j<Cðh1ÞN�1

j

juðtj; xÞj6
�1=6

þ c

2
h

3=2
1 N

1=2
j ;

by choosing Cðh1Þ su‰ciently large and� Ð
R3

juðtj; xÞj6 dx

�1=6

a kuðtjÞk6 aCE
1=6
1 :

Thus we obtain (5.1). To see (5.2), we begin with (5.5) that

ð5:7Þ ch
3=2
1 N

1=2
j < jPNj

uðxj ; tjÞj ¼ jðD�1‘ÞPNj
‘uðxj; tjÞj

¼ jKNj
� ‘uðxj; tjÞj ¼ j

Ð
KNj

ðxj � xÞ‘uðx; tjÞ dxj;
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where KNj
is the kernel of ðD�1‘ÞPNj

, KNj
ðxÞ ¼ F�1 �

j�j2 fNj
ð�Þ

	 

ðxÞ, and

kKNj
kL2 ¼ N

1=2
j F

�
j � j2

fð�Þ
 !�����

�����
2

;

kKNj
kL2ðjxjbCðh1ÞN�1

j
Þ ¼ N

1=2
j F�1 �

j � j2
f

 !
ð�Þ

�����
�����

L2ðjxjbCðh1ÞÞ

aCh2
1N

1=2
j ;

if Cðh1Þ is large enough. Thus (5.7) has the bound

ð
Ð
jKNj

ðxj � xÞj2 dxÞ1=2

� Ð
jx�xj j<Cðh1ÞN�1

j

j‘uðx; tjÞj2 dx

�1=2

þ
� Ð

jx�xj jbCðh1ÞN�1
j

jKNj
ðxj � xÞj2 dx

�1=2� Ð
R3

j‘uðx; tjÞj2 dx

�1=2

aCN
1=2
j

� Ð
jx�xj j<Cðh1ÞN�1

j

j‘uðx; tjÞj2 dx

�1=2

þ c

2
h

3=2
1 N

1=2
j ;

and we have

k‘uðx; tjÞkL2ðjx�xj j<Cðh1ÞN�1
j

Þ b ch
3=2
1 :

The proof of (5.3) is similar. r

Now we use the radial assumption to locate the bubble at origin.

Proposition 5.2. Let the conditions in Proposition 5.1 be fulfilled. Assume in addition

that u is radial, then there holds that

kuðtjÞkL6ðjxj<Cðh1ÞN�1
j

Þ b ch
3=2
1 ;ð5:8Þ

k‘uðtjÞkL2ðjxj<Cðh1ÞN�1
j

Þ b ch
3=2
1 ;ð5:9Þ

kuðtjÞkL2ðjxj<Cðh1ÞN�1
j

Þ b ch
3=2
1 N�1

j ;ð5:10Þ

with tj, Nj the same with Proposition 5.1.

Proof. We prove (5.8)–(5.10) by showing that

jxjj < Cðh1ÞN�1
j ;
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since once this has been done, we can choose a new constant ~CCðh1Þ large enough such
that

Bð0; ~CCðh1ÞN�1
j ÞIBðxj;Cðh1ÞN�1

j Þ;

(5.8)–(5.10) then follow from (5.1)–(5.3).
Letting Sð0; jxjjÞ be a sphere with radius jxjj and center 0. By geometrical observa-

tion, one has O
jxj j

Cðh1ÞN�1
j

� �
consecutive balls that have radius Cðh1ÞN�1

j and center at

the points on the sphere. By radial assumption and Proposition 5.1, on each ball,
uðtjÞ has nontrivial L6 norm. Using the boundedness of L6 estimate, one has

O
jxjj

Cðh1ÞN�1
j

 !
ðCh

3=2
1 Þ6

a kuðtjÞk6
6 aCE1:

This gives the desired control on jxj j. r

6 Proof of Proposition 3.6: In case of soliton-like solution

Applying Corollary 5.2 on each interval in the middle component I ð2Þ, we get a se-
quence of times ftjg, tj A Ij,

J1

3 þ 1a j a 2
3 J1, such that

k‘uðtjÞkL2ðjxjaCðh1ÞN�1
j

Þ > ch
3=2
1 ;ð6:1Þ

kuðtjÞkL2ðjxjaCðh1ÞN�1
j

Þ > ch
3=2
1 N�1

j ; Nj bCjIjj�1=2h5
1 :ð6:2Þ

(When things like (6.1), (6.2) occur, we describe them as a bubble at the origin.) Now,
we discuss two di¤erent cases according to the size of the bubble. First, if there exists
h2, 0 < h2 f h1 such that

cjIjj�1=2h5
1 aNj a

Cðh1Þ
h2

jIjj�1=2;
J1

3
þ 1a j a

2

3
J1;ð6:3Þ

we call the solution solitonlike. Otherwise there must be j0 A J1

3 þ 1; . . . ; 2
3 J1

h i
such

that

Nj0 b
Cðh1Þ
h2

jIj0 j
�1=2 , Cðh1ÞN�1

j0
< h2jIj0 j

1=2:ð6:4Þ

As a consequence, we have concentration as follows,

k‘uðt0ÞkL2ðjxj<ð1=
ffiffi
2

p
Þh2jIj0

j1=2Þ > ch
3=2
1 :ð6:5Þ

In this case, we call the solution blow up solution. In this section, we aim to estimate
J1 in case of soliton-like solution. We follow the idea of [16] and begin the proof by
showing that (6.2) holds for every t A Ij, and

J1

3 þ 1a j a 2
3 J1.
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Proposition 6.1. Assume u satisfies (6.2), (6.3), then there exist Cðh1; h2Þ, cðh1; h2Þ such

that

kuðtÞk
L2ðjxjaCðh1;h2ÞjIj j1=2Þ b cðh1; h2ÞjIj j1=2; Et A Ij and j A

1

3
J1 þ 1;

2

3
J1

� �
:ð6:6Þ

Proof. Fix j, from (6.3), we have

Ch�5
1 jIj j1=2

bN�1
j b cðh1Þh2jIjj1=2:

Applying this estimate to (6.2), one gets

kuðtjÞkL2ðjxj<Cðh1ÞjIj j1=2Þ b cðh1Þh2jIjj1=2:

From (4.1) and by choosing Cðh1; h2Þ su‰ciently large, we have

kuðtÞk
L2ðjxj<Cðh1;h2ÞjIj j1=2Þ b kuðtjÞkL2ðjxj<Cðh1;h2ÞjIj j1=2Þ �

jIjj kukLyðI ; _HH 1Þ

Cðh1; h2ÞjIjj1=2

b cðh1Þh2jIjj1=2 � cðh1; h2ÞjIjj1=2

b cðh1; h2ÞjIj j1=2:

This is exactly (6.6). r

Once we have gotten (6.6), we can follow the same way in [16] to obtain the finiteness
of J1. Note that

cðh1; h2ÞjIj ja
Ð

jxjaCðh1;h2ÞjIj j1=2

juj2ðx; tÞ dx

a
Ð

jxjaCðh1;h2ÞjIj j1=2

jxj1=3 juj2ðx; tÞ
jxj1=3

dx

a

� Ð
jxjaCðh1;h2ÞjIj j1=2

jxj1=2
dx

�2=3� Ð
jxjaCðh1;h2ÞjIj j1=2

juðx; tÞj6

jxj dx

�1=3

aCðh1; h2ÞjIjj7=6

� Ð
jxjaCðh1;h2ÞjIj j1=2

juðx; tÞj6

jxj dx

�1=3

;

we have
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ð
jxjaCðh1;h2ÞjIj j1=2

juðx; tÞj6

jxj dxb cðh1; h2ÞjIjj�1=2:ð6:7Þ

Comparing (6.7) with Morawetz estimate (4.3), one obtains,

Corollary 6.2. For any I H I ð2Þ, we haveP
ð1=3ÞJ1þ1ajað2=3ÞJ1; IjHI

jIj j1=2
aCðh1; h2ÞjI j

1=2:ð6:8Þ

Proof. Noting jIjj1=2 < jI j1=2 and letting A ¼ Cðh1; h2Þ, (6.7) becomes

ð
jxjaAjI j1=2

juj6ðx; tÞ
jxj dxb cðh1; h2ÞjIjj�1=2:ð6:9Þ

Integrating (6.9) on Ij and summing together in j, we get,

cðh1; h2Þ
P

ð1=3ÞJ1þ1ajað2=3ÞJ1; IjHI

jIjj1=2

a

ð
I

ð
jxjaAjI j1=2

juj6ðx; tÞ
jxj dx dtaCAjI j1=2

aCðh1; h2ÞjI j
1=2;

this gives (6.8). r

As a direct consequence of Corollary 6.2, we have

Corollary 6.3. Let I ¼
S

j1ajaj2
Ij be a union of consecutive intervals, 1

3 J1 þ 1a j1,

j2 a
2
3 J1, then there exists j1 a j a j2 such that jIj j > cðh1; h2ÞjI j.

Proof. From (6.8) we know that

Cðh1; h2ÞjI j
1=2

b
P

j1ajaj2

jIjj1=2
b

P
j1ajaj2

jIj j
�

sup
j1ajaj2

jIjj
��1=2

¼ jI j
�

sup
j1ajaj2

jIj j
��1=2

;

and hence

Cðh1; h2ÞjI j
�1=2

b

�
sup

j1ajaj2

jIjj
��1=2

;ð6:10Þ

therefore, we can find Ij such that

jIjj > cðh1; h2ÞjI j:
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Now, we show that the intervals Ij must concentrate at some time t�. The idea here is
originally due to J. Bourgain, while was reproved by T. Tao in [16]. Since in our case,
the proof is quite similar, we omit the detailed presentations. r

Proposition 6.4. There exist t� A I ð2Þ and distinct intervals Ij1 ; . . . ; IjK , jk A
J1

3 þ 1; . . . 2
3 J1

h i
, K > Cðh1; h2Þ log J1 such that

jIj1 jb 2jIj2 jb � � �b 2K�1jIjK j;

and distðt�; Ijk ÞaCðh1; h2ÞjIjk j.

Let t� and Ij1 ; . . . ; Ijk ; . . . ; IjK be as in the Proposition 6.4 and for every t A Ijk , there
holds

MassðuðtÞ;Bð0;Cðh1; h2ÞjIjk j
1=2ÞÞb cðh1; h2ÞjIjk j

1=2; Et A Ijk ; 1a k aK :ð6:11Þ

By the local mass conservation, we have

Massðuðt�Þ;Bð0;Cðh1; h2ÞjIjk j
1=2ÞÞ

b cðh1; h2ÞjIjk j
1=2 �

jt� � tj kukLyðIjk
; _HH 1Þ

Cðh1; h2ÞjIjk j
1=2

;

b cðh1; h2ÞjIjk j
1=2; E1a k aK :

Denote Bk ¼ Bð0;Cðh1; h2ÞjIjk j
1=2Þ, we rewrite the above estimate as follows,

Massðuðt�Þ;BkÞb cðh1; h2ÞjIjk j
1=2; 1a k aK :ð6:12Þ

On the other hand, by the local mass estimate (4.2), we have

Massðuðt�Þ;BkÞaCðh1; h2ÞjIjk j
1=2:

Letting N :¼ log 1
h3

	 

, then for k 0 > k þ N, we have thatð

B 0
k

juðt�; xÞj2 dxaCðh1; h2ÞjIj 0
k
j

aCðh1; h2Þ2�ðk 0�kÞjIjk jaCðh1; h2Þh32�ðk 0�k�NÞjIjk j;

and hence,

P
kþNak 0aK

ð
Bk 0

juðt�; xÞj2 dxaCðh1; h2Þh3jIjk j
P

kþNak 0aK

2�ðk 0�k�NÞ:ð6:13Þ
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By the finiteness of the summation, the assumption on h1, h2, h3, and (6.11), we con-
tinue to estimate (6.13) by

cðh1; h2ÞjIjk ja
1

2
Massðuðt�Þ;BkÞ2 ¼ 1

2

ð
Bk

juðt�; xÞj2 dx;

and hence

ð6:14Þ
ð

Bknð
S

kþNak 0aK
Bk 0 Þ

juðt�; xÞj2 dx

b

ð
Bk

juðt�; xÞj2 dx �
ð
S

kþNak 0aK
Bk 0

juðt�; xÞj2 dx

b

ð
Bk

juðt�; xÞj2 dx �
P

kþNak 0aK

ð
Bk 0

juðt�; xÞj2 dx

b
1

2

ð
Bk

juðt�; xÞj2 dxb cðh1; h2ÞjIjk j:

By Hölder inequality, we further give the upper bounds of the left side as follows,Ð
Bknð

S
kþNak 0aK

B 0
k
Þ
juðt�; xÞj2 dx

a

� Ð
Bknð

S
kþNak 0aK

B 0
k
Þ
juðt�; xÞj6 dx

�1=3

mesðBkÞ2=3

aCðh1; h2ÞjIjk j
� Ð

Bknð
S

kþNak 0aK
B 0

k
Þ
juðt�; xÞj6 dx

�1=3

;

hence we haveð
Bknð

S
kþNak 0aK

B 0
k
Þ
juðt�; xÞj6 dxb cðh1; h2Þ:ð6:15Þ

Summing (6.15) in k, we obtain

PK
k¼1

ð
Bknð

S
kþNak 0aK

B 0
k
Þ
juðt�; xÞj6 dxb cðh1; h2ÞK:ð6:16Þ

Denoting Pk :¼ Bknð
S

kþNak 0aK B 0
kÞ, then fPkgK

k¼1 overlaps at most N times. Thus
the left hand side of (6.16) is smaller than
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N

ð
R3

juðt�; xÞj6 dx:

By the definition of h3, the boundedness of kuðt�Þk6, we have an upper bound for K ,

K aCðh1; h2; h3;E1;E2Þ;

and this in turn gives the control of J1 by Proposition 6.4,

J1 aC expðCðh1; h2; h3;E1;E2ÞÞ:

7 In case of blow up solution

Our purpose of this section is to prove the boundedness of J1 under the condition

(6.4) and (6.5). That is, there exists t0 A Ij0 , j0 A J1

3 þ 1; . . . ; 2
3 J2

h i
such that

k‘uðt0ÞkL2ðjxj<ð1=
ffiffi
2

p
Þh2jIj0

j1=2Þ > ch
3=2
1 :ð7:1Þ

If t0 lies on the left side of Ij0 , we take I ¼ ½t0; b� where b is the left end point of Ij0 ;
otherwise we take I ¼ ½a; t0� with a the right end point of Ij0 . Then (7.1) becomes

k‘uðt0ÞkL2ðjxj<h2jI j1=2Þ > ch
3=2
1 :ð7:2Þ

Assume I ¼ ½t0; b�, we aim to re-solve the problem (1.1) forward in time. Otherwise,
we do in the reverse direction. First we show that, by removing the small bubble, we
remove nontrivial portion of energy.

Let w be a smooth radial function such that wðxÞ ¼ 1 as jxja 1, and wðxÞ ¼ 0 as

jxjb 2. Let fðxÞ ¼ w
x

Nh2jI j
1=2

	 

for some N b 1 to be specified later, and wðt0; xÞ ¼

ð1 � fðxÞÞuðt0; xÞ, then we have

Lemma 7.1. E1ðwðt0ÞÞaE1ðuðt0ÞÞ � ch3
1 .

Proof. Noting

wðt0Þ ¼ ð1 � fÞuðt0Þ;

we have

‘wðt0Þ ¼ ð1 � fÞ‘uðt0Þ � ‘fuðt0Þ;

and thus,

j‘wðt0Þj2 ¼ j‘uðt0Þj2 þ ðf2 � 2fÞj‘uðt0Þj2

þ j‘fj2juðt0Þj2 � 2 Reð1 � fÞ‘fuðt0Þ‘uðt0Þ:
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Integrating it on R3, one gets

k‘wðt0Þk2
2

a k‘uðt0Þk2
2 þ

ð
R3
ðf2 � 2fÞj‘uðt0; xÞj2 dx

� 2

ð
R3

j‘fðxÞuðt0; xÞj2 dx � 2 Re

ð
R3
ð1 � fÞ‘fuðt0Þ‘uðt0ÞðxÞ dx:

By the trivial inequality: f2 � 2fa�f and (7.2), one can estimate the second term of
the right side by

�
ð
jxjaNh2jI j

1=2
j‘uðt0; xÞj2 dxa�ch3

1 :

Now, we estimate the remaining two terms. We use Hölder inequality to control
them by

ð7:3Þ Ck‘fk2
3kuðt0Þk2

L6

Nh2 jI j1=2ajxja2Nh2 jI j1=2
þ Ck‘fk3k‘uðt0Þk2kuðt0ÞkL6

Nh2 jI j1=2ajxja2Nh2 jI j1=2

aCðkuðt0Þk2
L6

Nh2 jI j1=2ajxja2Nh2 jI j1=2
þ kuðt0ÞkL6

Nh2 jI j1=2ajxja2Nh2 jI j1=2
k‘uðt0Þk2Þ:

Now, we claim that, there must exist N which depend only on h1 such that

kuðt0ÞkL6

Nh2 jI j1=2ajxja2Nh2 jI j1=2
a h4

1 :ð7:4Þ

Indeed, if otherwise, we will have N annuluses, on each annulus, uðt0Þ has nontrivial
L6 norm. Summing these annuluses together, we obtain

Nðh4
1Þ

6
a

P
N 0aN AN

kuðt0Þk6
L6

N 0h2 jI j1=2ajxja2N 0h2 jI j1=2
aC;

by the boundedness of L6 estimate. This will be a contradiction if N bCh�24
1 . Hence,

one can fix N ¼ Cðh1Þ such that (7.4) holds and

ð7:3ÞaCh4
1 :

We finally obtain this Lemma by noting

E1ðwðt0ÞÞ ¼
1

2
k‘wðt0Þk2

2 þ
1

3
kwðt0Þk6

6;

and combining the above estimates together. r
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Lemma 7.2. We have that,

E1ðwðt0ÞÞaE1 � ch3
1 ;

E2ðwðt0ÞÞaE2 þ Ch4
1 :

Proof. Noting Lemma 7.1, it su‰ces to prove

E1ðuðt0ÞÞaE1ðuð0ÞÞ þ Ch4
1 ;

E2ðuðt0ÞÞaE2ðuð0ÞÞ þ Ch4
1 :

So, Let’s compute the increment of EiðuðtÞÞ from 0 to t0:

ð t0

0

q

qt
E1ðuðtÞÞ dt; and

ð t0

0

q

qt
E2ðuðtÞÞ dt:

From the equation (1.1), we see that

q

qt
E2ðuðtÞÞ ¼

q

qt
kxuðtÞk2

2 ¼ 2 Im

ð
R3

xu‘uðt; xÞ dx

aCkxukLyðð0; t0Þ;L2Þk‘ukLyðð0; t0Þ;L2Þ aCðE1;E2Þ Et A ½0; t0�;

thus, we have

����Ðt0

0

q

qt
E2ðtÞ dt

����aCh4
1 :

By noting that q
qt

E1ðtÞ ¼ � q
qt

E2ðtÞ, we get

����Ðt0

0

q

qt
E1ðtÞ dt

����aCh4
1 ;

hence, Lemma 7.2 follows. r

Let u, v be solutions of the initial data problems

iqt þ D
2 þ

jxj2
2

	 

v ¼ jvj4v;

vðx; t0Þ ¼ fðxÞuðt0; xÞ:

(
ð7:5Þ
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iqt þ D
2 þ

jxj2
2

	 

w ¼ jv þ wj4ðv þ wÞ � jvj4v;

wðx; t0Þ ¼ ð1 � fðxÞÞuðt0; xÞ:

(
ð7:6Þ

then u ¼ v þ w. Let’s first show that

Proposition 7.3. There exists a unique solution vðx; tÞ to (7.5) satisfying

kvkL10ðI ;L10Þ aCh1; kvkL10ð½b;yÞ;L10Þ aCh
1=5
2 ;

kAð�ÞvkL qðI ;LrÞ aC;

where A A fJ;Hg and ðq; rÞ is admissible pair.

Proof. We begin by computing the L10 norm of the linear flow Uðt � t0Þðfuðt0ÞÞ.
First, we observe that by Duhamel, and Strichartz estimates,

kUð� � t0Þuðt0ÞkL10ðI ;L10Þ a kukL10ðI ;L10Þ þ
����Ðt

t0

Uðt � sÞjuj4uðsÞ ds

����
L10ðI ;L10Þ

a h1 þ Ch4
1kJukL10=3ðI ;L10=3Þ a 2h1:

Noting fuðt0Þ is a radial function in space, we have that

Uðt � t0Þðfuðt0ÞÞðxÞ ¼ exp
iðt � t0ÞðDþ jxj2Þ

2

( )
ðfuðt0ÞÞðxÞ

¼ F�1 exp � iðt � t0Þðjxj2 þ DxÞ
2

( ) dfuðt0Þfuðt0ÞðxÞ
 !

ðxÞ

¼
ð
R3

eixxe�ðiðt�t0Þ=2Þðjxj2þDxÞ
ð
R3

ûuðt0Þðx� x1Þf̂fðx1Þ dx1 dx:

Expanding jxj2 ¼ jx� x1j2 þ 2x1ðx� x1Þ þ jx1j2, the above term becomes

ðð
eiðx�x1Þðx�ðt�t0Þx1Þe�ðiðt�t0Þ=2Þðjx�x1j2þDx�x1

Þûuðt0Þðx� x1Þ dxeixx1 e�ðiðt�t0Þ=2Þjx1j2 f̂fðx1Þ dx1;

by renaming the variable, one sees that this is exactly

ð
R3

Uðt � t0Þuðt0Þðx � ðt � t0Þx1Þeixx1 e�ðiðt�t0Þ=2Þjx1j2 f̂fðx1Þ dx1;
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and hence

kUð� � t0Þðfuðt0ÞÞkL10ðI ;L10Þ

a kUð� � t0Þuðt0ÞkL10ðI ;L10Þkf̂fk1 aCkUð� � t0Þuðt0ÞkL10ðI ;L10Þ aCh1:

The estimate of the linear flow allows us to solve the problem in the following set,

X :¼ fvðx; tÞ j kvkL10ðI ;L10Þ aCh1; kAð�ÞvkL10=3ðI ;L10=3Þ aC;A A fJ;Hgg;

endowed with the metric

dðu1; u2Þ ¼ ku1 � u2kL10ðI ;L10Þ þ max
A A fJ;Hg

kAð�Þðu1 � u2ÞkL10=3ðI ;L10=3Þ:

We omit the proof of this part since it is routine. Once we have gotten the solution on
I ¼ ½t0; b�, we extend this solution beyond I . As a consequence, we are left to show a
finite apriori spacetime estimate on ½b;yÞ. Assuming v be a finite energy solution on
½b;yÞ, we redefine the energy of v by

eE1E1ðtÞ ¼
1

2
kJðt � t0ÞvðtÞk2

2 þ
1

3
cosh2ðt � t0ÞkvðtÞk6

6;

eE2E2ðtÞ ¼
1

2
kHðt � t0ÞvðtÞk2

2 þ
1

3
sinh2ðt � t0ÞkvðtÞk6

6:

Repeating the computations in Lemma 2.4, we find

d eE1E1ðtÞ
dt

¼ � 2

3
sinh 2ðt � t0ÞkvðtÞk6

6 ¼ d gE2ðtÞE2ðtÞ
dt

:

Integrating the second half of the equation, we have

1

2
kHðt � t0ÞvðtÞk2

2 þ
1

3
sinh2ðt � t0ÞkvðtÞk6

6

¼ 1

2
kxvðt0Þk2

2 �
2

3

ð t

t0

sinhð2ðt� t0ÞÞkvðtÞk6
6 dt

This implies

sinh2ðt � t0ÞkvðtÞk6
6 aCkxfuðt0Þk2

2:ð7:7Þ

By Hölder and direct computation, we continue to estimate the right side as
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kxfuðt0Þk2 a �w �
Cðh1Þh2jI j

1=2

 !
uðt0Þ

�����
�����

2

a ðCðh1Þh2Þ
2jI j k � wð�Þk3kuðt0Þk6

aCðh1Þh2
2 jI j:

sinh2ðt � t0Þb jt � t0j2 b jI j2; tb b;

hence, from (7.7), we have

kvðtÞk6
6 aCðh1Þh4

2 a h2
2 ; Etb b:ð7:8Þ

On the other hand, noting on ½b;yÞ, v satisfies,

vðtÞ ¼ Uðt � t0Þvðt0Þ � i

ð t

t0

Uðt � sÞjvj4vðsÞ ds;ð7:9Þ

we have

kJð�ÞvkL6ð½b;yÞ;L18=7Þ

aCkJðt0Þvðt0Þk2 þ CkJð�Þjvj4vkL3=2ð½b;yÞ;L18=13Þ

aCkJðt0Þvðt0Þk2 þ CkvkLyð½b;yÞ;L6Þkvk3
L6ð½b;yÞ;L18ÞkJð�ÞvkL6ð½b;yÞ;L18=7Þ

aCkJðt0Þvðt0Þk2 þ Ch
1=3
2 kJð�Þvk4

L6ð½b;yÞ;L18=7Þ:

This implies

kJð�ÞvkL6ð½b;yÞ;L18=7Þ aCkJðt0Þvðt0Þk2 aC;ð7:10Þ

where C depends only on E1, E2. To see this, we use Lemma 2.3 to expand Jðt0Þvðt0Þ
as

fðxÞJðt0Þuðt0Þ þ i cosh t0uðt0Þ‘fðxÞ;

which can be easily controlled.
Combining the bounds (7.8) and (7.10) together and using interpolation, one

obtains
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ð7:11Þ kvkL10ð½b;yÞ;L10Þ aCkvk4=10

Lyð½b;yÞ;L6ÞkJð�Þvk6=10

L6ð½b;yÞ;L18=7Þ

aCh
1=5
2 :

The last bound in Proposition 7.3 follows from Lemma 3.1. r

Now, we are at the position to solve the Cauchy problem (7.6). Before doing this, we
list the estimates that follow from Proposition 7.3 and the conditions on u.

kvkL10ð½b;yÞ;L10Þ < Ch
1=5
2ð7:12Þ

kwkL10ðI ;L10Þ aCh1; kAð�ÞwkL10=3ðI ;L10=3Þ aC; kBwkL10=3ðI ;L10=3Þ aC;

kvkL10ðI ;L10Þ aCh1; kAð�ÞvkL10=3ðI ;L10=3Þ aC; kBvkL10=3ðI ;L10=3Þ aC;

A A fJ;Hg; B A fi‘x; xg;

here, we have used the condition that I A ½0; h4
1Þ to get the estimate on Bv, Bw. The

constants above depend only on E1, E2.
For the sake of doing perturbation analysis and applying the induction, it’s neces-

sary to introduce the following Lemma.

Lemma 7.4. We have that

E1ðwðbÞÞaE1 � ch3
1 ; E2ðwðbÞÞaE2 þ Ch4

1 :

Proof. Noting Lemma 7.2, we need only to prove that���� Ðb
t0

q

qt
E1ðwðtÞÞ dt

����aCh4
1 ;

���� Ðb
t0

q

qt
E2ðwðtÞÞ dt

����aCh4
1 :

For simplicity, denote

jv þ wj4ðv þ wÞ � jvj4v ¼ jwj4w þ Fðv;wÞ;

hence, w satisfies the equation

iqt þ
D

2
þ jxj2

2

 !
w ¼ jwj4w þ F ðv;wÞ:

By some basic computation, one sees that

q

qt

E2ðwðtÞÞ ¼ 2 Im

ð
R3

xw‘w dx þ 2 Im

ð
R3

jxj2wF ðv;wÞ dx;
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thus, we get���� Ðb
t0

q

qt
E2ðwðtÞÞ dt

����a 2jt0 � bj kxwkLyðI ;L2Þk‘wkLyðI ;L2Þ

þ Ckxwk2
L10=3ðI ;L10=3Þðkwk4

L10ðI ;L10Þ þ kvk4
L10ðI ;L10ÞÞaCh4

1 :

To prove the increment of E1ðwðtÞÞ from t0 to b, we first compute directly that

q

qt
E1ðwðtÞÞ ¼

q

qt
E2ðwðtÞÞ þ Re

ð
R3

F ðv;wÞwtðxÞ dx

¼ q

qt
E2ðwðtÞÞ þ Im

ð
R3

Fðv;wÞ 1

2
Dw þ 1

2
jxj2w � jwj4w � Fðv;wÞ

� �
ðxÞ dx:

Integrating over ½t0; b� and using integration by parts, one gets���� Ðb
t0

q

qt
E1ðwðtÞÞ

����
aCh4

1 þ Cðk‘wk2
L10=3ðI ;L10=3Þ þ kxwk2

L10=3ðI ;L10=3ÞÞ

� ðkvk4
L10ðI ;L10Þ þ kwk4

L10ðI ;L10ÞÞ þ Cðkvk10
L10ðI ;L10Þ þ kwk10

L10ðI ;L10ÞÞ

aCh4
1 :

This ends Lemma 7.4. r

Now, for the sake of convenience, we make a small adjustment such that, the incre-
ment of E1 and the decrement E2 take the same value. More precisely, noting Lemma
7.4, we can get

E1ðwðbÞÞaE1 � Ch4
1 ; E2ðwðbÞÞaE2 þ Ch4

1 ;

with the same constant C.
Now, we are at the position to make following inductive assumption.
Assume

E1ðu0ÞaE1 � Ch4
1 ; E2ðu0ÞaE2 þ Ch4

1 ;

then the Cauchy problem of (1.1) is wellposed on ½�h4
1 ; h

4
1 �, and the solution u satisfies

kukL10ð½�h4
1
;h4

1
�;L10Þ aCðE1 � Ch4

1 ;E2 þ Ch4
1Þ:
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By this assumption and Lemma 7.4, we see that the solution of

iWt þ D
2 W ¼ � jxj2

2 W þ jW j4W ;

WðbÞ ¼ wðbÞ

(

satisfies the estimate

kWkL10ð½b�h4
1
;bþh4

1
�;L10Þ aCðE1 � Ch4

1 ;E2 þ Ch4
1ÞaCðE1;E2Þ:

Subtracting W from w, we are left to solve the perturbation problem with respect to
G ¼ w � W on ½b; h4

1 �,

iqt þ D
2 þ

jxj2

2

	 

G ¼ jv þ W þ Gj4ðv þ W þ GÞ � jvj4v � jW j4W ;

GðbÞ ¼ 0:

(
ð7:13Þ

8 Solving the perturbation problem

Our task of this section is to solve (7.13) with the help of (7.12). To insure the
smallness of the nonlinear flow, we split ½b; h4

1 � into finite subintervals such that on
each subinterval, W is small, so that we can solve (7.13) on every subinterval. Before
doing this, we re-estimate v on ½b;yÞ.

Lemma 8.1. In addition to (7.12), v satisfies

kAð�ÞvkL10=3ð½b;yÞ;L10=3Þ a cðh2Þ; A A fJ;Hg:

Proof. Taking J as an example, one sees

JðtÞvðtÞ ¼ Uðt � t0ÞJðt0Þvðt0Þ � i

ð t

t0

Uðt � sÞJðsÞjvj4vðsÞ ds:

For the linear term, we estimate directly. From decay estimate (2.3),

kUðt � t0ÞJðt0Þvðt0ÞkLy
x

aCjt � t0j�3=2kJðt0Þvðt0Þk1;

aCjt � t0j�3=2ðkJðt0Þuðt0Þfk1 þ kcosh t0uðt0Þ‘xfk1Þ

aCjt � t0j�3=2ðkfk2kJðt0Þuðt0Þk2 þ kcosh t0uðt0Þk6k‘xfk6=5Þ

By noting fðxÞ ¼ w x

h2Cðh1ÞjI j1=2

	 

, one has
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kUðt � t0ÞJðt0Þvðt0ÞkLy
x
aCðh1Þ

h2jI j
1=2

t � t0

 !3=2

:ð8:1Þ

On the other hand,

ð8:2Þ kUðt � t0ÞJðt0Þvðt0ÞkL2
x
a kJðt0Þvðt0ÞkL2

a kJðt0Þuðt0Þk2kfky þ k‘fk3kcosh t0uðt0Þk6 aC:

By interpolation and (8.1) and (8.2), we have that

kUðt � t0ÞJðt0Þvðt0ÞkL
10=3
x

a kUðt � t0ÞJðt0Þvðt0Þk2=5
y kUðt � t0ÞJðt0Þvðt0Þk3=5

2 aCðh1Þ
jI j1=2h2

jt � t0j

 !3=5

;

and thus

ð8:3Þ kUðt � t0ÞJðt0Þvðt0Þk10=3

L10=3ð½b;yÞ;L10=3Þ aCðh1ÞjI jh2
2

ðy
b

dt

jt � t0j2

aCðh1Þh2
2 :

To estimate the nonlinear term, we denote t1 ¼ t0 þ h2jI j, and split it into two parts,

����Ðt1

t0

Uðt � sÞJðsÞjvj4vðsÞ ds

����
L10=3ð½b;yÞ;L10=3Þ

þ
����Ðy

t1

Uðt � sÞJðsÞjvj4vðsÞ ds

����
L10=3ð½b;yÞ;L10=3Þ

;

For the first part, we use Lp � Lp 0
estimate to control it by

����Ðt1

t0

jt � sj�3=5kJðsÞjvj4vðsÞkL10=7 ds

����
L10=3ð½b;yÞ

:

Since for s A ½t0; t1�, t > b, jt � sj@ jt � t0j, we see the first part is smaller than

Ck jt � t0j�5=3kL10=3ð½b;yÞÞ

ð t1

t0

kJðsÞjvj4vðsÞkL10=7 ds

aCjI j�3=10jt1 � t0j3=10kvk4
L10ð½t0; t1�;L10ÞkJð�ÞvkL10=3ð½t0; t1�;L10=3Þ

aCh
3=10
2 :
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For the second part, we use Strichartz estimate to control it by

CkJð�Þjvj4vkL10=7ð½t1;yÞ;L10=7Þ aCkvk4
L10ð½t1;yÞ;L10ÞkJð�ÞvkL10=3ð½t1;yÞ;L10=3Þ:ð8:4Þ

At this moment, we follow the same way in proving (7.11) to get

kvkL10ð½t1;yÞ;L10Þ a cðh2Þ;

thus finally, ð8:4Þa cðh2Þ. r

Now we are at the position to solve the perturbation problem (7.13). By induction
assumption, we see that there exists some constant C ¼ CðE1;E2Þ such that

kWkL10ð½b;h4
1
�;L10Þ aC;

kAð�ÞWkL10=3ð½b;h4
1
�;L10=3Þ aC; AH fJ;Hg:

This allows to split ½b; h4
1 � into finite subintervals

½b; h4
1 � ¼

SK
j¼1

Ij ¼
SK
j¼1

½bj�1; bjÞ; b0 ¼ b; bK ¼ h4
1 ;

and such that

kWkL10ðIj ;L10Þ @ n; kAð�ÞWkL10=3ðIj ;L10=3Þ @ e:

Then

K amax
C

n

� �10

;
C

e

� �10=3
 !

:

If (7.13) has been solved on ½b0; bj�1�, and

kAðbj�1ÞGðbj�1Þk2 aC j�1cðh2Þ
1�ð j�1Þ=2K ;

then we can solve (7.13) on ½bj�1; bj� by proving the solution map

FðGðtÞÞ ¼ Uðt � bj�1ÞGðbj�1Þ � i

ð t

bj�1

Uðt � sÞðjv þ W þ Gj4ðv þ W þ GÞ

� jvj4v � jW j4WÞðsÞ ds

is contractive on the closed set
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X :¼
�
G A L10ðIj;L10Þ;Að�ÞG A L10=3ðIj;L10=3Þ; and

kGkX ¼ kGkL10ðIj ;L10Þ þ max
A A fJ;Hg

kAð�ÞGkL10=3ðIj ;L10=3Þ aC jcðh2Þ
1�j=2K

�
;

endowed with the metric

dðu1; u2Þ ¼ ku1 � u2kX ;

and complete one step of iteration by estimating kAðbjÞuðbjÞk2 from Strichartz esti-
mate. This is feasible since we can choose the absolute constants e, n, and the con-
stant cðh2Þ small enough. The proof is routine and is omitted. Now we have a finite
energy solution G on ½b; h4

1 � such that

kGk10
L10ð½b;h4

1
�;L10Þ ¼

PK
j¼1

kGk10
L10ðIj ;L10Þ a

PK
j¼1

ðC jcðh2Þ
1�j=2KÞ10

aC:

To conclude the proof of Proposition 3.6 in case of blow up solution, we collect all
the estimates to get

kukL10ðI ð3Þ;L10Þ a kukL10ð½b;h4
1
�;L10Þ

a kvkL10ð½b;h4
1
�;L10Þ þ kWkL10ð½b;h4

1
�;L10Þ þ kGkL10ð½b;h4

1
�;L10Þ

aCðE1E2; h1; h2Þ:

Thus, J1 can be controlled by

O
CðE1E2; h1; h2; h3Þ

h1

� �10

:

In the same way, J2 can also be controlled, and thus

kukL10ð½�h4
1
;h4

1
�;L10Þ aCðE1;E2; h1; h2; h3Þ:

which closes the induction and finally gives Proposition 3.6.
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