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Global wellposedness and scattering for 3D energy critical
Schrodinger equation with repulsive potential and radial data

Zhang Xiaoyi

(Communicated by Christopher D. Sogge)

Abstract. In this paper, we show that the Cauchy problem of the 3D nonlinear Schrodinger
equation with repulsive potential is globally wellposed if the initial data ug is spherically sym-
metric and ug € £ = {f, f € H',xf € L*}. We also prove that the scattering operator is holo-
morphic from the radial functions in X to themselves. In order to preclude the possible energy
concentration, we first show the energy concentration may occur only at finite time by using
the decay estimate of potential energy ||u()||¢, then we preclude the possible finite time energy
concentration by inductive arguments.
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1 Introduction

In this paper, we consider the Cauchy problem of defocusing energy critical equation
with repulsive potential,

2
(1.1) (i6,+§)u = _%H ul*u, (x,1) e R? x R,

(1.2)  u(x,0) = up(x), xelR3

where u(t,x) is a complex function on IR® x R, u(x) is a complex function on IR?
satisfying

up € X = {v; [[vllg = lloll e + llxoll, < o0}

We are concerned with the global existence and long time behavior of the global
solution.

The author is supported in part by N.S.F. grant No. 10426029 and the Morningside Center.
! In three and higher dimension, the facts that xu € L? and Vu e L? imply automatically that
u e L?, and of course imply that u € ¥ by Hardy and Hélder inequality.
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Nonlinear Schrédinger equation without potential has been extensively studied.

Here, we restrict our discussion to the Cauchy problem of the equation with power-
like nonlinearity:

A
(1.3) (16, )v = ulv|’v, u#0,

(1.4)  v(0)=wvpe H],

1 1s a constant, the cases u > 0 and u < 0 correspond to defocusing and focusing
respectively. (1.3) has energy conservation,

2
(01155 = consr.

E() = 5 Vo0 +

The local theory of the Cauchy problem (1.3)—(1.4) can be roughly summarized as
follows: (1.3) has a unique local solution in C([0, T'); H'), when p is smaller than or
equals to a certain exponent p, = n472 (pc =4 when n = 3) which is called energy
critical for the reason that the natural scale invariance

v(x, 1) — 27Po(27 X, 4720)

of the equation leaves the energy invariant. In the supercritical case p > p., (1.3)
is locally illposed in the sense that the solution v(x, ¢) does not depend continuously
on the initial data vo(x) in H' space. To get more details, see [4], [5], [10], [6] for
instance. In the defocusing and subcritical case, the global existence is a direct con-
sequence of the energy conservation. In the focusing case u < 0, blow up in finite
time may occur, espec1ally when the influence of potential energy ||v||?+ +2 surpasses
that of kinetic energy ||Vv|)3, see [9], [4] to get more details. The case of energy critical
becomes rather difficult because the pure energy conservation is not enough to ensure
the finite energy solution to exist globally. In other words, even the total energy of the
solution is finite, part of it may possibly concentrate somewhere in space, so that the
solution blows up in finite time.

The first important work in this area is due to J. Bourgain [1] and M. Grillakis [12].
They pointed out that the solution will concentrate somewhere in R unless the so-
lution exists globally. To preclude this possibility, they use a Morawetz type estimate,

Pet2
(1.5) JJ P00 e < CRE@I2, K> 1.
K|1|"? |x|

The estimates of this type is originally due to J. Lin and W. Strauss in [14], and is
adapted here to better suit the energy critical problem of NLS. Actually, (1.5) is useful
for preventing the concentration of v(z, x) at origin x = 0. This is especially helpful
when the solution is radially symmetric since in this case, one can use the bounded
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energy estimate to show that v will not concentrate at any other location than the
origin. Their results are restricted to d = 3,4. Recently in [16], T. Tao proved the
energy critical Cauchy problem with radial data is globally wellposed and scattering
result holds in all dimensions d > 3 by a sightly simple approach.

A great breakthrough was made by J. Colliander, M. Keel, G. Staffilani, H. Ta-
kaoka, and T. Tao in [7], where they obtained the global wellposedness and scatter-
ing for 3D energy critical NLS with arbitrary initial data. The results were extended
to 4D by E. Ryckman and M. Visan in [15] and were extended to all dimensions
n > 5 by M. Visan [18].

Schrédinger equation with harmonic potential and power-like nonlinearity can be
written in the form,

. A w|x\2 »
(1.6) l@,—i—z u:Tu+ﬂ|u| u.

Being similar with the NLS equation without potential, we call (1.6) is energy sub-
critical and critical if p < p. and p = p., with the same p. defined before. In both
subcritical and critical case, because of the presence of the potential term, it’s natural
to seek for the solution of the Cauchy problem for this equation with suitable decay
in space, ie,

(17)  ue ().

Indeed, recently in [2], [3], R. Carles systematically studied the Cauchy problem for
equation (1.6) with subcritical nonlinearity. He found that in the defocusing case and
when a repulsive potential (ie., w = —1) is involved, the solution will be global and a
scattering theory is available. In the focusing case, a sufficient strong repulsive po-
tential will even prevent blow up in finite time. By “strong repulsive’ potential, he
means that w < 0 and || is sufficiently large.

The problem remains open as to what will happen when the nonlinearity is energy
critical, that is, p = p. = %, n > 3. In this paper, we restrict our attention to the
case n =3, w = —1, u =1 and the radial solution. The higher dimensional case will
be considered elsewhere. We will show that the Cauchy problem (1.1)—(1.2) is glob-
ally wellposed, and the scattering operator is holomorphic from the radial function in
¥ to itself. In the remaining part of this introduction, we will sketch the proofs.

To begin with, we see that the equation (1.1) has mass and energy conservation,

(1.8) ()|, = const,

(19)  Ew(®) = 5 IVu(o)l2 — 5 )13 + (o) = const,

the energy (1.9) is non-positive, so we split it into two positive parts:
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Ex(u(t)) = 5 V(0 + 5 o)
(1.10)

Exu(t)) = 5 (o),

and consider the Cauchy problem with E;(u(0)) = E;, E>(u(0)) = E, for some fixed
constant E; > 0, E; > 0. Occasionally, we may drop « from the notation E;(u(¢)) for
simplicity.

Although E;(¢) and E,(7) are nonnegative all the time, we don’t have any easily
obtained information about their evolution. For this reason, we introduce another
way that is provided by R. Carles [2], [3] to split the energy:

1 1
61(0) = 5 17U + 5 cosh? u(n)
(1.11)

1 I .
(1) = 5 | H(@u(r)||3 + 5 sinh® e]|u(0)g,
2 3

6\ () — &>(t) = E(t) and they coincide with E| () and E,(#) only at ¢ = 0. The benefit
of this decomposition is that neither of &) (¢), &>(¢) increases in time, also, the poten-
tial energy decays fast. (See Section 2 for details). Using these facts in addition to
Strichartz estimate, it’s not difficult to get global solution in the subcritical case.
However, in the critical case, the decay estimates of &(¢) and &(¢) can’t prevent
immediately the occurrence of the finite time blow up.

Next, we will establish the local wellposedness, give as well the blow up criterion
which says that the local solution will blow up in finite time unless it has certain
spacetime bound. In principle, there are many choices about the spacetime bound, we
prefer to working on the L'° spacetime bound for the simplicity of the exposition
(L'° bound here will be defined clearly later). In addition, we get the global well-
posedness provided the kinetic energy of the initial data ||Vuy||, is sufficiently small.

To extend the local solution to a global one, we will prove the “good local well-
posedness’ which means the time length of the local solution will be proved to de-
pend on the ¥ norm of the initial data only. On the other hand, since the quantities
E; (1), E>(t) have at most exponentially growth by using the boundedness of & (%),
6>(t) and the relationship between them, we conclude that the solution is global and
has finite spacetime control on any spacetime slab 7 x R", |I| < oo.

Once the global solution is obtained, the scattering theory is easily available by the
fast decay of the potential decay.

Now, let’s make precisely the “good local wellposedness™. It means that: There
exists a small constant #; = #,(E, E») > 0 such that the Cauchy problem (1.1), (1.2)
is at least wellposed on [—7}, 7] and

||u||L”)([7;7;‘1,7ﬂ;Llo) < C(Ey, En).



3D energy critical NLS 637

Thanks to the local solution theory, we need only to prove the above estimate by
assuming apriori that the solution has existed on the interval [—77,7}]. And we will
prove this by adopting the idea in [1], [16].

Fix the small constant #; such that it satisfies all the conditions that will appear in
the proof, we subdivide [0,#{] into J; intervals and [—#7, 0] into J, intervals such that
on each subinterval Jj, [[ul| 10z, 10) is comparable with 5;. We do analysis forward in
time and only give the estimate of J; for simplicity. By some technical computation
and the radial assumption, we get energy localization: there exists a time in each
subinterval such that the local kinetic energy and the local mass near the origin is not
small, we often refer this as a “bubble” at origin when it occurs. If the volume of
every bubble is sizeable by the length of the corresponding time interval, then the
solution is soliton-like and J; can be estimated by using Morawetz estimate. Other-
wise, there is concentration for Ej(u(t.)) at some ¢, € (0,7}). Now we need to esti-
mate Jy in this case.

By removing the small bubble (because of the concentration), we get a new function
w(t.) for which Ey(w(t.)) < Ei(u(t,)) — cn3. The difference in size between Ej (u(t.))
and E;(u(0)) can be controlled roughly by Cpf, therefore, we get Ej(w(t,)) <
E; — Cni. At the same time, the size E»(w(z.)) will have slight increment Cy} com-
paring with E»(u(0)), therefore, we get E»(w(t.)) < E> + Cnf.

Now, we are almost near the end of the argument if we can make an inductive
assumption like following: the Cauchy problem of (1.1) is wellposed at least on
[—nt, 7], if the initial data satisfies that E|(ug) < Ey — Cn}, Ea(ug) < E» + Cnf.

An obvious flaw of this assumption is that the constant may not be uniform in
the process of the induction because of the slight increment of the size of E,(-),
however, since the total increment of the process is at most Ej, (when the size of E) ()
becomes very tiny), we can choose a constant 7, depending on E;, E; + E, to avoid
such problem. Now, let’s clarify the inductive process: we begin with a Cauchy
problem with initial £,(0) < e and E>(0) < E; + E,, which is globally wellposed by
small global theory; then we claim the Cauchy problem with initial £(0) < € + 7,
E>(0) < Ey + E» — 57} is at least wellposed on [—7},7{] by the same concentration
analysis; after finite steps, we can cover the case for which the initial E;(0) < E; and
E, (0) < k.

Combining the inductive assumption and the perturbation arguments, we
finally give the control of J; and J;, therefore concluding the proof of the main
theorems.

The remaining part of this paper is arranged as follows: In Section 2, we give some
notations and some basic estimates. They include: Littlewood-Paley decomposition,
Galilean operators, Strichartz estimates for the linear operator with potential, basic
properties of Galilean operator, etc. In the first part of Section 3, we give the local
wellposedness and global small solution theory. In the second part, we use the decay
estimate to reduce the problem to proving a “good local wellposedness” result.
Section 4 through Section 8 are devoted to prove this good local wellposedness. In
Section 4, we prove Morawetz estimate of the solution of (1.1). In Section 5, we use
Littlewood-Paley and paraproduct decomposition to prove the existence of a se-
quence of bubbles. In Section 6, we control J; and J, in the case of solitonlike solu-



638 Zhang Xiaoyi

tion. In Section 7, we control J; and J; if there is concentration by using the inductive
assumption and close the induction by a perturbation analysis in Section §.

2 Notations and basic estimates

Notations:

Let %y, ,, 173 be small constants satisfying 0 < #; < #, <« #; « 1 and to be defined
in the proof, ¢(n,), ¢(n,), c(n;) be small constants satisfying 0 < c(173) < ¢(7,) <
c(n) < 1; C(ny), C(n,), C(ns) be large constants such that 1 « C(y;) « C(,) <
C(n3). C, c are absolute constants and may be different from one line to another.

For any time slab 7, we define the mixed spacetime Lebesgue space

LU L") = {u(t, X), lell o ) = Q( [ |u(t,x)|"dx>q/rdt>l/q < oo.}

R”

with the usual modification when ¢ = co.
We also define admissible pairs corresponding to linear Schrodinger operator with
repulsive potentials as follows,

Definition 2.1. A pair (g,r) is admissible if 2 < r < 6 and % +% = %

Occasionally, we will use S°(/) to denote the Banach space Ng.n
and 7 is dropped when 7 = R. A

Next, we give the definition of Littlewood-Paley projection. Let {¢;(¢) ﬁf’w be a
sequence of smooth functions and each supported in an annulus {¢&;2/7! < |&| <2/+11,

and

LA(L; L),

admissible

SO =1, vE£0.

Jj=—00
For any N = 2/, we define Littlewood-Paley projection as follows:

Py =Py =7 (¢) %,
Pey =Py =7 ( > ¢,,) %,
>

Poy=1-P_y.

In the subsequent chapter, we may use ¢y to denote ¢; when N = 2/. Following is
part of the properties of the projection.

® Forany 1 < p< o0, ands >0,
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IIVEPNSIl, ~ N*IPaS,,
IV Penll, < CN*|[P<yl|,-
e Bernstein estimate: Forany 1 < ¢ < p < oo,
|Pnfl, < CN"O10) | Pyg]
1P<nfll, < CN"VP Poyf ],

Let u(¢, x) be the solution of 3-d free Schrodinger equation with repulsive potential:

2
(i+8)u= L.
(2.1)
u(0) = uy,
then it can be expressed through Mehler’s formula (see [8]),
(22) u(l, x) = U([)uo = ef(it/z)(fAf‘xlz)uo

i3m/4)sgnt 1
27 sinh ¢

32
— o J pli/sinh H(((x*+y%)/2) cosht—x~y)u0(y) dy,
R3

one sees from the above that the kernel of U(¢) has the better dispersive estimate
than the kernel of Schrédinger operator without potential. By using Mehler’s formula
(2.2), and noting that U(-) is unitary on L2, one has the following decay estimate
(23) U@l < Cle[*[luo]],,

24 UOull, < Cle Y g, 2< p < oo,

which, by [13], imply,

Lemma 2.2. For any admissible pair (q,r), there exists C, > 0 such that

NUC)@l Low; ) < Crll#ll-

For any admissible pairs (q1,11), (q2,12) and any time interval I, there exists some
constant Cy, .,, such that

U(t—s)F(s)ds

< CrnllEll o )
In{s<t} LO(I;L") 12 L%2(I; L")
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There are Galilean type operators associated with the equation (2.1),

(2.5) J(¢t) = xsinht+icoshtVy, H(t) = xcosht+ isinhtV,,

from which x and V. can be recovered,

(2.6) x=-coshtH(t) —sinhtJ(z), iV, =coshtJ(¢) —sinhtH(r).

In addition, J(¢) and H () enjoy the following properties,

Lemma 2.3. 1. They are Heisenberg observables and consequently commute with the
linear operator,

J(t)=U(0)iV,U(-1), H(t) = U(t)xU(-1),

2
ia,+é+i,mz>]_o.

2 2 2 2

A 2

2. They can be factorized as follows, for t # 0,
J(t) = icosh [ei(\x\z/Z) tanhtvx(e—i(\x\l/z) tanht.)’
H(l) — jsinh tei(\x\z/Z)cothtvx(efi(\x|z/2)cotht.).
3. Let F e C'(C,C) and F(z) = G(|z|*)z, then,

J(0)F (1) = 0.F (u)J (t)u — 0=F (u)J ()u,

=
~
S~—
~
—
<
S~—
Il

0.F(u)H (t)u — 0:F(u)H (t)u.
4. There are embeddings (for instance),

11

AWy < 1T s P

1 .
) p*<OO.
nop

Proof. The first point is easily checked thanks to (2.5). The second one holds by direct
computation, and implies the last two ones. O

Formally, the solution of (1.1)—(1.2) satisfies the following two conservation laws,

Mass: M = |[u(1)[, = [|uoll,,

1 | 1
Energy:  E(1) = 5 |IVu(0)]13 =5 w3 + 5 u(2) I = const.
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As mentioned in the introduction, we split E(¢) by two ways. First, define

Ex(ult)) =  IVul) B+ 30l Eauc)) = 3 Il

it follows easily that,

E(u(1)) = Ex(u(t)) — Ex(u(1)).

Next, we define

51(1) 1= 3 1T (0u) . + 5 cosh® o)
(2.7)

1 1 .
85(0) 1= 5 | H(Du(n)[}: + 5 sinh® (o) |,

then &(7) and &(t) coincide with E;(f) and E»(z) only at t = 0. Furthermore, we
have,

Lemma 2.4. 1. &(¢) and &(t) satisfy,

(2.8)  &1(1) — & (1) = E(1),

déi(1) _dé(1)

(29) dt dt

2
=-3 sinh(2¢)[|u(2)]|S.

2. The potential energy ||u(1)||S has exponentially decay in time:
u(0)||S < 3E1(0)cosh™®z, VieR.
3.Vte R,
(2.10)  &1(1) < 61(0) = E1(0),
211) [[H@Ou(®l3 < [|HO)u(0)]3 = lxuol; = 2E2(0).
Proof. The first point can be verified by (2.5) and the equation (1.1), see [2] for details.

Now let us prove the second point. Integrating in time from 0 to ¢, we see from (2.9)
that

&(1) = 6(0) — %Lt sinh(2s) u(s) € ds.
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By (2.7), we have

t
cosh? #ju(1)||S < 3&1(0) — 2J sinh(2s)||u(s)|¢ ds
0

.
=3&(0) — ZJ Smh(fs) cosh? sf[u(s)§ ds.
0 $

cosh” s

Applying the Gronwall inequality yields:

sinh(2
cosh? 7]|u(2)]|S < 36 (0 [ 2Ism }
o cosh

Noting by direct computation,

J; S;E};}(j? ds = Incosh ¢,
we have

cosh? 7]|u(£)]|® < 3&(0) cosh™ ¢
and

u(?)||® <3&(0)cosh™®¢
[[u(2)llg (0)

Now, let’s prove the third point. First, (2.10) is easily verified by using (2.9). Next,
noting (2.7), (2.6) and energy conservation, we see that,

SN @B + 5 sinh? (o)
=& (1) — E(1)

< 61(0) — E(0)
| , 1 o (1 T
= 3190l + 3 ol = (5190l 5 Lol +5 ol

1 2
= 5 lxuoll3.

Thus we get
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[H ()u(@)ll; < [lxuoll,,

which is exactly (2.11). O

Before ending this section, we give the main theorems of this paper.

Theorem 2.5. Let uy € X be radial, then the Cauchy problem (1.1)—(1.2) has a unique
global solution in Cioc(R;Z) N L'°(R; L'%) which satisfies

(2.12)  Jull ogr; 1oy < C[[Vatolly, [[xuo[),

2.13 A(- <C
(2.13) Ae?}'?‘m}” (ullgo < C([Juollz),

where A(t) denotes any of the operators J(t), H(t), or the identity 1. For any com-
pact interval 0 € I = R, the data-solution map uy € £ — u € C(I;X) is Lip continuous.
Furthermore, there exits a unique uy € X such that

|U(=t)u(t) —us|ly — 0, ast— too.

Theorem 2.6. Let uy € X be radial, then there exists a unique solution u(x,t) of equa-
tion (1.1) satisfying

luell Lrogr; 10y < C(E (us), Ea(uy)),

Al <C
jmax 14 )ullso < C([luslls),

and
|U(=0u(t) —uslly — 0, ast— too.

Remark 2.7. In view of the two theorems, we can define scattering operator Q. from
the radial functions in X to themselves by Qi u_ = u,, where u_ and u, are asso-
ciated through the unique solution of u(#, x) to (1.1) such that

(2.14) ||U(=0u(t) —u4lly — 0, t— +oo.

Furthermore, it’s also not hard to verify through Theorem 2.5 and Theorem 2.6 as
well as (2.14) that Q is one to one, and continuous in X, therefore is a holomorphic
from the radial functions in X to themselves. The proof of non-potential NLS coun-
terpart can be found in, for instance, [4].

3 Local wellposedness and global small solution

The goal of this section is to get local solution and small global solution to (1.1),
(1.2), which by Duhamel, satisfies the integral equation
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(3.1)  u(t)=U(t—to)u(ty) — iJ[ U(t — s)|ul*u(s) ds.

to

To begin with, let’s introduce a lemma which will be used throughout the paper.

Lemma 3.1. Let I be a time slab, u be the solution of (1.1), (1.2) in the sense of (3.1)
such that

(3.2) H“”LIU(I;LIO) < (i,
then we have
[ullsoy < C(Cy, |luolly), for Ae{J, H, I}
Remark 3.2. It should be noticed that the L' norm control in condition (3.2) is not
specially chosen and can be replaced by other spacetime bounds. For example, by

assuming the boundedness of [|uf| .67, 115y Or [[Jull 2/, 16, One can get the same results
by some minor changes of the following proof.

Proof. Divide I into subintervals I = UjJ:l I; such that ||ul[ 0, 10y~ 7, then on
I; = [tj_1, 1], u satisfies the equation,

) = U=t ut) — [ U=l *ats) s

f-1
by Strichartz, we have
14ull 04y < ClLACt1)ult1) |5 + Cllull o oy | Aull 5o
< ClA(t-Du(ti-1)l, + Cn*llAull g0
which implies that
[ Aull so(zy < 2C1|A(4-1)u(ti1)l],,

if 7 is small. This finally gives Lemma 3.1 by the boundedness of ||A(#)u(¢)||, and
inductive arguments. |

By time reversal symmetry, we state the following result only in the positive time
direction.
For I a time slab, define the space
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X(I) — L10/3(1;L10/3) leO(]’ L:‘}O/l:’))7
then we have

Proposition 3.3. Let uy € Z, then there exists a 1y, > 0 such that when the linear flow
satisfies

I/ Uuo |l x (10, 77 < 10>

(1.1)—(1.2) has a unique solution u(x, t) satisfying

(3:3) [ Aullsoo, 7y < Cllluolls), VA e{J, H, I}

Let T* = supy{(1.1) — (1.2) has a unique solution on [0, T|}, and if T* < co, then
HHHL“’([O,T*);L“’) = .

Proof. Define the solution map by

D) (1) = U(t)uy — ZJ; U(t — ) |ul *u(s) ds,

and denote I = [0, 7], then we show ® is contractive on the compact set
B = {u(x, 1), |Jull x )y < 2n0; [[Hul| x 1y < 2C||xuolly; llull x(ry < 2C]uolly}

under the weak topology X (I) if 7, is small enough. Taking u € #, by Strichartz
estimate, we have that

[JPul| y(y < [T Uuol| xr) + C||”||210(1;L10)||J”||X(1)
<1+ C||J“H)5((1) <115+ C(21)° < 21,
if 7, is such that C (2170)5 < 7. By the same token, we have,
[H®ul| 1y < [[HUuo|| () + CH”Hz'O(I;LlO)HH”HX(I)

< Cllxuolly + C(210)* 2C1Ixuo|ly) < 2C|lxuol,

1Qull (1) < 2Clluoll,,
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for the same #,. Let u;,u; € 4, then it’s easily seen that
4 4
[ (1) — P(u2) sy < CUllurllLior, Loy + N2l 10z, proy) ler = w2y
4 1
< 2CQ2no)" llur = w2l < 5l = w2l r)-

Applying the fixed point theorem gives a unique solution of (1.1)—(1.2) on the inter-
val I. The norm control (3.3) follows from Strichartz estimate.

Before proving the blow up criterion, let’s say a couple of words about how to
extend the solution from ¢, forward in time. We need the smallness condition on the
linear flow as follows,

IS U= 20)ulto) | x . 0077y = "0
which allows us to establish the contraction mapping on the compact set,
B = {ulx, 0); | ull x (1, 104 17) < 21003
[ Hul| (1, 0077 < 2CIH (20)u(t0) |, [[ell (19, 1077y < 2C |u(t0)]]5}
by repeating the same proof before.
Now, let’s prove the blow up criterion. If otherwise 7* < oo and
[|2e]] L100, 7); L10) < 00, We aim to get a contradiction by extending the solution beyond

T*. Let ty be very close to T*, then it’s enough to find a small J > 0 such that the
linear flow is small, more precisely,

(34) IO U(C = 10)ulto)l x (1, 710 < Mo-
First we notice that the finite L'° norm control implies that
HAuHS”([O,T*)) < o0,

by Lemma 3.1.
On the one hand, by Strichartz, we have that

[T U = t0)ulto)lx (. 79y < 1ullx(ire, 7)) + ||J”||§(([z0,r*))a

which <™ if 7y is close enough to 7. On the other hand, once # is fixed, we can
choose 0 > 0 small enough such that,

Ui
1)U = 0)ulto)llx 7+, 710 < 707
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by noting that
[JC) U= t0)ulto)ll xry < [/ (20)u(to)ll, < oo,

lim [ (YU (- = to)u(to) | x(7+ 7++5) = 0-

(3.4) then follow from trivial triangle inequality. O
For T sufficiently small (but may depend on the initial profile), we will get a unique
solution on [0, 7). However, if the initial kinetic energy is small, then by Strichartz
estimate,
[/ Uo |l x(my < [[Vuolls < 1o,
we get immediately the global small solution.
Corollary 3.4. Let uy € X, then there exists a small constant &y > 0 such that when
HVMOHZ < €0,

(1.1)—(1.2) has a unique solution u(t,x) satisfying

sup [ Aul|gor) < C(lluoll)-
Ae{J, H I}

Furthermore, there exists a unique function uy € X such that
NU(=t)u(t) — ug|ly — 0, ast— +oo.

Proof. 1t’s only left to construct the asymptotic state for the global solution u. Let
uy = ug — i [ U(—s)|u|*u(s) ds, one sees that

o0

U(=)u(t) — uy(f) = iJ U(—s)|u|*u(s) ds.

t

Noting that by Lemma 2.3, there holds

o0

iVi(U(=tu(t) —us(2)) = iJ U(—s)J(s)|u|4u(s) ds,

t

We see that
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T U(=5)A(s) ul*u(s) ds

t

U(—tu(t) — t <
| U(=t)u(t) u+()llz_A£}§g~1}

2

Noting that the operator U(-) is unitary on L2, we can bound the right side of the
above equation by

4
HMHL“’((t,oc);LW) ||A(')“||Lll>/3((z,oo);Lw/z)

which tends to 0 as ¢ tends to co. The scattering in the negative direction follows the
same way. O

Assume for the moment that the solution is global, then we will show that the decay
of the potential energy imply the decay of this global solution, and from which the
scattering follows.

Lemma 3.5. Assume u is a global solution and for any time slab I € R, |[ul| p1o(7. o) <
C(1), |luolls), then u satisfies

3.5 A(- <C
(3-5) Ael{r;figﬁl}ll (ullso < C([luolls),

and there is scattering.

.. . 1/6
Proof. Fixing a small constant ¢ and taking 7' > T = (32(‘(0)) , we have

3E1(0)cosh™ T < &8,
thus by the decay estimate Lemma 2.4, one has
(3.6)  Mull o (i7,00),16) < &
By Duhamel’s formula, on [T, o0), u satisfies the equation

u(t) = Ut — TYu(T) — zj; Ult — s)|ul*u(s) ds.

Applying Strichartz estimate gives,
4
IOl 27,00y, 16y < CII(T)u(T) ||y + CII Ol ull L2700, 1655)
< C|J(T)u(T)]|, + C||“Him([7.oc);u)HJuHLZ([T,oo);LG)

1/2
< CEy(u0)'? + Ce*||Jull 27,0, 1)
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Therefore,
1/2

)l L2((7,00): £6) < 2CE (o) =
By time reversing and the assumption, we have

I Cull 2r; 2oy < W Cull 2o, 79, 19)

+ I Oull g, 7y, ) + 1T Oull 27,000, 16) < C-

This implies that

14()ullo < C.

The scattering result follows from this global spacetime bound as shown in Corollary
3.4. ]

On the other hand, since by (2.6) and Lemma 2.4, E(¢) and E»(¢) grows exponentially
in time, in order to prove Theorem 2.5, we need only to show the following “good
local wellposedness”,

Proposition 3.6. Let E\(uy) = E1, Ex(ug) = E», then there exists a small constant n,
depending only on (E\, Ey) such that the Cauchy problem of (1.1), (1.2) is at least
wellposed on [—n},n}] and the solution u satisfies

Hu”L‘O([*nf-ﬂﬂ;L‘O) < C(Ey, E).

The remaining part of the paper is devoted to the proof of Proposition 3.6, however,
before proceeding to the next section, let’s give a sketchy proof of Theorem 2.6.

Proof. We need only to show the integral equation

(3.7)  u(t) = U()uy + ir U(t — s)|ul*u(s) ds,

t

has a unique global solution with global spacetime estimates. First of all, we
seek for some local solution. Define the solution map by ®@(u)(r) = U(t)u+
iJ",OOU(t—s)|u|4u(s)ds, and denote R = ||Vu,|,. By choosing T = T(R) large
enough, say, cosh 7" > CR, we see that ® is a contraction map on the set

lleell o (7 o0; 10y < 2C [,
X =Su(x, )y [HCull oz o0y, 105y < 2C [xu |, ;
HJ(‘)M||L10/3([T7OO>;Llo/z)ﬁLl(]([T,w);Lso/m) <2CR
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endowed with the metric d(uy, up) = ||u; — qu LIS(T,00); L103) - The proof is routine, ex-
cept needlng to notify that the gain cosh™' 7' from the embedding el 107,09 £.10)
< Ccosh™ T||J(- Jull L1017, 00); 1013y gives the dependence of 7" on R. Once we get the
local solution, we can find a ﬁmte time 7 = T(E)(us)) such that u(T) € . At this
moment, we can apply Theorem 2.5 to get a unique global solution with global
spacetime bound satisfying also (3.7). The scattering part of Theorem 2.6 then fol-
lows easily from the global spacetime bound of u(x, ). O

4 Morawetz estimate for solutions of (1.1)

We first give the local mass conservation of u. We’d notice that the Local mass con-
servation for Schrédinger equation without potential has appeared in [1], [11], and
[16].

Taking a smooth function y(x) e C5°(R®) such that y(x) =1 if |x < and
x2(x) = 01if |x| > 1. Then we have,

Proposition 4.1. Let u be the smooth solution of (1.1), and define local mass of u to be
X—xo 1/2
Mass(u(t), B(xo, R)) = ( [ (T) lu(t, x)zdx> ,
then,

(4.1) 0, Mass(u(t), B(xo, R)) < %7

and
(4.2)  Mass(u(t), B(xo, R)) < R||u(t)|| 4.
Proof. Noting that u satisfies the equation (1.1), we have

0r Mass(u(t), B(xy, R))z

_ Jﬁ(x ;xO)ZRe[ <2Au+ | — ifu]* ﬂ(x)dx,
_ _J 2 (x ;XO) Im(aAu) (x) dx.

Integrating by parts, we get

8, Mass(u(1), B(xo, R))* = %J X(’“ ;{x()) (Vx) (X ;x0> Im(iVu)(x, 1) dx.
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By Hoélder inequality, the right hand side can be controlled by

% Mass(u(t), B(xo, R))||Vu(1)]],,

from which (4.1) follows. Now, let’s prove (4.2). Using Hardy’s inequality, one has

X — X0

Mass(u(t), B(xo, R))2 = JX2<

2 (X —Xo > [ Ju(, %)
< sup y (T>|x—x0| J’idx

xeR? \X—Xo|2

) |u(t, x)|* dx

< R||u(?)]|3p1-
Thus, we get (4.2). O

Proposition 4.2. Let u be the solution of (1.1) with finite energy. Then we have

6
(4.3) H ) e
1 J)x| <k |x|

1/2 2 2 6
< CK|I| / IVl g, 22y + loeutl| 2 . 12y + Nutll 2 g, 20)) - Sor all K> 1.

Proof. We prove this result by following the idea in [16]. However, we should notice
that in the case of NLS without potential, the computation of such localized esti-
mate is first due to [14] and was adapted later by J. Bourgain and M. Grillakis to
better suit the critical case. The common approach is differentiating the quantity
Jpn Im (ﬁ - Vu(t, x)i(t, x) ) dx.

Assume without loss of generality that u is a smooth solution of (1.1). First, by a

direct computation, we get
. 2 _ 2 6 2
(4.4) 0, Im(Orui) = Z(?/(A(|u| ) — Re 0;(itgu;) — 56;((|u| )+ xilul”,

here, we use Jrf or f; to denote % Let a(x) be a smooth radial function to be

chosen later. Multiplying (4.4) by a;(x) and integrating on IR® we get
1
(4.5) 6IJ Im(Oruin)(x)ax(x) dx = Jajk(x) Re(iiu;)(x) dx — ZJAAa(x)|u|2(x) dx
R3

+ %JAa(x)|u|6(x) dx + Jak(x)xk|u|2(x) dx.
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Taking y(x) € Cy(IR?) satisfying y(x) = 1 as |x| < 1 and y(x) = 0 as |x| > 2. Letting
a(x) = (&2 + |x*) 1 (%), we claim that, on |x| < R,

R
2 24172 . Xk
alx) = (& + |x , ap(x) =————7,
() = (b)) = e
2 &2 15¢2
Aa(x) = + . Aa(x)= ——————— |
) @+ )2 (2 [xP)? * (& + x|

aj(x) Re(igu;)(x) =0, ap(xX)xy =————= =0
i (X) Re(itgeuy) (x) (x) ERANDYE

The first four points follow by directly differentiating a(x) on |x| < R. The fifth one
follows from

(4.6) () Re(ugu;)(x)

_ I XX
2+ X)) (2 +[x]%)

3/2) RE(L_I/CT/I]‘)(X)

Vu|? Re(xuxii)  |Vul? ||

= 12 233/2 221/2 2.3/27
R e e L (- P o R o P ) R A e b

and the simple fact that |u,| < |Vu|. Plugging all the estimates in (4.5) yields that

6

4J |l
= —————dx
3)n<r (&2 + |x)?

<2, o gader | s Re(in) (9)

+ 71O () + 2 A0 il (o) + (o)l () .

Integrating in time on /, we get

Jul® (x, )

B e e

L

Ix]

< sup| [ Im(aug)(x)ax(x) dx
tel |R3

T i sup ( [ gy )
tel \R<|x|<2R

+ 3G . )]+ 3 18a0) ') + o (o [ ).
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Note on R < |x| < 2R,

2 R2 1/2
() = I

(82 +R2)1/2

()] < €77,

(> + R

|AAa(x)| < C 7 ,

we have

LJ e ) gy

<R (e2 4 x|}/

< C<(62 +R2)1/2 + |I|T

2 2 6
X (”V”HU(I;LZ) + quHL’*(I;LZ) + Hu”Lx(I;LG))'

Choosing R = K|I|1/2 and letting ¢ — 0 gives

6
[ e,
1 Jx <k |1|V? |x|

< (K" + K 117)(

|Vl

2
L= (.22 + [l xul

1/2 2 2 6
< CK|I| / (HV””Lw(I;LZ) + ||x”||Lv«(1;L2) + ”u”L%(l;Lﬁ))ﬂ

since K > 1. This is exactly (4.3).

As a direct consequence of Proposition 4.2, we have

Corollary 4.3. Let u be a solution on time slab I satisfying,
Ei(u(t) < Gy Ex(u(t) < G, Veel,

then we have

ju(t, x)|°

(4.8) H P dxdr < C(Cy, G)K|IY? forall K > 1.
1 J|x|<K|1|"V? |x|

2 6
o2y T ullpe g 1)

653
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5 Energy localization

Let n,(E, E>) be a small constant that meets all the conditions to appear in the sub-
sequent proof, we aim to show the wellposedness on [—#{,7}]. Thanks to the local
theory, we can assume the solution has existed on it and aim to show

|\u||L1()([_,7;17,7;:];L1()) < C(El, Ez).

Now, fix this #,, we divide [0, #}] into J; subintervals and [—7},0] into J, subintervals
such that on each subinterval I;, 7, < |[ul| 10, 10y < 27;. So we are left to control Ji,
J, by constant C(E}, E,). Without loss of generality, we only do analysis in the posi-
tive time direction. Following J. Bourgain [1], we classify the subintervals into three
components I, 12 1O and each contains 3 consecutive subintervals. It’s on the
intermediate component that we do most analysis. Our first aim is to show the local-

ization of the energy. To begin with, we see that

‘VMHL“W(I,:LIU/»‘) + ||quL10/3(Ij;L1“/3) < C(E|, Ey),

which follows from (2.6) and Lemma 3.1.
We have the following localized results.

Proposition 5.1. Let I; be one of the subintervals, that is I € [0,n}] and n, <

||u||L1()(I/,;L11>) < 2n,. Then there exists t; € I;, x; € R? and N > Njy = |Ij|_1/217]5 such that
3/2
(50 N o amsgiwcinn ) = em’
3/2

(5.2) Hvu(tj)HL2(|x7x,-\<C(;71)NJT1) =y,
3/2 a7—1

(53) M)l myctnn ) = e >N

Proof. By Bernstein estimate, YN € 24, we have
[P<yull,, < N'?|[P<yulls < CN'/2,

which allows us to control the L'° norm of low frequency by interpolation,
|P<nulliy < 1P<null?, Il P<null™ < CN'P,

hence, using Holder inequality in time, we have
I P<null Loy, 10y < | ONY,

Taking N = Nj) = C\Ij\fl/znls, one sees that

M
HPSN/O“”LIU(IJ-;LIO) < ?,



3D energy critical NLS 655

and thus
m
|\P2Nf0u||1‘m<1ﬁ1‘m> > 7

Using Littlewood-Paley theorem, we have

10
m 10
<3> < |1P=wull Lo o)

10
:j P ()19

(= |PNu<t>|2)l/2

J]] NZNJ()

:cJ J S Pyu(t) - | Pu(t)? dxdt.
L JR

3 Ni=-=Ns=Nj

10

dt
10

Letting oy = N'/2||Pyul|, .» e see the last line is smaller than
xte / xR

(54) C sup a2* J J ST Py () Py,u(f)[* N3 N3Ny Ns dox dt
I; JR

N=Nj 3 Ni=->=Ns>Njp

<C sup o2 j j S NP Py (o) Paun) [ dxt,
N=Nj I JR® Ny >N, >Njp

by summing Ns, Ny and N3. Using Holder inequality and Young’s inequality, (5.4)
can be controlled by

C sup 020/3 3 10/3|

‘PNlu”L]“/‘”PNz”” 10/x
N=Njo N1 >N >Nj

20/3 4/3
<C sup oy’ 30 NNV ul L VPt s

N>Nj N1 =N>>=Nj
20/3 10/3
< C sup oy Z HVPNu||Lm/3I (L10/3)
N>Np N=Np
20/3 10/3
< C sup ON HV ||L10/x1 LL19/3)
N=Nj
20/3
< C sup oy /3

N=Nj
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This implies that,

2
sup oy = c;ﬁ/ ,

N=Npo

thus there exists # € I, x; € R* and N; > N such that

(5.5)  |Pwu(x;, ;)] = 6773/2N1/2

Now we deduce (5.1), (5.2), (5.3) from (5.5). By the definition of Py, we see that

(5.6) >N < |Pyulx, )]

= |J d, (x; = x)u(t;, x) dx]

J o, (x; — X)u(tj, x) dx

] <Cln )N !

<

| oy, (x; — x)u(t;, x) dx

x> C )N}

(MN x>|6/5dx)5/6( J |u<rj,x>|6dx>l/6

x| <Clm V7!

_|_

+( | sy —x>|6/5dx) ( [ lu(s,%) |dx>1/6.

y—x;[>C (i )N;!

Noting @y (-) = N3@(;) and ¢ is rapidly decreasing, one obtains

1/6
so=en( T ) s
=l <Cln )N,

by choosing C(#,) sufficiently large and

1/6

(flater %) < lutepl = e
Thus we obtain (5.1). To see (5.2), we begin with (5.5) that
(57) e ®N}2 < |Pyulx;, )] = [(A™'V) Py Vu(x;, 1)

= |Ky, * Vu(x;, ;)] = || Ky,(x; — x)Vu(x, ;) dx|,
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where Ky, is the kernel of (A*IV)PN]., Ky,(x) = F1 (W¢M()) (&), and

oo,

1/2
KNl 2212 conpny = N !

Kyl 2 = N2|| 7

2

< Canl/2

L2(|x = Cm))

J

<| |2¢>()

if C(n,) is large enough. Thus (5.7) has the bound

1/2
(=0 () ax)

x| <)V !

+ < J |Kn, (xj — x)|2dx>1/2 (H{Jw(x’ zj)|2dx)1/2

=] = C(y)N;

5173/2]\,;/2

1/2
SCN,1/2( J IVu(x,t_;)Ide> tam N

\xij|<C(i71)N/,’l
and we have
3/2
Va6, ) 2 gy = em”

The proof of (5.3) is similar.

Now we use the radial assumption to locate the bubble at origin.

657

Proposition 5.2. Let the conditions in Proposition 5.1 be fulfilled. Assume in addition

that u is radial, then there holds that
(58) ()l zequiecin vy = o',
(5.9)  [IVu(g)l 12 (x|<Cln)N; ) = 6’773/27
(5:10) et qugecinyy = on*N;
with t;, N; the same with Proposition 5.1.

Proof. We prove (5.8)—(5.10) by showing that

x| < C(”I)Nj_la
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since once this has been done, we can choose a new constant C(7,) large enough such
that

B(0, é(’?l)Nfl) = B(x;, C(’?l)Nfl)a

(5.8)—(5.10) then follow from (5.1)—(5.3).

Letting S(0, |x;|) be a sphere with radius |x;| and center 0. By geometrical observa-
il
C(WI)N;]
the points on the sphere. By radial assumption and Proposition 5.1, on each ball,

u(t;) has nontrivial L norm. Using the boundedness of L°® estimate, one has

|Xj| 3/2\6 6
O\ == | (Cn"")” < |lu(ty)|lg < CEy.
(C(fh)Nj 1 1 7116

tion, one has O( > consecutive balls that have radius C (;71)]\//?1 and center at

This gives the desired control on |x;|. O

6 Proof of Proposition 3.6: In case of soliton-like solution

Applying Corollary 5.2 on each interval in the middle component /?, we get a se-
quence of times {¢;}, ¢; € I, %4— 1 < j < 3J1, such that

32
L2 (x| <Clp)N) =~ M

J

(6.1)  |[Vu(y)]

3/2 - ~1/2
(62) Mt 2 < ey > em*N7 Ny = Il
(When things like (6.1), (6.2) occur, we describe them as a bubble at the origin.) Now,
we discuss two different cases according to the size of the bubble. First, if there exists
75, 0 < 1, < 1, such that

C(’]l)|l‘|fl/2 Ji
[j )

2
(63) bV < Ny < THI<j< 3,
75 3 3

we call the solution solitonlike. Otherwise there must be jj € [ﬂ +1,... ng] such

3 )3
that

Cin) ., - _
(6.4) Nj, > ml 1,712 & ConNT' < ||

As a consequence, we have concentration as follows,
(6.5)  ||Vu(t)]| oy > e
: L2(|x|<(1/V2)m|1, %) L
In this case, we call the solution blow up solution. In this section, we aim to estimate

Jp in case of soliton-like solution. We follow the idea of [16] and begin the proof by
showing that (6.2) holds for every ¢ € [;, and % +1<j< 2.
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Proposition 6.1. Assume u satisfies (6.2), (6.3), then there exist C(n,,15), c(;,1,) such
that

1 2
(6.6) > clnm)|I|'2 Vieland je [§J1 n 1,—11].

e CO 21 < O i 3
Proof. Fix j, from (6.3), we have

Cri1G|'? = N7t > e )mo 1)
Applying this estimate to (6.2), one gets

1/2
et )| oy i) = €Onmal B2

From (4.1) and by choosing C(,,7,) sufficiently large, we have

|1j] ||”HL~’L(1;H1)

> |lu LR
’ Clny, )|

CON L2y < oy may 112 N L2y —

> ()5I| = ey, m)|L'?
> c(ny,m)|L|'".
This is exactly (6.6). O

Once we have gotten (6.6), we can follow the same way in [16] to obtain the finiteness
of J;. Note that

2
c(n,m)|f| < J u|~(x, 1) dx
x| < Clnm) 512

Jul® (x, )
J \x|1/371/3dx

IA

x| < Clmmo) 12 [x]

2/3 6 1/3
) (o 505
ks 12

[x|<C(my,m, x| < C(ny,m2) ]
6 \1/3
6 |u(xx, 1))
< C(ny,m)IL|" ( J de ;
\

X< Clnm)|Gl'?

we have
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Ju(x, 1)|°

~1/2
W< Canml? X

(6.7) J

dx > c(my, ;)| 1]

Comparing (6.7) with Morawetz estimate (4.3), one obtains,

(2

Corollary 6.2. For any I = I®), we have

(6.8) > 5" < Clpm)lM.
(1/3)1+1<j<(2/3)1; <1

Proof. Noting |IJ~|1/2 < |I'""* and letting 4 = C(y,,7,), (6.7) becomes

Jul®(x, 1) -
(6.9) J| ae dx = c(ny, )| |1
x| <

Integrating (6.9) on I; and summing together in j, we get,

1/2
c(my,m2) > || 4
(1/3)J1+1<j<(2/3) ;L =1

6
t
<[] D i< cant < con i,
a1

this gives (6.8). O
As a direct consequence of Corollary 6.2, we have

Corollary 6.3. Let I = Ujlgjsz I; be a union of consecutive intervals, %Jl +1<,

Jj2 < 24, then there exists ji < j < jo such that || > c(n;,n,)|1].

Proof. From (6.8) we know that

—-1/2 -1/2
1/2 1/2
Commll= ¥ s ¥ |1,|< up |1,.|) =|1|( sup |1,.|) |

N=<j<j h=<ji<h N=<j<jp h=<j<h

and hence

~1)2
(6.10) C(m,nz)lll_l/zz( sup |1j|) ,

N<i<h
therefore, we can find /; such that

|| > c(ny,my) 1]
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Now, we show that the intervals /; must concentrate at some time ¢,. The idea here is
originally due to J. Bourgain, while was reproved by T. Tao in [16]. Since in our case,
the proof is quite similar, we omit the detailed presentations. O

Proposition 6.4. There exist t,eI® and distinct intervals Li,... Ly, Jrke
L1, 20|, K > C(ny,my) log Jy such that

|I/1| 22‘1./2| = 221{71“]’1(

E
and dist(t,, I;) < C(ny,m)|1;,|.

Let t, and [;,, ..., ]

- - 1; be as in the Proposition 6.4 and for every ¢ € I;, there
holds

2 viel,, 1<k<K.

(6.11)  Mass(u(z), B0; C(ny,m)| ;")) = clmy.ma)|1;,

By the local mass conservation, we have
Mass(u(1.), B(0; Clny, ) |1 |'"%)

12 |t — 1| ||“||L%(1,k,H1)
- 1/2
Clny,my) ||

k

> c(ny,m) |1

= 6(7711772)|1jk‘1/2a Vi<k<K.

Denote B = B(0; C(ny,1,)|1;, |'/2), we rewrite the above estimate as follows,
(612) Mass(u(t.), Be) = cln,m)|l, "7, 1<k <K
On the other hand, by the local mass estimate (4.2), we have

Mass(u(t.), B) < Conym)| il 2.
Letting N := log (%), then for k' > k + N, we have that

|| e < conmin

k
= C(”la’h)z_(k/_k)lljk' = C(”lv772)’732_<k/_k_N)|1jk|7

and hence,

!
| E 27(k 7/c7N).
k+N<k'<K

613 ¥ J;wmwﬁwsammmm
k!

k+N<k'<K
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By the finiteness of the summation, the assumption on #,, #,, 775, and (6.11), we con-
tinue to estimate (6.13) by

1 1
clnmlli| < 5 Mas(ult). ) =3 | fute.. 0 ax.
k

2
and hence
(6.14) J u(t., %) dx
B\(Uksv <k <k Brr)
2 2
ZJ lu(t,, x)]| dxfj lu(t., x)|” dx
By U<k <k Be!
2 2
> [ lute0P ax- | teoras
By k+N<k'<K Bk/
1
>

3| P x> conmin|
By

By Holder inequality, we further give the upper bounds of the left side as follows,

|u(t,, x)|* dx
Bk\(Uk+A75A'I§K Bl:)
1/3
< < | |u(l*,x)|6dx> mes(Bi)*?
B/c\(U/cm'g/c’gK BA/')
] 1/3
<Conmll( [ )

B\WUksv<rr <k Br)

hence we have

mw>j u(ts, )| dx = c(y,12)-
Bk\<Uk+Ngk’gK B/Q

Summing (6.15) in k, we obtain

K
(6.16) Zj ju(ts, )| dx = ¢l 1)K,
k=1 Bk\<Uk+N§k’gKBI£)

Denoting Py := Bi\(Uy y<x'<x Bi), then {P}&_, overlaps at most N times. Thus
the left hand side of (6.16) is smaller than
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NJ u(ts, %)|% d.
]R3

By the definition of #;, the boundedness of ||u(z.)||s, we have an upper bound for K,
K < COpy,mp5m3, En, Er),
and this in turn gives the control of J; by Proposition 6.4,

Ji < Cexp(C(ny, 12,13, E1, E2)).

7 In case of blow up solution

Our purpose of this section is to prove the boundedness of J; under the condition
(6.4) and (6.5). That is, there exists t € I, jo € [% +1,... ,%Jz} such that

32
(7.1 Vo) Ly« 1y, ) > m'™

If 7y lies on the left side of I;,, we take I = [t, b] where b is the left end point of j;;
otherwise we take I = [a, tp] with a the right end point of I;,. Then (7.1) becomes

3/2
(7.2) Va0l 2y i) > i,

Assume I = [t, b], we aim to re-solve the problem (1.1) forward in time. Otherwise,
we do in the reverse direction. First we show that, by removing the small bubble, we
remove nontrivial portion of energy.

Let y be a smooth radial function such that y(x) =1 as |x| < 1, and y(x) = 0 as

|x] > 2. Let ¢(x) = X(W) for some N > 1 to be specified later, and w(z, x) =
(1 — ¢(x))u(to, x), then we have

Lemma 7.1. E;(w(19)) < Ei(u(t9)) — en3.
Proof. Noting

w(to) = (1 — gu(t),

we have

Vw(ty) = (1 — ¢)Vu(ty) — Vu(ty),

and thus,
Vw(to)|* = [Vu(to)|* + (4 — 2¢)|Vu(to) |

+ |V u(t0)|* — 2 Re(1 — ) Via(10)Vu(to).
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Integrating it on R3, one gets

IVw(o)]3

< [Vu(n) 3+ | (6~ 20)Vutio, 0 d

R3

— 2J 3 IV(x)u(to, x)|* dx — 2ReJ (1 — @)Vepia(to)Vu(to)(x) dx.
R

R3

By the trivial inequality: ¢> — 2¢ < —¢ and (7.2), one can estimate the second term of
the right side by

2
_J e Vu(to, x)|> dx < —cn.
X| <N,

Now, we estimate the remaining two terms. We use Holder inequality to control
them by

2 2
(7.3)  ClIVollslluto)lizs + ClIVo||5[IVulo) |l u(t0)]] s
N [111/2 < |x| <205 |1)1/2 N 111/2 < |x| <2, |1)1/2
< C(||u(to)|)? + [Ju(s Vu(to)|,)-
(H ( 0)”Lfv;,zml/zg\x\gzwnzm'/z H ( 0>HLJGWZ\/\1/2g\x\gzm,2m1/2 H ( O)HZ)

Now, we claim that, there must exist N which depend only on #, such that
7.4 u(t <7
(7.4) [lu(o)]] Zrnzml/zs\\»\gzwm/z m

Indeed, if otherwise, we will have N annuluses, on each annulus, u(#) has nontrivial
L°® norm. Summing these annuluses together, we obtain

NrD < 3 Jluln)le <G,

. 2
N'<NeN NI 1112 < x| <28 1|11 /2

by the boundedness of L¢ estimate. This will be a contradiction if N > Cyy2*. Hence,
one can fix N = C(5,) such that (7.4) holds and

(7.3) < Cny.
We finally obtain this Lemma by noting

1 1
Ey(w(t0)) = 5[1Vw(to) 3 + 5 1w(ro)IIs

and combining the above estimates together. O
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Lemma 7.2. We have that,
Ei(w(t)) < E1 — e,
Ex(w(ty)) < E> + Cny.

Proof. Noting Lemma 7.1, it suffices to prove
Ei(u(t)) < Ey(u(0)) + Cn,
E>(u(t)) < Ex(u(0)) + Ciyf’.

So, Let’s compute the increment of E;(u(z)) from 0 to #:

JOO %El (u()) dt, and J 0 %Ez(“(f)) dr.

From the equation (1.1), we see that

8 . . ]
© Bx(u(t)) = < )| = 2 J]R} xiVi(t, x) dx

= C||x“||Lx((o,zo);L2)||V“||Lx((o,zo);L2) < C(Ey, E2)
thus, we have

to a
Z)[EEz(t) dt

< Cnf.

By noting that L%El(t) = —2E (1), we get

ot

)

ngl(z) dt

< cpt
) ot = &

hence, Lemma 7.2 follows.
Let u, v be solutions of the initial data problems

o {(63e 5t
v(x, o) = ¢(x)u(to, x).

Ve e [0, to],

665
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xf?

(7.6) {(ia, 3+ )W = lo+wl* (v +w) — [v|*0,
w(x, o) = (1 — ¢(x))u(to, x).

then u = v + w. Let’s first show that

Proposition 7.3. There exists a unique solution v(x,t) to (7.5) satisfying

1/5
HUHLW(I;L'O) < Cny, ||U||L'0([b.oc):u°> = C’72/ )

[[A4(-)v

Loy = G
where A € {J,H} and (q,r) is admissible pair.

Proof. We begin by computing the L' norm of the linear flow U(t — to)(¢u(ty)).
First, we observe that by Duhamel, and Strichartz estimates,

NU(- = t0)u(to) | 1o, 1oy < Null rogy 1oy +

j U(t — s)|ul*u(s) ds

L“’(I;L“’)
<n -+ C’ﬁHJu||L1“/3(I;L“’/3) < 27’]1-

Noting ¢u(ty) is a radial function in space, we have that

. 2
Ut = ) (gu(t)(x) = exp{’(’ S )}(¢u(lo))(x)

. 2 _
_ gt (exp{_ i1 — to)(|25| + Aé)}qm(to)(f)) (x)

_ J eixge-o(r—ro)m<|<F+A;>J
R3 R

f‘(lo)(f — &)d(&y) déy dé.
Expanding |&]? = |& — &% + 2, (& — &) + |&1]%, the above term becomes
“ei<¢fctl)(xfofzo)él)ef<i<zfzo>/z><\f,fcfl\2+A<fqmmxf _ &) dgeta e=—0Ial z,) de,
by renaming the variable, one sees that this is exactly

J Ut — to)u(ty) (x — (1 — 19)&)e™re (/DI e ag,
]R3
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and hence
1U(- = 10)(gu(20)) | Lo, 10y
< U = to)u(to)ll gz oy 161l < CIUC = to)ulto)l| oz, oy < Cy.
The estimate of the linear flow allows us to solve the problem in the following set,
X = {oCx, ) [loll o, 10y < Cry |AC)0l o g, 1oy < C, A €{J, HY,
endowed with the metric

d(ur,uz) = ||y — ua| oz, 10y + max [ AC) (ur = w2)ll pross g, 103y

We omit the proof of this part since it is routine. Once we have gotten the solution on
I = [y, b], we extend this solution beyond I. As a consequence, we are left to show a
finite apriori spacetime estimate on [b, 00). Assuming v be a finite energy solution on
[b, 00), we redefine the energy of v by

Fi(1) = 31~ )o(0)]B + 5 cosh(t — )]o(0)

£2(0) = 3 I~ 10)u(0) 3 + 5 sinh?( ) Jo(0)

Repeating the computations in Lemma 2.4, we find

dgz(l)
dt

déi(1)
dt

2 .
= =5 sinh 2(1 — 1) l|o(0)]J§ =
Integrating the second half of the equation, we have

1 I .
SIH (= 10)o(n)[ + 3 sinh?(r = 10) o (1)

1 2(" .
=3 I} 3 =3 | sinhC2(e — w)lo0)§ dr
)
This implies
(17 sinh(c— ) lo(0)§ < Clhxgutio)

By Holder and direct computation, we continue to estimate the right side as
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* (C(’h)’hm 1/2> o)

< (Clp)m)* 11| - () s lluCto) g

[[xdu(o)ll, <

2

< COn)m|.

sinh?(¢ — 10) > |t — to|* > |I|>, t>b,
hence, from (7.7), we have
(7.8)  le()llg < Cnn3 <n, Vi=b.

On the other hand, noting on [, o0), v satisfies,
t
(7.9)  v(t) = Ut — to)v(t) — iJ U(t — 5)|v|*o(s) ds,

)

we have

17 (-)ol

L6([b0): L1¥/7)
< CII (t0)o(t0) [l + CIT 00l 1372y o). L1513
< C||J(to)v(t0)l, + C”UHL”E([b‘oo);L"’)||U||3L"’([b,oo);L13)HJ(’)UHLG([}),OC);LWN)
1/3 4
< ClJ(to)v(to)ll5 + Cmy T ()0l Lo ((p, o0 £1577) -
This implies
(7.10) T C)oll oqip,o0); 115y < CllI (20)v(20)]], < C,

where C depends only on Ej, E;. To see this, we use Lemma 2.3 to expand J(#y)v()
as

d(x)J (to)u(ty) + i cosh tou(ty)V(x),

which can be easily controlled.
Combining the bounds (7.8) and (7.10) together and using interpolation, one
obtains
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4/10 6/10
(7'11) ”U”LIO([b,w);L‘O) < C||U||L/3£([b7o(;);L6)H‘](.)UHL/G([/)_OC);LISN)

< C1721/ °.
The last bound in Proposition 7.3 follows from Lemma 3.1. O

Now, we are at the position to solve the Cauchy problem (7.6). Before doing this, we
list the estimates that follow from Proposition 7.3 and the conditions on u.

1/5

(712) HUHL](]([I,’Q,));LH)) < C7’]2/
Wl Loz oy < Cmyy ([AC)WI Lo g0y < €5 (1BWl 1o, 1oy < €
HUHL“‘(I;L‘O) < Cny, ||A(')U||L10/3(1;L10/3) <G ||BU||L‘°/3(I;L‘°/3) <C,
Ae{J,H}, Be{iVyx},

here, we have used the condition that I € [O,;ﬁ) to get the estimate on Bv, Bw. The

constants above depend only on Ej, E;.

For the sake of doing perturbation analysis and applying the induction, it’s neces-

sary to introduce the following Lemma.

Lemma 7.4. We have that
E\(w(b)) < Ey —cnj, Ex(w(b)) < Ey + Crf.

Proof. Noting Lemma 7.2, we need only to prove that

< Cnt, < Cnt.

b9
JaEl (w(t)) dt

b o
;[‘5E2(W([)) dt

For simplicity, denote
lo+w|*(v+w) — [o]*v = |w|*w + F(o,w),

hence, w satisfies the equation

. A |x|2 4
10’+§+7 w=|w|"'w+ F(v,w).

By some basic computation, one sees that

0
5_E2(W(t)) = ZImJ xWdex—&—ZImJ |x|2WF (v, w) dox,
t RrR3

R3
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thus, we get

b
lfaEz(w(t))dt

< 2[to = b [xwl| oo (1 L2 VWl 1o (1, 1.2)

2 4 4
+ C||xw||L10/3(I:L10/3)(HW”LIO(I;L“)) + HUHLIO(I;LIO)) = C’ﬁ-

To prove the increment of E;(w(z)) from #y to b, we first compute directly that

= %Ez(w(l)) + Re J}Rs F(v, w)w,(x) dx

= ﬁEz(w(l)) + ImJ

1 1 —_—
pr N F(v,w) (EAW +3 x| 2w — [w|*iv — F(v, w)) (x) dx.

Integrating over [fy, b] and using integration by parts, one gets

b
[ E (o)

< Ci’]i‘ + C(HVW”im/z(I;Llo/z) + ||X1V||il()/3(1;Ll()/3))

4 4 10 10
X (HUHLI()([;LIO) + ”W”L'“(I;L”’)) + C(HUHL"’(I:L“’) + ”W”L“’(I;L'O))
< Cnf.
This ends Lemma 7.4. U
Now, for the sake of convenience, we make a small adjustment such that, the incre-
ment of £ and the decrement E, take the same value. More precisely, noting Lemma
7.4, we can get
E\(w(b)) < E\ — Cn}, Ex(w(b)) < E» + Cny,
with the same constant C.
Now, we are at the position to make following inductive assumption.
Assume
Ei(uo) < Ey — Cyf,  Ex(uo) < E»+ Cnpf,

then the Cauchy problem of (1.1) is wellposed on [—7}, 7], and the solution u satisfies

Hu||L“’([ff7{‘~,'7ﬂ;L“’) < C(E - CW?aEZ + Cnil).



3D energy critical NLS 671
By this assumption and Lemma 7.4, we see that the solution of
. A _ 4
iWi+3W=—-5-W+|W|'W,
W (b) = w(b)
satisfies the estimate
H W||L10([b717;‘,b+17f]:L10) = C(El - CnéltvEZ + C”]i‘) = C(ElvEZ)'

Subtracting W from w, we are left to solve the perturbation problem with respect to
[ =w-— W on [bnt],

(7.13) {(iaf+%+%'z)r = o+ W +T*(0+ W +T) = [v|*o — |W|*W,
T(b) = 0.

8 Solving the perturbation problem
Our task of this section is to solve (7.13) with the help of (7.12). To insure the
smallness of the nonlinear flow, we split [b,#}] into finite subintervals such that on
each subinterval, I is small, so that we can solve (7.13) on every subinterval. Before
doing this, we re-estimate v on [b, o).
Lemma 8.1. In addition to (7.12), v satisfies

HA(‘)UHLw/S([b,%);Ln>/3) <c(m), Ae{J, H}.

Proof. Taking J as an example, one sees

t

J(O)v(t) = Ut — t9)J (to)v(t) — iJ U(t — $)J(s)|o]*o(s) ds.

fo

For the linear term, we estimate directly. From decay estimate (2.3),
U (1 = 10)J (t0)v(t0)]| .-
< Cle = 10|77 (t0)o(t0) 1
< Cle— 1o (1 (t0)u(0) ¢y + lleosh tou10) Vgl 1)
< Cle— 1o (|11 (t0)ulto)ll, + licosh tou(to)l|glI Vsl 5)

By noting ¢(x) = X(W)’ one has



672 Zhang Xiaoyi

3/2
(8.1) |U(t—to)J(to)v(to)llL3SC(W(%';:) '

On the other hand,
(82) Ut —10)J(t0)v(t0)ll2 < [ (t0)v(10)[ 2
< | (@o)u(0) 191l + [IV@ll5llcosh zou(to)ls < C-

By interpolation and (8.1) and (8.2), we have that

1U(& = 10)J (20)v(t0)| 102

|2 3/
< Ut = 1) (1)o(t0) |25 1 Ut = 1) (t0)o()3'° < Com) <|z = zZ|2> ’

and thus

©dt
(83)  I1U( = 1) (10)0(t0) 503 gy oy ooy < Clr) 1 L Tl
ot -

< C(m)n;3.

To estimate the nonlinear term, we denote ¢; = ) + #,|1|, and split it into two parts,

f U(t — $)J(s)|o]*o(s) ds

to

+
LV9/3([b,00); L10/3)

9

L1 (b,o0)s L197)

tj“c Ut — $)J(s)|o] *o(s) ds

For the first part, we use L? — L?" estimate to control it by

i
[1e =170 (5) o] *v(s) || 1o ds

lo

LlO/}([b’OO).

Since for s € [tg, 11], t > b, |t — 5| ~ |t — 19|, we see the first part is smaller than

n
-5/3 4
Cllr = 1] /|‘L10/3([b,oc))J () lw] " o(s) [l 1o ds

Iy

-3/10 3/10 4
< 7l = 1o ol o e oy I 0l Lo s 1)

< Cn;/lo.
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For the second part, we use Strichartz estimate to control it by
(8.4) C”J(')‘U|4U||L10/7([[1,og);L“’/7) =< C||U||110([;1,oc);Lw)||J(')U||L10/3([z1@);Llo/S)-
At this moment, we follow the same way in proving (7.11) to get
0l Lo o0y £10) < €(12),
thus finally, (8.4) < ¢(i,). ]

Now we are at the position to solve the perturbation problem (7.13). By induction
assumption, we see that there exists some constant C = C(E}, E,) such that

W1l Lioggp.psy; 10y < €
HA(')W||L10/3([b,;7ﬂ;LW/3) <C, A<{J H}

This allows to split [, #{] into finite subintervals

=

[bj—l7bj)7 b0:b7 bK:”i‘)

C=

J=1 J

I
-

and such that

19 lasoggszimy ~ ¥, NACYW sy o) ~ e

csom((5(7)

If (7.13) has been solved on [bg, b;_1], and

Then

|A(bi-)T(bj—1)ll, < €7 e(y) ' =D,

then we can solve (7.13) on [b;_1, b;] by proving the solution map

O(I(1) = U(t — by)T(by1) — th U(t—s)(jo+ W +T* v+ W +T)

b/',l
— [o]*v = | W|*W)(s) ds

is contractive on the closed set
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X = {r e L'(I; L'°), A()T e L'3(L; L'°3), and

i 1-j/2
I = I+, s, IACI ooy < ),

endowed with the metric
d(ur,uz) = [Jur — ua|| y,

and complete one step of iteration by estimating ||4(b;)u(b;)||, from Strichartz esti-
mate. This is feasible since we can choose the absolute constants ¢, v, and the con-
stant ¢(7,) small enough. The proof is routine and is omitted. Now we have a finite
energy solution I on [b,7}] such that

K
i —j/2 10
T 0 e, 210 zurnuo m>szl<c-fc<nz>”/ <.
J=

To conclude the proof of Proposition 3.6 in case of blow up solution, we collect all
the estimates to get

l[uell 1o s, 10y < Hu||L10([b,;714];L10)
< loll Lroqgp, ya1; 210y + I N Lo, psg; 10y + IT M L1oggs, ys1; 210y
< C(E1E2,ny,mp)-

Thus, J; can be controlled by

0<C(ElE2,771,’727’73)>10
m

In the same way, J> can also be controlled, and thus
Hu”L‘O([f;ﬁ,nﬂ;Lm) < C(El 3 E27 1512, 773)

which closes the induction and finally gives Proposition 3.6.
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