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Abstract We consider the problem of global in time existence and unique-

ness of solutions of the 3-D infinite depth full water wave problem, in the

setting that the interface tends to the horizontal plane, the velocity and ac-

celeration on the interface tend to zero at spatial infinity. We show that the

nature of the nonlinearity of the water wave equation is essentially of cu-

bic and higher orders. For any initial interface that is sufficiently small in its

steepness and velocity, we show that there exists a unique smooth solution of

the full water wave problem for all time, and the solution decays at the rate

1/t .

1 Introduction

In this paper we continue our study of the global in time behaviors of the full

water wave problem, in the setting that the interface tends to the horizontal

plane, the velocity and acceleration on the interface tend to zero at spatial

infinity.

The mathematical problem of n-dimensional water wave concerns the mo-

tion of the interface separating an inviscid, incompressible, irrotational fluid,

under the influence of gravity, from a region of zero density (i.e. air) in n-

dimensional space. It is assumed that the fluid region is below the air region.

Assume that the density of the fluid is 1, the gravitational field is −k, where k

is the unit vector pointing in the upward vertical direction, and at time t ≥ 0,
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the free interface is !(t), and the fluid occupies region "(t). When surface

tension is zero, the motion of the fluid is described by



















vt + v · ∇v = −k − ∇P on "(t), t ≥ 0,

div v = 0, curl v = 0, on "(t), t ≥ 0,

P = 0, on !(t)

(1,v) is tangent to the free surface (t,!(t)),

(1.1)

where v is the fluid velocity, P is the fluid pressure. It is well-known that

when surface tension is neglected, the water wave motion can be subject

to the Taylor instability [2, 3, 29]. Assume that the free interface !(t) is

described by ξ = ξ(α, t), where α ∈ Rn−1 is the Lagrangian coordinate,

i.e. ξt (α, t) = v(ξ(α, t), t) is the fluid velocity on the interface, ξt t (α, t) =

(vt + v · ∇v)(ξ(α, t), t) is the acceleration. Let n be the unit normal pointing

out of "(t). The Taylor sign condition relating to Taylor instability is

−
∂P

∂n
= (ξt t + k) · n ≥ c0 > 0, (1.2)

point-wisely on the interface for some positive constant c0. In previous works

[30, 31], we showed that the Taylor sign condition (1.2) always holds for

the n-dimensional infinite depth water wave problem (1.1), n ≥ 2, as long

as the interface is non-self-intersecting; and the initial value problem of the

water wave system (1.1) is uniquely solvable locally in time in Sobolev spaces

for arbitrary given data. Earlier work includes Nalimov [20], Yosihara [33]

and Craig [10] on local existence and uniqueness for small data in 2D. We

mention the following recent work on local wellposedness [1, 5, 6, 15, 18,

19, 21, 24, 34]. However the global in time behavior of the solutions remained

open until last year.

In [32], we showed that for the 2D full water wave problem (1.1) (n = 2),

the quantities & = (I − H)y, (I − H)ψ , under an appropriate coordinate

change k = k(α, t), satisfy equations of the type

∂2
t & − i∂α& = G (1.3)

with G consisting of nonlinear terms of only cubic and higher orders. Here

H is the Hilbert transform related to the water region "(t), y is the height

function for the interface !(t) : (x(α, t), y(α, t)), and ψ is the trace on !(t)

of the velocity potential. Using this favorable structure, and the L∞ time de-

cay rate for the 2D water wave 1/t1/2, we showed that the full water wave

equation (1.1) in two space dimensions has a unique smooth solution for a

time period [0, ec/ǫ] for initial data ǫ), where ) is arbitrary, c depends only

on ), and ǫ is sufficiently small.
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Briefly, the structural advantage of (1.3) can be explained as the following.

We know the water wave equation (1.1) is equivalent to an equation on the

interface of the form

∂2
t u + |D|u = nonlinear terms, (1.4)

where the nonlinear terms contain quadratic nonlinearity. For given smooth

data, the free equation ∂2
t u+|D|u = 0 has a unique solution globally in time,

with L∞ norm decays at the rate 1/t
n−1

2 . However the nonlinear interaction

can cause blow-up at finite time. The weaker the nonlinear interaction, the

longer the solution stays smooth. For small data, quadratic interactions are in

general stronger than the cubic and higher order interactions. In (1.3) there is

no quadratic terms, using it we are able to prove a longer time existence of

classical solutions for small initial data.

Naturally, we would like to know if the 3D water wave equation also posses

such special structures. We find that indeed this is the case. A natural set-

ting for 3D to utilize the ideas of 2D is the Clifford analysis. However de-

riving such equations (1.3) in 3D in the Clifford Algebra framework is not

straightforward due to the non-availability of the Riemann mapping, the non-

commutativity of the Clifford numbers, and the fact that the multiplication of

two Clifford analytic functions is not necessarily analytic. Nevertheless we

have overcome these difficulties.

Let !(t) : ξ = (x(α,β, t), y(α,β, t), z(α,β, t)) be the interface in La-

grangian coordinates (α,β) ∈ R
2, and let H be the Hilbert transform asso-

ciated to the water region "(t), N = ξα × ξβ be the outward normal. In this

paper, we show that the quantity θ = (I − H)z satisfies such equation

∂2
t θ − aN × ∇θ = G, (1.5)

where G is a nonlinearity of cubic and higher orders in nature. We also find

a coordinate change k that transforms (1.5) into an equation consisting of

a linear part plus only cubic and higher order nonlinear terms.1 For ψ the

trace of the velocity potential, (I −H)ψ also satisfies a similar type equation.

However we will not derive it since we do not need it in this paper.

Given that in 3D the L∞ time decay rate is a faster 1/t , it is not surprising

that for small data, the water wave equation (1.1) (n = 3) is solvable glob-

ally in time. In fact we obtain better results than in 2D in terms of the initial

data set. We show that if the steepness of the initial interface and the fluid

velocity on the initial interface (and finitely many of their derivatives) are

sufficiently small, then the solution of the 3D full water wave equation (1.1)

remains smooth for all time and decays at a L∞ rate of 1/t . No assumptions

1We will explain more precisely the meaning of these statements in Sect. 1.2.
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are made to the height of the initial interface and the velocity field in the fluid

domain. In particular, this means that the amplitude of the initial interface can

be arbitrary large, the initial kinetic energy 1
2
‖v‖2

L2("(0))
can be infinite. This

certainly makes sense physically. We note that the almost global wellposed-

ness result we obtained for 2D water wave [32] requires the initial amplitude

of the interface and the initial kinetic energy 1
2
‖v‖2

L2("(0))
being small. One

may view 2D water wave as a special case of 3D where the wave is constant

in one direction. In 2D there is one less direction for the wave to disperse and

the L∞ time decay rate is a slower 1/t1/2. Technically our proof of the almost

global wellposedness result in 2D [32] used to the full extend the decay rate

and required the smallness in the amplitude and kinetic energy since we con-

trolled the higher and lower regularity norms of the solution all at once (see

Proposition 4.4 of [32]).2 One may think the assumption on the smallness in

amplitude and kinetic energy is to compensate the lack of decay in one di-

rection. However this is merely a technical reason. In 3D assuming the wave

tends to zero at spatial infinity, we have a faster L∞ time decay rate 1/t . This

allows us a less elaborate proof and a global wellposedness result with less

assumptions on the initial data.

1.1 Notations and Clifford analysis

We study the 3D water wave problem in the setting of the Clifford Algebra

C(V2), i.e. the algebra of quaternions. We refer to [14] for an in depth discus-

sion of Clifford analysis.

Let {1, e1, e2, e3} be the basis of C(V2) satisfying

e2
i = −1, eiej = −ejei, i, j = 1,2,3, i (= j, e3 = e1e2. (1.6)

An element σ ∈ C(V2) has a unique representation σ = σ0 +
∑3

i=1 σiei , with

σi ∈ R for 0 ≤ i ≤ 3. We call σ0 the real part of σ and denote it by Reσ and
∑3

i=1 σiei the vector part of σ . We call σi the ei component of σ . We denote

σ = e3σe3, |σ |2 =
∑3

i=0 σ 2
i . If not specified, we always assume in such an

expression σ = σ0 +
∑3

i=1 σiei that σi ∈ R, for 0 ≤ i ≤ 3. We define σ · ξ =
∑3

j=0 σj ξj . We call σ ∈ C(V2) a vector if Reσ = 0. We identify a point or

vector ξ = (x, y, z) ∈ R
3 with its C(V2) counterpart ξ = xe1 + ye2 + ze3. For

2A method such as the one used in this paper by combining two estimates: one is that a quantity

which controls higher regularity norms grows very slowly in time as long as a low regularity

norm remains small (Proposition 3.5), another is that a quantity that controls the low regularity

norm remains small as long as the high regularity norms do not grow too fast (Proposition 3.6),

does not give an existing time anywhere near ec/ǫ for the two dimensional water wave due to

the slow L∞ time decay rate 1/t1/2.
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vectors ξ, η ∈ C(V2), we know

ξη = −ξ · η + ξ × η, (1.7)

where ξ · η is the dot product, ξ × η the cross product. For vectors ξ , ζ , η,

ξ(ζ ×η) is obtained by first finding the cross product ζ ×η, then regard it as a

Clifford vector and calculating its multiplication with ξ by the rule (1.6). We

write D = ∂xe1 + ∂ye2 + ∂ze3, ∇ = (∂x, ∂y, ∂z), / = ∂2
x + ∂2

y + ∂2
z . At times

we also use the notation ξ = (ξ1, ξ2, ξ3) to indicate a point in R
3. In this case

∇ = (∂ξ1
, ∂ξ2

, ∂ξ3
), D = ∂ξ1

e1 + ∂ξ2
e2 + ∂ξ3

e3, / = ∂2
ξ1

+ ∂2
ξ2

+ ∂2
ξ3

.

Let " be an unbounded3 C2 domain in R
3, ! = ∂" be its boundary and

"c be its complement. A C(V2) valued function F is Clifford analytic in "

if DF = 0 in ". In particular, if F =
∑3

i=1 fiei , we have by (1.7) DF =

−divF + curlF . So F =
∑3

i=1 fiei is Clifford analytic in " if and only of

divF = 0 and curlF = 0 in ".4 Let

0(ξ) = −
1

ω3

1

|ξ |
,

K(ξ) = −2D0(ξ) = −
2

ω3

ξ

|ξ |3
, for ξ =

3
∑

1

ξiei,

(1.8)

where ω3 is the surface area of the unit sphere in R
3. Let ξ = ξ(α,β), (α,β) ∈

R
2 be a parameterization of ! with N = ξα × ξβ pointing out of ". The

Hilbert transform associated to the parameterization ξ = ξ(α,β), (α,β) ∈ R
2

is defined by

H!f (α,β) = p.v.

∫∫

R2

K(ξ(α′,β ′)

− ξ(α,β))(ξ ′
α′ × ξ ′

β ′)f (α′,β ′) dα′dβ ′. (1.9)

We know a C(V2) valued function F that decays at infinity is Clifford analytic

in " if and only if its trace on !: f (α,β) = F(ξ(α,β)) satisfies

f = H!f. (1.10)

3Similar definitions and results exist for bounded domains, see [14]. For the purpose of this

paper, we discuss only for unbounded domain " with a single boundary.
4The fluid velocity v satisfying (1.1) is a Clifford analytic function in "(t).
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We know H2
! = I in L2. We use the convention H!1 = 0. We abbreviate

H!f (α,β) =

∫∫

K(ξ(α′,β ′) − ξ(α,β))(ξ ′
α′ × ξ ′

β ′) f (α′,β ′) dα′dβ ′

=

∫∫

K(ξ ′ − ξ)(ξ ′
α′ × ξ ′

β ′)f
′ dα′dβ ′ =

∫∫

K N ′ f ′ dα′dβ ′.

Let f = f (α,β) be defined for (α,β) ∈ R
2, and f decays at the in-

finity. We say f ! is the harmonic extension of f to " if /f ! = 0 in ",

f !(ξ(α,β)) = f (α,β) and f ! decays at the infinity. We denote by Dξf the

trace of Df ! on !, i.e.

Dξf (α,β) = Df !(ξ(α,β)). (1.11)

Similarly ∇ξf (α,β) = ∇f !(ξ(α,β)), ∂xf (α,β) = ∂xf
!(ξ(α,β)) etc. In the

context of water wave where "(t) is the fluid domain, we denote by ∇+
ξ f

(respectively ∇−
ξ f ) the trace of ∇f ! on !(t), where f ! is the harmonic

extension of f to "(t) (respectively "(t)c). We have

Lemma 1.1 1. Let f = f (α,β), (α,β) ∈ R
2 be a real valued smooth function

decays fast at infinity. We have

∫∫

K(ξ(α′,β ′) − ξ(α,β)) · (N ′ × ∇ ′f )(α′,β ′) dα′dβ ′ = 0. (1.12)

2. For any function f =
∑3

1 fiei satisfying f = H!f or f = −H!f , we

have

ξβ · ∂αf − ξα · ∂βf = 0. (1.13)

Proof Let f ! be the harmonic extension of f to the domain ". We know

Df ! is Clifford analytic in ". Therefore the trace of Df ! on ! satisfies

Dξf = H! Dξf. (1.14)

Taking the real part of (1.14) gives us (1.12).

For (1.13), we only prove for the case f = H!f . The proof for the case

f = −H!f is similar, since f = −H!f is equivalent to the harmonic exten-

sion of f to "c being analytic.

We have from f = H!f that Dξf = 0. Therefore

ξβ · ∂αf − ξα · ∂βf =

3
∑

i,j=1

∂βξi∂αξj∂ξj
fi −

3
∑

i,j=1

∂αξj∂βξi∂ξi
fj = 0.

!
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Assume that for each t ∈ [0, T ], "(t) is a C2 domain with boundary !(t).

Let !(t) : ξ = ξ(α,β, t), (α,β) ∈ R
2; ξ ∈ C2(R2 × [0, T ]), N = ξα × ξβ . We

know N × ∇ = ξβ∂α − ξα∂β . Denote [A,B] = AB − BA. We have

Lemma 1.2 Let f ∈ C1(R2 × [0, T ]) be a C(V2) valued function vanishing

at spatial infinity, and a be real valued. Then

[∂t ,H!(t)]f =

∫∫

K(ξ ′ − ξ)(ξt − ξ ′
t )

× (ξ ′
β ′∂α′ − ξ ′

α′∂β ′)f ′ dα′dβ ′, (1.15)

[∂α,H!(t)]f =

∫∫

K(ξ ′ − ξ)(ξα − ξ ′
α′)

× (ξ ′
β ′∂α′ − ξ ′

α′∂β ′)f ′ dα′dβ ′, (1.16)

[∂β,H!(t)]f =

∫∫

K(ξ ′ − ξ)(ξβ − ξ ′
β ′)

× (ξ ′
β ′∂α′ − ξ ′

α′∂β ′)f ′ dα′dβ ′, (1.17)

[aN × ∇,H!(t)]f =

∫∫

K(ξ ′ − ξ)(aN − a′N ′)

× (ξ ′
β ′∂α′ − ξ ′

α′∂β ′)f ′ dα′dβ ′, (1.18)

[∂2
t ,H!(t)]f =

∫∫

K(ξ ′ − ξ)(ξt t − ξ ′
t t ) × (ξ ′

β ′∂α′ − ξ ′
α′∂β ′)f ′ dα′dβ ′

+

∫∫

K(ξ ′ − ξ)(ξt − ξ ′
t )

× (ξ ′
tβ ′∂α′ − ξ ′

tα′∂β ′)f ′ dα′dβ ′

+

∫∫

∂tK(ξ ′ − ξ)(ξt − ξ ′
t )

× (ξ ′
β ′∂α′ − ξ ′

α′∂β ′)f ′ dα′dβ ′

+ 2

∫∫

K(ξ ′ − ξ)(ξt − ξ ′
t )

× (ξ ′
β ′∂α′ − ξ ′

α′∂β ′)f ′
t dα′dβ ′. (1.19)

Proof Applying Lemma 3.1 of [31] component-wisely to f gives (1.15),

(1.16), (1.17). (1.19) is a direct consequence of (1.15) and the fact [∂2
t ,H!(t)]

= ∂t [∂t ,H!(t)]+[∂t ,H!(t)]∂t . We now prove (1.18) for f real valued. Notice
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that aN × ∇H!(t)f = aξβ∂αH!(t)f − aξα∂βH!(t)f . From (1.16), we have

aξβ∂αH!(t)f = aξβ[∂α,H!(t)]f + aξβH!(t)∂αf

=

∫∫

aξβK(ξ ′ − ξ)(ξα − ξ ′
α′) × (ξ ′

β ′∂α′ − ξ ′
α′∂β ′)f ′ dα′dβ ′

+ aξβ

∫∫

KN ′∂α′f ′ dα′ dβ ′

=

∫∫

aξβK(ξ ′ − ξ) ξα × (ξ ′
β ′∂α′ − ξ ′

α′∂β ′)f ′ dα′dβ ′. (1.20)

Similarly

aξα∂βH!(t)f =

∫∫

aξαK(ξ ′ − ξ) ξβ × (ξ ′
β ′∂α′ − ξ ′

α′∂β ′)f ′ dα′dβ ′. (1.21)

Now for any vectors K , η,

ξβKξα × η − ξαKξβ × η

= −Kξβ ξα × η + Kξα ξβ × η − 2ξβ · K ξα × η + 2ξα · K ξβ × η

= −Kξβ × (ξα × η) + Kξα × (ξβ × η)

+ Kξβ · (ξα × η) − Kξα · (ξβ × η) − 2(K × (ξα × ξβ)) × η

= K(−ξαξβ · η + ξβξα · η) − 2K(ξα × ξβ) · η

+ 2K(ξα × ξβ) · η − 2K · η(ξα × ξβ)

= K(ξα × ξβ) × η − 2K · η(ξα × ξβ). (1.22)

In the above calculation, we used repeatedly the identities (1.7) and a × (b ×
c) = b a · c − c a · b. Combining (1.20), (1.21) and applying (1.12) and (1.22)

with η = (ξ ′
β ′∂α′ − ξ ′

α′∂β ′)f ′ = N ′ × ∇ ′f ′, we get

aN × ∇H!(t)f =

∫∫

K(ξ ′ − ξ)a(ξα × ξβ) × (N ′ × ∇ ′f ′) dα′ dβ ′.

Notice that

H!(t)(aN × ∇f ) =

∫∫

K(ξ ′ − ξ)a′N ′ × (N ′ × ∇ ′f ′) dα′ dβ ′.

(1.18) therefore holds for real valued f . (1.18) for C(V2) valued f directly

follows. !
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1.2 The main equations and main results

We now discuss the 3D water wave. Let !(t) : ξ(α,β, t) = x(α,β, t)e1 +

y(α,β, t)e2 + z(α,β, t)e3, (α,β) ∈ R
2 be the parameterization of the in-

terface at time t in Lagrangian coordinates (α,β) with N = ξα × ξβ =

(N1,N2,N3) pointing out of the fluid domain "(t). Let H = H!(t), and

a = −
1

|N |

∂P

∂n
.

We know from [31] that a > 0 and (1.1) is equivalent to the following nonlin-

ear system defined on the interface !(t):

ξt t + e3 = aN, (1.23)

ξt = Hξt . (1.24)

Motivated by [32], we would like to know whether in 3-D, the quantity π =

(I −H)ze3 under an appropriate coordinate change satisfies an equation with

nonlinearities containing no quadratic terms. We first derive the equation for

π in Lagrangian coordinates.

Proposition 1.3 We have

(∂2
t − aN × ∇)π

=

∫∫

K(ξ ′ − ξ)(ξt − ξ ′
t ) × (ξ ′

β ′∂α′ − ξ ′
α′∂β ′)ξ ′

t dα′dβ ′

−
∫∫

K(ξ ′ − ξ)(ξt − ξ ′
t ) × (ξ ′

tβ ′∂α′ − ξ ′
tα′∂β ′)z′ dα′dβ ′e3

−
∫∫

∂tK(ξ ′ − ξ)(ξt − ξ ′
t ) × (ξ ′

β ′∂α′ − ξ ′
α′∂β ′)z′ dα′dβ ′e3.

(1.25)

Proof Notice from (1.23)

(∂2
t − aN × ∇)ze3 = zt te3 + aN1e1 + aN2e2 = ξt t (1.26)

and from (1.24) that

(I − H)ξt t = [∂t ,H]ξt (1.27)

(1.25) is an easy consequence of (1.15), (1.18) and (1.19) and (1.23), (1.26),

(1.27):
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(∂2
t − aN × ∇)π = (I − H)(∂2

t − aN × ∇)ze3 − [∂2
t − aN × ∇,H]ze3

= [∂t ,H]ξt − [∂2
t − aN × ∇,H]ze3

=

∫∫

K(ξ ′ − ξ)(ξt − ξ ′
t ) × (ξ ′

β ′∂α′ − ξ ′
α′∂β ′)ξ ′

t dα′dβ ′

−
∫∫

K(ξ ′ − ξ)(ξt − ξ ′
t ) × (ξ ′

tβ ′∂α′ − ξ ′
tα′∂β ′)z′ dα′dβ ′e3

−
∫∫

∂tK(ξ ′ − ξ)(ξt − ξ ′
t ) × (ξ ′

β ′∂α′ − ξ ′
α′∂β ′)z′ dα′dβ ′e3. !

We see that the second and third terms in the right hand side of (1.25)

are consisting of terms of cubic and higher orders, while the first term con-

tains quadratic terms. Unlike the 2D case, multiplications of Clifford ana-

lytic functions are not necessarily analytic, so we cannot reduce the first term

at the right hand side of (1.25) into a cubic form. However we notice that

ξ t = xte1 + yte2 − zte3 is almost analytic5 in the air region "(t)c, and this

implies that the first term is almost analytic in the fluid domain "(t). Notice

that the left hand side of (1.25) is almost analytic in the air region. The or-

thogonality of the projections (I − H) and (I + H) allows us to reduce the

first term to cubic in energy estimates.

Notice that the left hand side of (1.25) still contains quadratic terms and

(1.25) is invariant under a change of coordinates. We now want to see if in

3D, there is a coordinate change k, such that under which the left hand side

of (1.25) becomes a linear part plus only cubic and higher order terms. In 2D,

such a coordinate change exists (see (2.18) in [32]). However it is defined by

the Riemann mapping. Although there is no Riemann mapping in 3D, we re-

alize that the Riemann mapping used in 2-D is just a holomorphic function in

the fluid region with its imaginary part equal to zero on !(t). This motivates

us to define

k = k(α,β, t) = ξ(α,β, t) − (I + H)z(α,β, t)e3 + Kz(α,β, t)e3. (1.28)

Here K = ReH:

Kf (α,β, t) = −
∫∫

K(ξ(α′,β ′, t)

− ξ(α,β, t)) · N ′f (α′,β ′, t) dα′ dβ ′ (1.29)

5Since the order of smallness is what matters in this paper, here a quantity X of size O(ǫN ),

in other words of order N , is said to be almost analytic in the fluid region "(t) (respectively

in the air region "(t)c), if (I − H)X (respectively (I + H)X ) is at most of size O(ǫN+1), or

in other words at least of order N + 1.
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is the double layered potential operator. It is clear that the e3 component of

k as defined in (1.28) is zero. In fact, the real part of k is also zero. This is

because

∫∫

K(ξ ′ − ξ) × (ξ ′
α′ × ξ ′

β ′)z
′e3 dα′ dβ ′

=

∫∫

(ξ ′
α′ξ

′
β ′ · K − ξ ′

β ′ξ
′
α′ · K)z′e3 dα′ dβ ′

= −2

∫∫

(ξ ′
α′∂β ′0(ξ ′ − ξ) − ξ ′

β ′∂α′0(ξ ′ − ξ))z′e3 dα′ dβ ′

= 2

∫∫

0(ξ ′ − ξ)(ξ ′
α′zβ ′ − ξ ′

β ′zα′)e3 dα′ dβ ′

= 2

∫∫

0(ξ ′ − ξ)(N ′
1e1 + N ′

2e2) dα′ dβ ′.

So

Hze3 = Kze3 + 2

∫∫

0(ξ ′ − ξ)(N ′
1e1 + N ′

2e2) dα′ dβ ′. (1.30)

This shows that the mapping k defined in (1.28) has only the e1 and e2 com-

ponents k = (k1, k2) = k1e1 + k2e2. If !(t) is a graph of small steepness, i.e.

if zα and zβ are small, then the Jacobian of k = k(·, t): J (k) = J (k(t)) =

∂αk1∂βk2 − ∂αk2∂βk1 > 0 and k(·, t) : R
2 → R

2 defines a valid coordinate

change. We will make this point more precise in Lemma 4.1.

Denote ∇⊥ = (∂α, ∂β), Ugf (α,β, t) = f (g(α,β, t), t) = f ◦ g(α,β, t).

Assume that k = k(·, t) : R
2 → R

2 defined in (1.28) is a diffeomorphism

satisfying J (k(t)) > 0. Let k−1 be such that k ◦ k−1(α,β, t) = αe1 + βe2.

Define

ζ = ξ ◦ k−1 = xe1 + ye2 + ze3,

u = ξt ◦ k−1, and w = ξt t ◦ k−1.
(1.31)

Let

b = kt ◦ k−1,

A ◦ ke3 = aJ (k)e3 = akα × kβ, and N = ζα × ζβ .
(1.32)

By a simple application of the chain rule, we have

U−1
k ∂tUk = ∂t + b · ∇⊥, and

U−1
k (aN × ∇)Uk = AN × ∇ = A(ζβ∂α − ζα∂β),

(1.33)
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and U−1
k HUk = H, with

Hf (α,β, t) =

∫∫

K(ζ(α′,β ′, t)

− ζ(α,β, t))(ζ ′
α′ × ζ ′

β ′)f (α′,β ′, t) dα′ dβ ′. (1.34)

Let χ = π ◦ k−1. Applying coordinate change U−1
k to (1.25). We get

((∂t + b · ∇⊥)2 − AN × ∇)χ

=

∫∫

K(ζ ′ − ζ )(u − u′) × (ζ ′
β ′∂α′ − ζ ′

α′∂β ′)u′ dα′dβ ′

−
∫∫

K(ζ ′ − ζ )(u − u′) × (u′
β ′∂α′ − u′

α′∂β ′)z′ dα′dβ ′e3

−
∫∫

((u′ − u) · ∇)K(ζ ′ − ζ )(u − u′)

× (ζ ′
β ′∂α′ − ζ ′

α′∂β ′)z′ dα′dβ ′e3. (1.35)

We show in the following proposition that b, A − 1 are consisting of only

quadratic and higher order terms. Let K = Re H = U−1
k KUk , P = αe1 +βe2,

and

4∗ = (I + H)ze3, 4 = (I + H)ze3 − Kze3,

λ∗ = (I + H)ze3, λ = λ∗ − Kze3.
(1.36)

Therefore

ζ = P + λ. (1.37)

Let the velocity u = u1e1 + u2e2 + u3e3.

Proposition 1.4 Let b = kt ◦ k−1 and A ◦ k = aJ (k). We have6

b =
1

2
(H − H)u − [∂t + b · ∇⊥, H]ze3

+ [∂t + b · ∇⊥, K]ze3 + Ku3e3, (1.38)

6Formulas for b and A similar to those in 2D [32] are also available and can be obtained in a

similar way:

(I − H)b = (I − H)([∂t + b · ∇⊥, K]ze3 − [∂t + b · ∇⊥, H]ze3 + Ku3e3),

(I − H)(Ae3) = e3 + [∂t + b · ∇⊥, H]u + [AN × ∇, H]λ∗

+ (I − H)(−Aζβ × (∂α Kze3) + Aζα × (∂β Kze3) + A∂αλ × ∂βλ).

However we choose to use those in Proposition 1.4.
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(A − 1)e3 =
1

2
(−H + H)w +

1

2
([∂t + b · ∇⊥, H]u − [∂t + b · ∇⊥, H]u)

+ [AN × ∇, H]ze3 − Aζβ × (∂α Kze3)

+ Aζα × (∂β Kze3) + A∂αλ × ∂βλ. (1.39)

Here Hf = e3H(e3f ) =
∫∫

e3KN ′e3f
′.

Proof Taking derivative to t to (1.28), we get

kt = ξt − ∂t (I + H)ze3 + ∂tKze3

= ξt − zte3 − Hzte3 − [∂t ,H]ze3 + ∂tKze3. (1.40)

Now

ξt − zte3 − Hzte3 =
1

2
(ξt + ξ t ) −

1

2
H(ξt − ξ t )

=
1

2
ξ t +

1

2
Hξ t =

1

2
(H − H)ξ t . (1.41)

Combining (1.40), (1.41) we get

kt =
1

2
(H − H)ξ t − [∂t ,H]ze3 + [∂t ,K]ze3 + Kzte3. (1.42)

Making the change of coordinate U−1
k , we get (1.38).

Notice that A ◦ ke3 = akα × kβ . From the definition k = ξ − 4∗ + Kze3 =

ξ − 4, we get

kα × kβ =ξα × ξβ + ξβ × ∂α4∗ − ξα × ∂β4∗

− ξβ × (∂αKze3) + ξα × (∂βKze3) + ∂α4 × ∂β4.

Using (1.30) and (1.13), we have

ξβ × ∂α4∗ − ξα × ∂β4∗ = ξβ∂α4∗ − ξα∂β4∗ = (N × ∇)4∗.

From (1.23), and the fact that aN × ∇ze3 = −aN1e1 − aN2e2, we obtain

aξα × ξβ + a(N × ∇)4∗

= ξt t + e3 + (I + H)(aN × ∇)ze3 + [aN × ∇,H]ze3

= ξt t + e3 −
1

2
(I + H)(ξt t + ξ t t ) + [aN × ∇,H]ze3



138 S. Wu

and furthermore from (1.24),

ξt t −
1

2
(I + H)(ξt t + ξ t t )

=
1

2
(ξt t − Hξt t ) −

1

2
(ξ t t + Hξ t t )

=
1

2
[∂t ,H]ξt −

1

2
(ξ t t − Hξt t ) −

1

2
(Hξ t t + Hξt t )

=
1

2
[∂t ,H]ξt −

1

2
[∂t ,H]ξt +

1

2
(H − H)ξ t t .

Combining the above calculations and make the change of coordinates U−1
k ,

we obtain (1.39). !

From Proposition 1.4, we see that b and A − 1 are consisting of terms of

quadratic and higher orders. Therefore the left hand side of (1.35) is

(∂2
t − e2∂α + e1∂β)χ − ∂βλ∂αχ + ∂αλ∂βχ + cubic and higher order terms.

The quadratic term ∂βλ∂αχ − ∂αλ∂βχ is new in 3D. We notice that this is

one of the null forms studied in [17] and we find that it is also null for our

equation and can be written as the factor 1/t times a quadratic expression

involving some “invariant vector fields” for ∂2
t − e2∂α + e1∂β . Therefore this

term is cubic in nature and equation (1.35) is of the type “linear + cubic and

higher order perturbations”.

We can now study the global in time behavior of small solutions of

the water wave equations using (1.35) and the method of invariant vec-

tor fields. In fact, in Sect. 3, we will see that it is more natural to treat

(∂t +b ·∇⊥)2 −AN ×∇ as the main operator for the water wave equation than

treating it as a perturbation of the linear operator ∂2
t − e2∂α + e1∂β . We obtain

a uniform bound for all time of a properly constructed energy that involves

invariant vector fields of ∂2
t − e2∂α + e1∂β by combining energy estimates

for the (1.35) and a generalized Sobolev inequality that gives a L2 → L∞

estimate with the decay rate 1/t . We point out that not only does the projec-

tion (I − H) give us the quantity (I − H)ze3, but it is also used in various

ways to project away “quadratic noises” in the course of deriving the energy

estimates. The global in time existence follows from a local well-posedness

result, the uniform boundedness of the energy and a continuity argument. We

state our main theorem.

Let |D| =
√

−∂2
α − ∂2

β , H s(R2) = {f | (I + |D|)sf ∈ L2(R2)}, with

‖f ‖H s = ‖f ‖H s(R2) = ‖(I + |D|)sf ‖L2(R2).
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Let s ≥ 27, max{[ s
2
] + 1,17} ≤ l ≤ s − 10. Assume that initially

ξ(α,β,0) = ξ0 = (α,β, z0(α,β)), ξt (α,β,0) = u0(α,β),

ξt t (α,β,0) = w0(α,β),
(1.43)

and the data in (1.43) satisfy the compatibility condition (5.29)–(5.30) of

[31].7 Let 0 = ∂α, ∂β, α∂α + β∂β, α∂β − β∂α . Assume that

∑

|j |≤s−1
∂=∂α,∂β

‖0j |D|1/2z0‖L2(R2) + ‖0j∂z0‖H 1/2(R2) + ‖0ju0‖H 3/2(R2)

+ ‖0jw0‖H 1(R2) < ∞. (1.44)

Let

ǫ =
∑

|j |≤l+3
∂=∂α,∂β

‖0j |D|1/2z0‖L2(R2) + ‖0j∂z0‖L2(R2)

+ ‖0ju0‖H 1/2(R2) + ‖0jw0‖L2(R2). (1.45)

Theorem 1.5 (Main Theorem) There exists ǫ0 > 0, such that for 0 ≤ ǫ ≤ ǫ0,

the initial value problem (1.23)–(1.24)–(1.43) has a unique classical solu-

tion globally in time. For each time 0 ≤ t < ∞, the interface is a graph, the

solution has the same regularity as the initial data and remains small. More-

over the L∞ norm of the steepness and the acceleration of the interface, the

derivative of the velocity on the interface decay at the rate 1
t
.

A more detailed and precise statement of the main Theorem is given in

Theorem 4.6 and the remarks at the end of this paper.

Remark 1.6 In this paper, we consider only the case that the velocity v → 0

at the spatial infinity. One can also treat water waves with v → c = (c′,0) a

constant velocity at spatial infinity. Exact analogous computations lead to an

analogue of (1.35). This yields a result like Theorem 1.5 with v → c at spatial

infinity. In Appendix B, we will indicate how to obtain an equation such as

(1.35) for 3D water waves with v → c at spatial infinity.

Remark 1.7 Theorem 1.5 and its analogue for v → c at spatial infinity show

that there is a lower bound on the size of possible solitary waves in 3D since

7The compatibility condition basically requires that ξ0, u0 w0 satisfy the water wave equations

(1.23), (1.24) initially. See (4.6) and the nearby paragraphs in this paper for more details.
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the L∞ decay of small solutions rules out small solitary waves. The same

statement holds for 2D water waves (see Proposition 4.6 and Theorem 5.5 of

[32]).8

In Sect. 2 we will give a set of invariant vector fields to the operator

∂2
t − e2∂α + e1∂β and study their commutation properties with various oper-

ators appeared in the equations (1.35), (2.41), and (2.38). We will then prove

a generalized Sobolev inequality (in terms of the invariant vector fields) that

yields a dispersion estimate suitable for the energy method. Finally, relations

between various quantities introduced in the transformation of the systems

will be studied. In Sect. 3, two energy estimates will be proven. One shows

that a quantity which controls higher regularity norms grows very slowly as

long as a low regularity norm remains small (Proposition 3.5. Using Propo-

sition 2.4 or Lemma 3.3), another shows that a quantity that controls the low

regularity norm remains small as long as the high regularity norm do not grow

too fast (Proposition 3.6). Finally these two estimates are put together and a

properly constructed energy is shown to be uniformly bounded for all the

time when an a-priori assumption holds (Theorem 3.7). In the last section, we

prove the global well-posedness of the 3D full water wave problem by using

a local well-posedness result (Theorem 4.3), Theorem 3.7 and a continuity

argument.

Three appendixes are added at the revision: Appendix A contains a partial

list of various quantities introduced in this paper; Appendix B concerns wa-

ter waves with velocity v → c at the spatial infinity; Appendix C discusses

normal forms for the water wave system.

The author would like to thank the referees for helpful remarks and sug-

gestions.

2 Basic analysis preparations

For a function f = f (α,β, t), we use the notation f = f (·, t) = f (t),

‖f (t)‖2 = ‖f (t)‖L2 = ‖f (·, t)‖L2(R2),

|f (t)|∞ = ‖f (t)‖L∞ = ‖f (·, t)‖L∞(R2).

2.1 Vector fields and a generalized Sobolev inequality

As in [32], we will use the method of invariant vector fields. We know the lin-

ear part of the operator P = (∂t +b ·∇⊥)2 −AN ×∇ is P = ∂2
t −e2∂α +e1∂β .

8Non-existence of positively or negatively elevated solitary waves for 2-D infinite depth water

wave with or without surface tension was established in [28]; for 3-D finite or infinite depth

positively elevated water wave without surface tension it was established in [11].
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Although the invariant vector fields of P was not known, it is not difficult to

find them.9 Using a combined method as that in [4, 26], we find that the set

of operators

0 =

{

∂t , ∂α, ∂β, L0 =
1

2
t∂t + α∂α + β∂β, and

6 = α∂β − β∂α −
1

2
e3

}

(2.1)

satisfy

[∂t ,P] = [∂α,P] = [∂β,P] = [6,P] = 0, [L0,P] = −P. (2.2)

Let ϒ = α∂β − β∂α . So 6 = ϒ − 1
2
e3. We have

[∂t , ∂α] = [∂t , ∂β] = [∂t ,ϒ] = [∂α, ∂β] = [L0,ϒ] = 0,

[∂t ,L0] =
1

2
∂t , [∂α,L0] = [ϒ, ∂β] = ∂α,

[∂β,L0] = [∂α,ϒ] = ∂β .

(2.3)

Furthermore, we have

[∂t , ∂t + b · ∇⊥] = bt · ∇⊥,

[∂, ∂t + b · ∇⊥] = (∂b) · ∇⊥, for ∂ = ∂α, ∂β,

[L0, ∂t + b · ∇⊥] =

(

L0b −
1

2
b

)

· ∇⊥ −
1

2
(∂t + b · ∇⊥),

[6, ∂t + b · ∇⊥] =

(

6b −
1

2
e3b

)

· ∇⊥.

(2.4)

Let P ± = (∂t + b · ∇⊥)2 ± AN × ∇ . Notice that P = P −. We have

[∂t , P
±] = ±{(Aζβ)t∂α − (Aζα)t∂β} + {∂t (∂t + b · ∇⊥)b − bt · ∇⊥b} · ∇⊥

+ bt · {(∂t + b · ∇⊥)∇⊥ + ∇⊥(∂t + b · ∇⊥)},

[∂, P
±] = ±{(∂(Aζβ))∂α − (∂(Aζα))∂β}

9One may find using the method in [4] that for the scaler operator ∂2
t + |D|, the following are

invariants: ∂t , ∂α, ∂β , L0, ϒ, α∂t + 1
2
t∂α |D|−1, β∂t + 1

2
t∂β |D|−1. Those for P are then

obtained by properly modifying this set.
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+ {∂(∂t + b · ∇⊥)b − (∂b) · ∇⊥b} · ∇⊥

+ (∂b) · {(∂t + b · ∇⊥)∇⊥ + ∇⊥(∂t + b · ∇⊥)}, for ∂ = ∂α, ∂β,

[L0, P
±] = −P

± ± {L0(Aζβ)∂α − L0(Aζα)∂β},

(2.5)

+

{

(∂t + b · ∇⊥)

(

L0b −
1

2
b

)}

· ∇⊥

+

(

L0b −
1

2
b

)

· {(∂t + b · ∇⊥)∇⊥ + ∇⊥(∂t + b · ∇⊥)},

[6, P
±] = ±(ϒA)(ζβ∂α − ζα∂β)

± A

(

∂β

(

6λ +
1

2
λe3

)

∂α − ∂α

(

6λ +
1

2
λe3

)

∂β

)

+

(

6b −
1

2
e3b

)

· {(∂t + b · ∇⊥)∇⊥ + ∇⊥(∂t + b · ∇⊥)}

+

{

(∂t + b · ∇⊥)

(

6 −
1

2
e3

)

b

}

· ∇⊥.

For any positive integer m, and any operator P ,

[0m,P ] =

m
∑

j=1

0m−j [0,P ]0j−1. (2.6)

Let

Kf (α,β, t) = p.v.

∫∫

k(α,β,α′,β ′; t)f (α′,β ′, t) dα′ dβ ′

where for some ι = 0,1, or 2, |(α,β) − (α′,β ′)|ιk(α,β,α′,β ′; t) is bounded,

and k is smooth away from the diagonal / = {(α,β) = (α′,β ′)}. We have for

f vanish fast at spatial infinity,

[∂t ,K]f (α,β, t) =

∫∫

∂tk(α,β,α′,β ′; t)f (α′,β ′, t) dα′ dβ ′,

[∂,K]f (α,β, t) =

∫∫

(∂ + ∂ ′)k(α,β,α′,β ′; t)f (α′,β ′, t) dα′ dβ ′,

∂ = ∂α, ∂β,

[L0,K]f (α,β, t)

= 2Kf (α,β, t)



Global wellposedness of the 3-D full water wave problem 143

+

∫∫ (

α∂α + β∂β + α′∂ ′
α + β ′∂ ′

β +
1

2
t∂t

)

k(α,β,α′,β ′; t) (2.7)

× f (α′,β ′, t) dα′ dβ ′,

[ϒ,K]f (α,β, t) =

∫∫

(ϒ + ϒ ′)k(α,β,α′,β ′; t)f (α′,β ′, t) dα′ dβ ′,

[∂t + b · ∇⊥,K]f =

∫∫

(∂t + b · ∇⊥ + b′ · ∇ ′
⊥)k(α,β,α′,β ′; t)

× f (α′,β ′, t) dα′ dβ ′

+

∫∫

k(α,β,α′,β ′; t)div′b′ f (α′,β ′, t) dα′ dβ ′.

One of the operators in (1.35), (2.38) and (2.40) is of the following type:

B(g, f ) = p.v.

∫∫

K(ζ ′ − ζ )(g −g′)× (ζ ′
β ′∂α′ − ζ ′

α′∂β ′)f (α′,β ′, t) dα′ dβ ′,

where Reg = 0. We have for 0 = ∂t , ∂α, ∂β,L0,6 ,

0B(g, f ) =

∫∫

K(ζ ′ − ζ )(0̇g − 0̇′g′)

× (ζ ′
β ′∂α′ − ζ ′

α′∂β ′)f (α′,β ′, t) dα′ dβ ′

+

∫∫

K(ζ ′ − ζ )(g − g′)

× (ζ ′
β ′∂α′ − ζ ′

α′∂β ′)0′f (α′,β ′, t) dα′ dβ ′

+

∫∫

K(ζ ′ − ζ )(g − g′)

× (∂β ′0̇′λ′∂α′ − ∂α′0̇′λ′∂β ′)f (α′,β ′, t) dα′ dβ ′

+

∫∫

((0̇′λ′ − 0̇λ) · ∇)K(ζ ′ − ζ )(g − g′)

× (ζ ′
β ′∂α′ − ζ ′

α′∂β ′)f (α′,β ′, t) dα′ dβ ′, (2.8)

where 0̇g = ∂tg, ∂αg, ∂βg, (L0 − I )g, 6g + 1
2
ge3 respectively. (2.8) is

straightforward with an application of (2.7), the definition ζ = P + λ, and

in the case 0 = L0, the fact (ξ · ∇)K(ξ) = −2K(ξ) and (2.3); in the case

0 = 6 , the fact ((e3 ×ξ) ·∇)K(ξ) = 1
2
(e3K(ξ)−K(ξ)e3), (2.3) and −e3 a×

b + a × b e3 + 2(e3 × a) × b + 2a × (e3 × b) = 0, for a, b ∈ R
3.

Before we derive the commutativity relations between L0, 6 and H, we

record
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Lemma 2.1 Let " be a C2 domain in R
2, with its boundary ! = ∂" being

parametrized by ξ = ξ(α,β), (α,β) ∈ R
2. For any vector η, and function f

on R
2, we have

(η × ξβ)fα − (η × ξα)fβ

= (ξα × ξβ)(η · ∇ξ )f − (η · (ξα × ξβ)) Dξf, (2.9)

−(η · ∇)K(ξ) (ξ ′
α′ × ξ ′

β ′) + (ξ ′
α′ · ∇)K(ξ)(η × ξ ′

β ′)

+ (ξ ′
β ′ · ∇)K(ξ)(ξ ′

α′ × η) = 0, (2.10)

for ξ (= 0.

(2.9) is proved in the same way as the identity (5.17) in [31]. We omit the

details. (2.10) is the identity (3.5) in [31].

We have the following commutativity relations between L0, 6 and H.

Proposition 2.2 Let f ∈ C1(R2 × [0, T ]) be a C(V2) valued function vanish-

ing at spatial infinity. Then

[L0, H]f =

∫∫

K(ζ ′ − ζ )((L0 − I )λ − (L′
0 − I )λ′)

× (ζ ′
β ′∂α′ − ζ ′

α′∂β ′)f ′ dα′dβ ′, (2.11)

[6, H]f =

∫∫

K(ζ ′ − ζ )

(

6λ +
1

2
λe3 − 6 ′λ′ −

1

2
λ′e3

)

× (ζ ′
β ′∂α′ − ζ ′

α′∂β ′)f ′ dα′dβ ′. (2.12)

Proof Using (1.15), (1.16), (1.17) and argue similarly as in the proof of

(1.18), we can show that

[L0, H]f =

∫∫

K(ζ ′ − ζ )(L0ζ − L′
0ζ

′) × (ζ ′
β ′∂α′ − ζ ′

α′∂β ′)f ′ dα′dβ ′.

Using integration by parts and (2.10), we can check the following identity:

∫∫

K(ζ ′ − ζ )(ζ − ζ ′) × (ζ ′
β ′∂α′ − ζ ′

α′∂β ′)f ′ dα′dβ ′ = 0.

(2.11) then follows from the fact that (L0 − I )ζ = (L0 − I )λ.

(2.12) is obtained similarly. First we have by using (1.16), (1.17) that

[ϒ, H]f =

∫∫

K(ζ ′ − ζ )(ϒζ − ϒ ′ζ ′) × (ζ ′
β ′∂α′ − ζ ′

α′∂β ′)f ′ dα′dβ ′.
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We now check the identity

1

2
[e3, H]f =

∫∫

K(ζ ′ − ζ )(e3 × (ζ − ζ ′)) × (ζ ′
β ′∂α′ − ζ ′

α′∂β ′)f ′ dα′dβ ′.

Using integration by parts, we have

∫∫

K(ζ ′ − ζ )(e3 × (ζ − ζ ′)) × (ζ ′
β ′∂α′ − ζ ′

α′∂β ′)f ′ dα′ dβ ′

= −
∫∫

(∂ ′
αK (e3 × (ζ − ζ ′))

× ζ ′
β ′ − ∂β ′K(e3 × (ζ − ζ ′)) × ζ ′

α′)f
′ dα′ dβ ′

+

∫∫

K(ζ ′ − ζ )((e3 × ζ ′
α′) × ζ ′

β ′ − (e3 × ζ ′
β ′) × ζ ′

α′)f
′ dα′ dβ ′

=

∫∫

((e3 × (ζ ′ − ζ )) · ∇)K(ζ ′ − ζ )N
′f ′ dα′ dβ ′

+

∫∫

K(ζ ′ − ζ )e3 × N
′f ′ dα′ dβ ′

=
1

2

∫∫

(e3KN
′ − KN

′e3)f
′ dα′ dβ ′ =

1

2
[e3, H]f.

Here in the second step we used (2.10), and the identity (a × b) × c = b a ·

c − a b · c. In the last step we used the fact ((e3 × ξ) · ∇)K(ξ) = 1
2
(e3K(ξ) −

K(ξ)e3) and e3 × N = 1
2
(e3N − N e3). (2.12) therefore follows since ϒζ −

e3 × ζ = ϒλ − e3 × λ = 6λ + 1
2
λe3. !

In what follows, we denote the vector fields in (2.1) by 0i i = 1, . . . ,5, or

simply suppress the subscript and write as 0. We shall write

0k = 0
k1

1 0
k2

2 0
k3

3 0
k4

4 0
k5

5

for k = (k1, k2, k3, k4, k5). For a nonnegative integer k, we shall also use 0k

to indicate a k-product of 0i . i = 1, . . . ,5.

We now develop a generalized Sobolev inequality. Let α1 = α, α2 = β . We

introduce

"±
0j = ±αj∂t +

1

2
t∂αj

|D|−1H, j = 1,2, (2.13)
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where H = (e2∂α1
− e1∂α2

)|D|−1. Therefore H 2 = I . We also denote "−
0j =

"0j .10 Let P± = ∂2
t ± (e2∂α1

− e1∂α2
). Notice that P = P−. We know

P
± = P± + ∂t (b · ∇⊥) + b · ∇⊥(∂t + b · ∇⊥)

± A(λβ∂α − λα∂β) ± (A − 1)(e2∂α − e1∂β). (2.14)

Let Pd(∂) be a polynomial of ∂αj
, j = 1,2, homogeneous of degree d , with

coefficients in R. We have

Lemma 2.3 1.

(∂2
α1

+ ∂2
α2

)"±
01 = ±

(

∂α1

(

2∂t + L0∂t −
1

2
tP±

)

+ ∂α2
ϒ∂t

)

,

(∂2
α1

+ ∂2
α2

)"±
02 = ±

(

∂α2

(

2∂t + L0∂t −
1

2
tP±

)

− ∂α1
ϒ∂t

)

.

(2.15)

2.

‖|D|"±
0jF(t)‖L2 ≤ 2

∑

k≤1

‖∂t0
kF(t)‖L2 + t‖P±F(t)‖L2 . (2.16)

3.

[0̂,Pd+l(∂)|D|−d ] = R|D|l, for 0̂ = L0,ϒ, l = 0,1,

["0j ,Pd+1(∂)|D|−d ] = R∂t ,
(2.17)

where R is a finite sum of operators of the type Pk(∂)|D|−k , and need not be

the same for different 0̂, "0j , j = 1,2 or l = 0,1.

Proof (2.17) is straightforward using Fourier transform. We prove (2.15) for

"01 = "−
01, the other cases follows similarly. We have

∂α1
"02 − ∂α2

"01 = ϒ∂t ,

∂α1
"01 + ∂α2

"02 = −2∂t − L0∂t +
1

2
tP.

Therefore

(∂2
α1

+ ∂2
α2

)"01 = ∂α1

(

−2∂t − L0∂t +
1

2
tP

)

− ∂α2
ϒ∂t .

(2.16) is straightforward from here. !

10One may check that ["01(e2∂α1 − e1∂α2) − 1
2
∂te2,P] = 0, ["02(e2∂α1 − e1∂α2 ) +

1
2
∂te1,P] = 0. These are some of the invariant vector fields for P, not included in (2.1).
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Proposition 2.4 (Generalized Sobolev inequality) Let f ∈ C∞(R2+1) be a

C(V2) valued function, vanishing at spatial infinity. We have for l = 1,2,

(1 + t + |α1| + |α2|)|∂αl
f (α1,α2, t)|

"
∑

k≤4,j=1,2

(‖0k∂tf (t)‖L2 + ‖0k∂αj
f (t)‖L2)

+ t
∑

k≤3

‖P0kf (t)‖L2 . (2.18)

Here a " b means that there is a universal constant c, such that a ≤ cb.

Proof Let r2 = α2
1 + α2

2 , r∂r = α1∂α1
+ α2∂α2

. We have

2
∑

1

αj

r
"0j = −r∂t +

1

2
t∂r |D|−1H, L0 =

1

2
t∂t + r∂r

therefore

rL0 +
t

2

2
∑

1

αj

r
"0j = r2∂r +

t2

4
∂r |D|−1H. (2.19)

Also

2
∑

1

"0j∂αj
= −r∂r∂t −

1

2
t |D|H,

2
∑

1

αjL0∂αj
=

1

2
t r∂t∂r + r2∂2

r

gives

1

2
t

2
∑

1

"0j∂αj
|D|−1H +

2
∑

1

αjL0∂αj
|D|−1H

= r2∂2
r |D|−1H −

1

4
t2. (2.20)

Let g be a C(V2) valued function, h = ∂r |D|−1Hg. From (2.19), (2.20) we

have (i is the complex number in this proof)

r2∂r(g + ih) −
1

4
t2i(g + ih) = F, (2.21)

where

F = rL0g +
t

2

2
∑

1

αj

r
"0jg
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+ i

(

1

2
t

2
∑

1

"0j∂αj
|D|−1Hg +

2
∑

1

αjL0∂αj
|D|−1Hg

)

.

Using (2.21) we get r2∂r(e
it2

4r (g + i h)) = e
it2

4r F , therefore. (Recall by defin-

ition, components of a C(V2) valued function are real valued.)

|g(reiθ , t)| ≤ |(g + i h)(reiθ , t)| ≤
∫ ∞

r

1

s2
|F(seiθ , t)|ds (2.22)

and this implies that

|g(reiθ , t)|2 "
1

r2

∫ ∞

r

s(|L0g|2 +

2
∑

1

|L0∂αj
|D|−1Hg|2) ds

+
t2

r4

2
∑

j=1

∫ ∞

r

s(|"0jg|2 + |"0j∂αj
|D|−1Hg|2) ds.

(2.23)

Now in (2.23) we let g = ϒk∂αl
f . Using Lemma 1.2 on p. 40 of [22], and

(2.17), (2.3), we obtain

|∂αl
f (reiθ0, t)|2 "

∑

k≤2

∫ 2π

0

|ϒk∂αl
f (reiθ , t)|2 dθ

"
1

r2

2
∑

j=1

∑

k≤2,m≤1

‖Lm
0 ϒk∂αj

f (t)‖2
L2

+
t2

r4

(

2
∑

j=1

∑

k≤2

‖|D|"0jϒ
kf (t)‖2

L2 + ‖∂tϒ
kf (t)‖2

L2

)

.

(2.24)

A further application of (2.16) gives

|∂αl
f (reiθ0, t)|2 "

1

r2

∑

k≤3

2
∑

j=1

‖0k∂αj
f (t)‖2

2 +
t2

r4

∑

k≤3

‖0k∂tf (t)‖2
2

+
t4

r4

∑

k≤2

‖P0kf (t)‖2
2. (2.25)
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From a similar argument we also have

|∂αm |D|−1H∂αl
f (reiθ0, t)|2

"
1

r2

∑

k≤3

2
∑

j=1

‖0k∂αj
f (t)‖2

2 +
t2

r4

∑

k≤3

‖0k∂tf (t)‖2
2

+
t4

r4

∑

k≤2

‖P0kf (t)‖2
2. (2.26)

Case 0: |t | + r ≤ 1. (2.18) follows from the standard Sobolev embedding.

Case 1: t ≤ r and |t | + r ≥ 1. (2.18) follows from (2.25).

Case 2: r ≤ t and |t | + r ≥ 1. We use (2.20). We have

1

4
t2∂αl

f = r2∂2
r |D|−1H∂αl

f −
1

2
t

2
∑

j=1

"0j∂αj
|D|−1H∂αl

f

−
2

∑

j=1

αjL0∂αj
|D|−1H∂αl

f. (2.27)

Using (2.26) to estimate the first term, the standard Sobolev embedding and

Lemma 2.3 to estimate the second and third term on the right hand side of

(2.27). We obtain (2.18). !

Finally, the following Proposition shows that the term ∂βλ∂αχ − ∂αλ∂βχ

in (1.35) posses the desired null structure.

Proposition 2.5 Let f , g be real valued functions. We have

∂α1
f ∂α2

g − ∂α2
f ∂α1

g =
2

t
{∓∂t (e2∂α1

− e1∂α2
)f ϒg

+ "±
01(e2∂α1

− e1∂α2
)f ∂α2

g

− "±
02(e2∂α1

− e1∂α2
)f ∂α1

g}. (2.28)

The proof is straightforward from definition. We omit the details.
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2.2 Estimates of the Cauchy type integral operators

Let J ∈ C1(Rd;R
l), Ai ∈ C1(Rd), i = 1, . . . ,m, F ∈ C∞(Rl). Define (for

x, y ∈ R
d )

C1(J,A,f )(x) = p.v.

∫

F

(

J (x) − J (y)

|x − y|

)

9m
i=1(Ai(x) − Ai(y))

|x − y|d+m
f (y) dy.

(2.29)

Assume that k1(x, y) = F(
J (x)−J (y)

|x−y|
)
9m

i=1(Ai(x)−Ai(y))

|x−y|d+m is odd, i.e. k1(x, y) =

−k1(y, x).

Proposition 2.6 There exist constants c1 = c1(F,‖∇J‖L∞), c2 = c2(F,

‖∇J‖L∞), such that 1. For any f ∈ L2(Rd), ∇Ai ∈ L∞(Rd), 1 ≤ i ≤ m,

‖C1(J,A,f )‖L2(Rd ) ≤ c1‖∇A1‖L∞(Rd ) · · ·‖∇Am‖L∞(Rd )‖f ‖L2(Rd ).

(2.30)

2. For any f ∈ L∞(Rd), ∇Ai ∈ L∞(Rd), 2 ≤ i ≤ m, ∇A1 ∈ L2(Rd),

‖C1(J,A,f )‖L2(Rd ) ≤ c2‖∇A1‖L2(Rd )‖∇A2‖L∞(Rd ) · · ·

× ‖∇Am‖L∞(Rd )‖f ‖L∞(Rd ). (2.31)

Proof (2.30) is a result of Coifman, McIntosh and Meyer [8, 9, 16].

We prove (2.31) by the method of rotations and the inequality (3.17)

in [32]. We only write for d = 2, the same argument applies to general cases.

Let Rθf (x) = f (eiθx), x = (x1, x2) = x1 + i x2 ∈ R
2,

K(J,A,f )(x) = p.v.

∫

R1
F

(

J (x) − J (x + r)

r

)

×
9m

i=1(Ai(x) − Ai(x + r))

rm+1
f (x + r) dr.

We have, from the change of coordinate formula:
∫

R2 g(y) dy =
∫

R

∫ π

0 g(reiθ )|r|dr dθ and the assumption that k1(x, y) is odd, that

C1(J,A,f )(x) =

∫ π

0

R−1
θ K(RθJ,RθA,Rθf )(x) dθ

where for A = (A1, . . . ,Am), RθA = (RθA1, . . . ,RθAm). (2.31) now follows

from the inequality (3.17) in [32]. !
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Let J , Ai , F be as above, define (for x, y ∈ R
d )

C2(J,A,f )(x) = p.v.

∫

F

(

J (x) − J (y)

|x − y|

)

×
9m

i=1(Ai(x) − Ai(y))

|x − y|d+m−1
∂yk

f (y) dy. (2.32)

Assume that k2(x, y) = F(
J (x)−J (y)

|x−y|
)
9m

i=1(Ai(x)−Ai(y))

|x−y|d+m−1 is even, i.e. k2(x, y) =

k2(y, x).

Proposition 2.7 There exist constants c1 = c1(F,‖∇J‖L∞), c2 =

c2(F,‖∇J‖L∞), such that 1. For any f ∈ L2(Rd), ∇Ai ∈ L∞(Rd), 1 ≤
i ≤ m,

‖C2(J,A,f )‖L2(Rd ) ≤ c1‖∇A1‖L∞(Rd ) · · ·‖∇Am‖L∞(Rd )‖f ‖L2(Rd ).

(2.33)

2. For any f ∈ L∞(Rd), ∇Ai ∈ L∞(Rd), 2 ≤ i ≤ m, ∇A1 ∈ L2(Rd),

‖C1(J,A,f )‖L2(Rd ) ≤ c2‖∇A1‖L2(Rd )‖∇A2‖L∞(Rd ) · · ·

× ‖∇Am‖L∞(Rd )‖f ‖L∞(Rd ). (2.34)

Proposition 2.7 follows from Proposition 2.6 and integration by parts. We

also have the following L∞ estimate for C1(J,A,f ) as defined in (2.29).

Proposition 2.8 There exists a constant c = c(F,‖∇J‖L∞,‖∇2J‖L∞), such

that for any real number r > 0,

‖C1(J,A,f )‖L∞ ≤ c

( m
∏

i=1

(‖∇Ai‖L∞ + ‖∇2Ai‖L∞)(‖f ‖L∞ + ‖∇f ‖L∞)

+

m
∏

i=1

‖∇Ai‖L∞‖f ‖L∞ ln r

+

m
∏

i=1

‖∇Ai‖L∞‖f ‖L2

1

rd/2

)

. (2.35)

The proof of Proposition 2.8 is an easy modification of that of Proposi-

tion 3.4 in [32]. We omit.

At last, we record the standard Sobolev embedding.
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Proposition 2.9 For any f ∈ C∞(R2),

‖f ‖L∞ " ‖f ‖L2 + ‖∇f ‖L2 + ‖∇2f ‖L2 . (2.36)

2.3 Regularities and relations among various quantities

Let v = (∂t + b · ∇⊥)χ ,

Em(t) =
∑

|j |≤m

(‖(∂t + b · ∇⊥)0jχ(t)‖2
2 + ‖(∂t + b · ∇⊥)0jv(t)‖2

2). (2.37)

In Sect. 3, we will use (1.35) and (2.41) for χ and v to obtain energy esti-

mates, and the estimates concern the quantity Em(t). So in this subsection, we

give estimates of the L2 norms of derivatives of various quantities involved in

(1.35), (2.41) in terms of Em(t), and the L∞ norms of derivatives of various

quantities in terms of that of ∂χ , ∂v, ∂ = ∂α, ∂β . Eventually the generalized

Sobolev inequality will be used to estimate the L∞ norms of the derivatives

of ∂χ and ∂v in terms of Em(t) (Lemma 3.3).

We first present the quasi-linear equation for u = ξt ◦ k−1 and a formula

for at . These are very much the same as those derived in [31] and will be

used to get a local wellposedness result. We also give the equations for λ∗ =

(I + H)ze3 and v. The equation for λ∗ is an auxiliary equation and will be

used in the proof of Proposition 3.6.

Proposition 2.10 We have 1.

((∂t + b · ∇⊥)2 + AN × ∇)u = U−1
k (atN), (2.38)

where

(I − H)(U−1
k (atN))

= 2

∫∫

K(ζ ′ − ζ )(w − w′) × (ζ ′
β ′∂α′ − ζ ′

α′∂β ′)u′ dα′dβ ′

+

∫∫

K(ζ ′ − ζ ) {((u − u′) × u′
β ′)u

′
α′ − ((u − u′) × u′

α′)u
′
β ′}dα′dβ ′

+ 2

∫∫

K(ζ ′ − ζ )(u − u′) × (ζ ′
β ′∂α′ − ζ ′

α′∂β ′)w′ dα′dβ ′

+

∫∫

((u′ − u) · ∇)K(ζ ′ − ζ )(u − u′) × (ζ ′
β ′∂

′
α − ζ ′

α′∂
′
β)u′ dα′dβ ′.

(2.39)
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2.

((∂t + b · ∇⊥)2 + AN × ∇)λ∗

= −(H − H)w − e3

∫∫

K(ζ ′ − ζ )(u − u′) × (ζ ′
β ′∂α′ − ζ ′

α′∂β ′)u′ dα′dβ ′e3

+ 2

∫∫

K(ζ ′ − ζ )(w − w′) × (ζ ′
β ′∂α′ − ζ ′

α′∂β ′)z′ dα′dβ ′e3

+

∫∫

K(ζ ′ − ζ ) {((u − u′) × u′
β ′)z

′
α′ − ((u − u′) × u′

α′)z
′
β ′}dα′dβ ′e3

+ 2

∫∫

K(ζ ′ − ζ )(u − u′) × (ζ ′
β ′∂α′ − ζ ′

α′∂β ′)u′
3 dα′dβ ′e3

+

∫∫

((u′ − u) · ∇)K(ζ ′ − ζ )(u − u′) × (ζ ′
β ′∂

′
α − ζ ′

α′∂
′
β)z′ dα′dβ ′e3.

(2.40)

3.

(

(∂t + b · ∇⊥)2 − AN × ∇
)

v

=
at

a
◦ k−1AN × ∇χ + A(uβχα − uαχβ)

+ (∂t + b · ∇⊥)((∂t + b · ∇⊥)2 − AN × ∇)χ . (2.41)

Proof (2.38) is derived from (1.23), (1.24). Taking derivative to t to (1.23),

we have ξt t t − aNt = atN . Using (1.13), (1.24), we derive

Nt = −ξβ × ξtα + ξα × ξtβ = −ξβξtα + ξαξtβ = −N × ∇ξt .

Therefore

ξt t t + aN × ∇ξt = atN. (2.42)

Now to derive an equation for atN , we apply (I − H) to both sides of (2.42).

We get

(I − H)(atN) = (I − H)(ξt t t + (aN × ∇)ξt ) = [∂2
t + aN × ∇,H]ξt

(2.39) then follows from (1.19), (1.18) and an application of the coordinate

change U−1
k . An application of the coordinate change U−1

k to (2.42) gives

(2.38).

We can derive the equation for λ∗ in a similar way as that for χ . We have

(∂2
t + aN × ∇)4∗ = (I + H)(∂2

t + aN × ∇)ze3 + [∂2
t + aN × ∇,H]ze3.

(2.43)
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Notice that (∂2
t + aN × ∇)ze3 = −ξt t and

(I + H)ξt t = e3(ξt t − Hξt t )e3 + (H − e3He3)ξt t = e3[∂t ,H]ξte3 + (H − H)ξt t

(2.40) again follows from Lemma 1.2 and then an application of the change of

coordinate U−1
k to (2.43). We remark that the right hand sides of both (2.38),

(2.40) are of terms that are at least quadratic.

(2.41) is obtained by taking derivative ∂t to (1.25), then make the change

of variable U−1
k . !

We present some useful identities in the following. Proposition 2.11 com-

bined with Proposition 2.12 for example, will be used to put the first term on

the right hand side of (1.35) into cubic in the energy estimates.

Proposition 2.11 For f ± satisfying f ± = ±Hf ±, and g being vector val-

ued, we have
∫∫

K(ζ ′ − ζ )(g − g′) × (ζ ′
β∂α′ − ζ ′

α′∂β ′)f ′± dα′dβ ′ = (±I − H)(g · ∇±
ξ f ).

(2.44)

Proof We only prove for f satisfying f = Hf . We know f (α,β, t) =

F(ζ(α,β, t), t) for some F analytic in "(t). From (2.9), we have

∫∫

K(g − g′) × (ζ ′
β∂α′ − ζ ′

α′∂β ′)f ′ dα′dβ ′

=

∫∫

KN
′(g − g′) · ∇+

ξ f ′ = (I − H)(g · ∇+
ξ f ),

where in the last step we used the fact that ∂+
ξi

f = H∂+
ξi

f , since ∂+
ξi

f is the

trace on !(t) of the analytic function ∂ξi
F , i = 1,2,3. !

Define

H
∗f = −

∫∫

ζα × ζβK(ζ ′ − ζ )f (α′,β ′, t) dα′ dβ ′ = −
∫∫

N Kf ′ dα′ dβ ′.

(2.45)

Proposition 2.12 For C(V2) valued smooth functions f and g, we have

∫∫

f · {Hg} =

∫∫

{H
∗f } · g and (2.46)

(H
∗ − H)f =

∫∫

{K(ζ ′ − ζ ) · (N + N
′) + K(ζ ′ − ζ ) × (N − N

′)}f ′.

(2.47)
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Proof Both identities are straightforward from definition. We omit the de-

tails. !

Let σi = {σ }i denote the ei component of σ .

Lemma 2.13 Let " be a C2 domain in R
3 with ∂" = ! being parametrized

by ξ = ξ(α,β), (α,β) ∈ R
2, and N = ξα × ξβ , n = N

|N |
. Assume that F is a

Clifford analytic function in ". Then the trace of ∇Fi : ∇ξFi = ∇Fi(ξ(α,β))

satisfies

∇ξFi = n

(

−
1

|N |
(ξβ∂α − ξα∂β)Fi +

{

1

|N |
(ξβ∂α − ξα∂β)F

}

i

)

, i = 1,2,3.

(2.48)

Proof We know DF = 0 in ". Therefore nDξF = −n · DξF +n× DξF = 0.

This implies

n · ∇ξFi = {n × ∇ξF }i =

{

1

|N |
(ξβ∂α − ξα∂β)F

}

i

.

Therefore

∇ξFi = −nn∇ξFi = n(n · ∇ξFi − n × ∇ξFi)

= n

({

1

|N |
(ξβ∂α − ξα∂β)F

}

i

−
1

|N |
(ξβ∂α − ξα∂β)Fi

)

. (2.49)

!

The following identities give relations among various quantities. We note

that the right hand side of each of the identities is of quadratic or higher

orders.

Lemma 2.14 We have

λ + χ = (H − H)ze3 + Kze3, λ∗ + χ = (H − H)ze3, (2.50)

∂αz + N · e1 = (∂αλ × ∂βλ) · e1,

∂βz + N · e2 = (∂αλ × ∂βλ) · e2,
(2.51)

N − e3 − ∂αλ × e2 + ∂βλ × e1 = ∂αλ × ∂βλ, (2.52)

w − (N − e3) = (A − 1)N , (2.53)

2(u + (∂t + b · ∇⊥)χ) = (H − H)u − 2[∂t + b · ∇⊥, H]ze3, (2.54)
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2(w + (∂t + b · ∇⊥)v) = (H − H)w + [∂t + b · ∇⊥, H − H]u

− 2(∂t + b · ∇⊥)[∂t + b · ∇⊥, H]ze3, (2.55)

(H − H)f = −2

∫∫

K · N
′f ′ + 2

∫∫

(K1N
′
2 − K2N

′
1)e3f

′, (2.56)

where K = K1e1 + K2e2 + K3e3, N = N1e1 + N2e2 + N3e3, and f is a

function.

Proof (2.50), (2.52), (2.56) are straightforward from definition, (2.53) is

(1.23) with a change of coordinate U−1
k . Notice that the e3 component of

λ is z, therefore (2.51) follows straightforwardly from (2.52).

We now derive (2.54) from the definition of π = (I − H)ze3. We have

2∂tπ = 2(I − H)zte3 − 2[∂t ,H]ze3 = (I − H)(ξt − ξ t ) − 2[∂t ,H]ze3

= −(I − H)ξ t − 2[∂t ,H]ze3 = −2ξ t + (H − H)ξ t − 2[∂t ,H]ze3.

(2.57)

Here in the last step we used (1.24). (2.54) follows from (2.57) with a change

of coordinate U−1
k . (2.55) is obtained by taking derivative ∂t + b · ∇⊥ to

(2.54). !

In what follows, we let l ≥ 4, l + 2 ≤ q ≤ 2l, ξ = ξ(α,β, t), t ∈ [0, T ]

be a solution of the water wave system (1.23)–(1.24). Assume that the map-

ping k(·, t) : R
2 → R

2 defined in (1.28) is a diffeomorphism and its Jacobian

J (k(t)) > 0, for t ∈ [0, T ]. Assume for ∂ = ∂α, ∂β ,

0j∂λ, 0j∂z, 0j (∂t + b · ∇⊥)χ ,0j (∂t + b · ∇⊥)v ∈ C([0, T ],L2(R2)),

for |j | ≤ q. (2.58)

Let t ∈ [0, T ] be fixed. Assume that at this time t ,

∑

|j |≤l+2
∂=∂α,∂β

(‖0j∂λ(t)‖2 + ‖0j∂z(t)‖2

+ ‖0jv(t)‖2 + ‖0j (∂t + b · ∇⊥)v(t)‖2) ≤ M,

|ζ(α,β, t) − ζ(α′,β ′, t)| ≥
1

4
(|α − α′| + |β − β ′|)

for α,β,α′,β ′ ∈ R.

(2.59)

We will take M ≤ M0, where M0 > 0 will be made clear in the following

analysis. For the rest of this paper, the inequality a " b means that there is
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a constant c = c(M0) depending on M0, or a universal constant c, such that

a ≤ c b. a 0 b means a " b and b " a.

Lemma 2.15 We have for m ≤ 2l, and any function φ ∈ C∞
0 (R2 × [0, T ]),

‖[∂t + b · ∇⊥,0m]φ(t)‖2

"
∑

j≤l+2

‖0jb(t)‖2

∑

|j |≤m−1
∂=∂α,∂β

‖∂0jφ(t)‖2

+
∑

|j |≤m

‖0jb(t)‖2

∑

|j |≤l+1
∂=∂α,∂β

‖∂0jφ(t)‖2

+
∑

|j |≤m−1

‖(∂t + b · ∇⊥)0jφ(t)‖2,

(2.60)

‖[∂t + b · ∇⊥,0m]φ(t)‖2

"
∑

j≤l+2

‖0jb(t)‖2

∑

|j |≤m−1
∂=∂α,∂β

‖∂0jφ(t)‖2

+
∑

|j |≤m

‖0jb(t)‖2

∑

|j |≤l+1
∂=∂α,∂β

‖∂0jφ(t)‖2

+
∑

|j |≤m−1

‖0j (∂t + b · ∇⊥)φ(t)‖2.

Proof (2.60) is an easy consequence of the identities (2.4), (2.6) and Propo-

sition 2.9:

[∂t + b · ∇⊥,0m]φ =

m
∑

j=1

0m−j [∂t + b · ∇⊥,0]0j−1φ.
!

The following proposition gives the L2 estimates of various quantities in

terms of that of χ and v. Let t ∈ [0, T ] be the time when (2.59) holds.

Proposition 2.16 Let m ≤ q . There is a M0 > 0, sufficiently small, such that

for M ≤ M0,

∑

∂=∂α,∂β

(‖0m∂λ(t)‖2 + ‖0m∂λ∗(t)‖2 + ‖0m∂χ(t)‖2 + ‖0m∂z(t)‖2)

+ ‖0mu(t)‖2 + ‖0mw(t)‖2 + ‖0m(∂t + b · ∇⊥)λ(t)‖2
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+ ‖0m(∂t + b · ∇⊥)λ∗(t)‖2

"
∑

|j |≤m

(‖(∂t + b · ∇⊥)0jχ(t)‖2 + ‖(∂t + b · ∇⊥)0jv(t)‖2), (2.61)

‖0mb(t)‖2 + ‖0m(∂t + b · ∇⊥)b(t)‖2 + ‖0m(A − 1)(t)‖2

" M0

∑

|j |≤m

(‖(∂t + b · ∇⊥)0jχ(t)‖2 + ‖(∂t + b · ∇⊥)0jv(t)‖2),

(2.62)
∑

|j |≤m

‖0j (∂t + b · ∇⊥)χ(t)‖2 + ‖0j (∂t + b · ∇⊥)v(t)‖2

0
∑

|j |≤m

(‖(∂t + b · ∇⊥)0jχ(t)‖2 + ‖(∂t + b · ∇⊥)0jv(t)‖2). (2.63)

Proof We prove Proposition 2.16 in five steps. Notice that

[0, H] = e3[0, H]e3, [0, K] = Re[0, H]. (2.64)

Step 1. We first show that for m ≤ q , there is a M0 sufficiently small, such

that if M ≤ M0,

∑

|j |≤m
∂=∂α,∂β

‖0j∂λ(t)‖2 + ‖0j∂χ(t)‖2 "
∑

|j |≤m
∂=∂α,∂β

‖0j∂z(t)‖2. (2.65)

Let ∂ = ∂α or ∂β . From the definition λ = (I + H)ze3 − Kze3, we have

∂λ = (I + H)∂ze3 + [∂, H]ze3 − [∂, K]ze3 − K∂ze3.

Using (2.6) we get

0m∂λ =

m
∑

j=1

0m−j [0, H]0j−1∂ze3 + (I + H)0m∂ze3 + 0m[∂, H]ze3

−
m

∑

j=1

0m−j [0, K]0j−1∂ze3 − K0m∂ze3 − 0m[∂, K]ze3.
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Therefore from (2.7), Lemma 1.2, (2.64), Propositions 2.2, 2.6, 2.7, 2.9, we

have

‖0m∂λ(t)‖2 "
∑

|j |≤m
∂=∂α,∂β

‖0j∂λ(t)‖2

∑

|j |≤l+2

‖0j∂z(t)‖2

+

(

1 +
∑

|j |≤l+2
∂=∂α,∂β

‖0j∂λ(t)‖2

)

∑

|j |≤m

‖0j∂z(t)‖2.

This gives us

∑

|j |≤m
∂=∂α,∂β

‖0j∂λ(t)‖2 "
∑

|j |≤m
∂=∂α,∂β

‖0j∂z(t)‖2 (2.66)

when M0 is sufficiently small. The proof for the part of estimate for χ in

(2.65) follows from a similar calculation and an application of (2.66). We

therefore obtain (2.65).

Step 2. We show that for m ≤ q , there is a sufficiently small M0, such that

if M ≤ M0,

∑

|j |≤m

‖0ju(t)‖2 " M0

∑

|j |≤m
∂=∂α,∂β

‖0j∂z(t)‖2 +
∑

|j |≤m

‖0j (∂t + b · ∇⊥)χ(t)‖2.

(2.67)
∑

|j |≤m

‖0jw(t)‖2

" M0

∑

|j |≤m
∂=∂α,∂β

‖0j∂z(t)‖2

+
∑

|j |≤m

(‖0j (∂t + b · ∇⊥)χ(t)‖2 + ‖0j (∂t + b · ∇⊥)v(t)‖2). (2.68)

We first prove (2.67). From (2.54), similar to Step 1 by using (2.6), then ap-

ply (2.7), Lemma 1.2, (2.64), Propositions 2.2, 2.6, 2.7, 2.9, and furthermore

(2.65), we have for M0 sufficiently small,

‖0m(u + (∂t + b · ∇⊥)χ)(t)‖2

"
∑

|j |≤m

‖0ju(t)‖2

∑

|j |≤l+2
∂=∂α,∂β

‖0j∂z(t)‖2
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+
∑

|j |≤l+2

‖0ju(t)‖2

∑

|j |≤m
∂=∂α,∂β

‖0j∂z(t)‖2. (2.69)

Now in (2.69) let m = l + 2. We get for M0 sufficiently small,

∑

|j |≤l+2

‖0ju(t)‖2 "
∑

|j |≤l+2

‖0j (∂t + b · ∇⊥)χ(t)‖2. (2.70)

Applying (2.70) to the right hand side of (2.69) and we obtain (2.67).

Similar to the proof of (2.67), we start from (2.55), and use furthermore the

estimates (2.65), (2.67), and the fact that (∂t + b · ∇⊥)z = u3, we have (2.68).

Step 3. We have for m ≤ q , there is a sufficiently small M0, such that if

M ≤ M0,

∑

|j |≤m

(‖0j (A − 1)(t)‖2 + ‖0j (∂t + b · ∇⊥)b(t)‖2 + ‖0jb(t)‖2)

" M0

∑

|j |≤m
∂=∂α,∂β

(‖0j∂z(t)‖2 + ‖0j (∂t + b · ∇⊥)χ(t)‖2

+ ‖0j (∂t + b · ∇⊥)v(t)‖2). (2.71)

Starting from Proposition 1.4, the proof of (2.71) is similar to that in Steps

1 and 2, and uses the results in Steps 1 & 2. We omit the details.

We have

Step 4. There is M0 sufficiently small, such that for m ≤ q , M ≤ M0,

∑

|j |≤m
∂=∂α,∂β

‖0j∂z(t)‖2 "
∑

|j |≤m

(‖0j (∂t + b · ∇⊥)χ(t)‖2

+ ‖0j (∂t + b · ∇⊥)v(t)‖2). (2.72)

(2.72) is obtained by using (2.51), (2.53). We have

∂αz = −w · e1 + (A − 1)N · e1 + (∂αλ × ∂βλ) · e1

therefore

‖0m∂αz(t)‖2

" ‖0mw(t)‖2 +
∑

|j |≤m

‖0j (A − 1)(t)‖2
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+
∑

|j |≤m
∂=∂α,∂β

‖0j∂λ(t)‖2

∑

|j |≤l+2
∂=∂α,∂β

(‖0j (A − 1)(t)‖2 + ‖0j∂λ(t)‖2).

Now we apply estimates in Steps 1–3, we get (2.72). Finally

Step 5. Apply Lemma 2.15 to φ = χ and φ = (∂t +b ·∇⊥)χ , and use results

in Steps 1–4, we obtain (2.63). From definition we know λ∗ = 2ze3 − χ =

2λ3e3 − χ and (∂t + b · ∇⊥)λ = u − b. Combine Steps 1–4 and apply (2.63),

we obtain (2.61), (2.62). This finishes the proof of Proposition 2.16. !

We now give the L∞ estimates for various quantities in terms of that of

∇⊥χ , and ∇⊥v. Let t ∈ [0, T ] be the time when (2.59) holds.

Proposition 2.17 There exist a M0 > 0 small enough, such that if M ≤ M0,

1. for 2 ≤ m ≤ l we have

∑

|j |≤m
∂=∂α,∂β

(|0j∂λ(t)|∞ + |0j∂λ∗(t)|∞ + |0j∂z(t)|∞)

"
∑

|j |≤m
∂=∂α,∂β

|0j∂χ(t)|∞; (2.73)

2. for 2 ≤ m ≤ l − 1, we have

∑

|j |≤m
∂=∂α,∂β

|0j∂u(t)|∞ "
∑

|j |≤m
∂=∂α,∂β

(|0j∂χ(t)|∞ + |0j∂v(t)|∞); (2.74)

3. for 2 ≤ m ≤ l − 2, we have

∑

|j |≤m

|0jw(t)|∞ "
∑

|j |≤m+1
∂=∂α,∂β

(|0j∂χ(t)|∞ + |0j∂v(t)|∞), (2.75)

∑

|j |≤m

(|0j (A − 1)(t)|∞ + |0j (∂t + b · ∇⊥)b(t)|∞)

" E
1/2
m+2(t)

∑

|j |≤m+1
∂=∂α,∂β

(|0j∂χ(t)|∞ + |0j∂v(t)|∞) and (2.76)

∑

|j |≤m

|0jb(t)|∞ " E
1/2
m+2(t)

∑

|j |≤m+2
∂=∂α,∂β

|0j∂χ(t)|∞; (2.77)
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4. for l + 1 ≤ m ≤ q − 2, we have

∑

|j |≤m
∂=∂α,∂β

|0j∂λ(t)|∞ + |0j∂λ∗(t)|∞ + |0j∂z(t)|∞

"
∑

|j |≤m
∂=∂α,∂β

|0j∂χ(t)|∞

+ E
1/2
m+2(t)

{

1

t
+

∑

|j |≤[m+2
2 ]+1

∂=∂α,∂β

|0j∂χ(t)|∞(1 + ln t)

}

; (2.78)

5. for l ≤ m ≤ q − 4, we have

∑

|j |≤m
∂=∂α,∂β

|0j∂u(t)|∞

"
∑

|j |≤m
∂=∂α,∂β

|0j∂v(t)|∞ + E
1/2
m+3(t)

{

1

t
+

∑

|j |≤[m+2
2 ]+1

∂=∂α,∂β

(|0j∂χ(t)|∞

+ |0j∂v(t)|∞)(1 + ln t)

}

, (2.79)

here [s] is the largest integer < s.

Proof We will again use the identities in Lemma 2.14.

Step 1. We use (2.50) to prove (2.73) for 2 ≤ m ≤ l. Taking derivative ∂ to

(2.50), ∂ = ∂α or ∂β , we get

∂λ + ∂χ = [∂, H − H]ze3 + (H − H)∂ze3 + [∂, K]ze3 + K∂ze3. (2.80)

Using (1.16), (1.17), (2.64), (2.6), (2.7) and Propositions 2.6, 2.9, we obtain

∑

|j |≤m
∂=∂α,∂β

|0j (∂λ + ∂χ)(t)|∞

"
∑

|j |≤m
∂=∂α,∂β

|0j∂λ(t)|∞
∑

|j |≤m+2
∂=∂α,∂β

‖0j∂z(t)‖2
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+
∑

|j |≤m
∂=∂α,∂β

|0j∂z(t)|∞
∑

|j |≤m+2
∂=∂α,∂β

(‖0j∂λ(t)‖2 + ‖0j∂z(t)‖2).

Using Proposition 2.16, we have that for M0 > 0 small enough,

∑

|j |≤m
∂=∂α,∂β

|0j∂λ(t)|∞ "
∑

|j |≤m
∂=∂α,∂β

|0j∂χ(t)|∞ + M0

∑

|j |≤m
∂=∂α,∂β

|0j∂z(t)|∞.

(2.81)

Similar argument also gives that

∑

|j |≤m
∂=∂α,∂β

|0j∂λ∗(t)|∞

"
∑

|j |≤m
∂=∂α,∂β

|0j∂χ(t)|∞ + M0

∑

|j |≤m
∂=∂α,∂β

|0j∂z(t)|∞. (2.82)

On the other hand, from the definition we have 2ze3 = λ∗ + χ , this implies

∑

|j |≤m
∂=∂α,∂β

|0j∂z(t)|∞ "
∑

|j |≤m
∂=∂α,∂β

|0j∂χ(t)|∞ +
∑

|j |≤m
∂=∂α,∂β

|0j∂λ∗(t)|∞. (2.83)

Combine (2.82), (2.83), we have for M0 small enough,

∑

|j |≤m
∂=∂α,∂β

|0j∂λ∗(t)|∞ "
∑

|j |≤m
∂=∂α,∂β

|0j∂χ(t)|∞ and

∑

|j |≤m
∂=∂α,∂β

|0j∂z(t)|∞ "
∑

|j |≤m
∂=∂α,∂β

|0j∂χ(t)|∞.

Applying to (2.81), we obtain (2.73).

Step 2. We prove (2.74) for 2 ≤ m ≤ l − 1. The argument is similar to

Step 1.

Starting from (2.54), using (1.15), (2.64), (2.6), (2.7) and Propositions 2.6,

2.7, 2.9, we have

|0m(∂αu + ∂αv)(t)|∞

"
∑

|j |≤m+2
∂=∂α,∂β

(‖0j∂λ(t)‖2 + ‖0j∂z(t)‖2)
∑

|j |≤m
∂=∂α,∂β

|0j∂u(t)|∞
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+
∑

|j |≤m
∂=∂α,∂β

(|0j∂λ(t)|∞ + |0j∂z(t)|∞)
∑

|j |≤m+2
∂=∂α,∂β

‖0j∂u(t)‖2.

Argue similarly for ∂βu and using (2.73) and Proposition 2.16, we obtain for

2 ≤ m ≤ l − 1 and M0 small enough,

∑

|j |≤m
∂=∂α,∂β

|0j∂u(t)|∞ "
∑

|j |≤m
∂=∂α,∂β

(|0j∂χ(t)|∞ + |0j∂v(t)|∞).

Step 3. We prove (2.75) and (2.76) for 2 ≤ m ≤ l − 2.

From (2.53), using (2.52), (2.73) and Proposition 2.16, we get

∑

|j |≤m

|0jw(t)|∞ "
∑

|j |≤m
∂=∂α,∂β

(|0j (A − 1)(t)|∞ + |0j∂λ(t)|∞)

"
∑

|j |≤m
∂=∂α,∂β

(|0j (A − 1)(t)|∞ + |0j∂χ(t)|∞). (2.84)

On the other hand, from (1.39), using similar argument as in Steps 1 and

2 and using (2.73), (2.74), Proposition 2.16, we have for M0 small enough,

2 ≤ m ≤ l − 2,

∑

|j |≤m

|0j (A − 1)(t)|∞

" E
1/2
m+2(t)

∑

|j |≤m

|0jw(t)|∞

+ E
1/2
m+2(t)

(

∑

|j |≤m+1
∂=∂α,∂β

(|0j∂χ(t)|∞ + |0j∂v(t)|∞)

)

. (2.85)

Combining (2.84), (2.85), we obtain for M0 small enough,

∑

|j |≤m

|0j (A − 1)(t)|∞ " E
1/2
m+2(t)

(

∑

|j |≤m+1
∂=∂α,∂β

(|0j∂χ(t)|∞ + |0j∂v(t)|∞)

)

(2.86)

(2.75) therefore follows from (2.84), (2.86). Using (1.38), the estimate for
∑

|j |≤m |0j (∂t +b ·∇⊥)b(t)|∞ can be obtained similarly. We omit the details.

Step 4. We prove (2.77). We first put the terms [∂t + b · ∇⊥, H]z, [∂t + b ·

∇⊥, K]z in (1.38) in an appropriate form for carrying out our estimate. We
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know 2ze3 = λ∗ +χ and λ∗ (or χ ) is the trace of an analytic function in "(t)

(or "(t)c) respectively. Using (1.15), and Proposition 2.11, We have

2[∂t + b · ∇⊥, H]ze3 = [∂t + b · ∇⊥, H]λ∗ + [∂t + b · ∇⊥, H]χ

= u · ∇+
ξ λ∗ − H(u · ∇+

ξ λ∗) − u · ∇−
ξ χ − H(u · ∇−

ξ χ).

(2.87)

Notice that [∂t + b · ∇⊥, K]z = Re[∂t + b · ∇⊥, H]z. Now using (1.38), and

Proposition 2.9, Lemma 2.13, Proposition 2.16, (2.73), we obtain

∑

|j |≤m

|0jb(t)|∞ " E
1/2
m+2(t)

∑

|j |≤m+2
∂=∂α,∂β

|0j∂χ(t)|∞.

Step 5. We prove (2.78).

Let l + 1 ≤ m ≤ q − 2 and ∂ = ∂α, ∂β . Applying Propositions 2.9, 2.6, 2.8

with r = t , and (2.61), (2.73) to (2.80), we get the estimate for ∂λ:

|0m∂λ(t)|∞ " |0m∂χ(t)|∞

+ E
1/2
m+2(t)

{

1

t
+

∑

|j |≤[m+2
2 ]+1

∂=∂α,∂β

|0j∂χ(t)|∞(1 + ln t)

}

.

Similar argument gives the estimate for ∂λ∗. The estimate for ∂z follows since

z = λ∗ + χ .

Step 6. (2.79) is obtained similarly by using (2.54). We omit the details. !

For the L2, L∞ estimates of at

a
◦ k−1, we have the following Lemma.

Lemma 2.18 Let f be real valued such that

(I − H)(f N ) = g, (2.88)

t ∈ [0, T ] be the time when (2.59) holds. There exists a M0 > 0, such that if

M ≤ M0,

1. for 0 ≤ m ≤ l + 2, we have

∑

|j |≤m

‖0jf (t)‖2 "
∑

|j |≤m

‖0jg(t)‖2; (2.89)
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2. for l + 2 < m ≤ q ,

∑

|j |≤m

‖0jf (t)‖2 "
∑

|j |≤l+2

‖0jg(t)‖2

∑

|j |≤m
∂=∂α,∂β

‖0j∂λ(t)‖2

+
∑

|j |≤m

‖0jg(t)‖2;

3. for 0 ≤ m ≤ l,

∑

|j |≤m

|0jf (t)|∞ "
∑

|j |≤m

|0kg(t)|∞

+
∑

|j |≤1
∂=∂α,∂β

|0j∂λ(t)|∞
∑

|j |≤m+2

‖0jg(t)‖2. (2.90)

Proof The proof follows similar idea as that of Lemma 3.8 in [32]. From

(2.88), we have

(I − H)((0jf ) N ) = 0jg + [0j , H](f N ) − (I − H)(0j (f N )

− (0jf )N ). (2.91)

Let R = 0jg + [0j , H](f N ) − (I − H)(0j (f N ) − (0jf )N ). Multiplying

e3 both left and right to both sides of (2.91), we obtain

(I + H)((0jf ) N ) = R. (2.92)

Here we used the fact that f is real valued. Therefore

20jf e3 = 0jf (N + e3) + 0jf (−N + e3) + H(0jf (N + N ))

+ (H − H)(0jf N ) + R − R. (2.93)

Lemma 2.18 is then obtained by applying (2.6), Lemma 1.2, Proposition 2.2,

(2.56), Propositions 2.7, 2.9, 2.16 to (2.93) and by an inductive argument. We

omit the details. !

Let K∗ be the adjoint of the double layered potential operator K:

K
∗f (α,β, t) =

∫∫

N · K(ζ ′ − ζ )f (α′,β ′, t) dα′ dβ ′. (2.94)
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Proposition 2.19 Let f (·, t) be a real valued function on R
2. Then

1.

(I ± K
∗)(N · ∇±

ξ f )

= ±

∫∫

(N × K(ζ ′ − ζ )) · (ζ ′
β ′∂α′f ′ − ζ ′

α′∂β ′f ′) dα′dβ ′. (2.95)

2. At t ∈ [0, T ] when (2.59) holds,

‖N · ∇+
ξ f (t) + N · ∇−

ξ f (t)‖2

"
∑

∂=∂α,∂β

(|∂λ(t)|∞ + |∂z(t)|∞)
∑

∂=∂α,∂β

‖∂f (t)‖2. (2.96)

3. At t ∈ [0, T ] when (2.59) holds,

‖N · ∇+
ξ f (t) + N · ∇−

ξ f (t)‖2

"
∑

1≤j≤3
∂=∂α,∂β

(|∂jλ(t)∞ + |∂j z(t)|∞)‖f (t)‖2. (2.97)

Proof From definition, we know N ·∇+
ξ f and N ·∇−

ξ f are the normal deriva-

tives of the harmonic extensions of f into "(t) and "(t)c respectively. (2.95)

is basically the equality (3.13) in [31]. Therefore

N · ∇+
ξ f + N · ∇−

ξ f = K
∗(−N · ∇+

ξ f + N · ∇−
ξ f ) and

−N · ∇+
ξ f + N · ∇−

ξ f

= K
∗(N · ∇+

ξ f + N · ∇−
ξ f )

− 2

∫∫

(N × K(ζ ′ − ζ )) · (ζ ′
β ′∂α′f ′ − ζ ′

α′∂β ′f ′) dα′dβ ′.

This implies

N · ∇+
ξ f + N · ∇−

ξ f

= K
∗2(N · ∇+

ξ f + N · ∇−
ξ f )

− 2K
∗
∫∫

(N × K(ζ ′ − ζ )) · (ζ ′
β ′∂α′f ′ − ζ ′

α′∂β ′f ′) dα′dβ ′. (2.98)

From (2.98), (2.96) is straightforward with an application of Proposition 2.6.
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To prove (2.97), we rewrite

∫∫

(N × K(ζ ′ − ζ )) · (ζ ′
β ′∂α′f ′ − ζ ′

α′∂β ′f ′) dα′dβ ′

= ∂α

∫∫

(N × K) · ζ ′
β ′f

′ dα′dβ ′ − ∂β

∫∫

(N × K) · ζ ′
α′f

′ dα′dβ ′

−
∫∫

(∂α + ∂α′)(N × K(ζ ′ − ζ )) · ζ ′
β ′f

′ dα′dβ ′

+

∫∫

(∂β + ∂β ′)(N × K(ζ ′ − ζ )) · ζ ′
α′f

′ dα′dβ ′. (2.99)

Here we just used integration by parts. (2.97) now follows from (2.98), (2.99)

with a further application of integration by parts and an application of Propo-

sition 2.6. (Notice that N · ζα = N · ζβ = 0.) !

3 Energy estimates

In this section, we use the expanded set of vector fields 0 = {∂t , ∂α, ∂β, L0 =
1
2
t∂t +α∂α +β∂β, 6 = α∂β −β∂α − 1

2
e3} to construct energy functional and

derive energy estimates for the water wave system (1.23)–(1.24). Our strategy

is to construct two energy estimates, the first one is for a quantity involving a

full range of derivatives of (∂t +b ·∇⊥)χ and (∂t +b ·∇⊥)v and we will show

using Lemma 3.3 that it grows no faster than (1 + t)ǫ provided the energy

involving some lower orders of derivatives of (∂t + b · ∇⊥)χ and (∂t + b ·

∇⊥)v is bounded by cǫ2. The second one concerns the aforementioned energy

involving the lower orders of derivatives of (∂t +b ·∇⊥)χ and (∂t +b ·∇⊥)v,

and we will show it stays bounded by cǫ2 for all time provided initially it

is bounded by c
2
ǫ2 and the quantity involving the full range of derivatives of

(∂t + b ·∇⊥)χ and (∂t + b ·∇⊥)v does not grow faster than (1 + t)δ for some

δ < 1. Together these two estimates imply a uniform boundness result (see

Theorem 3.7).

We first present the following basic energy estimates. The first one will be

used to derive the estimate for the full range of derivatives, and second one

the lower orders of derivatives.

Lemma 3.1 (Basic energy inequality I) Assume that θ is real valued and

satisfying

(∂t + b · ∇⊥)2θ + AN · ∇+
ξ θ = G (3.1)

and θ is smooth and decays fast at spatial infinity. Let

E(t) =

∫∫

1

A
|(∂t + b · ∇⊥)θ(α,β, t)|2 + θ(N · ∇+

ξ )θ(α,β, t) dα dβ. (3.2)



Global wellposedness of the 3-D full water wave problem 169

Then

dE

dt
≤

∫∫

2

A
G(∂t + b · ∇⊥)θ dαdβ

+

(∥

∥

∥

∥

at

a
◦ k−1

∥

∥

∥

∥

L∞
+ 2‖∇v(t)‖L∞("(t))

)

E(t). (3.3)

Proof Let θ! be the harmonic extension of θ to "(t). Make a change of

coordinate to (3.1) and (3.2), and use the Green’s identity, we have

(∂2
t + aN · ∇+

ξ )(θ ◦ k) = G ◦ k and

E(t) =

∫∫

1

a
|∂t (θ ◦ k)|2 dα dβ +

∫

"(t)

|∇θ!|2 dV .

We know

d

dt

∫∫

1

a
|∂t (θ ◦k)|2 dα dβ =

∫∫

2

a
∂t (θ ◦k) ∂2

t (θ ◦k)−
at

a2
|∂t (&◦k)|2 dα dβ.

To calculate d
dt

∫

"(t)
|∇θ!|2 dV , we introduce the fluid map X(·, t) : "(0) →

"(t) satisfying ∂tX(·, t) = v(·, t), X(·,0) = I . From the incompressibility of

v we know the Jacobian of X(·, t): J (X(t)) = 1. Let Dt = ∂t + v · ∇ , we

know

Dt∇θ! − ∇Dtθ
! = −

3
∑

j=1

∇vj∂ξj
θ!. (3.4)

Now applying the above calculation, we have

d

dt

∫

"(t)

|∇θ!|2 dV

=
d

dt

∫

"(0)

|∇θ!(X(·, t), t)|2 dV

= 2

∫

"(0)

Dt∇θ! · ∇θ!(X(·, t), t) dV = 2

∫

"(t)

Dt∇θ! · ∇θ! dV

= 2

∫

"(t)

∇Dtθ
! · ∇θ! dV − 2

3
∑

j=1

∫

"(t)

∇vj∂ξj
θ! · ∇θ! dV

= 2

∫∫

∂t (θ ◦ k)(N · ∇+
ξ )(θ ◦ k) dα dβ
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− 2

3
∑

j=1

∫

"(t)

∇vj∂ξj
θ! · ∇θ! dV . (3.5)

In the last step we used the divergence Theorem. So

dE

dt
=

∫

2

a
∂t (θ ◦ k)G ◦ k −

at

a2
|∂t (& ◦ k)|2 dα dβ

− 2

3
∑

j=1

∫

"(t)

∇vj∂ξj
θ! · ∇θ! dV . (3.6)

Making a change of variable U−1
k and using the Green’s identity gives us

(3.3). !

Lemma 3.2 (Basic energy equality II) Assume that & is a smooth C(V2)

valued function satisfying & = −H&, and

((∂t + b · ∇⊥)2 − AN × ∇)& = G. (3.7)

Let

E(t) =

∫∫

1

A
|(∂t + b · ∇⊥)&|2 − & · {(N × ∇)&}(α,β, t) dα dβ. (3.8)

Then

dE

dt
=

∫∫ {

2

A
G · {(∂t + b · ∇⊥)&} −

at

a
◦ k−1 1

A
|(∂t + b · ∇⊥)&|2

}

dαdβ

−
∫∫

{(& · (uβ&α) − & · (uα&β))

+ N × ∇& · [∂t + b · ∇⊥, H]&}dα dβ

+
1

2

∫∫

{(N · ∇+
ξ + N · ∇−

ξ )&} · [∂t + b · ∇⊥, H]&dα dβ. (3.9)

Proof By making a change of coordinates Uk we know & satisfies

(∂2
t − aN × ∇)& ◦ k = G ◦ k and

E(t) =

∫∫

1

a
(& ◦ k)t · (& ◦ k)t − & ◦ k · {(ξβ∂α − ξα∂β)(& ◦ k)}dα dβ.

Therefore

dE

dt
=

∫∫ {

2

a
(& ◦ k)t · (& ◦ k)t t −

at

a2
|(& ◦ k)t |

2
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− & ◦ k · {(ξtβ∂α − ξtα∂β)(& ◦ k)}

− (& ◦ k)t · {(N × ∇)(& ◦ k)}

− & ◦ k · {(N × ∇)(& ◦ k)t }

}

dα dβ. (3.10)

Now from the assumption & = −H& = 1
2
(I − H)&, we have

(& ◦ k)t =
1

2
(I − H)(& ◦ k)t −

1

2
[∂t ,H]& ◦ k

and

[∂t ,H]& ◦ k = H([∂t ,H]& ◦ k). (3.11)

Using integration by parts, and the fact that for ) satisfying ) = ±H), N ×
∇) = N · ∇±

ξ ),11 and N · ∇±
ξ is symmetric, we have

∫∫

& ◦ k · {(N × ∇)(& ◦ k)t }dα dβ

=
1

2

∫∫

& ◦ k · {(N × ∇)(I − H)(& ◦ k)t }dα dβ

−
1

2

∫∫

& ◦ k · {(N × ∇)[∂t ,H]& ◦ k}dα dβ

=
1

2

∫∫

(N × ∇)& ◦ k · {(I − H)(& ◦ k)t }dα dβ

−
1

2

∫∫

(N · ∇+
ξ )& ◦ k · {[∂t ,H]& ◦ k}dα dβ

=

∫∫

(N × ∇)& ◦ k · {(& ◦ k)t }dα dβ

+

∫∫

(N × ∇)& ◦ k · {[∂t ,H]& ◦ k}dα dβ

−
1

2

∫∫

(N · ∇+
ξ + N · ∇−

ξ )& ◦ k · {[∂t ,H]& ◦ k}dα dβ.

Sum up the above calculation and make a change of variable U−1
k gives us

(3.9). !

11We know ) = ±H) implies ) is analytic in "(t) or "(t)c , i.e. Dξ) = 0, therefore N ×
∇) = N · ∇±

ξ
).



172 S. Wu

In what follows in this section we make the following assumptions on the

solution. Let l ≥ 6, l + 2 ≤ q ≤ 2l, ξ = ξ(α,β, t), t ∈ [0, T ] be a solution

of the water wave system (1.23)–(1.24). Assume that the mapping k(·, t) :

R
2 → R

2 defined in (1.28) is a diffeomorphism and its Jacobian J (k(t)) > 0,

for t ∈ [0, T ]. Assume for ∂ = ∂α, ∂β ,

0j∂λ, 0j∂z, 0j (∂t + b · ∇⊥)χ , 0j (∂t + b · ∇⊥)v ∈ C([0, T ],L2(R2)),

for |j | ≤ q. (3.12)

and

sup
[0,T ]

∑

|j |≤l+2
∂=∂α,∂β

(‖0j∂λ(t)‖2 + ‖0j∂z(t)‖2 + ‖0jv(t)‖2

+ ‖0j (∂t + b · ∇⊥)v(t)‖2) ≤ M,

|ζ(α,β, t) − ζ(α′,β ′, t)|

≥
1

4
(|α − α′| + |β − β ′|) for α,β,α′β ′ ∈ R,

(3.13)

where 0 < M ≤ M0, M0 is the constant such that all the estimates derived in

Sect. 2.3 holds and such that |A − 1| ≤ 1
2
.

We have from the generalized Sobolev inequality Proposition 2.4 the fol-

lowing

Lemma 3.3 Let 2 ≤ m ≤ min{2l − 7, q − 5}, t ∈ [0, T ]. There exists M0 > 0

sufficiently small, such that for M ≤ M0,

t
∑

|i|≤m
∂=∂α,∂β

(|∂0iχ(t)|∞ + |∂0iv(t)|∞)

" E
1/2
m+5(t)

(

1 + t
∑

|i|≤[m+3
2 ]+2

∂=∂α,∂β

|∂0iχ(t)|∞ + |∂0iv(t)|∞

)

. (3.14)

In particular, for 5 ≤ m ≤ min{2l − 11, q − 5}, we have

∑

|i|≤m
∂=∂α,∂β

(|∂0iχ(t)|∞ + |∂0iv(t)|∞) "
1

1 + t
E

1/2
m+5(t). (3.15)
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Proof Let t ∈ [0, T ], i ≤ m ≤ min{2l − 7, q − 5}. From Propositions 2.4

and 2.16, we have

t (|∂0iχ(t)|∞ + |∂0iv(t)|∞)

" E
1/2
i+5(t) + t

∑

|k|≤3+i

(‖P0kχ(t)‖2 + ‖P0kv(t)‖2). (3.16)

We estimate ‖P0kχ(t)‖2 and ‖P0kv(t)‖2 using (1.35), (2.41). We know for

φ = χ , v,

P0kφ = 0k
Pφ + [P,0k]φ + (P − P)0kφ.

Let k ≤ 3 + m ≤ min{2l − 4, q − 2}. We know El+2(t) " M2
0 . Using (2.6),

(2.5), (2.14), Propositions 2.16, 2.17, we have for φ = χ , v,

‖[P,0k]φ(t)‖2 " E
1/2
k (t)

∑

|i|≤[ k
2 ]+2

∂=∂α,∂β

(|∂0iχ(t)|∞ + |∂0iv(t)|∞), and

(3.17)

‖(P − P)0kχ(t)‖2 " E
1/2
k+1(t)

∑

|i|≤4
∂=∂α,∂β

(|∂0iχ(t)|∞ + |∂0iv(t)|∞),

‖(P − P)0kv(t)‖2 " E
1/2
k+2(t)

∑

|i|≤4
∂=∂α,∂β

(|∂0iχ(t)|∞ + |∂0iv(t)|∞).

(3.18)

We now estimate ‖0k Pχ(t)‖2. From (1.35), (2.8), we know there are two

types of terms in 0k Pχ . One are terms of cubic and higher orders. Collec-

tively, we name such terms as C. Another type are quadratic terms of the

following form:

Qj =

∫∫

K(ζ ′ − ζ )(0̇ju − 0̇′ju′) × (ζ ′
β ′∂α′ − ζ ′

α′∂β ′)0′k−j
ū′ dα′ dβ ′.

For the cubic terms C, we use Propositions 2.9, 2.6, 2.7, 2.16, 2.17. We have

‖C(t)‖2 " E
1/2
k (t)

∑

|i|≤[ k
2 ]+2

∂=∂α,∂β

(|∂0iχ(t)|∞ + |∂0iv(t)|∞). (3.19)
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For the quadratic terms Qj with j ≤ [ k
2
] + 1, we use Proposition 2.7,

and 2.16, 2.17. We have

‖Qj (t)‖2 " E
1/2
k (t)

∑

|i|≤[ k
2 ]+1

∂=∂α,∂β

(|∂0iχ(t)|∞ + |∂0iv(t)|∞). (3.20)

To estimate ‖Qj (t)‖2 for k ≥ j > [ k
2
] + 1, we rewrite it by using Proposi-

tion 2.11:

Qj =
1

2

∫∫

K(ζ ′ − ζ )(0̇ju − 0̇′ju′)

× (ζ ′
β ′∂α′ − ζ ′

α′∂β ′)((I + H
′) + (I − H

′))0′k−j
ū′ dα′ dβ ′

=
1

2
(I − H)((0̇ju · ∇+

ξ )(I + H)0k−j ū)

−
1

2
(I + H)((0̇ju · ∇−

ξ )(I − H)0k−j ū).

Applying Proposition 2.6, Lemma 2.13, we obtain

‖Qj (t)‖2 " ‖0̇ju(t)‖2

∑

∂=∂α,∂β

(|∂(I + H)0k−j ū(t)|∞

+ |∂(I − H)0k−j ū(t)|∞)

" ‖0̇ju(t)‖2

∑

∂=∂α,∂β

(|∂(I + H)0k−j ū(t)|∞ + |∂0k−j ū(t)|∞).

We know from the fact −Hū = ū12 that

(I + H)0k−j ū = 0k−j (−H̄ + H)ū − [0k−j , H]ū.

Applying (2.56), (2.6), Propositions 2.9, 2.6, 2.7, 2.16, 2.17, we get

|∂(I + H)0k−j ū(t)|∞ " E
1/2
k−j+3(t)

∑

|i|≤k−j+2
∂=∂α,∂β

|∂0iχ(t)|∞

"
∑

|i|≤k−j+2
∂=∂α,∂β

|∂0iχ(t)|∞.

12(1.24) gives Hu = u, therefore −Hū = ū.
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Here we used the fact El+2(t) " M2
0 . Therefore for k ≥ j > [ k

2
] + 1,

‖Qj (t)‖2 " E
1/2
k (t)

∑

|i|≤[ k
2 ]+2

∂=∂α,∂β

(|∂0iχ(t)|∞ + |∂0iv(t)|∞). (3.21)

Sum up (3.19)–(3.21), we have

‖0k
Pχ(t)‖2 " E

1/2
k (t)

∑

|i|≤[ k
2 ]+2

∂=∂α,∂β

(|∂0iχ(t)|∞ + |∂0iv(t)|∞). (3.22)

A similar argument gives that

‖0k
Pv(t)‖2 " E

1/2
k+1(t)

∑

|i|≤[ k
2 ]+2

∂=∂α,∂β

(|∂0iχ(t)|∞ + |∂0iv(t)|∞). (3.23)

Combine (3.17)–(3.23), we obtain

‖P0kχ(t)‖2 " E
1/2
k+1(t)

∑

|i|≤max{[ k
2 ]+2,4}

∂=∂α,∂β

(|∂0iχ(t)|∞ + |∂0iv(t)|∞),

‖P0kv(t)‖2 " E
1/2
k+2(t)

∑

|i|≤max{[ k
2 ]+2,4}

∂=∂α,∂β

(|∂0iχ(t)|∞ + |∂0iv(t)|∞).

(3.24)

This gives us (3.14). For t ≤ 1 (3.15) can be obtained from the Sobolev

embedding and Proposition 2.16. For t ≥ 1, (3.15) is obtained by first ap-

plying (3.14) to the case 5 ≤ m ≤ l − 3, i.e. when [m+3
2

] + 2 ≤ m and

m + 5 ≤ l + 2 and using the fact El+2(t) " M2
0 ; then applying (3.14) to the

case m ≤ min{2l − 11, q − 5}. We know in this case [m+3
2

] + 2 ≤ l − 3. !

In what follows we establish two energy estimates.

3.1 The first energy estimate

The first energy estimate concerns a full range of derivatives. We use

Lemma 3.1 and (1.35), (2.41).

Assume that φ is a C(V2) valued function satisfying the equation

((∂t + b · ∇⊥)2 − AN × ∇)φ = Gφ . (3.25)
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Let )j = (I − H)0jφ. We know for P = (∂t + b · ∇⊥)2 − AN × ∇ ,

((∂t + b · ∇⊥)2 − AN × ∇))j = −[P, H]0jφ + (I − H)[P,0j ]φ

+ (I − H)0jGφ . (3.26)

Notice that )j = −H)j implies N × ∇)j = N · ∇−
ξ )j . Therefore

((∂t + b · ∇⊥)2 + AN · ∇+
ξ ))j = G

φ

j , (3.27)

where

G
φ

j = −[P, H]0jφ + (I − H)[P,0j ]φ + (I − H)0jGφ

+ A(N · ∇+
ξ + N · ∇−

ξ ))j .

Define

F
φ

j (t) =

∫∫

1

A
|(∂t + b · ∇⊥))j (α,β, t)|2

+ )j · (N · ∇+
ξ ))j (α,β, t) dα dβ. (3.28)

We know
∫∫

)j · (N · ∇+
ξ ))j (α,β, t) dα dβ =

∫

"(t)
|∇{)j }!|2 dV ≥ 0. Let

Fn(t) =
∑

|j |≤n

(F v
j (t) + F

χ

j (t)) (3.29)

and V j = (I − H)0jv, 9j = (I − H)0jχ . We have

Lemma 3.4 Let n ≤ q , t ∈ [0, T ]. There exists M0 > 0 small enough, such

that for M ≤ M0,

∑

|j |≤n

∫∫

1

A
(|(∂t + b · ∇⊥)V j (α,β, t)|2

+ |(∂t + b · ∇⊥)9j (α,β, t)|2) dα dβ 0 En(t). (3.30)

Proof Notice that 0jφ = 1
2
(I + H)0jφ + 1

2
)j . We know Hχ = −χ . So for

φ = χ , v,

(I + H)0jχ = −[0j , H]χ ,

(I + H)0jv = −[0j , H]v − 0j [∂t + b · ∇⊥, H]χ .
(3.31)

(3.30) follows by applying Lemma 1.2, Proposition 2.2, (2.6), Proposi-

tions 2.6, 2.7, 2.9, and (2.61) to (3.31). !
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We now state the following energy estimate.

Proposition 3.5 Let 3 ≤ n ≤ min{2l − 4, q}, t ∈ [0, T ]. There exists M0 > 0

sufficiently small, such that for M ≤ M0,

dFn(t)

dt
"

∑

|i|≤[ n
2 ]+2

∂=∂α,∂β

(|0i∂χ(t)|∞ + |0i∂v(t)|∞)Fn(t). (3.32)

Proof Let φ = χ , v, |j | ≤ n. From (3.27), applying Lemma 3.1 to each com-

ponent of )j then sum up, we get

dF
φ

j (t)

dt
" ‖G

φ

j (t)‖2{F
φ

j (t)}1/2

+

(∥

∥

∥

∥

at

a
◦ k−1

∥

∥

∥

∥

L∞
+ 2‖∇v(t)‖L∞("(t))

)

F
φ

j (t). (3.33)

Notice that v is Clifford analytic in "(t). From Lemma 2.13, and the maxi-

mum principle, we have

‖∇v(t)‖L∞("(t)) " |∂αu(t)|∞ + |∂βu(t)|∞. (3.34)

Applying Lemma 2.18 (2.90), Proposition 2.9, 2.6, 2.7, 2.16, 2.17 to (2.39),

we obtain
∣

∣

∣

∣

at

a
◦ k−1

∣

∣

∣

∣

∞
"

∑

|i|≤3
∂=∂α,∂β

(|0i∂χ(t)|∞ + |0i∂v(t)|∞). (3.35)

We now estimate ‖G
φ

j (t)‖2 for φ = χ , v. We carry it out in four steps. Let

G
φ

j = G
φ

j,1 + G
φ

j,2 + G
φ

j,3 + G
φ

j,4, (3.36)

where G
φ

j,1 = −[P, H]0jφ, G
φ

j,2 = (I − H)[P,0j ]φ, G
φ

j,3 = (I − H)0jGφ ,

and G
φ

j,4 = A(N · ∇+
ξ + N · ∇−

ξ ))j .

Step 1. We have

‖Gχ

j,1(t)‖2 "
∑

∂=∂α,∂β

|∂u(t)|∞(‖∂0jχ(t)‖2 + ‖(∂t + b · ∇⊥)0jχ(t)‖2),

‖Gv
j,1(t)‖2 "

∑

∂=∂α,∂β

|∂u(t)|∞(‖0jv(t)‖2 + ‖(∂t + b · ∇⊥)0jv(t)‖2).

(3.37)
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This is obtained by using Lemma 1.2 and applying Propositions 2.6, 2.7, 2.9.

Step 2. We have that for φ = χ , v,

‖Gφ

j,2(t)‖2 "
∑

|i|≤[ n
2 ]+2

∂=∂α,∂β

(|0i∂χ(t)|∞ + |0i∂v(t)|∞)E|j |(t)
1/2. (3.38)

This is basically (3.17).13 The estimate for the operator (I − H) can be ob-

tained by applying Proposition 2.6.

Step 3. From Propositions 2.19, 2.6, we have

‖Gχ

j,4(t)‖2 "
∑

∂=∂α,∂β

(|∂λ(t)∞ + |∂z(t)|∞)
∑

∂=∂α,∂β

‖∂0jχ(t)‖2,

‖Gv
j,4(t)‖2 "

∑

1≤i≤3
∂=∂α,∂β

(|∂ iλ(t)∞ + |∂ iz(t)|∞)‖0jv(t)‖2.
(3.39)

Step 4. We have that

‖Gχ

j,3(t)‖2 "
∑

|i|≤[ n
2 ]+2

∂=∂α,∂β

(|0i∂χ(t)|∞ + |0i∂v(t)|∞)E
1/2
|j | (t), (3.40)

‖Gv
j,3(t)‖2 "

∑

|i|≤[ n
2 ]+2

∂=∂α,∂β

(|0i∂χ(t)|∞ + |0i∂v(t)|∞)E
1/2
|j | (t). (3.41)

(3.40) is obtained by using Proposition 2.6 and (3.22).

However we cannot derive (3.41) from (3.23), since there is a loss of deriv-

ative in (3.23). This “loss of derivative” is due to the term Auβχα − Auαχβ

in Gv. To obtain (3.41) we need to take advantage of the projection operator

I − H. We rewrite the term

(I − H)0j (Auβχα − Auαχβ)

= (I − H)(A0juβ χα − A0juα χβ) + (I − H)(0j (Auβχα − Auαχβ)

− A0juβ χα + A0juα χβ), (3.42)

in which we further rewrite, using the fact u = Hu,

(I − H)(A0juβ χα − A0juα χβ)

13Notice that (3.17), (3.22) (used in Step 4.) in fact hold for k ≤ min{2l − 4, q}.
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= [0j∂β, H]uAχα − [0j∂α, H]uAχβ

+

3
∑

i=1

([A∂αχi, H]0j∂βu − [A∂βχi, H]0j∂αu)ei . (3.43)

Here χi is the ei component of χ . Now with all the terms in appropriate

forms, (3.41) results by applying Propositions 2.6, 2.7, 2.9, and Proposi-

tion 2.16, 2.17.

Sum up Steps 1–4 and (3.34), (3.35), and applying Propositions 2.16, 2.17,

Lemma 3.4, we get (3.32). !

3.2 The second energy estimate

We now give an estimate that involves some lower orders of derivatives. We

use Lemma 3.2 and (1.35), (2.41).

Assume that φ satisfies (3.25) and let )j = (I − H)0jφ. We know )j

satisfies (3.26), i.e.

P)j = G
φ

j ,

where

G
φ

j = −[P, H]0jφ + (I − H)[P,0j ]φ + (I − H)0jGφ. (3.44)

Define

F
φ

j (t) =

∫∫

1

A
|(∂t + b ·∇⊥))j |2 −)j · (N ×∇))j (α,β, t) dα dβ. (3.45)

We know −
∫∫

)j · (N × ∇))j (α,β, t) dα dβ =
∫

"(t)c
|∇{)j }!|2 dV ≥ 0.

Let

Fn(t) =
∑

|j |≤n

(Fv
j (t) + F

χ

j (t)). (3.46)

We have

Proposition 3.6 Let l ≥ 15, q ≥ l + 9, t ∈ [0, T ]. There exists M0 > 0 small

enough, such that for M ≤ M0,

dFl+2(t)

dt
" E

1/2
l+2(t)E

1/2
l+3(t)E

1/2
l+9(t)

(

1 + ln(t + 1)

t + 1

)2

. (3.47)

Proof Let φ = χ ,v, |j | ≤ l + 2. We also use j to indicate |j | in this proof.

Assume t ≥ 1. The argument can be easily modified for t ≤ 1. Applying
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Lemma 3.2 to )j , we have

dF
φ

j (t)

dt
=

∫∫ {

2

A
G

φ

j · {(∂t + b · ∇⊥))j }

−
at

a
◦ k−1 1

A
|(∂t + b · ∇⊥))j |2

}

dαdβ

−
∫∫

{()j · (uβ)j
α) − )j · (uα)

j
β))

+ N × ∇)j · [∂t + b · ∇⊥, H])j }dα dβ

+
1

2

∫∫

{(N · ∇+
ξ + N · ∇−

ξ ))j } · [∂t + b · ∇⊥, H])j dα dβ.

(3.48)

Using Lemma 2.18, (2.39), Propositions 2.6, 2.7, 2.9, 2.8 with r = t , and

Propositions 2.16, 2.17, we obtain

∣

∣

∣

∣

at

a
◦ k−1A(t)

∣

∣

∣

∣

∞
"

∑

|i|≤1
∂=∂α,∂β

|0i∂u(t)|∞
∑

|i|≤1

|0iw(t)|∞(1 + ln t)

+
∑

|i|≤1
∂=∂α,∂β

(|0i∂u(t)|∞ + |0iw(t)|∞)(‖∂u(t)‖2

+ ‖w(t)‖2)
1

t

+
∑

|i|≤2
∂=∂α,∂β

|0i∂u(t)|2∞ +
∑

|i|≤1
∂=∂α,∂β

|0i∂λ(t)|∞

×
(

∑

|i|≤2

|0iw(t)|∞ +
∑

|i|≤2
∂=∂α,∂β

|0i∂u(t)|2∞

)

"
∑

|i|≤3
∂=∂α,∂β

(|0i∂χ(t)|∞ + |0i∂v(t)|∞)

{

(|0i∂χ(t)|∞

+ |0i∂v(t)|∞)(1 + ln t) + E1(t)
1/2 1

t

}

. (3.49)
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We now estimate
∫∫

N ×∇)j · [∂t + b ·∇⊥, H])j dα dβ . We know [∂t + b ·

∇⊥, H])j = (I + H)[∂t + b · ∇⊥, H]0jφ. Therefore using Proposition 2.12,

we have

∫∫

N × ∇)j · [∂t + b · ∇⊥, H])j dα dβ

=

∫∫

{(I + H
∗)N × ∇)j } · [∂t + b · ∇⊥, H]0jφ dα dβ. (3.50)

Now

(I + H
∗)N × ∇)j = (H

∗ − H)N × ∇)j + (I + H)N × ∇)j

= (H
∗ − H)N × ∇)j − [N × ∇, H])j .

Using (1.16), Proposition 2.6, we get

‖(I + H
∗)N × ∇)j (t)‖2 "

∑

∂=∂α,∂β

(|∂λ(t)|∞ + |∂z(t)|∞)‖∂0jφ(t)‖2.

(3.51)

On the other hand, we have from (1.15), Proposition 2.8 with r = t ,

‖[∂t + b · ∇⊥, H]0jφ(t)‖2 " ‖u(t)‖2

(

∑

|i|≤j+1
∂=∂α,∂β

|∂0iφ(t)|∞(1 + ln t)

+
∑

|i|≤j
∂=∂α,∂β

‖∂0iφ(t)‖2
1

t

)

. (3.52)

Combining (3.50)–(3.52), and further use Propositions 2.16, 2.17, we obtain

∣

∣

∣

∣

∫∫

N × ∇)j · [∂t + b · ∇⊥, H])j dα dβ

∣

∣

∣

∣

" E
1/2
j+1(t)E

1/2
1 (t)

∑

|i|≤2
∂=∂α,∂β

|0i∂χ(t)|∞

×
(

∑

|i|≤j+1
∂=∂α,∂β

(

|0i∂χ(t)|∞ + |0i∂v(t)|∞
)

(1 + ln t) + E
1/2
j+1(t)

1

t

)

.

(3.53)
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The estimate of the term
∫∫

{(N ·∇+
ξ + N ·∇−

ξ ))j } · [∂t +b ·∇⊥, H])j dα dβ

can be obtained from Proposition 2.19 and (3.52). We have

∣

∣

∣

∣

∫∫

{(N · ∇+
ξ + N · ∇−

ξ ))j } · [∂t + b · ∇⊥, H])j dα dβ

∣

∣

∣

∣

" E
1/2
j (t)E

1/2
1 (t)

∑

|i|≤2
∂=∂α,∂β

|0i∂χ(t)|∞

(

∑

|i|≤j+1
∂=∂α,∂β

(|0i∂χ(t)|∞

+ |0i∂v(t)|∞)(1 + ln t) + E
1/2
j+1(t)

1

t

)

. (3.54)

Now
∫∫

1

A
G

φ

j · {(∂t + b · ∇⊥))j }dαdβ

=

∫∫ (

1

A
− 1

)

G
φ

j · {(∂t + b · ∇⊥))j }dαdβ

+

∫∫

G
φ

j · {(∂t + b · ∇⊥))j }dαdβ. (3.55)

The term
∫∫

( 1
A

− 1)G
φ

j · {(∂t + b · ∇⊥))j }dαdβ can be estimated as the

following:

∣

∣

∣

∣

∫∫ (

1

A
− 1

)

G
φ

j · {(∂t + b · ∇⊥))j }dα dβ

∣

∣

∣

∣

" |A − 1|∞‖Gφ

j (t)‖2‖(∂t + b · ∇⊥))j (t)‖2.

We know G
φ

j = G
φ

j,1 + G
φ

j,2 + G
φ

j,3, where G
φ

j,i i = 1,2,3 are as defined in

(3.36). Using (3.37), (3.38), (3.40), (3.41), and notice that the n in these in-

equalities can be replaced by j . We have by further applying Proposition 2.17

that
∣

∣

∣

∣

∫∫ (

1

A
− 1

)

G
φ

j · {(∂t + b · ∇⊥))j }dαdβ

∣

∣

∣

∣

" Ej (t)
∑

|i|≤3
∂=∂α,∂β

(|0i∂χ(t)|∞ + |0i∂v(t)|∞)

×
∑

|i|≤[
j
2 ]+2

∂=∂α,∂β

(|0i∂χ(t)|∞ + |0i∂v(t)|∞). (3.56)
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We now estimate the terms
∫∫

G
φ

j · {(∂t + b · ∇⊥))j }dαdβ and
∫∫

{()j ·

(uβ)
j
α) − )j · (uα)

j
β))}dα dβ for φ = χ , v. We carry out the estimates

through six steps.

Step 1. We consider the term
∫∫

G
φ

j,1 ·{(∂t +b ·∇⊥))j }dαdβ for φ = χ , v.

We first put the term
∫∫

G
φ

j,1 · {(∂t + b ·∇⊥))j }dαdβ in the right form for

estimates. We know (∂t + b · ∇⊥))j = (I − H)(∂t + b · ∇⊥)0jφ − [∂t + b ·

∇⊥, H]0jφ. Using Proposition 2.12, we have

∫∫

G
φ

j,1 · {(∂t + b · ∇⊥))j }dαdβ

=

∫∫

{(I − H)G
φ

j,1} · {(∂t + b · ∇⊥)0jφ}dαdβ

+

∫∫

{(H − H
∗)G

φ

j,1} · {(∂t + b · ∇⊥)0jφ}dαdβ

−
∫∫

G
φ

j,1 · {[∂t + b · ∇⊥, H]0jφ}dαdβ, (3.57)

where by applying (1.19), (1.18), and the change of variable U−1
k , we know

−G
φ

j,1 = 2

∫∫

K(ζ ′ − ζ )(u − u′)

× (ζ ′
β ′∂α′ − ζ ′

α′∂β ′)(∂ ′
t + b′ · ∇ ′

⊥)0′jφ′ dα′dβ ′

+

∫∫

K(ζ ′ − ζ ){(u − u′) × (u′
β ′∂α′ − u′

α′∂β ′)0′jφ′}dα′dβ ′

+

∫∫

((u′ − u) · ∇)K(ζ ′ − ζ )(u − u′)

× (ζ ′
β ′∂

′
α − ζ ′

α′∂
′
β)0′jφ′ dα′dβ ′. (3.58)

Let J
φ

1 = 2
∫∫

K(ζ ′−ζ )(u−u′)×(ζ ′
β ′∂α′ −ζ ′

α′∂β ′)(∂ ′
t +b′ ·∇ ′

⊥)0′jφ′ dα′dβ ′.

To estimate the term
∫∫

{(I − H)G
φ

j,1} · {(∂t + b · ∇⊥)0jφ}dαdβ , we use

Proposition 2.11 to further rewrite

(I − H)J
φ

1 = (I − H)

∫∫

K (u − u′)

× (ζ ′
β ′∂α′ − ζ ′

α′∂β ′)(I + H
′)(∂ ′

t + b′ · ∇ ′
⊥)0′jφ′ dα′dβ ′, (3.59)
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and notice that Hχ = −χ , so for φ = χ ,v,

(I + H)(∂t + b · ∇⊥)0jχ = − [∂t + b · ∇⊥, H]0jχ

− (∂t + b · ∇⊥)[0j , H]χ ,

(I + H)(∂t + b · ∇⊥)0jv =(I + H)[∂t + b · ∇⊥,0j ]v

+ [H,0j ](∂t + b · ∇⊥)v

− 0j [(∂t + b · ∇⊥)2, H]χ .

(3.60)

With (3.57)–(3.60),
∫∫

G
φ

j,1 · {(∂t +b ·∇⊥))j }dαdβ is in the right form for

estimates. Using Lemma 1.2, Proposition 2.2, (2.6), Propositions 2.6, 2.7, 2.8

with r = t , and 2.16, we get

‖(I − H)J
χ

1 (t)‖2 "
∑

∂=∂α,∂β

|∂u(t)|∞‖(I + H)(∂t + b · ∇⊥)0jχ(t)‖2

"
∑

∂=∂α,∂β

|∂u(t)|∞E
1/2
j (t)

∑

|i|≤j
∂=∂α,∂β

|0i∂λ(t)|∞

+
∑

∂=∂α,∂β

|∂u(t)|∞E
1/2
j (t)

×
(

∑

|i|≤j+1
∂=∂α,∂β

|∂0iχ(t)|∞(1 + ln t) + E
1/2
j (t)

1

t

)

(3.61)

and

‖(I − H)J v
1 (t)‖2 "

∑

∂=∂α,∂β

|∂u(t)|∞E
1/2
j (t)

∑

|i|≤j
∂=∂α,∂β

|∂0iλ(t)|∞

+
∑

∂=∂α,∂β

|∂u(t)|∞E
1/2
j (t)

(

∑

|i|≤[
j
2 ]+2

∂=∂α,∂β

(|∂0iχ(t)|∞

+ |∂0iv(t)|∞)(1 + ln t) + E
1/2
j (t)

1

t

)

. (3.62)



Global wellposedness of the 3-D full water wave problem 185

Applying Propositions 2.6, 2.7, 2.8 with r = t , and 2.16, 2.17 to other terms

in (3.57) and using (3.37), (3.52), we obtain for φ = χ , v,

∣

∣

∣

∣

∫∫

G
φ

j,1 · {(∂t + b · ∇⊥))j }dαdβ

∣

∣

∣

∣

" Ej (t)
∑

|i|≤2
∂=∂α,∂β

(|∂0iχ(t)|∞ + |∂0iv(t)|∞)

×
{

(E
1/2
j+2(t)

∑

|i|≤[
j
2 ]+2

∂=∂α,∂β

|∂0iχ(t)|∞

+
∑

|i|≤j+1
∂=∂α,∂β

(|∂0iχ(t)|∞ + |∂0iv(t)|∞))(1 + ln t) + E
1/2
j+2(t)

1

t

}

.

(3.63)

Step 2. We consider the term
∫∫

G
φ

j,3 · {(∂t + b · ∇⊥))j }dαdβ for φ = χ .

From (1.35), we know Gχ consists of three terms Gχ = I1 + I2 + I3. In

particular, the first term

I1 =

∫∫

K(ζ ′ − ζ )(u − u′) × (ζ ′
β ′∂α′ − ζ ′

α′∂β ′)u′ dα′dβ ′

=
1

2

∫∫

K(ζ ′ − ζ )(u − u′)

× (ζ ′
β ′∂α′ − ζ ′

α′∂β ′){(I + H
′)u′ + (I − H

′)u′}dα′dβ ′. (3.64)

Rewriting

(I − H)0j I1 = [0j , H]I1 + 0j (I − H)I1, (3.65)

where using Proposition 2.11, we deduce

(I − H)I1 = (I − H)
1

2

∫∫

K(ζ ′ − ζ )(u − u′)

× (ζ ′
β ′∂α′ − ζ ′

α′∂β ′){(I + H
′)u′}dα′dβ ′

=

∫∫

K(ζ ′ − ζ )(u − u′)

× (ζ ′
β ′∂α′ − ζ ′

α′∂β ′){(I + H
′)u′}dα′dβ ′; (3.66)
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furthermore from (1.24), we know (I + H)u = (−H + H)u. Now with (3.64)–

(3.66), all the terms in G
χ

j,3(t) = (I − H)0jGχ are in appropriate forms for

carrying out estimates. Using Propositions 2.6, 2.7, 2.8, and 2.16, we obtain

‖Gχ

j,3(t)‖2 " E
1/2
j (t)

∑

|i|≤j
∂=∂α,∂β

(|0i∂λ(t)|∞ + |0i∂z(t)|∞)

×
(

∑

|i|≤[
j
2 ]+2

∂=∂α,∂β

|0i∂u(t)|∞(1 + ln t) + E
1/2
j (t)

1

t

)

.

Further using Proposition 2.17, we get for φ = χ ,

∣

∣

∣

∣

∫∫

G
φ

j,3 · {(∂t + b · ∇⊥))j }dαdβ

∣

∣

∣

∣

" Ej (t)

{

∑

|i|≤j
∂=∂α,∂β

|0i∂χ(t)|∞ + E
1/2
j+2(t)

×
(

∑

|i|≤[
j
2 ]+2

∂=∂α,∂β

|0i∂χ(t)|∞(1 + ln t) +
1

t

)}

×
(

∑

|i|≤[
j
2 ]+2

∂=∂α,∂β

(|0i∂χ(t)|∞

+ |0i∂v(t)|∞)(1 + ln t) + E
1/2
j (t)

1

t

)

. (3.67)

Step 3. We consider the term
∫∫

G
φ

j,3 · {(∂t + b · ∇⊥))j }dαdβ for φ = v.

From (2.41), we know

Gv
j,3 = (I − H)0j

(

at

a
◦ k−1AN × ∇χ + A(uβχα − uαχβ)

+ (∂t + b · ∇⊥)Gχ

)

. (3.68)

In this step, we will only consider the estimates of ‖(I − H)0j (at

a
◦k−1AN ×

∇χ)(t)‖2, ‖(I − H)0j ((∂t + b · ∇⊥)Gχ )(t)‖2 and ‖(I − H)0j ((A −
1)(uβχα − uαχβ))(t)‖2. We will leave the estimate of ‖(I − H)0j (uβχα −
uαχβ)(t)‖2 to Step 5.
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First, we have by using (2.39), Lemma 2.18, and Propositions 2.6, 2.7, 2.8,

2.9, and 2.16, 2.17 that

∥

∥

∥

∥

(I − H)0j

(

at

a
◦ k−1AN × ∇χ

)

(t)

∥

∥

∥

∥

2

" E
1/2
j (t)

∑

|i|≤[
j
2 ]+2

∂=∂α,∂β

(|0i∂χ(t)|∞ + |0i∂v(t)|∞)

(

∑

|i|≤[
j
2 ]+2

∂=∂α,∂β

(|0i∂χ(t)|∞

+ |0i∂v(t)|∞)(1 + ln t) + E
1/2
j (t)

1

t

)

. (3.69)

And using Propositions 2.16, 2.17, we have

‖(I − H)0j ((A − 1)(uβχα − uαχβ))(t)‖2

" E
1/2
j+1(t)

∑

|i|≤[
j
2 ]+2

∂=∂α,∂β

(|0i∂χ(t)|∞ + |0i∂v(t)|∞)2. (3.70)

We handle the estimate of ‖(I − H)0j ((∂t +b ·∇⊥)Gχ )(t)‖2 similar to Step 2

by rewriting the term (I − H)0j (∂t + b · ∇⊥)I1, where I1 is as defined in

(3.64), as the following:

(I − H)0j (∂t + b · ∇⊥)I1 = [0j , H](∂t + b · ∇⊥)I1 + 0j [∂t + b · ∇⊥, H]I1

+ 0j (∂t + b · ∇⊥)(I − H)I1 (3.71)

and use (3.66) to calculate (I − H)I1. We get, by using Propositions 2.6,

2.7, 2.8 with r = t , and 2.16, 2.17 that

‖(I − H)0j ((∂t + b · ∇⊥)Gχ )(t)‖2

" E
1/2
j+1(t)

(

∑

|i|≤[
j
2 ]+2

∂=∂α,∂β

(|0i∂χ(t)|∞

+ |0i∂v(t)|∞)(1 + ln t) + E
1/2
j (t)

1

t

)2

. (3.72)

Step 4. We consider the term
∫∫

G
φ

j,2 · {(∂t + b · ∇⊥))j }dαdβ for φ = χ

and v.
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We know

G
φ

j,2 = (I − H)[P,0j ]φ =

j
∑

k=1

(I − H)0j−k[P,0]0k−1φ.

A further expansion of (2.5) gives that for 0 = ∂t , ∂α, ∂β,6 ,

[0, P] = −{(0̇(A − 1)(ζβ∂α − ζα∂β) + A(∂β 0̇λ∂α − ∂α0̇λ∂β)}

+ {0̈(∂t + b · ∇⊥)b − 0̈b · ∇⊥b} · ∇⊥

+ 0̈b · {(∂t + b · ∇⊥)∇⊥ + ∇⊥(∂t + b · ∇⊥)}, (3.73)

where 0̇f = ∂tf, ∂αf, ∂βf,6f + 1
2
f e3, 0̈f = ∂tf, ∂αf, ∂βf, (6 − 1

2
e3)f

respectively. Also

[L0, P] = −P − {L0(A − 1)(ζβ∂α − ζα∂β)

+ A(∂β(L0 − I )λ∂α − ∂α(L0 − I )λ∂β)}

+

{

L0(∂t + b · ∇⊥)b −
(

L0b −
1

2
b

)

· ∇⊥b

}

· ∇⊥

+

(

L0b −
1

2
b

)

·
{

(∂t + b · ∇⊥)∇⊥ + ∇⊥(∂t + b · ∇⊥)
}

.

(3.74)

Therefore typically there are three types of terms in [P,0j ]φ =
∑j

k=1 0j−k

[P,0]0k−1φ. The first type (C) are of cubic and higher orders and are con-

sists of the following:

0j−k{0i(A − 1)(ζβ∂α − ζα∂β)}0k−1φ, i = 0,1, k = 1, . . . , j,

0j−k{0i(∂t + b · ∇⊥)b} · ∇⊥0k−1φ, 0j−k{0ib · ∇⊥b} · ∇⊥0k−1φ,

0j−k{0ib · ((∂t + b · ∇⊥)∇⊥ + ∇⊥(∂t + b · ∇⊥))}0k−1φ.

(3.75)

The second type (Q) are quadratic and are consists of the following:

0j−k{A(∂β0iλ∂α0k−1φ − ∂α0iλ∂β0k−1φ)}, i = 0,1, k = 1, . . . , j,

0j−k{A(∂βλe3∂α0k−1φ − ∂αλe3∂β0k−1φ)}.
(3.76)

And the third type is of the form 0j−k P0k−1φ for some 1 ≤ k ≤ j , which

can be treated in the same way as in Steps 2–6. We first consider the terms of

the first type (C) and let the sum of these terms be C(t). We have, by using
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Propositions 1.4, 2.6, 2.7, 2.8 with r = t , 2.16, 2.17 that

‖(I − H)C(t)‖2

"
∑

|i|≤j

(‖0i(A − 1)(t)‖2 + ‖0i(∂t + b · ∇⊥)b(t)‖2 + ‖0ib(t)‖2)

×
∑

|i|≤[
j
2 ]+2

∂=∂α,∂β

|∂0iφ(t)|∞

+
∑

|i|≤[
j
2 ]

(‖0i(A − 1)(t)‖2 + ‖0i(∂t + b · ∇⊥)b(t)‖2 + ‖0ib(t)‖2)

×
∑

|i|≤j
∂=∂α,∂β

|∂0iφ(t)|∞

+
∑

|i|≤[
j
2 ]+1

‖0ib(t)‖∞

(

∑

|i|≤j

‖0ib(t)‖2

∑

|i|≤[
j
2 ]+2

∂=∂α,∂β

|∂0iφ(t)|∞

+
∑

|i|≤[
j
2 ]

‖0ib(t)‖2

∑

|i|≤j
∂=∂α,∂β

|∂0iφ(t)|∞

)

" E
1/2
j (t)

{

(1 + ln t)
∑

|i|≤[
j
2 ]+2

∂=∂α,∂β

(|0i∂χ(t)|∞ + |0i∂v(t)|∞) + E
1/2
j (t)

1

t

}

×
{

∑

|i|≤j+1
∂=∂α,∂β

|0i∂χ(t)|∞ + |0i∂v(t)|∞ + E
1/2
j+3(t)

×
(

∑

|i|≤[
j+1

2 ]+2

∂=∂α,∂β

|0i∂χ(t)|∞(1 + ln t) +
1

t

)}

. (3.77)

We also give the estimates of the following two cubic and higher order terms

in (3.76). First we have for φ = χ , v, k = 1, . . . , j , i = 0,1,

‖(I − H)0j−k{(A − 1)(∂β0iλ∂α0k−1φ − ∂α0iλ∂β0k−1φ)(t)}‖2
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" E
1/2
j (t)

∑

|i|≤[
j
2 ]+2

∂=∂α,∂β

(|0i∂χ(t)|∞ + |0i∂v(t)|∞)2. (3.78)

Recall definition (1.36): λ = λ∗ − Kze3. We have for φ = χ , v, k = 1, . . . , j ,

i = 0,1,

‖(I − H)0j−k{∂β0i
Kze3∂α0k−1φ − ∂α0i

Kze3∂β0k−1φ)(t)}‖2

" E
1/2
j (t)

∑

|i|≤[
j
2 ]+2

∂=∂α,∂β

(|0i∂χ(t)|∞ + |0i∂v(t)|∞)2(1 + ln t)

+ Ej (t)
1

t

∑

|i|≤[
j
2 ]+2

∂=∂α,∂β

(|0i∂χ(t)|∞ + |0i∂v(t)|∞). (3.79)

Therefore the only terms in (3.76) that are left to be estimated are the follow-

ing

0j−k{∂β0iλ∗∂α0k−1φ − ∂α0iλ∗∂β0k−1φ},

0j−k{∂βλ∗e3∂α0k−1φ − ∂αλ∗e3∂β0k−1φ}, i = 0,1, k = 1, . . . , j.

(3.80)

Step 5. We consider the term (I − H)0j (uβχα − uαχβ) in Gv
j,3, the term

∫∫

{)j · (uβ)
j
α −uα)

j
β)}dα dβ for φ = v in (3.48), and those terms in (3.80)

for φ = v. Without loss of generality, for terms in (3.80) with φ = v, we will

only write for

0j−k{∂β0λ∗∂α0k−1v − ∂α0λ∗∂β0k−1v}.

Using (2.28), we rewrite

∂βu∂αχ − ∂αu∂βχ =
2

t
{ϒu ∂t(e2∂α − e1∂β)χ

+ ∂βu"−
01(e2∂α − e1∂β)χ

− ∂αu"−
02(e2∂α − e1∂β)χ}, (3.81)

∂βu∂α)j − ∂αu∂β)j =
2

t
{ϒu ∂t (e2∂α − e1∂β))j

+ ∂βu"−
01(e2∂α − e1∂β))j

− ∂αu"−
02(e2∂α − e1∂β))j }, (3.82)
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and

∂α0λ∗∂β0k−1v − ∂β0λ∗∂α0k−1v

=
2

t
{−∂t (e2∂α − e1∂β)0λ∗ ϒ0k−1v

+ "+
01(e2∂α − e1∂β)0λ∗ ∂β0k−1v

− "+
02(e2∂α − e1∂β)0λ∗ ∂α0k−1v}. (3.83)

Notice that ["±
01, e2∂α − e1∂β] = ∓e2∂t , ["±

02, e2∂α − e1∂β] = ±e1∂t . Using

Propositions 2.16, 2.17 and (2.15), (2.17), we get

‖(I − H)0j (∂βu∂αχ − ∂αu∂βχ)(t)‖2

"
1

t

(

E
1/2
j+1(t) + t

∑

|i|≤j

‖0iP−χ(t)‖2

)

×
∑

|i|≤[
j
2 ]+2

∂=∂α,∂β

(|∂0iχ(t)|∞ + |∂0iv(t)|∞)

+
1

t

(

E
1/2
j (t) + t

∑

|i|≤[
j
2 ]

‖0iP−χ(t)‖2

)

×
∑

|i|≤j
∂=∂α,∂β

(|0i∂t∂χ(t)|∞ + |0i∂u(t)|∞).

Further applying (3.24) and (2.2), we obtain

∥

∥(I − H)0j (∂βu∂αχ − ∂αu∂βχ)(t)
∥

∥

2

" E
1/2
j+1(t)

(

∑

|i|≤[
j
2 ]+2

∂=∂α,∂β

(|∂0iχ(t)|∞ + |∂0iv(t)|∞) +
1

t

)

×
∑

|i|≤[
j
2 ]+2

∂=∂α,∂β

(|∂0iχ(t)|∞ + |∂0iv(t)|∞)

+ E
1/2
j (t)

(

∑

|i|≤[
j
2 ]+2

∂=∂α,∂β

|∂0iχ(t)|∞ + |∂0iv(t)|∞ +
1

t

)
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×
(

∑

|i|≤j+1
∂=∂α,∂β

|∂0iχ(t)|∞ + |∂0iv(t)|∞ + E
1/2
j+3(t)

×
(

∑

|i|≤[
j
2 ]+2

∂=∂α,∂β

(|∂0iχ(t)|∞ + |∂0iv(t)|∞)(1 + ln t) +
1

t

))

. (3.84)

Similarly,

∥

∥(∂βu∂α)j − ∂αu∂β)j )(t)
∥

∥

2

"
∑

i=1,2
∂=∂α,∂β

1

t
(‖ϒu(t)‖2|∂t∂)j (t)|∞

+ |∂u(t)|∞‖"0i(e2∂α − e1∂β))j (t)‖2).

For φ = v, ∂ = ∂α, ∂β , we know

∂t∂)j = ∂t∂(I − H)0jv = ∂t (I − H)∂0jv − ∂t [∂, H]0jv

= (I − H)∂t∂0jv − [∂t , H]∂0jv − ∂t [∂, H]0jv. (3.85)

Therefore using Propositions 2.8, 2.9, 2.16, we have

|∂t∂)j (t)|∞ "
∑

i≤j+2
∂=∂α,∂β

(

|0i∂v(t)|∞(1 + ln t) + E
1/2
j+2(t)

1

t

)

. (3.86)

Using further Propositions 2.16, 2.17, 2.3, we obtain

‖(∂βu∂α)j − ∂αu∂β)j )(t)‖2

"
1

t
E

1/2
j (t)

∑

i≤j+2
∂=∂α,∂β

(

|0i∂v(t)|∞(1 + ln t) + E
1/2
j+2(t)

1

t

)

+
∑

i≤2
∂=∂α,∂β

(|0i∂χ(t)|∞ + |0i∂v(t)|∞)

×
(

1

t
E

1/2
j+2(t) + ‖P−)j (t)‖2

)

. (3.87)
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We know from (3.37), (3.38), (3.41) the estimate of ‖P −)j (t)‖2 = ‖Gv
j (t)‖2.

Using further (2.14), Propositions 2.16, 2.17, we have

‖P−)j (t)‖2 " E
1/2
j (t)

∑

i≤[
j
2 ]+2

∂=∂α,∂β

(|0i∂χ(t)|∞ + |0i∂v(t)|∞)

+
∑

i≤4
∂=∂α,∂β

(|0i∂χ(t)|∞ + |0i∂v(t)|∞)E
1/2
j+2(t). (3.88)

Therefore

‖(∂βu∂α)j − ∂αu∂β)j )(t)‖2

"
1

t
E

1/2
j (t)

∑

i≤j+2
∂=∂α,∂β

(

|0i∂v(t)|∞(1 + ln t) + E
1/2
j+2(t)

1

t

)

+
∑

i≤2
∂=∂α,∂β

(|0i∂χ(t)|∞ + |0i∂v(t)|∞)E
1/2
j+2(t)

×
(

1

t
+

∑

i≤[
j
2 ]+2

∂=∂α,∂β

|0i∂χ(t)|∞ + |0i∂v(t)|∞

)

. (3.89)

The estimate for ‖(I − H)0j−k{∂β0λ∗∂α0k−1v − ∂α0λ∗∂β0k−1v}(t)‖2 is

similar: we have from (3.83) that for k = 1, . . . , j ,

‖(I − H)0j−k{∂β0λ∗∂α0k−1v − ∂α0λ∗∂β0k−1v}(t)‖2

"
1

t
E

1/2
j (t)

∑

i≤j+1
∂=∂α,∂β

|0i∂λ∗(t)|∞

+
1

t

(

E
1/2
j+1(t) + t

∑

|i|≤j−1

‖0iP−0λ∗(t)‖2

)

∑

|i|≤[
j
2 ]+2

∂=∂α,∂β

|∂0iv(t)|∞

+
1

t

(

E
1/2
j (t) + t

∑

|i|≤[
j
2 ]−1

‖0iP−0λ∗(t)‖2

)

∑

|i|≤j−1
∂=∂α,∂β

|0i∂v(t)|∞.

Notice that

P+0λ∗ = (P+ − P
+)0λ∗ + [P

+,0]λ∗ + 0P
+λ∗.
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Using (2.40), (2.14), (2.5), Propositions 2.6, 2.7, 2.8, 2.9, 2.16, 2.17, we get

for k ≤ j − 1,

‖0kP+0λ∗(t)‖2

" E
1/2
k+2(t)

(

∑

i≤[
j
2 ]+2

∂=∂α,∂β

(|0i∂χ(t)|∞ + |0i∂v(t)|∞)(1 + ln t) + E
1/2
j (t)

1

t

)

.

(3.90)

Therefore

‖(I − H)0j−k{∂β0λ∗∂α0k−1v − ∂α0λ∗∂β0k−1v}(t)‖2

"
1

t
E

1/2
j (t)

{

∑

i≤j+1
∂=∂α,∂β

|0i∂χ(t)|∞ + E
1/2
j+3(t)

×
(

∑

i≤[
j+1

2 ]+2

∂=∂α,∂β

|0i∂χ(t)|∞(1 + ln t) +
1

t

)}

+

(

∑

i≤[
j
2 ]+2

∂=∂α,∂β

(|0i∂χ(t)|∞ + |0i∂v(t)|∞)(1 + ln t) +
1

t

)

×
(

E
1/2
j

∑

|i|≤j−1
∂=∂α,∂β

|0i∂v(t)|∞ + E
1/2
j+1

∑

|i|≤[
j
2 ]+2

∂=∂α,∂β

|0i∂v(t)|∞

)

. (3.91)

Step 6. Finally, we consider the term
∫∫

{)j · (uβ)
j
α − uα)

j
β)}dα dβ for

φ = χ in (3.48), and the remaining terms

0j−k{∂β0iλ∗∂α0k−1χ − ∂α0iλ∗∂β0k−1χ},

0j−k{∂βλ∗e3∂α0k−1χ − ∂αλ∗e3∂β0k−1χ}, i = 0,1, k = 1, . . . , j

(3.92)

in (3.80). Without loss of generality, among terms in (3.92), we will only

write for

0j−k{∂β0λ∗∂α0k−1χ − ∂α0λ∗∂β0k−1χ}.

Notice that the ideas as that in (3.82), (3.83) doesn’t work here, since we

do not have estimates for ‖)j (t)‖2 for φ = χ , and for ‖ϒ0k−1χ(t)‖2. We

resolve these issue by using commutators.
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We first consider
∫∫

{)j · (uβ)
j
α − uα)

j
β)}dα dβ for φ = χ . Using inte-

gration by parts, we have

∫∫

{)j · (uβ)j
α − uα)

j
β)}dα dβ = −

∫∫

{)
j
β · (u)j

α) − )j
α · (u)

j
β)}dα dβ.

Now for φ = χ , we have, by using Proposition 2.12,

∫∫

{∂α(I − H)0jχ · (u)
j
β) − ∂β(I − H)0jχ · (u)j

α)}dα dβ

= −
∫∫

{[∂α, H]0jχ · (u)
j
β) − [∂β, H]0jχ · (u)j

α)}dα dβ

+

∫∫

{(H
∗ − H)∂α0jχ · (u)

j
β) − (H

∗ − H)∂β0jχ · (u)j
α)}dα dβ

+

∫∫

{∂α0jχ · ((I − H)(u)
j
β)) − ∂β0jχ · ((I − H)(u)j

α))}dα dβ.

(3.93)

We further rewrite the term
∫∫

{∂α0jχ · ((I − H)(u)
j
β)) − ∂β0jχ · ((I −

H)(u)
j
α))}dα dβ . We know Hu = u. Let )

j

i be the ei component of )j , for

i = 0, . . . ,3. We have

∂α0jχ · {(I − H)(u ∂β)
j
i ei)} − ∂β0jχ · {(I − H)(u ∂α)

j
i ei)}

= ∂α0jχ · ([∂β)
j
i , H]uei) − ∂β0jχ · ([∂α)

j
i , H]uei)

=
2

t
∂t (e2∂α − e1∂β)0jχ · {[ϒ)

j
i , H]uei − [α, H](u∂β)

j
i ei)

+ [β, H](u∂α)
j
i ei)} +

2

t
{"−

01(e2∂α − e1∂β)0jχ · [∂β)
j
i , H]uei

− "−
02(e2∂α − e1∂β)0jχ · [∂α)

j

i , H]uei}. (3.94)

Further applying integration by parts gives us:

∫∫

∂t (e2∂α − e1∂β)0jχ · {[ϒ)
j

i , H]uei − [α, H](u∂β)
j

i ei)

+ [β, H](u∂α)
j
i ei)}dα dβ

= −
∫∫

e2∂t0
jχ · ∂α{[ϒ)

j

i , H]uei − [α, H](u∂β)
j

i ei)

+ [β, H](u∂α)
j
i ei)}dα dβ
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+

∫∫

e1∂t0
jχ · ∂β{[ϒ)

j

i , H]uei − [α, H](u∂β)
j

i ei)

+ [β, H](u∂α)
j
i ei)}dα dβ. (3.95)

Through (3.93)–(3.95) we have put
∫∫

{)j ·(uβ)
j
α −uα)

j
β)}dα dβ for φ = χ

in the right form for estimates. Using Propositions 2.6, 2.16, Lemma 2.3, we

obtain
∣

∣

∣

∣

∫∫

{)j · (uβ)j
α − uα)

j
β)}dα dβ

∣

∣

∣

∣

"
∑

∂=∂α,∂β

{(|∂λ(t)|∞ + |∂z(t)|∞)Ej (t)|∂)j (t)|∞

+
1

t
E

1/2
j (t)E

1/2
j+1(t)|∂)j (t)|∞ + ‖P−0jχ(t)‖2E

1/2
j (t)|∂)j (t)|∞

+
1

t
Ej (t)|∂ϒ)j (t)|∞}.

We know for φ = χ , ∂ = ∂α, ∂β , ∂)j = (I − H)∂0jχ − [∂, H]0jχ . Using

Proposition 2.8, 2.9, 2.16, we have

|∂)j (t)|∞ + |ϒ∂)j (t)|∞ "
∑

i≤j+2

|0i∂χ(t)|∞(1 + ln t) + E
1/2
j+1(t)

1

t
.

Therefore by further using (3.24), we arrive at

∣

∣

∣

∣

∫∫

{)j · (uβ)j
α − uα)

j
β)}dα dβ

∣

∣

∣

∣

"

(

∑

i≤j+2

|0i∂χ(t)|∞(1 + ln t) + E
1/2
j+1(t)

1

t

)

× E
1/2
j E

1/2
j+1

(

∑

|i|≤[
j
2 ]+2

∂=∂α,∂β

(|0i∂χ(t)|∞ + |0j∂v(t)|∞) +
1

t

)

. (3.96)

At last we give the estimate of ‖(I − H)(0j−k{∂β0λ∗∂α0k−1χ −∂α0λ∗∂β

0k−1χ})(t)‖2 for k = 1, . . . , j . We first rewrite,

(I − H)(0j−k{∂β0λ∗∂α0k−1χ − ∂α0λ∗∂β0k−1χ})

= 0j−k(I − H){∂β0λ∗∂α0k−1χ − ∂α0λ∗∂β0k−1χ}

+ [0j−k, H]{∂β0λ∗∂α0k−1χ − ∂α0λ∗∂β0k−1χ}. (3.97)
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Let 0k−1χi be the ei component of 0k−1χ . Using the fact Hλ∗ = λ∗, we

rewrite further

(I − H){∂β0λ∗∂α0k−1χi − ∂α0λ∗∂β0k−1χi}

= ∂α0k−1χi[∂β0, H]λ∗ − ∂β0k−1χi[∂α0, H]λ∗

+ [∂α0k−1χi, H − H
∗]∂β0λ∗ − [∂β0k−1χi, H − H

∗]∂α0λ∗

+ [∂α0k−1χi, H
∗]∂β0λ∗ − [∂β0k−1χi, H

∗]∂α0λ∗ (3.98)

and in which we rewrite [∂α0k−1χi, H∗]∂β0λ∗ − [∂β0k−1χi, H∗]∂α0λ∗ us-

ing the idea of (2.28):

−
t

2
{[∂α0k−1χi, H

∗]∂β0λ∗ − [∂β0k−1χi, H
∗]∂α0λ∗}

= (−[ϒ0k−1χi, H
∗] + ∂β0k−1χi[α, H

∗]

− ∂α0k−1χi[β, H
∗])∂t (e2∂α − e1∂β)0λ∗

+ [∂β0k−1χi, H
∗]"+

01(e2∂α − e1∂β)0λ∗

− [∂α0k−1χi, H
∗]"+

02(e2∂α − e1∂β)0λ∗}. (3.99)

Using (3.97)–(3.99), and Propositions 2.6, 2.7, 2.16, 2.17, we have

‖(I − H)(0j−k{∂β0λ∗∂α0k−1χ − ∂α0λ∗∂β0k−1χ})(t)‖2

" E
1/2
j (t)

∑

|i|≤[
j
2 ]+2 ∂=∂α,∂β

|0i∂χ(t)|∞

×
(

∑

|i|≤[
j
2 ]+2

∂=∂α,∂β

|0i∂χ(t)|∞(1 + ln t) + E
1/2
j (t)

1

t

)

+
1

t
E

1/2
j (t)

∑

i≤j
∂=∂α,∂β

|0i∂χ(t)|∞

+
1

t

(

E
1/2
j+1(t) + t

∑

|i|≤j−1

‖0iP−0λ∗(t)‖2

)

∑

|i|≤[
j
2 ]+2

∂=∂α,∂β

|∂0iχ(t)|∞

+
1

t

(

E
1/2
j (t) + t

∑

|i|≤[
j
2 ]−1

‖0iP−0λ∗(t)‖2

)

∑

|i|≤j−1
∂=∂α,∂β

|0i∂χ(t)|∞.
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Further using (3.90), we arrive at

‖(I − H)(0j−k{∂β0λ∗∂α0k−1χ − ∂α0λ∗∂β0k−1χ})(t)‖2

"

(

∑

i≤[
j
2 ]+2

∂=∂α,∂β

(|0i∂χ(t)|∞ + |0i∂v(t)|∞)(1 + ln t) +
1

t

)

×
(

E
1/2
j

∑

|i|≤j
∂=∂α,∂β

|0i∂χ(t)|∞ + E
1/2
j+1

∑

|i|≤[
j
2 ]+2

∂=∂α,∂β

|0i∂χ(t)|∞

)

. (3.100)

Combine (3.48), (3.49), (3.53), (3.54), (3.56), (3.63), (3.67), (3.69), (3.70),

(3.72), (3.77), (3.78), (3.79), (3.89), (3.91), (3.96), (3.100), notice that for

l ≥ 15, q ≥ l + 9, [ l
2
] + 3 + 5 ≤ l + 2 and l + 4 ≤ min{2l − 11, q − 5}.

Applying (3.15), we obtain (3.47). !

3.3 A conclusive estimate

We now sum up the results in Lemma 3.3, Propositions 3.5, 3.6.

Let [0, T ] be the time period when the a-priori assumption 3.13 holds, M0

be such that furthermore Lemmas 3.3, 3.4, Propositions 3.5, 3.6 hold. Let

ǫ, L > 0. Assume that Fl+2(0) ≤ ǫ2, Fl+3(0) ≤ ǫ2, and Fl+9(0) ≤ L2.

Theorem 3.7 Let l ≥ 17, q ≥ l + 9, l ≤ n ≤ l + 9. There exists ε0 > 0, de-

pending on M0, L, such that for ǫ ≤ ε0, we have 1.

Fn(t) ≤ Fn(0)(1 + t)1/2, for t ∈ [0, T ]; (3.101)

2.

F
1/2
l+2(t) ≤ (cL + 1)ǫ, for t ∈ [0, T ], (3.102)

where c is a constant depending on M0.

Proof We know for l ≥ 17, l ≤ n ≤ l +9 ≤ q , 5 ≤ [n
2
]+2 ≤ min{2l −11, q −

5} and [n
2
] + 7 ≤ l + 2. From Lemmas 3.3, 3.4, Proposition 3.5, we get for

t ∈ [0, T ],

dFn(t)

dt
≤ c0(M0)

E
1/2
l+2(t)

1 + t
Fn(t) ≤ c1(M0)

F
1/2
l+2(t)

1 + t
Fn(t),

where c0(M0), c1(M0) are constants depending on M0. Therefore

Fn(t) ≤ Fn(0)(1 + t)M1(τ ) for t ∈ [0, τ ], τ ≤ T , (3.103)
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where M1(τ ) = c1(M0) sup[0,τ ] F
1/2
l+2(t). Applying (3.103), Lemma 3.4 to

Proposition 3.6, we obtain,

dFl+2(t)

dt
≤ c2(M0) ǫLF

1/2
l+2(t)(1 + t)M1(τ )

(

1 + ln(1 + t)

t + 1

)2

for t ∈ [0, τ ], (3.104)

where c2(M0) is a constant depending on M0. Let ε0 = min{ 1
4c1(M0)

,
1

2c1(M0)(Lc+1)
}, where c = c2(M0)

∫ ∞
0 (1 + t)−3/2(1 + ln(1 + t))2 dt , and

ǫ ≤ ε0. Therefore c1(M0)F
1/2
l+2(0) ≤ 1

4
. Let 0 < T1 ≤ T be the largest such

that M1(T1) ≤ 1
2
. From (3.104) we get

F
1/2
l+2(t) ≤

1

2
ǫLc + ǫ for t ∈ [0, T1].

This implies M1(T1) ≤ c1(M0)(
1
2
Lc + 1)ε0 < 1

2
. So T1 = T or otherwise T1

is not the largest. Therefore (3.101), (3.102) holds for t ∈ [0, T ]. !

4 Global wellposedness of the 3D full water wave equation

In this section we prove that the 3D full water wave equation (1.1), or equiva-

lently (1.23)–(1.24) is uniquely solvable globally in time for small data. This

is achieved by combining a local wellposedness result for the quasilinear sys-

tem (2.38)–(2.39)–(1.38) and Theorem 3.7.

In what follows all the constants c(p), ci(p) etc. satisfy c(p) ≤ c(p0),

ci(p) ≤ ci(p0) for some p0 > 0 and all 0 ≤ p ≤ p0.

We first present two lemmas. The first shows that for interface that is a

graph small in its steepness (and two more derivatives), the change of coordi-

nate k defined in (1.28) is a diffeomorphism. The second gives the regularity

relation on quantities before and after change of coordinates.

Lemma 4.1 Let ξ = (α,β, z(α,β)), k = ξ − (I + H)ze3 + Kze3 be defined

as in (1.28), P = (α,β).

1. Assume that N =
∑

|i|≤2
∂=∂α ,∂β

‖∂ i∂z‖2 < ∞. Then for ∂ = ∂α, ∂β ,

|∂(k − P)|∞ ≤ c(N)N (4.1)

for some constant c(N) depending on N . In particular, there exists a N0 >

0, such that for N ≤ N0, we have |∂(k − P)|∞ ≤ 1
4
, 1

4
≤ J (k) ≤ 2, k :

R
2 → R

2 is a diffeomorphism and

1

4
(|α − α′| + |β − β ′|) ≤ |k(α,β) − k(α′,β ′)| ≤ 2(|α − α′| + |β − β ′|).
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2. Let q ≥ 5 be an integer, and 0 = {∂α, ∂β,L0,6 }. Assume
∑

|j |≤q−1
∂=∂α ,∂β

‖0j∂z‖H 1/2 = L < ∞. Then

∑

|j |≤q−1
∂=∂α,∂β

‖0j∂(k − P)‖H 1/2 ≤ c(L)L (4.2)

for some constant c(L) depending on L.

Proof Notice that for P = (α,β), k−P = −Hze3 +Kze3, and for ∂ = ∂α, ∂β ,

∂(k − P) = −[∂,H]ze3 − H∂ze3 + [∂,K]ze3 + K∂ze3.

(4.1) follows directly from applying Lemma 1.2, (2.6), (2.7), Proposi-

tions 2.6, 2.7, 2.9; the inequality (4.2) follows with a further application of

Lemma 6.2 of [31] and interpolation. The rest of the statements in Lemma 4.1

part 1 follows straightforwardly from (4.1). !

Lemma 4.2 Let q ≥ 5 be an integer, 0 < T < ∞. Assume that for each t ∈
[0, T ], k(·, t) : R

2 → R
2 is a diffeomorphism, and there are constants 0 <

c1, c2, µ1, µ2 < ∞, such that µ1 ≤ J (k(t)) ≤ µ2 and c1|(α,β)− (α′,β ′)| ≤
|k(α,β, t) − k(α′,β ′, t)| ≤ c2|(α,β) − (α′,β ′)| for (α,β), (α′,β ′) ∈ R

2, t ∈
[0, T ]. Let s = 0 or 1

2
.

1. Let 0 = {∂α, ∂β, L0, 6 }, and assume
∑

|j |≤q−1
∂=∂α ,∂β

‖0j∂(k − P)(0)‖H s ≤

L < ∞. Then

∑

|j |≤q

‖0j (f ◦ k)(0)‖H s ≤ c(L)
∑

|j |≤q

‖0j (f )(0)‖H s ,

∑

|j |≤q

‖0j (f ◦ k−1)(0)‖H s ≤ c(L)
∑

|j |≤q

‖0j (f )(0)‖H s .

2. Let 0 = {∂t , ∂α, ∂β, L0, 6 }. Assume for t ∈ [0, T ],
∑

|j |≤q−1
∂=∂α,∂β

‖0j∂(k −

P)(t)‖H s ≤ L,
∑

|j |≤q−1 ‖0jkt (t)‖H s ≤ L, L < ∞. Then for t ∈ [0, T ],

∑

|j |≤q

‖0j (f ◦ k)(t)‖H s ≤ c(L)
∑

|j |≤q

‖0j (f )(t)‖H s ,

∑

|j |≤q

‖0j (f ◦ k−1)(t)‖H s ≤ c(L)
∑

|j |≤q

‖0j (f )(t)‖H s .

Here c(L) is a constant depending on L and c1, c2,µ1,µ2, and need not be

the same in different contexts.
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Proof The proof of Lemma 4.2 is similar to that of Lemma 5.4 in [32]. The

main difference is here we use the relations

α∂βf − β∂αf = ϒf, α∂αf + β∂βf = L0f −
1

2
t∂tf

to derive that

∇⊥f =
(−β,α)

α2 + β2
ϒf +

(α,β)

α2 + β2

(

L0f −
1

2
t∂tf

)

and for 0 = 6, L0, we use the identities

ϒ(f ◦ k−1) = ∂βk−1 · (α ∇f ◦ k−1) − ∂αk−1 · (β ∇f ◦ k−1),

L0(f ◦ k−1) = ∂αk−1 · (α ∇f ◦ k−1) + ∂βk−1 · (β ∇f ◦ k−1)

+
1

2
t∂t (f ◦ k−1).

The proof follows an inductive argument similar to that of Lemma 5.4 of

[32], and in the case s = 1
2
, the proof further uses Lemma 6.2 of [31] and

interpolation. We omit the details. !

We now present a local well-posedness result. Similar to (5.21)–(5.22) in

[31], we first rewrite the quasilinear system (2.38)–(2.39)–(1.38) in a format

for which local wellposedness can be proved by using energy estimates and

iterative scheme. Let n = N

|N |
. From (1.23) we know n = ñ = w+e3

|w+e3|
. From

(1.23)–(1.24), and the fact that A > 0 for nonself-intersecting interface (i.e.

the Taylor sign condition holds, see [31]), we know A|N | = |w + e3| and

(AN × ∇)u = |w + e3|n · ∇+
ξ u. Let f = (I − H)(U−1

k (atN)). From the

fact that at is real valued, we know U−1
k (atN) = −ñ(I + K̃∗)−1(Re{ñf }),

where K̃∗ = Re ñHñ. Therefore (2.38)–(2.39)–(1.38) can be rewritten as the

following:

(∂t + b · ∇⊥)2u + an · ∇+
ξ u = −ñ(I + K̃∗)−1(Re{ñf }), (4.3)

where

a = |w + e3|, ñ =
w + e3

|w + e3|
, w = (∂t + b · ∇⊥)u,

b =
1

2
(H − H)u − [∂t + b · ∇⊥, H]ze3 + [∂t + b · ∇⊥, K]ze3 + Ku3e3,

(∂t + b · ∇⊥)ζ = u, U =
1

2
(u + Hu),
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f = 2

∫∫

K(ζ ′ − ζ )(w − w′) × (ζ ′
β ′∂α′ − ζ ′

α′∂β ′)U′ dα′dβ ′ (4.4)

+

∫∫

K(ζ ′ − ζ ) {((u − u′) × u′
β ′)U

′
α′ − ((u − u′) × u′

α′)U
′
β ′}dα′dβ ′

+ 2

∫∫

K(ζ ′ − ζ )(u − u′) × (ζ ′
β ′∂α′ − ζ ′

α′∂β ′)(∂ ′
t + b′ · ∇ ′

⊥)U′ dα′dβ ′

+

∫∫

((u′ − u) · ∇)K(ζ ′ − ζ )(u − u′) × (ζ ′
β ′∂

′
α − ζ ′

α′∂
′
β)U′ dα′dβ ′.

(4.3)–(4.4) is a well-defined quasilinear system. We give in the following the

initial data for (4.3)–(4.4). As we know the initial data describing the water

wave motion should satisfy the compatibility conditions given on pp. 464–

465 of [31].

Assume that the initial interface !(0) separates R
3 into two simply con-

nected, unbounded C2 domains, !(0) approaches the xy-plane at infinity,

and assume that the water occupies the lower region "(0). Take a parame-

terization for !(0) : ξ0 = ξ0(α,β), (α,β) ∈ R
2, such that N0 = ξ0

α × ξ0
β is

an outward normal of "(0), |ξ0
α × ξ0

β | ≥ µ, and |ξ0(α,β) − ξ0(α′,β ′)| ≥
C0|(α,β) − (α′,β ′)| for (α,β), (α′,β ′) ∈ R

2 and some constants µ, C0 > 0.

Let

ξ(α,β,0) = (x0, y0, z0) = ξ0(α,β), ξt (α,β,0) = u0(α,β),

ξt t (α,β,0) = w0(α,β).
(4.5)

Assume that the data in (4.5) satisfy the compatibility conditions (5.29)–

(5.30) of [31], that is u0 = H!(0)u
0, and

w0 = −e3 + (n0 · e3)n0 − n0(I + K
∗
0)

−1(Re n0[∂t ,H!(0)]u0

+ H∗
!(0)(n0 × e3)}), (4.6)

where n0 = N0

|N0|
, H∗

!(0) = n0H!(0)n0 and K∗
0 = ReH∗

!(0). Assume that

k(0) = k0 = ξ0 − (I + H!(0))z
0e3 + K0z0e3, where K0 = ReH!(0), as de-

fined in (1.28) is a diffeomorphism with its Jacobian ν1 ≤ J (k0) ≤ ν2,

and c1|(α,β) − (α′,β ′)| ≤ |k0(α,β) − k0(α
′,β ′)| ≤ c2|(α,β) − (α′,β ′)| for

(α,β), (α′,β ′) ∈ R
2 and some constants 0 < ν1, ν2, c1, c2 < ∞. Let

ζ(·,0) = ζ 0(·) = P + λ0(·), u(·,0) = u0(·),

(∂t + b · ∇⊥)u(·,0) = w0(·),
(4.7)
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where

λ0(·) = ξ0 ◦ k−1
0 (·) − P, u0(·) = u0 ◦ k−1

0 (·),

w0(·) = w0 ◦ k−1
0 (·).

(4.8)

Let s ≥ 5 be an integer. Assume that for 0 = ∂α, ∂β, L0, 6 ,

∑

|j |≤s−1
∂=∂α,∂β

‖0j∂λ0‖H 1/2 + ‖0ju0‖H 1/2 + ‖0j∂u0‖H 1/2

+ ‖0jw0‖L2 + ‖0j∂w0‖L2 < ∞. (4.9)

We have the following local well-posedness result for the initial value prob-

lem (4.3)–(4.4)–(4.7) with a non-blow-up criteria.

Theorem 4.3 (Local existence) 1. There exists T > 0, depending on the norm

of the initial data, so that the initial value problem (4.3)–(4.4)–(4.7) has a

unique solution (u, ζ ) = (u(α,β, t), ζ(α,β, t)) for t ∈ [0, T ], satisfying for

|j | ≤ s − 1, 0 = ∂α, ∂β,L0,6 , ∂ = ∂α, ∂β ,

0j∂(ζ − P),0ju,0j∂u ∈ C([0, T ],H 1/2(R2)),

0jw,0j∂w ∈ C([0, T ],L2(R2)),
(4.10)

and |ζα × ζβ | ≥ ν, |ζ(α,β, t) − ζ(α′,β ′, t)| ≥ C1|(α,β) − (α′,β ′)| for all

(α,β), (α′,β ′) ∈ R
2 and t ∈ [0, T ], for some constants C1, ν > 0.

Moreover, if T ∗ is the supremum over all such times T , then either T ∗ = ∞
or

∑

|j |≤[ s
2 ]+3

‖0jw(t)‖L2 + ‖0ju(t)‖L2

+ sup
(α,β) (=(α′,β ′)

|(α,β) − (α′,β ′)|

|ζ(α,β, t) − ζ(α′,β ′, t)|

+

∣

∣

∣

∣

1

|(ζα × ζβ)(t)|

∣

∣

∣

∣

L∞
/∈ L∞[0, T ∗). (4.11)

2. Let P : R
2 → R

2 be the identity map: P(α,β) = (α,β) for (α,β) ∈ R
2,

ht (·, t) = b(h(·, t), t), h(·,0) = P(·), (4.12)

and T < T ∗. Then for t ∈ [0, T ], h(·, t) : R
2 → R

2 exists and is a diffeo-

morphism, with its Jacobian c1(T ) ≤ J (h(t)) ≤ c2(T ) for some constants

c1(T ), c2(T ) > 0; and ξ(·, t) = ζ(h(k0(·), t), t) is the solution of the water
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wave system (1.23)–(1.24), satisfying the initial condition (4.5). Furthermore,

h(k0(·), t) = k(·, t) for t ∈ [0, T ∗), where k(·, t) is as defined in (1.28), and

ζ ◦ k = ξ , u ◦ k = ξt , w ◦ k = ξt t .

Proof The proof of part 1 is very much the same as that in [31]. The main

modification is to use the vector fields 0 = ∂α, ∂β,L0,6 instead of using

only ∂α, ∂β as in [31], and use ∂t + b · ∇⊥ instead of ∂t . We omit the details.

Let T < T ∗. Notice that for the solution obtained in part 1, b = b(·, t) is

defined for t ∈ [0, T ]. Furthermore by applying Lemma 1.2, Proposition 2.2,

(2.6), (2.7), Propositions 2.6, 2.7, 2.9, Lemma 6.2 of [31] and interpola-

tion, and (4.10), we know for ∂ = ∂α, ∂β , and |j | ≤ s − 1, 0jb, 0j∂b ∈
C([0, T ],H 1/2(R2)). Therefore for |j | ≤ 3, ∂jb ∈ C([0, T ],C(R2) ∩
L∞(R2)). Thus from the classical ODE theory we know (4.12) has a

unique solution h(·, t) on [0, T ], h(·, t) : R
2 → R

2 is a diffeomorphism

with c1 ≤ J (h(t)) ≤ c2, c3|(α,β) − (α′,β ′)| ≤ |h(α,β, t) − h(α′,β ′, t)| ≤
c4|(α,β) − (α′,β ′)| for (α,β), (α′,β ′) ∈ R

2, t ∈ [0, T ] and some constants

0 < ci < ∞, i = 1, . . . ,4; and ∂j (h − P) ∈ C([0, T ],H 1/2(R2)), for |j | ≤ s.

Let u = u ◦ h ◦ k0, ξ = ζ ◦ h ◦ k0. From the chain rule we know u = ξt , and

for t ∈ [0, T ∗), (u, ξ) satisfies the quasilinear system (5.21)–(5.22) in [31].

Therefore as was proved in [31], ξ solves the water wave system (1.23)–

(1.24) with initial data satisfying (4.5). Furthermore, for k as defined in

(1.28), we know kt = (h ◦ k0)t (see (1.42)), and k(0) = (h ◦ k0)(0). Therefore

k(·, t) = h(k0(·), t) for t ∈ [0, T ∗), so k(t) : R
2 → R

2 is a diffeomorphism

and J (k(t)) > 0 for each t ∈ [0, T ∗). w ◦ k = ξt t follows straightforwardly

from the chain rule. !

Remark 4.4 Let ξ be the solution obtained in Theorem 4.3. As a consequence

of Theorem 4.3 part 2, we know for t ∈ [0, T ∗), the mapping k = k(·, t) de-

fined in (1.28) is a diffeomorphism and the solution (u, ζ ) for (4.3)–(4.4)–

(4.7) coincides with those defined in (1.31). Recall λ = ζ − P . Notice that

∂tλ = u − b − b · ∇⊥λ, ∂tu = w − b · ∇⊥u. By taking successive derivatives

to t to (2.38) (or equivalently (4.3)), we know that in fact for |j | ≤ s − 1, and

0 = ∂t , ∂α, ∂β, L0, 6 , ∂ = ∂α, ∂β ,

0j∂tλ,0j∂λ,0ju,0j∂tu,0j∂u ∈ C([0, T ∗),H 1/2(R2)),

0jw,0j∂tw,0j∂w ∈ C([0, T ∗),L2(R2)).
(4.13)

Remark 4.5 Notice that η = ξ(k−1
0 (·), t) = ζ ◦ h(·, t) is a solution of the wa-

ter wave equation (1.23)–(1.24) with data η(·,0) = ξ0 ◦ k−1
0 (·), ηt (·,0) =

u0 ◦ k−1
0 (·). Let |j | ≤ s − 1, and 0 = ∂t , ∂α, ∂β, L0, 6 , ∂ = ∂α, ∂β . Using

(4.13), Lemma 1.2, Proposition 2.2, (2.6), (2.7), Propositions 2.6, 2.7, 2.9,
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and Lemma 6.2 of [31] and interpolation, we know that the function b de-

fined in (4.4) satisfies 0jb, 0j∂b ∈ C([0, T ∗),H 1/2(R2)). Therefore we

have for h the solution of (4.12), 0j (h − P),0j∂t (h − P),0j∂(h − P) ∈
C([0, T ∗),H 1/2(R2)). This implies the solution η satisfies

0j∂tη,0j∂(η − P),0j∂tηt ,0
j∂ηt ∈ C([0, T ∗),H 1/2(R2)),

0j∂ηt t ,0
j∂tηt t ∈ C([0, T ∗),L2(R2)).

(4.14)

From Proposition 2.9, we know there is N1 > 0 small enough, such that

whenever
∑

|i|≤2
∂=∂α ,∂β

‖∂ i∂λ(t)‖2 ≤ N1, |∂αλ(t)|∞ +|∂βλ(t)|∞ ≤ 1
4
; this in turn

implies that

|ζ(α,β, t) − ζ(α′,β ′, t)| ≥
1

4
(|α − α′| + |β − β ′|), |ζα × ζβ | ≥

1

4
,

and !(t) : ζ = ζ(α,β, t), (α,β) ∈ R
2 is a graph.

We now present a global in time well-posedness result. Let s ≥ 27,

max{[ s
2
] + 1,17} ≤ l ≤ s − 10, and the initial interface !(0) be a graph

given by ξ0 = (α,β, z0(α,β)), satisfying N =
∑

|i|≤2
∂=∂α ,∂β

‖∂ i∂z0‖2 ≤ N0,

where N0 is the constant in Lemma 4.1, part 1. Therefore the correspond-

ing mapping k(0) = k0 defined in (1.28) is a diffeomorphism with its Jaco-

bian 1/4 ≤ J (k0) ≤ 2 and 1
4
(|α − α′| + |β − β ′|) ≤ |k0(α,β) − k0(α

′,β ′)| ≤
2(|α − α′| + |β − β ′|). Assume that the initial data satisfies (4.5)–(4.9), and

for 0 = ∂α, ∂β,L0,6 ,

L =
∑

|j |≤l+9
∂=∂α,∂β

‖0j |D|1/2z0‖2 + ‖0j∂λ0‖2

+ ‖0ju0‖H 1/2 + ‖0jw0‖2 < ∞, (4.15)

here z0 = z0 ◦ k−1
0 . Let

ǫ =
∑

|j |≤l+3
∂=∂α,∂β

‖0j |D|1/2z0‖2 + ‖0j∂λ0‖2 + ‖0ju0‖H 1/2 + ‖0jw0‖2, (4.16)

and assume ǫ ≤ N1. An argument as that in Remark 4.4 and an application of

Lemma 1.2, Proposition 2.2, (2.7), (2.6), Propositions 2.6, 2.7, 2.9 gives that

for 0 = ∂t , ∂α, ∂β, L0, 6 ,

M0 =
∑

|j |≤l+2
∂=∂α,∂β

(‖0j∂λ0‖2 + ‖0j∂z0‖2
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+ ‖0jv(0)‖2 + ‖0j (∂t + b · ∇⊥)v(0)‖2) ≤ c1(ǫ)ǫ < ∞ (4.17)

and a further application of Lemma 6.2 of [31] and interpolation gives that

(for ǫ > 0 small enough such that c1(ǫ)ǫ ≤ M0)

Fl+2(0) ≤ c2(ǫ)ǫ
2, Fl+3(0) ≤ c3(ǫ)ǫ

2,

Fl+9(0) = c4(L) < ∞.
(4.18)

Here ci(p), i = 1,2,3,4 are constants depending on p.

Take M0 such that 0 < M0 ≤ N1 and all the estimates derived in Sect. 3

holds.

Theorem 4.6 (Global well-posedness) There exists ǫ0 > 0, depending on

M0, L, where L is as in (4.15), such that for 0 ≤ ǫ ≤ ǫ0, the initial value

problem (1.23)–(1.24)–(4.5) has a unique classical solution globally in time.

For 0 ≤ t < ∞, the solution satisfies (4.13), (4.14), the interface is a graph,

and

(1 + t)
∑

|j |≤l−3
∂=∂α,∂β

(|∂0jχ(t)|∞ +|∂0jv(t)|∞) " F
1/2
l+2(t) ≤ C(M0,L)ǫ. (4.19)

Here C(M0,L) is a constant depending on M0,L.

Proof From Theorem 4.3, Remarks 4.4, 4.5, we know there exists a unique

solution ξ = ξ(·, t) for t ∈ [0, T ∗) of (1.23)–(1.24)–(4.5), with k(·, t) : R
2 →

R
2 as defined in (1.28) being a diffeomorphism, λ, u, w as defined in (1.31),

(1.36) satisfying (4.13) for t ∈ [0, T ∗), and η = ξ ◦ k−1
0 satisfying (4.14).

Applying Lemma 1.2, Proposition 2.2, (2.6), (2.7), Propositions 2.6, 2.7, 2.9,

Lemma 6.2 of [31] and interpolation, and the fact that z(·, t) = z0(·)+
∫ t

0 (u3 −
b · ∇⊥z)(·, s) ds, here u3 is the e3 component of u, we have Fn(t), Fn(t) ∈
C1[0, T ∗) for n ≤ l + 9. Let 0 < ǫ1 ≤ N1 be small enough such that for ǫ ≤
ǫ1, M0 ≤ c1(ǫ)ǫ ≤ M0

2
. Let T1 ≤ T∗ be the largest such that for t ∈ [0, T1),

(3.13) holds. From Theorem 3.101, Lemma 3.4, we know there is a 0 < ǫ2 ≤
ǫ1, such that when 0 < ǫ ≤ ǫ2, sup[0,T1)

El+2(t) " Fl+2(t) ≤ c(M0,L)2ǫ2

for some constant c(M0,L) depending on M0,L. On the other hand from

Proposition 2.16 we have that for t ∈ [0, T1),

∑

|j |≤l+2
∂=∂α,∂β

(‖0j∂λ(t)‖2 + ‖0j∂z(t)‖2 + ‖0jv(t)‖2 + ‖0j (∂t + b · ∇⊥)v(t)‖2)

≤ C(M0)El+2(t)
1/2,
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where C(M0) is a constant depending on M0. Taking ǫ0 ≤ ǫ2, such that

C(M0)c(M0,L)ǫ0 ≤ 3M0

4
. Therefore when ǫ ≤ ǫ0, we have for t ∈ [0, T1),

∑

|j |≤l+2
∂=∂α,∂β

(‖0j∂λ(t)‖2 + ‖0j∂z(t)‖2 + ‖0jv(t)‖2 + ‖0j (∂t + b · ∇⊥)v(t)‖2)

≤
3M0

4
.

This implies that T1 = T ∗ or otherwise it contradicts with the assumption that

T1 is the largest. Applying Proposition 2.16 again we deduce that

∑

|j |≤l+2

‖0jw(t)‖L2 + ‖0ju(t)‖L2 ∈ L∞[0, T ∗). (4.20)

Furthermore from M0 ≤ N1 we have

sup
(α,β) (=(α′,β ′)

|(α,β) − (α′,β ′)|

|ζ(α,β, t) − ζ(α′,β ′, t)|
+

∣

∣

1

|ζα × ζβ(t)|

∣

∣

L∞ ∈ L∞[0, T ∗)

(4.21)

and !(t) : ζ = ζ(·, t) defines a graph for t ∈ [0, T ∗). Now from our assump-

tion we know [ s
2
] + 3 ≤ l + 2. Applying (4.11), we obtain T ∗ = ∞. (4.19) is

a consequence of Lemma 3.3. !

Remark 4.7 As a consequence of (4.19) and Proposition 2.17, the steepness,

the acceleration of the interface and the derivative of the velocity on the in-

terface decay at the rate 1
t
.

Remark 4.8 Instead of (4.9), (4.15), (4.16), we may assume for |j | ≤ s − 1,

and 0 = ∂α, ∂β, L0, 6 ,

∑

|j |≤s−1
∂=∂α,∂β

‖0j∂z0‖H 1/2 + ‖0ju0‖H 3/2 + ‖0jw0‖H 1 < ∞; (4.22)

L =
∑

|j |≤l+9
∂=∂α,∂β

‖0j |D|1/2z0‖2 + ‖0j∂z0‖2 + ‖0ju0‖H 1/2

+ ‖0jw0‖2 < ∞; (4.23)

and let

ǫ =
∑

|j |≤l+3
∂=∂α,∂β

‖0j |D|1/2z0‖2 + ‖0j∂z0‖2 + ‖0ju0‖H 1/2 + ‖0jw0‖2. (4.24)
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We know from Lemma 4.1 and Lemma 4.2 that (4.22), (4.23), (4.24) implies

∑

|j |≤s−1
∂=∂α,∂β

‖0j∂λ0‖H 1/2 + ‖0ju0‖H 3/2 + ‖0jw0‖H 1 < ∞ and (4.25)

∑

|j |≤l+9
∂=∂α,∂β

‖0j |D|1/2z0‖2 + ‖0j∂λ0‖2 + ‖0ju0‖H 1/2 + ‖0jw0‖2

≤ c5(L)L < ∞, (4.26)
∑

|j |≤l+3
∂=∂α,∂β

‖0j |D|1/2z0‖2 + ‖0j∂λ0‖2 + ‖0ju0‖H 1/2 + ‖0jw0‖2

≤ c5(ǫ)ǫ < ∞ (4.27)

for some constants c5(L), c6(ǫ) depending on L, ǫ respectively. There-

fore the same conclusions of Theorem 4.6 hold, and furthermore by using

Lemmas 4.1, 4.2, we have for ξ = η ◦ k0 the solution of the initial value

problem of the water wave equations (1.23)–(1.24)–(4.5), and |j | ≤ s − 1,

0 = ∂t , ∂α, ∂β,L0,6 , (notice that k0 = k0(α,β) is independent of t).

0j∂tξ,0j∂(ξ − P),0j∂tξt ,0
j∂ξt ∈ C([0, T ∗),H 1/2(R2)),

0j∂ξt t ,0
j∂tξt t ∈ C([0, T ∗),L2(R2)).

Appendix A: Notations

Here we summarize a partial list of quantities introduced in this paper.

Let !(t) : ξ = ξ(α,β, t) = x(α,β, t)e1 + y(α,β, t)e2 + z(α,β, t)e3 be the

interface at time t in Lagrangian coordinates (α,β), and H = H!(t) be the

associated Hilbert transform (see (1.10)). We defined:

1. π = (I − H)ze3.

2. The change of coordinates k given in (1.28):

k = k(α,β, t) = ξ(α,β, t) − (I + H)z(α,β, t)e3 + Kz(α,β, t)e3, (A.1)

where K = ReH is the double layered potential operator. Define

Ugf (α,β, t) = f (g(α,β, t), t) = f ◦ g(α,β, t).

3. We then defined (see (1.31), (1.32))

ζ = ξ ◦ k−1 = xe1 + ye2 + ze3,

u = ξt ◦ k−1, and w = ξt t ◦ k−1;
(A.2)
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b = kt ◦ k−1,

A ◦ ke3 = aJ (k)e3 = akα × kβ, and N = ζα × ζβ;
(A.3)

4. χ = π ◦ k−1 = (I − H)ze3, where U−1
k HUk = H is the Hilbert transform

associated to ζ .

5. Let K = Re H. We defined by P = αe1 + βe2 = (α,β) the horizontal

plane,

4∗ = (I + H)ze3, 4 = (I + H)ze3 − Kze3,

λ∗ = (I + H)ze3, λ = λ∗ − Kze3.
(A.4)

So ζ = P + λ. See (1.36).

6. We defined v = (∂t + b · ∇⊥)χ .

7. We defined (see (2.37))

Em(t) =
∑

|j |≤m

(‖(∂t +b ·∇⊥)0jχ(t)‖2
2 +‖(∂t +b ·∇⊥)0jv(t)‖2

2). (A.5)

8. For a Clifford number σ ∈ C(V2), we defined σ = e3σe3.

Appendix B: Traveling waves

Here we consider the full water wave equation (1.1) with the interface !(t)

tending to the horizontal plane, and the velocity v → c at the spatial infinity,

where c = (c1, . . . , cn−1,0) is a constant vector. We consider only the case

n = 3 and are interested in the global in time behavior of solutions with small

initial data. The analysis in the main body of this paper carries over without

difficulties to this case, so we only indicate what would be the transformed

equation (1.25), what would be the change of coordinates k and relations

between various quantities in this framework. We adopt the same notations as

in the main body of this paper.

Let !(t) : ξ = ξ(α,β, t) be the interface in Lagrangian coordinate (α,β).

Assume v → c at the spatial infinity. Then (1.1) is equivalent to

{

ξt t + e3 = aN,

ξt − c = H(ξt − c).
(B.1)

First, Proposition 1.3 still holds. The same proof, with ξt replaced by ξt −c

in various places, works. Let π = (I − H)ze3.

Proposition B.1 We have

(∂2
t − aN × ∇)π
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=

∫∫

K(ξ ′ − ξ)(ξt − ξ ′
t ) × (ξ ′

β ′∂α′ − ξ ′
α′∂β ′)ξ ′

t dα′dβ ′

−
∫∫

K(ξ ′ − ξ)(ξt − ξ ′
t ) × (ξ ′

tβ ′∂α′ − ξ ′
tα′∂β ′)z′ dα′dβ ′e3

−
∫∫

∂tK(ξ ′ − ξ)(ξt − ξ ′
t ) × (ξ ′

β ′∂α′ − ξ ′
α′∂β ′)z′ dα′dβ ′e3. (B.2)

The change of coordinates is a small modification of that in (1.28):

k = k(α,β, t) = ξ(α,β, t) − ct − (I + H)z(α,β, t)e3 + Kz(α,β, t)e3 (B.3)

where K = ReH is the double layered potential operator.

Now we also have the following proposition, showing that b and A− 1 are

quadratic.

Proposition B.2 Let b = kt ◦ k−1 and A ◦ k = aJ (k). We have

b =
1

2
(H − H)(u − c) − [∂t + b · ∇⊥, H]ze3

+ [∂t + b · ∇⊥, K]ze3 + Ku3e3, (B.4)

(A − 1)e3 =
1

2
(−H + H)w +

1

2
([∂t + b · ∇⊥, H](u − c)

− [∂t + b · ∇⊥, H](u − c))

+ [AN × ∇, H]ze3 − Aζβ × (∂α Kze3)

+ Aζα × (∂β Kze3) + A∂αλ × ∂βλ. (B.5)

Here Hf = e3H(e3f ) =
∫∫

e3KN ′e3f
′.

Proof The same proof as that of Proposition 1.4, with ξt replaced by ξt − c

works. !

The relations between quantities is a small modification of that in

Lemma 2.14. The main change is in (B.10).

Lemma B.3 We have

λ + χ = (H − H)ze3 + Kze3, λ∗ + χ = (H − H)ze3, (B.6)

∂αz = −N · e1 + (∂αλ × ∂βλ) · e1,

∂βz = −N · e2 + (∂αλ × ∂βλ) · e2,
(B.7)

N = e3 + ∂αλ × e2 − ∂βλ × e1 + ∂αλ × ∂βλ, (B.8)
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AN − e3 = w, (B.9)

2(u − c + (∂t + b · ∇⊥)χ) =(H − H)(u − c)

− 2[∂t + b · ∇⊥, H]ze3, (B.10)

2(w + (∂t + b · ∇⊥)v) =(H − H)w + [∂t + b · ∇⊥, H − H](u − c)

− 2(∂t + b · ∇⊥)[∂t + b · ∇⊥, H]ze3, (B.11)

(H − H)f = −2

∫∫

K · N
′f ′ + 2

∫∫

(K1N
′
2 − K2N

′
1)e3f

′, (B.12)

where K = K1e1 + K2e2 + K3e3, N = N1e1 + N2e2 + N3e3, and f is a

function.

For the 2D water wave one may do similar modifications. We omit.

Appendix C: Normal Forms

Since the publication of [32], there have been questions on whether one may

just use a normal form transformation containing only linear and quadratic

terms (we call such transformation a bilinear transformation) and obtain the

same results as in [32] and the present paper. Indeed, if the projection (I − H)

and the change of coordinate k as in (1.28) together produce a quantity

π ◦ k−1 = (I − H)ze3 that satisfies (1.35) which doesn’t contain quadratic

terms, then the quantity consisting of the linear and quadratic parts of this

transformation only should also satisfy an equation without quadratic terms,

since the terms of cubic and higher orders in the transformation should be

redundant in canceling the quadratic terms in the water wave equation.

We recall that the method of using only linear and quadratic terms for

the transformation was carried out successfully by Shatah [23] in obtaining

a global well-posedness result for the Klein-Gordon equations in R
3. The

advantage of this method is that it is algorithmic.

A key requirement for the method of normal forms to work is that the

transformed quantity and the original unknown should be equivalent in the

various norms involved in the course of analysis. We will see in this note that

retaining only the linear and quadratic terms in our transformation fails for

the water wave equation, as this partial transformation doesn’t give a quantity

that has equivalent norms as the original unknown in the functional space

considered in this paper. The failure is due to the coordinate change part of

the transformation.

In what follows, we first use the method of Shatah to find a bilinear trans-

formation that cancels the quadratic terms in the water wave equation; we next

analyze the partial transformation containing only the linear and quadratic
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parts of the transformation (I − H)ze3. We then give some concluding re-

marks.

In this note, we sometimes do not observe consistency of notations with

the main body of the paper. For example, ξ , η here denote variables in the

Fourier space, h denotes the hight of the interface.

Let f̂ be the Fourier transform of f , and

B(f,g) =

∫

eix·(ξ+η)m(ξ,η)f̂ (ξ)ĝ(η) dξ dη (C.1)

be a bilinear operator. We call m(ξ,η) the Fourier symbol of B . In particular,

if m(ξ,η) = 1, then B(f,g) = fg. We note that if a normal form transforma-

tion is given by

V = U + B(U,U)

and if B is bounded: ‖B(U,U)‖ " ‖U‖2, then ‖V ‖ ≈ ‖U‖ provided ‖U‖ is

sufficiently small.

C.1 The bilinear normal form transformation

Assume that the interface at time t is a graph given by !(t) : (X, z) =

(X,h(X, t)), X ∈ R
n−1, and let φ be the velocity potential, ψ(X, t) be the

trace of the velocity potential: ψ(X, t) = φ(X,h(X, t), t). The system (1.1)

is equivalent to (see [27])

{

∂th = G(h)ψ,

∂tψ = −h − 1
2
|∇ψ |2 + 1

2(1+|∇h|2)
(G(h)ψ + ∇h · ∇ψ)2,

(C.2)

where G(h) =
√

1 + |∇h|2∇n, ∇n is the Dirichlet-Neumann operator asso-

ciated to "(t), ∇ = (∂x1
, . . . , ∂xn−1

) for X = (x1, . . . , xn−1). Notice that the

right hand sides of the equations in (C.2) are dependent of ∇h, ∇ψ only.

Furthermore, we know (C.2) can be expanded as the following (see [27])

{

∂th = |D|ψ − ∇h · ∇ψ + [h, |D|]|D|ψ + C1(∇h,∇ψ),

∂tψ = −h − 1
2
|∇ψ |2 + 1

2
(|D|ψ)2 + C2(∇h,∇ψ),

(C.3)

where Ci(∇h,∇ψ), i = 1,2 are terms of cubic and higher orders in ∇h

and ∇ψ , |D| =
√

−∇ · ∇ =
√

−/. (C.2) is equivalent to (1.23)–(1.24). We

choose to work on (C.2) here for the sake of convenience.

We first find the bilinear norm form transformation that cancels out the

quadratic terms in (C.3). The ansatz (C.6)–(C.7) we use is similar to that of

Shatah [23].
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Let MT denote the transpose of a matrix M , m̃(ξ,η) = m(η, ξ); C denotes

a term that is at least of cubic order in h,ψ ; the Cs appearing in different

equations and contexts need not be the same.

Let U =
(

h
ψ

)

, A =
(

0 |D|
−1 0

)

, Q =
( Q1

Q2

)

, C =
( C1

C2

)

, where

Q̂1(η) =

∫

(η · ξ − |η||ξ |)ĥ(η − ξ)ψ̂(ξ) dξ

=

∫

(η · (η − ξ) − |η||η − ξ |)ĥ(ξ)ψ̂(η − ξ) dξ,

Q̂2(η) =

∫

1

2
((η − ξ) · ξ + |η − ξ ||ξ |)ψ̂(ξ)ψ̂(η − ξ) dξ .

(C.4)

We can rewrite (C.3) as

∂tU = AU + Q + C. (C.5)

Let

V = U + B(U,U), (C.6)

where B(U,U) =
( B1(U,U)

B2(U,U)

)

is bilinear, with

B̂i(F,G)(η, t)

=

∫

F̂ T (ξ, t)

(

Ki(ξ,η − ξ) Li(ξ,η − ξ)

Mi(ξ,η − ξ) Ni(ξ,η − ξ)

)

Ĝ(η − ξ, t) dξ . (C.7)

We know

B̂i(U,U)(η, t) =

∫

(ĥ(ξ, t)Ki(ξ,η − ξ)ĥ(η − ξ, t)

+ ψ̂(ξ, t)Ni(ξ,η − ξ)ψ̂(η − ξ, t)) dξ

+

∫

ĥ(ξ, t)(Li + M̃i)(ξ,η − ξ)ψ̂(η − ξ, t) dξ . (C.8)

We want to find Ki,Li + M̃i,Ni , i = 1,2 so that V satisfies an equation of

the form

∂tV = AV + C. (C.9)

We calculate

∂tV = ∂tU + B(∂tU,U) + B(U, ∂tU)

= AU + Q + B(AU,U) + B(U, AU) + C,
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AV = AU + AB(U,U).

In order for V to satisfy ∂tV = AV + C, we need

Q + B(AU,U) + B(U, AU) = AB(U,U). (C.10)

Let m1(ξ,η − ξ) = η · (η − ξ) − |η||η − ξ |, m̃1(ξ,η − ξ) = η · ξ − |η||ξ |,

m2(ξ,η − ξ) = (η − ξ) · ξ + |η − ξ ||ξ |. Solving (C.10), we find

K2 = N2 = M1 = L1 = 0,

(L2 + M̃2)(ξ,η − ξ)

= −
(|η − ξ | + |ξ | − |η|)(m1 + m2) − 2|η − ξ |(m̃1 + m2)

(|η − ξ | + |ξ | − |η|)2 − 4|ξ ||η − ξ |
,

K1(ξ,η − ξ) =
1

2
(L2 + M̃2)(ξ,η − ξ) +

1

2
(L2 + M̃2)(η − ξ, ξ),

N1(ξ,η − ξ) = −
1

2
(m2 + |ξ |(L2 + M̃2)(ξ,η − ξ)

+ |η − ξ |(L2 + M̃2)(η − ξ, ξ)).

(C.11)

Notice that the denominator (|η − ξ | + |ξ | − |η|)2 − 4|ξ ||η − ξ | = 0 if and

only if ξ = 0 or η = 0 or η − ξ = 0. To understand better the nature of the

zeros of (|η − ξ | + |ξ | − |η|)2 − 4|ξ ||η − ξ | = 0, we present the following

identity.

Lemma C.1 We have14

((|η − ξ | + |ξ | − |η|)2 − 4|ξ ||η − ξ |)((|η − ξ | + |ξ | + |η|)2 − 4|ξ ||η − ξ |)

= −16|ξ ||η − ξ ||η|2 + (|η|2 − (|η − ξ | − |ξ |)2)2. (C.12)

The checking of the identity (C.12) is straightforward, we omit the details.

Remark C.2 The following identity holds:

∏

i,j=0,1

(|η|1/2 + (−1)i |η − ξ |1/2 + (−1)j |ξ |1/2)

= (|η − ξ | + |ξ | − |η|)2 − 4|ξ ||η − ξ |. (C.13)

14The identity (C.12) was found during our effort in finding a nonlinear normal form transfor-

mation for the water wave equation in 3D. Multiplying (|η − ξ | + |ξ | − |η|)2 − 4|ξ ||η − ξ | by

the factor (|η − ξ | + |ξ | + |η|)2 − 4|ξ ||η − ξ | is natural in the Clifford analysis framework.
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Now

|η|2 − (|η − ξ | − |ξ |)2 = 2(η − ξ) · ξ + 2|η − ξ ||ξ |;

therefore

(|η|2 − (|η − ξ | − |ξ |)2)2 ≤ 4|ξ ||η − ξ ||η|2. (C.14)

On the other hand,

(|η−ξ |+|ξ |+|η|)2−4|ξ ||η−ξ | = (|η−ξ |−|ξ |)2+|η|2+2(|η−ξ |+|ξ |)|η|.

So

(|η − ξ | + |ξ | + |η|)|η| ≤ (|η − ξ | + |ξ | + |η|)2 − 4|ξ ||η − ξ |

≤ 2(|η − ξ | + |ξ | + |η|) |η|. (C.15)

Combining (C.12), (C.14), (C.15), we obtain

|η − ξ | + |ξ | + |η|

16|η − ξ ||ξ ||η|
≤ −

1

(|η − ξ | + |ξ | − |η|)2 − 4|ξ ||η − ξ |

≤
|η − ξ | + |ξ | + |η|

6|η − ξ ||ξ ||η|
. (C.16)

Notice that |m1|, |m̃1|, |m2| ≤ 2 min{|ξ ||η − ξ |, |ξ ||η|, |η||η − ξ |}. Therefore

|(L2 + M̃2)(ξ,η − ξ)| " |η − ξ |,

|K1(ξ,η − ξ)| " |η − ξ | + |ξ |,

|N1(ξ,η − ξ)| " |ξ ||η − ξ |.

(C.17)

Moreover we have

lim
ξ→0

(L2 + M̃2)(ξ,η − ξ) = |η|,

lim
ξ→0

K1(ξ,η − ξ) =
1

2
|η|,

lim
η−ξ→0

K1(ξ,η − ξ) =
1

2
|ξ |.

(C.18)

C.2 Analysis of the bilinear normal form transformation

Notice that in this paper, the unknown of the water wave equation is

(|D|1/2h, |D|ψ) and only (|D|1/2h, |D|ψ) and its derivatives are assumed
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small and localized.15,16 We remark that it makes sense to take (|D|1/2h,

|D|ψ) as the unknown for the water wave equation (C.2) since the right hand

sides of the equations in (C.2) are dependent on ∇h, ∇ψ only.

We are also interested in understanding the normal form transformation for

the case when (h, |D|1/2ψ) is assumed small and localized. In what follows

we find the bilinear normal form transformations that cancel out quadratic

terms in the water wave equation for the unknowns Us = EsU = |D|sE0U =
( |D|sh

|D|s+1/2ψ

)

, where Es =
( |D|s 0

0 |D|s+1/2

)

, s = 0 or s = 1/2. It is easy to see that

the bilinear normal form transformation for Us is given by Vs = EsV :

Vs = Us + Bs(Us,Us),

where Bs(Us,Us) = EsB(E−sUs,E−sUs), and B is as given by (C.7)–

(C.11). We have Bs(F,G) =
( B1,s(F,G)

B2,s(F,G)

)

, with

B̂i,s(F,G)(η, t)

=

∫

F̂ T (ξ, t)

(

Ki,s(ξ,η − ξ) Li,s(ξ,η − ξ)

Mi,s(ξ,η − ξ) Ni,s(ξ,η − ξ)

)

Ĝ(η − ξ, t) dξ, (C.19)

where

K1,s(ξ,η − ξ) = |η|s |ξ |−s |η − ξ |−sK1(ξ,η − ξ),

N1,s(ξ,η − ξ) = |η|s |ξ |−s−1/2|η − ξ |−s−1/2N1(ξ,η − ξ),

(L2,s + M̃2,s)(ξ,η − ξ)

= |η|s+1/2|ξ |−s |η − ξ |−s−1/2(L2 + M̃2)(ξ,η − ξ),

K2,s = N2,s = M1,s = L1,s = 0.

(C.20)

If s = 0, i.e. if (h, |D|1/2ψ) is the unknown and assumed small and local-

ized, we see from (C.17) that the Fourier symbols Ki,0, Li,0 + M̃i,0 and Ni,0

of the bilinear operator B0 are locally bounded. We know from the Coifman-

Meyer theory [7] that the Fourier symbol being bounded is the most basic

assumption for obtaining boundedness of the bilinear operator.17 For B0 in

particular, its boundedness properties can be derived from results in harmonic

analysis [7, 25] by using the identity (C.12) and inequality (C.14).

15We say a function f is localized if f tends to 0 at the spatial infinity.
16Let the trace of the velocity v(X,h(X, t), t) = (v1, . . . ,vn), X = (x1, . . . , xn−1). From the

chain rule, we have ∂xi ψ = vi + vn∂xi h, i = 1, . . . , n − 1.
17Here we restrict ourself to discussing the type of bilinear operators given by (C.1) only.
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On the other hand when (|D|1/2h, |D|ψ) is taken as the unknown and

assumed small and localized as in this paper, i.e. when s = 1/2, we know

from (C.18) that of B1/2 the Fourier symbols: (L2,1/2 + M̃2,1/2)(ξ,η − ξ)

has a small divisor 1/|ξ |1/2, K1,1/2(ξ,η − ξ) has small divisors 1/|ξ |1/2

and 1/|η − ξ |1/2. We will see next that the difficulty of these small divisors

amounts to proving such inequality ‖f ‖L2(Rn−1) " ‖|D|1/2f ‖L2(Rn−1). This

is impossible even if f satisfies moment conditions.18

C.3 The bilinear partial transformation of (I − H)ze3

We now analyze the partial transformation consisting only of the linear and

bilinear terms of (I − H)ze3 = U−1
k (I − H)ze3.

First it is not difficult to see that the bilinear term in the projection

(I −H)ze3 is a bounded operator belonging to the class considered in Proposi-

tions 2.6, 2.7 and has locally bounded Fourier symbols. On the other hand, if a

normal form transformation G is exactly obtained from the original unknown

g by a change of coordinates k−1, i.e. G(X) = g(k−1(X)), with k(X) − X a

small quantity, then from the Taylor expansion

G(X) = g(k−1(X)) = g(X) + ∇g(X) · (k−1(X) − X) + · · · , (C.21)

the partial transformation consisting only of the linear and quadratic terms in

G(X) is

G1(X) = g(X) + ∇g(X) · (k−1(X) − X).19 (C.22)

To obtain ‖G1‖ ≈ ‖g‖ in various norms ‖ · ‖ for small ‖g‖, one cannot avoid

engaging the smallness of the norms of k−1(X) − X, and the dependence

on ∇g in the quadratic term can also be problematic. On the other hand,

Lemma 4.2 shows that for the full coordinate change G = g◦k−1, ‖G‖ ≈ ‖g‖
in various norms ‖ · ‖ provided the norms of ∇k−1 − I are finite, here I is the

identity map; we do not need to know the norm of the primitive k−1(X) − X

itself if we consider the full coordinate change. As we know, the composition

of the partial transformation consisting of the linear and bilinear parts of the

projection (I − H) and the coordinate change U−1
k gives in part the bilinear

normal form transformation obtained in (C.20) (for s = 1/2). We conclude

that the coordinate change U−1
k has in part taken care of the difficulty of the

small divisor associated to the case s = 1/2 considered in this paper.20

18We remark that for periodic domains T
d , such inequality ‖f ‖L2(Td ) " ‖|D|1/2f ‖L2(Td )

holds for f satisfying the moment condition
∫

Td f = 0.
19This suggests an algorithm to handle problems where the bilinear normal form transforma-

tion contain small divisors attributable to a change of coordinates.
20Note that the differences between ∂2

t − ia∂α and ∂2
t + |D| in 2D; ∂2

t − e2∂α + e1∂β and

∂2
t + |D|, and the two quadratic terms in (1.35) in 3D are not accounted for here.
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Indeed, after some further analysis and reformulation of the water wave

equations, we realized that the small divisor could be taken care of by a prop-

erly constructed coordinate change, we therefore looked further for a better

understanding of the bounded part of the bilinear normal form transforma-

tion. While for 3D water wave it was quite difficult, it was possible for us

to find that the projection (I − H) is responsible for the bounded part in the

bilinear normal form transformation for the 2D water waves. We then used

the knowledge of the 2D water wave to derive corresponding results for 3D.

And indeed when applying an ODE method such as the method of normal

forms to a PDE, the least one should take into consideration is the possibility

of a better coordinate system.

Finally, we mention the recent work of Germain, Masmoudi, Shatah

[13], in which they assumed smallness of (h, |D|1/2ψ) in L2(|x|2 dx) ∩
W 6,1(dx) ∩ HN (dx) for some large N initially and studied the global ex-

istence and scattering of the 3D water wave through analyzing the space-time

resonance. Here HN is the L2 Sobolev space with N derivatives, W 6,1 is

the L1 Sobolev space of 6 derivatives. As discussed earlier, this is the case

when the bilinear normal form transformation have locally bounded Fourier

symbols. While their method is algorithmic, and applicable to some other

problems [12], we note that their assumptions on the initial data implies some

quite strong decay properties of the velocity potential ψ . As we know ([25],

p. 117)

c0ψ(x) =

∫

1

|x − y|2−1/2
|D|1/2ψ(y) dy

=

(∫

|y|≤ 1
2 |x|

+

∫

|y|≥2|x|

+

∫

1
2 |x|≤|y|≤2|x|

)

1

|x − y|2−1/2
|D|1/2ψ(y) dy,

where

∣

∣

∣

∣

(∫

|y|≤ 1
2 |x|

+

∫

|y|≥2|x|

)

1

|x − y|2−1/2
|D|1/2ψ(y) dy

∣

∣

∣

∣

"
1

|x|3/2
(‖|D|1/2ψ‖L1(dx) + ‖|D|1/2ψ‖L2(|x|2dx))

and

∫
∣

∣

∣

∣

∫

1
2 |x|≤|y|≤2|x|

1

|x − y|2−1/2
|D|1/2ψ(y) dy

∣

∣

∣

∣

2

|x|dx

≤
∫ (∫

1
2 |x|≤|y|≤2|x|

1

|x − y|3/2
dy

)
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×
(∫

1
2 |x|≤|y|≤2|x|

1

|x − y|3/2
||D|1/2ψ(y)|2 dy

)

|x|dx

"

∫ (∫

1
2 |y|≤|x|≤2|y|

|x|3/2

|x − y|3/2
dx

)

||D|1/2ψ(y)|2 dy

"

∫

|y|2||D|1/2ψ(y)|2 dy.

So if ψ satisfies |D|1/2ψ ∈ L1(dx) ∩ L2(|x|2dx) as assumed in [13], it is

necessary then that ψ(x) decays at a rate no slower than 1/|x|3/2 as |x| →
∞. This is a rather restrictive assumption on the initial data. As while it is

physically reasonable to assume the velocity field v → 0 at the spatial infinity,

the velocity potential itself does not decay, in particular does not decay at such

rates at the spatial infinity in general.
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