

3rd IEEE Global Conference on Signal & Information Processing

December 15, 2015

Orlando, Florida, USA December 14-16 2015

Globalized BM3D using Fast Eigenvalue Filtering

Tokyo University of Agriculture and Technology

Koki Suwabe, Masaki Onuki, Yuki lizuka and Yuchi Tanaka

- Image denoising
- * Previous method
 - Improving method by eigenvalue filtering for denoising
 - * Eigenvalue filtering using Chebyshev polynomial approximation
 - * BM3D
- Proposed method
- * Evaluation
- Conclusion

Image Denoising

Image denoising: estimating the true image from the observed image

True image

Observed image

MSP Lab Multidimensional Signal Processing Graduate School of BASE, TUAT

Filter Matrix and Its Decomposition

• Denoising methods can be expressed as $\mathbf{W} \in \mathbb{R}^{N imes N}$

Ex.) Gaussian Filter, Bilateral Filter, Non-local means

Restored image

$$\hat{\mathbf{y}} = \mathbf{W}\mathbf{z}$$

The filter matrix is decomposed as

$$W = VSV^{-1}$$

MSP Lab TAT Multimensional Signal Processing Graduate School of BASE, TUAT

Eigenvalue Filtering for the Filter Matrix

The restored image becomes smoother

MSP Lab Multidena Signal Processing Graduate School of BASE, TUAT

Eigenvalue Filtering for the Filter Matrix

The smoothing strength is controlled according to the filter kernel

Parameter Selection of Eigenvalue Filtering

- I. Perform eigenvalue filtering using various filter kernels controlled by the parameter
- II. Obtain restored images using each eigenvalue-filtered matrices
- **III. Estimate MSEs of each restored image**
- IV. Select an optimal output (an image having minimum MSE)

Improving Method by Eigenvalue Filtering

Graduate School of BASE, TUAT

Approximation of Filter Kernels by CPA

Eigendecomposition takes much computational cost

Eigenvalue filtering by Chebyshev polynomial approximation(CPA) [1]

CPA for scalar function

$$h(y) = \frac{1}{2}c_0 + \sum_{k=1}^{\infty} c_k T_k(y)$$

 $h(\cdot)$: Arbitrary function

ΤΔΤ

Graduate School of BASE, TUAT

Chebyshev polynomial

$$T_k(y) = \cos(k \arccos(y))$$

Chebyshev coefficient

$$c_k = \frac{2}{\pi} \int_{-1}^{1} \frac{T_k(y)h(y)}{\sqrt{1-y^2}} \, dy = \frac{2}{\pi} \int_0^{\pi} \cos(k\theta)h(\cos\theta) \, d\theta$$

Chebyshev polynomials are obtained by recurrence relation

Recurrence relation $T_k(y) = 2yT_{k-1}(y) - T_{k-2}(y)$ Initial conditions $T_0(y) = 1, \ T_1(y) = y$

Eigenvalue Filtering by CPA

Eigenvalue filtering can be realized without eigendecomposition

$$\hat{\mathbf{y}} = \mathcal{H}(\mathbf{W})\mathbf{z} = \left(\frac{1}{2}c_0\mathbf{I} + \sum_{k=1}^d c_k\mathcal{T}_k(\mathbf{W})\right)\mathbf{z}$$

CPA for a filter matrix

$$\mathcal{H}(\mathbf{W}) = \frac{1}{2}c_0\mathbf{I} + \sum_{k=1}^{\infty} c_k\mathcal{T}_k(\mathbf{W})$$

Chebyshev polynomial

$$\mathcal{T}_k(\mathbf{W}) = \mathbf{V} \operatorname{diag}(\cos k\theta_1, \dots, \cos k\theta_i, \dots, \cos k\theta_N) \mathbf{V}^{-1}$$

Chebyshev coefficient

$$c_k = \frac{2}{\pi} \int_0^{\pi} \cos(k\theta) h(\cos\theta) \ d\theta \qquad h(\cdot): A$$

 $L(\cdot)$: Arbitrary function

Recurrence relation $\mathcal{T}_k(\mathbf{W}) = 2\mathbf{W}\mathcal{T}_{k-1}(\mathbf{W}) - \mathcal{T}_{k-2}(\mathbf{W})$ Initial conditions $\mathcal{T}_0(\mathbf{W}) = \mathbf{I}, \ \mathcal{T}_1(\mathbf{W}) = \mathbf{W}$

Purpose of Proposed Method

Purpose Applying eigenvalue filtering to state-of-the-art methods I.e.) BM3D [2]

TAT

MSP Lab

Multi^{dimensional} Signal Processing

Graduate School of BASE, TUAT

- BM3D algorithm and its matrix representation
- Problem of matrix construction
- Solution (Proposed method)

[2] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, "Image denoising by sparse 3-D transform-domain collaborative filtering", *IEEE Trans. Image Process.*, vol. 16, no. 8, pp. 2080–2095, Aug. 2007.

BM3D Algorithm

Block Matching and 3D Filtering (BM3D):

Redundant filtering using similarity among blocks

MSP Lab TAT Multimensional Signal Processing Graduate School of BASE, TUAT

Matrix Construction and its problem

BM3D is expressed as a filter matrix

$$\hat{\mathbf{y}} = \mathcal{F}_{BM3D}(\mathbf{z}) = \mathbf{\Psi} \mathbf{\Gamma} \mathbf{\Phi} \mathbf{z} = \mathbf{A} \mathbf{z}$$

Construction of Φ and Ψ needs much computational cost

Proposed Method

Restored image using eigenvalue filtering by CPA

$$\hat{\mathbf{y}}_{p} = \mathcal{H}_{p}(\mathbf{A})\mathbf{z} = \left(\frac{1}{2}c_{0}\mathbf{I} + \sum_{k=1}^{d}c_{k}\mathcal{T}_{k}(\mathbf{A})\right)\mathbf{z} = \frac{1}{2}c_{0}\mathbf{z} + \sum_{k=1}^{d}c_{k}\mathcal{T}_{k}(\mathbf{A})\mathbf{z}$$
Previous method
$$\mathcal{T}_{k}(\mathbf{A})\mathbf{z} = 2\mathbf{A}\mathcal{T}_{k-1}(\mathbf{A})\mathbf{z} - \mathcal{T}_{k-2}(\mathbf{A})\mathbf{z}$$

$$\mathcal{T}_{0}(\mathbf{A})\mathbf{z} = \mathbf{z} \quad , \quad \mathcal{T}_{1}(\mathbf{A})\mathbf{z} = \mathbf{A}\mathbf{z}$$

$$\mathcal{B}_{k}(\mathbf{z}) = \mathcal{T}_{k}(\mathbf{A})\mathbf{z}$$
Proposed method
$$\mathcal{T}_{k}(\mathbf{A})\mathbf{z} \simeq \mathcal{B}_{k}(\mathbf{z}) = 2\mathcal{F}_{\mathrm{BM3D}}(\mathcal{B}_{k-1}(\mathbf{z})) - \mathcal{B}_{k-2}(\mathbf{z})$$

$$\mathcal{T}_{0}(\mathbf{A})\mathbf{z} = \mathcal{B}_{0}(\mathbf{z}) = \mathbf{z} \quad , \quad \mathcal{T}_{1}(\mathbf{A})\mathbf{z} = \mathcal{B}_{1}(\mathbf{z}) = \mathcal{F}_{\mathrm{BM3D}}(\mathbf{z})$$

Matrix construction is not required

Fast Eigenvalue Filtering

Multigenerational Signal Processing Graduate School of BASE, TUAT

Eigenvalue distribution on each step

Problem : Input-dependency of the BM3D

CPA: A must be fixed regardless of the degree of polynomials $\mathcal{T}_k(\mathbf{A})\mathbf{z} = 2\mathbf{A}\mathcal{T}_{k-1}(\mathbf{A})\mathbf{z} - \mathcal{T}_{k-2}(\mathbf{A})\mathbf{z}$

BM3D: \mathcal{F}_{BM3D} is adaptive to the input image $\mathcal{T}_k(\mathbf{A})\mathbf{z} = 2\mathcal{F}_{BM3D}(\mathcal{T}_{k-1}(\mathbf{A})\mathbf{z}) - \mathcal{T}_{k-2}(\mathbf{A})\mathbf{z}$

Due to Block matching and filter coefficients

Verification Experiment

Verify eigenvalue distributions according to iteration numbers

ΤΔΤ

Graduate School of BASE, TUAT

 Eigenvalue distributions could be assumed to be consistent regardless of the iteration number

17

Summary of Proposed Method

Experiment

Denoising performance assessment

- ComparisonBM3D, Global Image Denoising(GLIDE) [3]GLIDE : Improving method by eigenvalue filteringTest imagesBridge, Mandrill, Goldhill, Building
- Noise strength $\sigma \in \{10, 20, 30, 40, 50\}$
- Measure PSNR, SSIM

Conditions

Intel Xeon E5-2690 2.9GHz CPU 62.9 GB RAM 12 core parallel computing

[3] H. Talebi and P. Milanfar, "Global image denoising," IEEE Trans. Image Process., vol. 23, no. 2, pp. 755–768, Feb. 2014.

Experiment

Global Image Denoising (GLIDE)

estimate eigenvalue/eigenvector from a portion of a pre-filtered image

[3] H. Talebi and P. Milanfar, "Global image denoising," IEEE Trans. Image Process., vol. 23, no. 2, pp. 755–768, Feb. 2014.

Experiment

Denoising performance assessment

- ComparisonBM3D, Global Image Denoising(GLIDE) [3]GLIDE : Improving method by eigenvalue filteringTest imagesBridge, Mandrill, Goldhill, Building
- Noise strength $\sigma \in \{10, 20, 30, 40, 50\}$
- Measure PSNR, SSIM

Conditions

Intel Xeon E5-2690 2.9GHz CPU 62.9 GB RAM 12 core parallel computing

[3] H. Talebi and P. Milanfar, "Global image denoising," IEEE Trans. Image Process., vol. 23, no. 2, pp. 755–768, Feb. 2014.

MSP Lab TAT Multidimensional Signal Processing Graduate School of BASE, TUAT

Performance Comparison

σ	Method	Bridge	Mandrill	Goldhill	Building
10	BM3D	29.84 / 0.911	30.56 / 0.905	31.80 / 0.880	33.16 / 0.939
	GLIDE	29.81 / 0.913	30.54 / 0.904	31.72 / 0.881	32.91 / 0.938
	Proposed	29.86 / 0.913	30.57 / 0.906	31.86 / 0.884	33.16 / 0.939
20	BM3D	25.46 / 0.765	26.39 / 0.773	28.50 / 0.775	29.35 / 0.862
	GLIDE	25.62 / 0.784	26.55 / 0.788	28.57 / 0.785	29.30 / 0.865
	Proposed	24.66 / 0.789	26.56 / 0.791	28.59 / 0.784	29.40 / 0.866
30	BM3D	23.55 / 0.647	24.33 / 0.651	26.91 / 0.706	27.32 / 0.790
	GLIDE	23.68 / 0.678	24.57 / 0.686	26.71 / 0.711	27.26 / 0.792
	Proposed	23.73 / 0.679	24.58 / 0.689	26.96 / 0.714	27.37 / 0.794
40	BM3D	22.51 / 0.572	23.10 / 0.558	25.84 / 0.654	25.89 / 0.722
	GLIDE	22.43 / 0.584	23.23 / 0.573	25.70 / 0.640	25.87 / 0.729
	Proposed	22.55 / 0.586	23.19 / 0.582	25.83 / 0.655	25.90 / 0.724
50	BM3D	21.81 / 0.509	22.43 / 0.489	25.04 / 0.610	24.93 / 0.663
	GLIDE	21.81 / 0.547	22.60 / 0.518	25.01 / 0.616	24.85 / 0.680
	Proposed	21.93 / 0.540	22.59 / 0.525	25.04 / 0.615	24.95 / 0.673

MSP Lab TAT Multideed Signal Processing Graduate School of BASE, TUAT

23

Bridge

 $\sigma = 40$

Multidimensional Signal Processing Graduate School of BASE, TUAT

Visual Assessment

24

GLIDE 22.43[dB] / 0.584 BM3D Proposed 22.71[dB] / 0.604 MSP Lab Multideed School of BASE, TUAT

Visual Assessment

Original image BM3D 22.53[dB] / 0.571

GLIDE Proposed 22.71[dB] / 0.604 MSP Lab MSP Lab MILTIME Freessing

Graduate School of BASE, TUAT

Visual Assessment

Original image BM3D 22.53[dB] / 0.571

26

GLIDE 22.43[dB] / 0.584

Execution Time

Image size	BM3D	GLIDE	Proposed
256x256	0.8	115.4	51.8
512x512	3.1	Out of Memory	225.1
1024x1024	18.1	Out of Memory	946.4
	[sec]		

- Faster than GLIDE
- * Can be executed in commodity computers

Conditions Intel Xeon E5-2690 2.9GHz CPU 62.9 GB RAM 12 core parallel computing

Conclusion

Purpose

Improvement of denoising performance for BM3D

Method

Eigenvalue filtering by CPA without matrix construction

Result

Better denoising performance visually and numerically Faster execution than GLIDE

Future work

Improvement of MSE estimation

Reference List

• Eigenvalue filtering using CPA

M. Onuki, S. Ono, K. Shirai, and Y. Tanaka, "Non-local/local image filters using fast eigenvalue filtering," in *Proc. ICIP*, 2015.

BM3D

K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, "Image denoising by sparse 3-D transform-domain collaborative filtering", *IEEE Trans. Image Process.*, vol. 16, no. 8, pp. 2080–2095, Aug. 2007.

Global image denoising

H. Talebi and P. Milanfar, "Global image denoising," *IEEE Trans. Image Process.*, vol. 23, no. 2, pp. 755–768, Feb. 2014.

