
-7AD-Ri54 624 GLOBALLY ASYNCHRONOUS LOCRLLY-SYNCHRONOUS SYSTEMS(U) 1/2
STANFORD UNIV CA DEPT OF COMPUTER SCIENCE D M CHAPIRO

OCT 84 STAN-CS-84 1026 ID9e3-83-C-0335

UNCLASSIFIED F/6 9/2 N

'.1L 8~

NA 1o.10.

L 16

11111.1.

/MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OP STANDARD-19

3-A

.7

October 1984 Report No. STANar$ 1026 0

in

Globally-Asynch ronous
Loal-ycrnu Systems ~

by

Daniel M. Chapiro

Contract MDA-9383-C-Q335

Department of Computer Science

Stanford University
Stanford, CA 94305

DTIC - ~

DO- SELECTED

85JU 02 0785
.tr *

.*
* ~ '

Mb4C ~-

GLOBALLY-ASYNCHRONOUS

LOCALLY-SYNCHRONOUS SYSTEMS

A DISSERTATION S

SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE

AND THE COMMITTEE ON GRADUATE STUDIES ..

OF STANFORD UNIVERSITY

* ~IN PARTIAL FULFILLMENT OF THE REQUIREMENTS . .

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

By

Daniel M. Chapiro

October 1984 Accession F'or

DTIS GABI

-- y-

- _ -. - S = 2.~.... -* -. - - *S. - -* .S= a.. -. S - -- ~ -. ..= -. - - - - =***~ n.-rrrrrwrnfl ~

~. ...

0
~.- ~

- ~,

-I. ~

~

I 0

1*-
I

0 Copyright 1984
by

Daniel M. Chapiro - .. -

a
9.- - - -

1..- -.-

S

~
~. .. ~

-

* '. '.

a a.

.9

r
-~ '-*.~. -

................................

........................ ~*... ~ -

I certifyIl a t,

I. ,+ . . ,V°'

in scope and quality, as a dissertation for the degree of Doctor of Philosophy.

R ert Mathews, E ctrical Engineering.
Principal Advisor

I certify that I have read this thesis and that in my opinion it is fully adequate,
in scope and quality, as a dissertation for the degree of Doctor of Philosophy.

Forest Baskett, Computer Science0

Icertify that I have read this thesis and that in my opinion it is fully adequate, .

in scope and quality, as a dissertation for the degree of Doctor of Philosophy.

Luis Trabb-Pardo, Computer Science

p (. . .. ' ". -

Approvefo the ihve rsidti Cmte n Gadnm pno sflyaeuate, Stud"ies:""

Dean ..-e.en.,

FoetBset optrSiene..-,- -.'-, .

I etf htIhv edti hssadta nm oiini sflyaeut,"--"' -J. '

Globally-Asyndcronous

Locally-Synchronous Systems

(* . - 0o° o
Abstract - i -'.""

This thesis provides a new framework for the design of very high performance

digital machines. The new theoretical results which are presented have practical

implications, and lead to a better understanding of possibilities and limitations in

the design of computers, communication hardware and other digital machinery.

The discussion centers on different organizations for globally-asynchronous, locally- ,

synchronous systems, and covers the following issues: organizations for complex digital

systems, metastability as a limitation for high performance, structures for two classes

of non-conventional architectures, optimization, performance, reliability, and design
techniques.

We present new algorithms to compile the specifications of such machines onto

efficient circuits, and to verify the correctness of the resulting machines. The models

we developed for the analysis of the tradeoffs between different variables that affect the

safety of operation of" these systems, show that the proposed organizations result in

extremely fast and reliable digital machines. The proposed organizational schemes can

be used within a wide range of architectures, and integrated circuits designed according

to this methodology have been developed and tested.

.r -'.-:-. ..

S... _ _ i

- - ' '

Acknowledgements

KZ

I wish to thank Robert Mathews and John Newkirk for their advice. Working

with them has been an uncommon privilege. Many thanks to those with whom I

have discussed these ideas, and in particular to Peter Eichenberger, Mark Horowitz,
Hosagrahar Jagadish, Lanny Smoot, and Peter Stoll. I am also very grateful to Forest
Baskett, Harry Chen, David Chenevert, John Gill, John Hennessy, Donald Knuth, and

Luis Trabb-Pardo. My love to my family and to my friends.

Financial support for this work has been provided by DARPA under contracts .-

MDA 903-79-C-0680 and MDA 903-83-C-0335. -:

Contents ts

Contents

PageZ.

Chapter 1. Introduction. 1

1.1 Scope and Outline. 3

Chapter 2. Background and Previous Work. 5

2.1 A Synchronous Design Methodology 5
2.1.1 Basic Strict Types 6
2.1.2 Some Properties and Composition Rules 6

2.2 Classical Approaches to Asynchronous Design. 7
2.3 Self-Timed Machines. 8 5
2.4 Synchronizers, Metastability and Synchronization Failure. 9
2.5 Quantifying Synchronization Failure. 12
2.6 Low-Level Asynchronous Communication Protocols. 14
2.7 Machines with Stretchable Clocks. 15

Chaptcr 3. Machine Organization 17

3.1 Completion Handling 18
3.1.1 Computation Model 18
3.1.2 Uses or Conmpletion Knowledge. 19

3.2 Value-Safety and Time-Safety. 20
3.3 A Taxonomy Based On Completion 21
3.4 Summary. 22

Chapter 4. Unsynchronous Systems 24

4.1 The Unnytichronous Mechanism. 24
4.2 Building Mocks ror Valuc-Sare Circuits. 25

4.2.1 A Varia We- Speed, 2-phase, Stoppable Clock 26
4.2.2 A Synchronizer with a Metastability lDetecbr 26

4.3 Structures for Unsynchronous Systems. 27
4.4 An Unsynchronous Machine with Two-Phase Clocking 31
4.5 Automatic Verification* ... 3
4.6 Quantitative lBvaluation or Unqynchronous Machines 34

4.6.1 Reliability 34
4.6.2 P~erformrance: l!,xpxcte(l rhrotighput. 35
4.6.3 iExpectd Tiie lrror. 36
4.6.4 A Summary or Performance and Reliability Meastircs 37
4.6.5 Unsynchronous Systems with Bounded Stretching (UNSYB). 38

4.6.5.1 A Synchronizer with a Feedback Timer. 39
4.6.5.2 Evaluation of Unsynchronous Machines with Bounded Stretching. 40

4.6.6 Speed Loss. 41 :

4.6.7 The Unsynchronous Limiting Speed. 43 >.~.-.>.

4.6.8 Real-Tirnc systems 45
4.6.9 1 igh-Precision StretchableC Clocks 46

4.7 Conclusion 48N.

I~~, e a:

vni _________________________ _______ ___________Contents

Chapter 5. Escapement Systems 49

5.1 The Escapement Mechanism 506

5.2 Structures for Escapement Machines. 54. .-

5.2.1 Basic E~s 54 -*---

5.2.2 Mapping the Extended State Diagrams onto Hardware. 56

5.2.3 Pipelines. 58

5.2.4 Complex E 0s. 62W

5.3 Optimization of E~s 65

5.3.1 Parallel 012 E~s 65

5.3.2 Signal-Packing in Parallel 02 E~s 68

5.4 Performance arid Reliability of Escapement Machines 70

5.5 Synthesis of Es 71

5.5.1 A Language Extension for E0s. 72 6

5.5.2 Verifyin~g Value-Safety of an EQ Specification. 73

5.5.3 Compilation of EQ Specifications onto Hardware 74

5.5.4 Specifying, Verifying, and Compiling an EO: An Example. 77

5.6 Summary. 80

Conclusion. 82

1 Summary and Concluding Remarks. 82

2 Suggestions for Further Study 83

References 85

Abbreviations. 89

Appendix A: Stretchable Clocks 91

1 Primitive Elements: Delays and Decays. 9t

2 Clock Generation 93

2.1 An inversion /delay ring. 93

2.2 An inhibition /decay ring 94

2.3 An inhibition /decay rig with stretchiing. 94

2.4 Inhibiting the Next Stage. 96

2.5 Phase Length 96

2.6 Startup. 97

2.7 Detecting and Eliminating Hlarmonics. 97

3 Implementation 99

Appcndix BI: Experimental Machines 102

1 The Medium TesCter 102

2 Mips-X 104

Contents '5

Appendix C: The DRV and Uncertaiity Theorems. 105

1 Notation and Assumptions 1056

2 Proof of the D)ZV Theorem 106

3 The D)ZV Class and the Corollaries of the DXV Theorem 107

3.1 Corollary: A/D Conversion. 108

3.2 Corollary: Schmitt trigger. 108 -

3.3 Corollary: Arbitration. 109

3.4 Corollary: Synchronization and Sampling of Digital Signals 110 0

3.5 Corollary: Phase Locking 110

4 "Solutions" to the DRV Problem 111

5 Value and Time Uncertainty....... 1

Appendix D: Verification. 114 Lt _-A _

1 Verification of Unsynchronous Machines. 115

1.1 Types 115

1.2 Rules 115

1.3 Value-Safety of Well-Formed Unsynchronous Systems. 117

2 Incompleteness of Verification for E~s 117 ~
2.1 Verification of Well-Formed EQ Circuits 118

3 Conclusion. 119

Appendix E: More Escapement Optimizations 120

I Flag Merging. 120 77

2 Stretch Merging. 121
3 Replacing Squiggles by Arcs. 123

...... . .

X Figures and Tables

Figures and Tables

Page 4
Figure 1. Making a valid signal stable 7

Figure 2. Propagation of Signal Types 7

Figure 3. Energy of a Flip-Flop 10

Figure 4. Synchronization Failure. 11

Figure 5. A Taxonomy Based on Completion. 21

Figure 6. A Variable-Speed, Stoppable Clock. 26
Figure 7. A Synchronizer with a Metastability Detector 27

Figure 8. Block Diagram of an Unsynchronous Structure. 28

Figure 9. Waiting by Stretching a Clock Phase 28
Figure 10. A single pulse generator. 29
Figure 11. A clock module 29 1

Figure 12. A stretchable clock. 29
Figure 13. A synchronizer with metastability detection. 30

Figure 14. A Basic Value-Safe Unsynchronous System 32

Figure 15. Performance and Reliability 38

Figure 16. An unsynchronous machine with bounded stretching 39-

Figure 17. Bounded vs Unbounded MTBF 41
Figure 18. Speed Loss for Unsynchronous Systems. 42
Figure 19. Limit Speed for Unsynchronous Systems 43

Figure 20. Phase-Locking a Stretchable Clock 47
Figure 21. A Simple EQ Master 50

Figure 22. Escapement Stretching: State Diagram. 51 ~
Figure 23. Escapement Stretching: Implementation 51

Figure 24. Escapement Stretching: Timing. 51

Figure 25. Stretching in Unsynchronous Systems. 52
Figure 26. Stretching in Escapement Systems. 52

Figure 27. Difference Between Busy Wait and Stretch Wait 53
Figure 28. A Basic Master-Slave EQ 55L

Figure 29. State Diagram or a Basic Master LM. 56
Figure 30. ESD for a Master 01234 EQ 57

Figure 31. Master-Slave C1234 Circuit 58

Figure 32. ESD of the SEM. 58

Figure 33. ESD for a Simple C1 Pipeline. 59

Figure 34. Stage of a C1 Simple Pipeline 60

Figure 35. Operation Schedule of a Simple Cl-only Escapement Pipeline 61

Figure 36. Improved Utilization Schedule or a ct Pipeline with Interatage Ijuffecs. 62

Figure 37. ESI) ror a Mesh ol' [nterconnccted LMs. 63

Figure 38. A rectangular grid EQ. 63

Figure 39. Mastership Switch between LMs 64
Figure 40. A 012 EQ. 66

Figure 41. A 012 EQ with a Fork 66 -....

Figure 42. Set-Inidbit SR Flip-Flop. 67

Figure 43. Mastcer-Sct SR Flip-Flop. 68

Figure 44. Parallel 02 or 012 EQ. 68

Figure 45. Rolling the 02 Loop 69%
Figure 46. Packing Fork and Join. 69

igures and Tables xi

Figure 47. EO: master on X 75

Figure 48. Parallel 012: master on X 76
Figure 49. Signal-Packed 02: master on X. 77

Figure 50. The original SPM (from [391)78
Figure 51. SPM Specification with the EOL 79-

Figure 52. Compiled SPM. 80

Figure 53. A delay element 92
Figure 54. A decay element 93

Figure 55. A Simplified Stretchable Clock 95

Figure 56. Clearing the Storage Node. 99

Figure 57. 2-Phase, Variable Speed;' Stretchable Clock. 100

Figure 58. A Synchronizer with Metastability Detection. 103

Figure 59. A combinational decision element. 107

Figure 60. Stretch Combinations 116

Figure 61. Synchronizer Types 116

Figure 62. Flag Merging. 121

Figure 63. Stretch Moving. 122 .-..-

Figure 64. Stretch Concurrency. 122
r

L

CK~iPtCT I

Introduction

Let us start by looking at the top level organization of a digital system. Complex t

;tems have many components interacting with each other in diffcrent ways. In

,tchronous systems, each of these components receives a common periodic signal

ock) that is used to control its operation and its interaction with other components.

wever, a typical computer will have components such as CPUs, disks, terminals, and

rnmunication lines that clearly cannot be all tied to the same clock. Hence, complex *
;Lcms are not designed as a single synchronous block, but as an ensemble of locally-

wihronous components interacting with each other without a global clock. When we

rtition a system into sub-components that do not share the same clock, we say that

2y are asynchronous respect to each other.L

There is still another another reason that suggests further partitioning or thle

rnpow ts: When signals are transmitted, they take somel time to arrive to their

stinatib.. long a limit on how far a datum can travel within a clock cycle. In

ricral, tht- F!. a synchronous component is, the faster it can be clocked.1

In conclusioni, synchronous systems cannot grow in complexity without limit be-

asC they have to) inlteract with other comiiponlents tiat, cannot share the same clocking

ritrols, becauise of delays in the commumnication across a system, and because of clockL

Mws.

Iso, within a synchronous block, clocking signals will arrive at the suh-components with possibly

Irerent delays (this is called clock akew). The larger Lte delays, the hiarde~r it is 1.o keep thc skew

itall, and as te skew becomes larger (approaclivs the duration or the clock 1period), the .ychrotuolls

)cration becomes rnere dillicult. lience, skew is anothecr limitatioit Lo the size or synchronous blocks.

Machines with Stretchable Clocks 15

tter in that the extra edges may be needed anyway to provide time references for

t-up and hold times, de-skewing, and other purposes (e.g., sending addresses before p fop

.ta on a write operation), and it requires less logic in the communications mechanism.

For a more extensive treatment of communication problems, the reader is referred

[44].
I 0'

!.7 Machines with Stretchable Clocks

The main motivation behind machines with stretchable clocks has been to avoid

e metastability problems we have discussed and to implement self-timed structures.

retchable clocks can stretch a clock phase for an unbounded period of time, but

Pnetheless continue with a normal gap and normal cycles immediately after the

retching, i.e., clock cycles succeeding a stretched cycle are only displaced in time,

it not affected otherwise. Stretchable clocks are described in more detail in [39], and

so later in Chapter 4 and in the appendices.

Pechoucek proposes stopping the clock as long as a flip-flop remains metastable

7], or stopping the clock until an external event occurs. Stucki [43] shows in more

-tail how asynchronous signals can be sampled with a synchronizer that detects

etastability, and how to use this information to stretch a clock cycle as long as may be

,cessary for the metastable state to subside. In this way, Stucki avoids synchronization

ilures at the expense of infrequently allowing clock phases to stretch for unbounded

riods of time. Attempts to bound the stretching period do riot work (see Chapters

and 4); for example, the suggestion in [43] about using a time-out re-introduces

nchronization problems that it had previously eliminated, moving the failure from

ie place in the circuit (the asynchronous sampling) to another one (the decision to I

-sample the data when the time-out arrives).

Seitz l'ieie Modules 139] are p~articu larly interesting in that they consist of

cally-synchronous machines communicating asynchronously in such a way that they

not need synchronizers to handle that interaction, but still do not have synchroniza- L .-
)n problems. They use a 4-cycle handshaking protocol to communicate asynchronously

th other machines. The handshaking signals interact with a stretchable clock and

ay stop a local machine on a particular phase when what it needs from its neighbor -" "

ocessors is not availalle, letting the clock continue when the resouirce becomes avail- ___

,le. Unfortunately, the only way of fully understanding why the SPM works is to

.

. - -- •---...--

14 2.6. Low-Level Asynchronous Communication Protocols

can grow linearly with a [39], while 1/Xm, and W decrease approximately linearly with

a [42, 29]. If we maintain the size of the chip, and the number of synchronizers grows

approximately as the number of devices along the periphery of the system, the chip

reliability decreases approximately with the square of the scaling factor.

§2.6 Low-Level Asynchronous Communication Protocols

When two digital machines need to communicate, which forms of communication

are possible depends upon the assumptions the designer can make about delays. For

example, if we know nothing at all about the time it may take for another system to 0

respond to a request, clearly we cannot use the approach used internally to synchronous

systems, where a worst case delay is assumed, and after this time has elapsed it is

implicitly known that whatever the system had to do is actually done. Instead, the

systems must exchange signals to request tasks to be done, to indicate that tasks 0

are completed, and also possibly to acknowledge the reception of some of the signals

themselves. The particular way in which this exchange of signals may proceed is known

as a communication protocol.

In a commonly used set of asynchronous protocols, the communicating parties

exchange what can be looked upon as a polite handshake. For our purposes we

are mainly concerned with 2-cycle (transition-sensitive) and 4-cycle (level-sensitive)

handshakes. In both there is a request (Req) signal to request some action, and an

acknowledge (Ack) for the request.

What distinguishes the protocols above is the way in which the signal transitions

are used. The actual meaning of the Req and Ack signals is not given by the protocol.

The request may in fact be a command, or maybe evvn a request for a new command;

the acknowledge may indicate that the request has been satisfied, or that the request

has been received; etc. The protocol only establishes the temporal order of Reqand

Ack: irrespective of the interpretation, a re(piest always precedes an acknowledge.

For both 2-cycle and 4-cycle signaling, the Reqand Acksignals make the same

transitions in the same order to complete a full cycle: Req t -<Ack -<Req -<Ack 1 , where - .

the arrows denote rising or falling edges of signals. Their only difference resides in the

fact that 2-cycle signaling uses the rising edges to accomplish one transaction (e.g., a

data transfer), and the falling edges to accomplish a second one, while 4-cycle signaling

makes a single transaction with the complete cycle. The advantage of 2-cycle signaling

is that it uses fewer signal transitions [39], and is therefore faster. 4-cycle signaling is

.. -.-... •". .

.. .° - ° ° • . .. °. °° . . - ° - . . . • - . ° - .• . • - - , . • ° . . . • • . . . ° ° • ° . . • ° . - -. ° " - . . , ,

t.5. Quantifying Synchronization Failure 1.

Nhere X,, is the probability of exit per unit time (decay rate). Experimental results

:onfirm that this model is quite accurate [42,38, 12]. ,. .

Assume we are sampling data that may make transitions at random times, and

Lhat the probability that a data transition will occur within a given clock cycle depends

Dnly on the duration of the clock cycle. Assume that as the clock period tends to zero,

the probability that more than one transition occurs within the same phase tends to -

zero faster than the clock period. For any real application, we could assume that it

becomes zero altogether below some clock period. These two assumptions are necessary

and sufficient conditions [8] to know that the transitions are generated by a Poisson
e . -t (O 6. -

process Pn(Xt) = ewhere X = fd, which is the expected number of data 1' 0

transitions per unit time.

Call W the window of time around a clock edge where a data transition would

trigger a metastable condition. For a Poisson process with rate fd, the distribution of

events over a bounded interval W is uniform [8), and the expected number of arrivals in k .
such an interval is fd W. Therefore, the probability of entering a metastable condition

at the beginning of each clock cycle is:

P(mett=o) = fd W. (2.2)

From equations (2.1) and (2.2), the probability that a given clock cycle will result in -

metastability that lasts at most a time t is:

P(mett) = P(mett mett==o) P(mett -,o)

= fdWe>~t (2.3)

For conventional systems with fixed clocks, if the synchronizer is still metastable

when the time t, allotted for synchronization is exhausted, we say there has been ,

a synchronization failure. Let f, be the sampling clock frequency. The probability 0

of failure in a single clock period is then /P(fail in I cycle) P(mnett>t,). Since we

assumed idependent data transitions, the number of railhres in n clock cycles will -

have a binomial distribution with an expected rumber of' railures n P('.ail in I cycle).

ThereFore, the MTIIF for a conventional machine with a fixed clock period is: 7

MTBF /Einumber of failures per unit time) e_ _ (2.4)
ffdW

As integration and operating speeds increase, this failure problem becomes more - '

relevant. Let a denote the scaling factor [39]. Within a reasonable range, fc and fd .'. -.

.- .. , .= -:--,-.. .. ".".. . ".-. .. .-. .. -- :-. -.. -.. . --

7

, 2.5. Quantifying Synchronization Failure

reports of MTBFs of synchronizers built using newer technologies [12]. The following

references were chosen based on their readability. Catt [10] analyzed the delays involved

in the use of bistables for synchronization purposes. Chancy et al. [12] and Pechoucek

[37] pointed out the risk involved in the metastable operation of flip-flops. Hurtado and

Elliot [30] have shown that metastability of flip-flops is unavoidable under reasonable

(but restricted) conditions. Barros and Johnson [9] have shown that given a perfect

synchronizer (one that will never enter a metastable condition) one could make a perfect ,. -

arbiter (one that will always produce an arbitration in a bounded amount of time) and

vice versa. Veendrick has shown that noise does not decrease metastability risks [46].

Chancy has provided some recent extensive measurements of flip-flop response under

marginal triggering [12]. The phenomenon involved is subtle enough that impossible _

devices to get around metastability [48] are sometimes proposed. Finally, for bistables,

Marino's paper [32] is conclusive. It rigorously proves under very weak conditions that

synchronous sequential circuits exposed to inputs that can change asynchronously with

respect to the clock of the circuit cannot avoid metastable conditions.

The conventional solution to the metastability problem is to run a synchronous

system slowly enough, so that the probability of failure is acceptably small. In some

cases it is possible to pipeline several flip-flops, or use alternate synchronizers and

multiplexers, instead of reducing the clock speed, to obtain an adequate synchronization

time. Nonetheless, if the response time is critical, as is the case for most arbitration

problems, pipelining will not help, and the system must be slowed down. In any event,

such systems will occasionally fall prey to metastability during synchronization.
.

§2.5 Quantifying Synchronization Failure

The :time it takes a flip-flop to exit from the metastable region is unbounded. 0

Nevertheless, the probability that it remains metastable has been found by empirical

methods to decrease exponentially with the duration of the phcnoerneno. There are

theoretical models that explain this behavior as follows. Assume that a metastable

flip-flop has no memory as to how long it has been in a metastable region, and that the

probability of decaying to a stable state is time-invariant. The only distribution that is

"memoryless" is an exponential distribution 1 - e-X',t [8, 20]. llence, the probability

that a flip-flop remains metastable for a period of time t or longer, given that it was

metastable at t 0 0, is LL

P(metnett.o) = e- x (2.1)

..*

- . ."-".'-'

.°. .- '- . " .

2.4. Synchronizers,_Metastability and Synchronization Failure 1

the flip-flop remains undecided, they are in a metastable state.

Why do we care about this situation? If we sample a signal, as in the figure below,

we certainly want to use it some time afterwards (e.g., in the next clock cycle). But,

by the time we want to use it, there is no guarantee that the flip-flop will no longer be

metastable.

sampling clock

received signal I I

"seen" signal off

FAILURE ,.,,

Figure 4. Synchronization Failure

When a flip-flop enters a metastable state, the probability of exit to some other '.'-.

state in a fixed time interval is very high, but not 1. The probability of sampling a

signal and placing a lij)-flop in a metastable state is very sniall, but is a practical

concern [42]. In actual digital systems, asynchronous signals may be sampled at such

a high rate, giving so little time for the synchronizer to evolve out of the metastability

region, that a signilicant fraction of the synchronizations may not be completed, leaving

the flip-flop in a metastable state. Thus, the system is still exposed to the same kind

of inconsistent interpretations of the input data as a system without synchronizers.

There is abundant physical evidence produced at the Washington University of

St. Louis and elsewhere [42, 37, 47, 38, 17, 12] that shows that ,metastability is a real

problem, and there is also mathematical evidence [32] that suggests that mctastability

is an inescapable fundamental problem for any synchronous sequential system with

asynchronous inputs.

A number of researchers have contributed to the related literature, which goes back

to the 50s, when metastability was noted as a possible cause or' transient malfunctions;

the 60s saw a spurt of activity in this area, but currently it is dormant %side from

7::::::::::

10 2.4. Synchronizers, Metastability and Synchronization Failure

pointer but not read a character, or read a character but not advance the pointer, or

give a green light to two intersecting streets, or open the air compressor intake but 6

close the kerosene valve of a jet engine).

To avoid such Iproblems, asynchronous signals are never used directly, but are first

fed to a synchronizer, which is typically a D flip-flop or an equivalent regenerative

circuit that is not stable at intermediate (digitally undefined) values. The external S

signal is sampled, held for a while in the flip-flop, and later used by the receiver.

The problem is that a flip-flop, like all bistable elements, has two potential energy

minimae (the stable states) and a maximum separating the local minimae, as can be

seen in the figure below.

Energy

metastable

P, State- ,-.

false digitally-undefined true ,. ..

Figure 9. Energy of a llip-Flop

Although any system will be stable only at the energy ninimae, it can be metastable 4 .

at the energy inflection points. To make an analogy, imagine a pencil "perfectly"

balanced on its tip, or a ball precisely located on top of a hill. If nothing disturbed it,

it might stay there for a long while. As long as the ball remains on top of the hill, or

4 Whcn a system is metastable its state remains stationary, but any slight perturbation may push It

away from tills state.

• - S.' °

°:../ :,

2.4. Synchronizers, Metastability and Synchronisation Failure 9

completion signals have slowed the original designs as much as the self-timing has

speeded them, with no significant net gain [6).

Nonetheless, the self-timed design paradigm has been influential in many different -.--

ways, as exemplified by Petri nets [3], data-flow machines [18, 22], variable-speed adders,

self-timed modules 1411, Muller's C-element-based modules, Seitz's self-timed modules -'

[39], and Pechoucek's "fundamental solutions" [371, to name just a few. In all of these, . - .

the common feature is the ability to generate completion signals and to use these signals

appropriately to control the sequencing of computations that take an amount of time

that may not be known in advance.

Self-timed structures are quite diverse, but for our purposes, they can be classified ". -

along one important dimension, whose relevance will become apparent later: those .7.

schemes that use arbiters3 or equivalent mechanisms, and those that don't. From the

list in the previous paragraph, for example, Petri nets can represent machines that do

have arbiters, and data-flow machines need arbitration mechanisms, but Seitz's pipeline

self-timed modules (SPMs) don't use them.

§2.4 Synchronizers, Metastability and Synchronization Failure

Those self-timed machines that use arbiters, synchronizers, or other equivalent

mechanisms race a substantially different problem from the ones that don't. Similar

asynchronous interactions also occur when synchronous components sample asynchronous .

data or require an arbitration to get access to some resource. In this section, we will

discuss what the problem is and the impact it has on machine organization.

When two synchronous systems are run fromt independent clocks and have to

communicate with each other, they need to take special care in handling tie signals 0

received from each other. The reason is that since they do not share a common

time reference, the receiver may sample what lie sender sent precisely when the

corresponding signal is changing. The receiver may get an intermediate value, which

is digitally undefined. If it were to use that value without further ado, different

components of the receiver might make inconsistent digital interpretations of the value,

with the possible consequent failure of the receiver (e.g., it might advance a buffer

3 An arbiter is a device capable or receiving requests for a unique resource, rrom multiple sources, and
aaligning the resource in the order in which the requests arrived. Most important, it can tell who
arrived first.

. .-.-.. . .

S 2.3. Self-Timed Machines

example, it is possible to avoid some kinds of hazards 2 if we can guarantee that no

more than one input can change asynchronously before the system has settled [45], or

if several may change, if they satisfy minimum delay constraints [45, 21] between each.-." -

signal change. In general, a machine connected to several other asynchronous machines

must not require such guarantees because it cannot know in advance the times at which

other machines may attempt to interact with it. .

In general, because the restrictions we pointed above cannot be satislied in practice,

these classical methods are not applicable to the design of globally-asynchronous com-

puters. Instead, designs have tended mostly to remain synchronous, using "synchronizers" . -.

at system boundaries, or have gone in the "self-timed" direction. We will discuss these. .

two approaches in the following sections.

§2.3 Self-Timed Machines

The literature on self-timed machines abounds with interesting concepts. It was

recognized very early that it might be advantageous to have each component compute

at its own speed and emit a completion signal on finishing whatever task it was assigned. - "

Any component carrying out some task needs some time to complete it, and obviously. -:

we cannot ask for the results before this time has elapsed. in synchronous systems, a -. . . -

worst-case assumption is made about how long it might take to complete the task, and .-- ..

this time is measured by a centralized clock.

In contrast, in a self-timed structure, the component that performs the task also

indicates when it has finished, thereby allowing other components to use the results

right away, instead of always waiting for the worst-case time. The advanltage is obvious:

self-timed machines can run at a speed related to the average case, instead of the worst

case. The disadvantage is that each component must have extra circuitry (a) to compute

its own completion signals, and (b) to check for completion of requests it may make

to other components. These completion signals, which are exchanged to control the

sequencing of operations, arc called handshaking signals.

Most machines that have been designed with this approach have failed to realize -

the expected improvements, because the circuits required to compute and handle the

2 When a signal that should maintain a constant value glitches briefly, we say there is a "static hazard",

and when a signal that should have rnade a single transition bounces before settling to its tiew value,

we say there is a "dynamic hazard" [451.

2.2. Classical Approaches to Asynchronous Design7

phil

Figu.re 1. Making a valid signal stable

If all the inputs to a combinational logic block are s-jo1 , the outputs are also s-joj .

If some (or all) the inputs are v-jot and the rest of the inputs are s-VI1 the outputs are ~A

v-jot . To generate a q-joi signal, AND a s-Sot signal and ipot.

v-phil s-phil . .J\v-phil
s-hl .{~,-v-phil phlq-phil phl~vq-phl

Figusre 2. Propagation of Signal Types

§2.2 Classical Approaches to Asynchronous Design

It would be very nice if we could stay within Ltec relatively siniplc world or synch-

ronous sysLTcvns, but as wc saw in Ltec introduction, we cannot run dlisks, conmiunication

lines, tcriminals, controllers, etc., all rroin the saiiie clock. lm nse ne we mnust -

analyze how coinpoilents talk to each othecr when they are mnutually asynchronous

(i:e, when they have independent clocks).F 4

Classical asynchronous design focuses on extending the miethods that are used --

for synchronous mnachincs to the asynchronous domnain. The results in this fkid are

abundant and very interesting, and a thorough coverage can be found in Unger's [45).

Nonetheless, they generally focus on design problemns at a very low level of integration,

and put severe restrictions on the kind of asynchronous signals they handle. For- -..

. .-.'--.". -6 . .'

6 2.1. A Synchronous Design Methodology

2.1.1 Basic Strict Types

Assume that there is a two-phase (o1 and o2), non-overlapping clock, as is common

in MOS designs [34]. For brevity, the definitions of the signal types refer just to ipo,-

but of course the same holds for So2. All signal types are referred to the rising and

falling edges of the clock phases (io, W', o and V4).1 The types of interest are:

e A signal X is valido, (Xvo 1) if it settles in a bounded period after po4and remains

unchanged at least until VT. If we increased the length of the phase i, X's settling

would stay anchored to it

S* A signal Y is stableio1 (Ysoj) if it settles in a bounded period after oland

remains unchanged at least until the next P. If we increased the length of the

io -o1 gap, Y's settling would remain anchored to i

o A signal Z is qualificdo 1 (Zq o) if it can only be asserted no later than a bounded

period around i1oand is cleared no later than a bounded period around o,(e.g., it _74

can be generated ANDing a stableio, signal with o,, in which case it will follow

the rising and falling edges of the clock with a delay bounded by the time it takes

to AND the clock and the stable signal).

e A signal W is valid-qualifiedoa (Wvqo1) if it is generated by ANDing a validio signal L

with V, . Wvqio, is like Wqo 1, with the exception that it may glitch during a ,:

bounded period around V11.

Note that these relations must hold independent of the length of clock phases.

-" "..- - . .

2.1.2 Some Properties and Composition Rules -

Let a o -MC be a memory element that receives its input during P . Its input

must be at least of type v-o, (it can be s-i,), and the sampling control signal must be at

least q-Vi (it can be po). A ion -Me will have a s-io2 output. A dynamic nMOS memory . 2

element appears in the figure below, where a pass transistor samples a v-o 1 signal and

loads a capacitive storage node during W . The output of the inverter will be 8-V,.

and will change again only with the rising edge of the following i. . .-- * ,

simplified way. .

ob ,o..od r.11 rs hc aiy et

•. Lo.,

- .-. ,-. .- -- , ".

:..? ...- .,.

Chapter 2

Background and Previous Work .

..- ... ~.. ... %.,

This chapter provides the necessary background for understanding the issues '.,''

discussed in this dissertation, making it more self-contained. It is assumed that the

reader already has some familiarity with digital system design. -

There have been numerous approaches to the design of digital machines, each "
focusing on some particular problem. We will start by discussing a synchronous clocking -

discipline that we can use for our locally-synchronous components. Then we will

see why the classical approach to asynchronous design is not useful for our globally-

asynchronous structures. Subsequently we will discuss issues relevant to interaction ".

between machines that do not share a common clock; these issues are self-timing, " "-" "

synchronization failure, and some asynchronous communication protocols. The chapter
concludes with a review or some proposals for the use of stretchable clocks for the

implementation of self-timed machines, which avoid synchronization failures.

§2.1 A Synchronous Design Methodology

The problems of synchronous design arc, in general, well understood. For our

locally-synchronous modules, it is convenient to borrow the structure and notation
of some synchronous discipline. We will use the strict two-phase clocking discipline --

of Noice [361 (although we could as easily use any other reasonable scheme) because

although we will focus more on the global non-synchronous interaction, we will still

need a consistent notation to describe the interactions between the non-synchronous

machinery and the synchronous comnponents, and among the synchronous components

themselves.

{i "

. , . - : . , . .. , . . . , , - :, , :.: .: .',:

4 1.1. Scope and Outline

to compile them into circuits.

We chose to put all the detours, no matter how interesting or subtle, in appendices, -

so that the core of the ideas is not "hidden by the trees". Generally, the appendices

(!evelop some central ideas in greater depth, but are not necessary to get the overall

picture or to understand the main body of the thesis.

- % .. -

1 .. " .
•

-

1.1. Scope and Outline

* . Lack of a unified general approach, which is evident in bugs in some published

circuits 148] and in some interesting (but hard to modify) locally-synchronous, [0

globally-asynchronous machines [39].

* Area inefficiency in completely self-timed approaches, with the consequent speed

penalties. --

• Overly restrictive design disciplines that require some kind of functional module t O

for any operation, no matter how simple it may be.

Therefore, an attempt is made here to solve at least part of those problems by develop-

ing a practical, unifying theory that is flexible and general, allowing a more systematic

design of reliable high-performance machines.

§1.1 Scope and Outline

This thesis presents a unifying theory that leads to a better understanding of pos-

sibilities and limitations in the design of digital machines. The core of the thesis is a

new set of general organizations for reliable, high- performance, globally- asynchronous,

locally-synch ronous machines, and methods for analysis and synthesis of these machines.

A probabilistic model and calculations for speed and reliability compare them with

conventional machines. New algorithms allow us to transform high-level speciflications

of these machines into area-efficient and time-elficient circuits that can never have

metastability problems.

. Chapter 2 provides background on digital design, on synchronization and metas-

tability, on self-timed machines, on asynchronous cot~mmunication protocols, and on

machines with stretchable clocks.

Chapter 3 explores digital communications, discusses the reasons for the structures

we will study, lays down the basic assumptions, introduces the "value-safety" and
"time-safety" concepts, and develops a new characterization for computing machines

that opens two basic paths that are explored in Chapters 4 and 5.

Chapter 4 explores the class of "unsynchronous" machines, explains how they are

constructed and why they attain value-safety. Then, it analyzes their performance and

reliability, and compares it with that of conventional machines. "'-..-.

Chapter 5 describes the class of "escapement" machines, discusses their perfor- -

mance, analyzes optimizations, and presents algorithms to verify their value-safety and

S?!::~ii!:

...

***" "*"*

•~~7 .-. -. _.

-, a 1. Introduction

Since everything points in the direction of breaking synchronous systems into

smaller systems interacting asynchronously, a natur,1 question arises: Why not break

them all the way down to their smallest components? The answer can be found

by examining communication costs. Sub-components of a synchronous systems can

communicate in simple ways by agreeing on the time windows in which one will send

some datum to the other, but if these sub-components do not share a common clock,

they have to resort to more complex (in time and area) mechanisms to transfer the same

datum. Ultimately, if we partitioned a system all the way down to the simplest possible

sub-components (all interacting asynchronously with each other), the communication

mechanisms between elements would dominate the space and time used for the actual

-'. computation. .

As a consequence of these two opposing factors, there is an optimum middle ground

* "for the structure of a system where we do not have a monolithic synchronous system,

but also we do not partition the system all the way down into its simplest components.

The synthesis and analysis of such globally-asynchronous, locally-synchronous systems

is the focus of this thesis. The particular aggregation level at which we will stop the

-" partitioning is technology and application dependent. Nonetheless, to give a feeling for

* the kind of structures we will study, we can give some loose bounds: assume that the

synchronous components may range in size from about a thousand transistors (possible

.- a part of a chip) up to what might fit in a rack.

With the advance of device technologies, faster and bigger computers are being
built, and the costs are shifting from the active elements to the communication lines.

*= Consequently, researchers have attempted to partition systems in ways that allow each

* component to run at speeds limited only by their internal structure, and not by the
overall system size [45, 39]. Measured by their acceptance in industry, most of these

• -attempts have failed, and only part of this failure can be attributed to industry's inertia

or to the "not invented here" syndrome.

We will not attempt a critical survey here, but to understand some of the reasons

behind prevalent design practices, it is worth citing a few problefis in previous ap-

proaches:

9 Overly restrictive asynchronous design methods, in which the restrictions that

are put on how or how many signals may change makes the design of complex

systems virtually impossible and extremely cumbersome [45, 21].

•A .. *,A **~ . . ., * ** , A*A**

.- A ---.-
• :, -.. ,........-..... ,... ,.,...... ,,,.,.-" '

- 16 2.7. Machines with Stretchable Clocks

* stare at the circuit and draw timing diagrams. A careful delay analysis is required to

implement this machine.

These machines with stretchable clocks implement Pechoucek's two "fundamental

solutions" [371, and can be looked upon as two points in a design space that we will

explore in depth in Chapters 4 andl 5.

Machine Organization

. °-o .A '

In the introduction we discussed the reasons for our focus in machines that have

*a global ly- asynch ronous, locally synchronous, (GA-LS) structure. Here we discuss

* two particular kinds of reliability, value-safety and time-safety. Then we propose a

*taxonomy of machines that is based mainly on how the completion of activities is

hand lcd. The taxonomy provides a framework for the analysis of GA-TS architectures,

which is useful for understanding and designing high- per formance GA-LS machines.

* ~We saw in the introduction that there are strong reasons for partitioning high .

* perrormancc machines into synchronous clusters interacting asynchronously with each . *N

* other. Tile appropriate size for each synchronous cluster is 1 chnology-dcpendcnt and

problcm-dependcnt, and should be determnined by tile architect of tile machine for.

each specific case. In the introduction we proposed reasonable tipper and lower limits,

- but our analysis is independent of granularity and details of system partitioning. We

* ~simply provide ways to make these machines communicate quickly and reliably with.-..-

each other.o

* lit this Chapter we (](!line the kind or iynchronization problems that we must face

whe(n dJesigning htardware, to guarantee that Lte niext higher abstraction level [411 will

operate with Boolean values defined over a, discretized time. Note that traditional

* software synchronization problems [27] assume a comletely digit~ad universe and a

* discretized time, which is inadequate for hardware, and .their solutions do not extend

M hto hardware synchronization.

We analyze how digital maci.hines handlec completion signals, an(I (evelol)a taxonomy

based on the wisuniptions the designer makes about these completion signals. We

L t-

18 3.1. Completion Handling
o'.. . "o .°

present the value-safety and time-safety concepts, and two new theorems that focus

our research on GA-LS machines on 2 classes of GA machines. These classes explored

in Chapters 4 and 5. . -

§3.1 Completion Handling 0

What follows describes the hardware design problem that we consider and the

basic assumptions we make. We will use this conceptual framework together with the

value-safety and time-safety concepts to analyze the ways in which the asynchronous

interactions can take place.

3.1.1 Computation Model .

We want a general model applicable to any kind of machine, independent of its

particular architecture. Clearly we should be satisfied to be able to compute anything .

that can be computed with a Turing Machine [31]. Partial recursive functions can

compute anything that is Turing computable. We choose this formalism because it is

rich enough to compute anything our hardware can compute (without any necessary

similarity with the actual hardware structure), and allows us to reach general conclu-

sions without being distracted by the details or how computation, memory, and timing

arc related in the hardware implementation.

Assume we model our computations with such functions, mapping elements X

from an alphabet E = {O, 1, v) onto itself, where 0 and 1 are boolcan values and v

is a value that is digitally undefined. Since our concern is for real machines, not only

logical constructs, we must specify how variables are represented physically. Assume

that variables arc represented by some continuous physical parameter V. Furthermore,

assume that this parameter is a function of continuous time t. It is necessary to have

a physically realizable mapping from the variables representation onto our computing .

alphabet, and there are many obvious possibilities for this (e.g., V > Vhigh mi : 1,

V K~ Vo, ,,,ax -+ 0 and Vow ,max < V <_ Vhigh m -in %),

For the sake of design convenience, assume that our computing machine is broken

into a number of runctions fi(Y), and that these functions take recursively or iteratively .

results from previous invocations. Assume that any such invocation takes a time 6 > 0.

6 depends primarily on the function fA that we are computing, but may also depend

- . . - . . -.--..
* °

;P w -. '

3.1.2 Uses of Completion Knowledge 19

on the values of the arguments, or even on the state of the whole machine. This time,

which we call the completion time, may or may not be known to some given precision, -

and may or may not be bounded. If we attempt to use the result of a computation

before it is completed, we assume that the result may not be defined, and we assign

it the conventional value of v [311. Note that although by using this model we do " -

not need to talk about memory and timing in the sense used by clocking disciplines .

[36], we have introduced timing in a restricted sense when we partitioned the machine

into many functions, each of which produces results used at a latter time by other

functions.

3.1.2 Uses of Completion Knowledge

Assume that we are interested only in final results defined over the sub-alphabet

D = {O, 1). The basic problem is that even if we supply digitally defined inputs, we

* need to know when each computation has been completed so as to proceed with the

next one. Thc way in which we are going to obtain completion information opens a

number of design alternatives that depend on what we know about the delays and what

use we want to make of this knowledge: I

* (a) If we know the values of all delays, we may choose to define intervals of time over

- which we guarantee that the inputs to succeeding functions become digitally defined.

* Using this information together with the structure of the machine we can calculate the

timies at which the computations will be comnpleted, and control the flow of intermecdiate

* results through the machine. Note that this knowledge of the delays allows for the

- tightest timing, but a timing scheme that took advantage of all this information could

* be very complex.

* (b) If the delays are not precisely known, but wc have bounds on the time it may

*take to compute each function, we may choose to give every comnputation the time

* needed in the worst case by the slowest function. Clearly, a synchronous machine can

provide this kind of control, and its clock implicitly generates comp~letion signals.

- (c) We may not have any bounds on the delays, but still need to provide completion

* signals that indicate when Lte inputs to functions are available (6]. This last case divides

into several sub-.alternatives:

.' -. . .

(c.0) Each function block may provide an explicit output signal indicating when its

•- * °. . ,

. ,..... .

ownscomptatneasren copereted. otyially euts ind ofvie hens u-apaers:"- '

/) ---- {0,1}.The asi prble is hateve ifwe sppl diitaly dfind iput, we . . (. '2.

* o-O- a -o .. - -

so 3.2. Value-Safety and Time-Safety

in self-timed machines.-

(c.2) We may have no bounds on the delays, nor a completion signal. The conven-

tional approach to this problem is to assume a special function (a synchronizer), that

can take a digitally undefined value and usually produce a digitally defined value in
a bounded amount of time. For digitally defined values it is an identity function;

otherwise it assigns randomly a 0 or a 1, or with a much smaller probability a v. k- .

The structure can be designed so that the results are not affected by the occasional -. '--

random digital (0 or 1) assignments (by using appropriate redundant information in rI. " ..°. o'. '_-

the communications protocols), and we will get mostly correct digital results. This ap- . " :

proach puts this structure within the class of those synchronous machines that handle O

asynchronous inputs with conventional synchronizers.

(c.3) Under the same conditions as in c.2, we may use another special function

that is also a synchronizer, but is different from the previous one in that instead

of probabilistically assuming the completion of the synchronization, it generates an

explicit completion signal [43, 1]. This approach puts this structure within the class of

self-timed machines.

None of these organizations dominates the others in every aspect and application.
This being the case, the big question is: How and when can we combine these organiza-

tions, what are the limitations of such hybrids, what structures are appropriate to

implement them, how can we guarantee their correct operation, and what advantages

can we get from them? Before answering this question, we will focus it more by describ-

ing fundamental problems in asynchronous communication. We constrain the possible 9'.-. . .-. -

answers by introducing two new theorems and a taxonomy that will guide our answers. . -. -.

§3.2 Value-Safety and Timne-Safety "

It has been shown under very general conditions that. any sequential synchronous

system subject to asynchronous inputs is liable to enter mctastablc states 1321, which

may lead to unavoidable system failure. It is important to note that this is not only

an interesting theoretical problem, but also a very practical concern, and failures in
design or interfaces, as well as experimental results, attest to this fact [17, 47, 12, 421.

More generally, we characterize the problem formally by stating the following theorem

(which is proved in an appendix): " " O"'-

DRV Theorem: It is impossible to make a Boolean decision about a continuous

-J. !-,'* .

3.3. A Taxonomy Based On Completion 1

value with a finite precision instrument in a bounded amount of time.

This theorem suggests classifying a computing machine along 2 dimensions: (a) 7

whether it always manages to make Boolean decisions, and (b) whether it takes bounded

amounts of time to produce its results. We call the machines that can guarantee their -

results to be digitally defined value-safe, and the machines that can guarantee the .. -.

boundedness of their completion time time-safe.

§3.3 A Taxonomy Based On Completion

The notion of completion and how we handle it is central to our approach. There

are two key features that we may or may not know (or choose to use) about a completion

signal. (a) We may not know when it happens in relation to our local notion of time.

For example, for signals internal to a synchronous machine, we know when they may

change respect to the local clock, but we cannot know at what time in relation to our

clock an interrupt may come. (b) We may not know what happens at completion. For

example, for an asynchronous request following a 2-cycle communication protocol we

know in advance that when it arrives, its corresponding line will become asserted and

will not be de-asserted until it is acknowledged. When sampling a signal that comes

from an unclocked A/D converter, we don't know in advance what value it will have at

the completion of a sampling interval nor when it will change again. These possibilities

give rise to four kinds of machines, shown in the figure below.

What

no yes

no Ksynchronous,, I Esaenn

(0.0) -I 0 -1)

When-"'""-'-"

Synchronous I Uninteresting

(1.0) (1)

Figure 5. A Taxonomy Mused on Comnpletion

Class (1,0) contains all globally synchronous machines. Class (0,0) contains among

-O . " '. -

. p °.-s...-°°

7• o. o: -:.

2* 3.4. Summary

others the machines considered by asynchronous design in [45, 211, arbiters (9, 391

and synchronizers [9, 42, 32]. Class (1,1) is clearly uninteresting, since the completion

signal carries no information (we know in advance both when will it arrive and what . '.

its value will be). Class (0,1) contains some kinds of self-timed machines, but not those

containing arbiters [39], which are partially in class (0,0). We are going to focus on

value-safe machines of class (0,0) and class (0,1), which we call unsynchronous and

escapement machines respectively.

Note that this taxonomy does not establish classes along traditional synchro-

nous/asynchronous or hetero-timed/self-timed lines. No existing terms exactly match

the taxonomy, which addresses more fundamental aspects of communication than

traditional taxonomies. Moreover, words like "asynchronous" and "self-timed" have

already acquired many meanings. 1

At this point we introduce a corollary of the Uncertainty Theorem that further

constrains our solutions (a formal proof of this new theorem appears in the appendices):

No unsynchronous system can be both value and time safe. That is, if it knows with

certainty the values with which it operates, then it cannot know with certainty the time.

Clearly an unsynchronous machine that has both properties is precluded by the

theorem above, but machines that satisfy one or the other property at least are not -

precluded. We are interested in those machines that are value-safe, or that are at

least extremely value and time reliable (i.e., mostly safe, but failing with a known low

probability).

The importance of these distinctions and of studying each class separately will

become apparent later, when we propose a practical design methodology for high-

performance machines in the unsynchronous and escapement classes. Currently, there :- "2

are few proposals and fewer designs in each of these two classes [37, 39, 43], and they

are clearly outside the technological mainstream, in part due to performance and design J S

problems that we attempt to solve.

"., . - .. '

§3.4 Summary

We have analyzed some problems related to the communication of digital infor-

'For example, asynchronous dcign, referring to designs without a clock, asynchronous processes in

synchronous remtchnines 127], a..syhicronous signals entering a synchronous systerm, a.ynchronous rncant

as self-timed in (6), secl-tirned in the restricted sense of (391 and self-timed in general, etc.

..

* . . ~ ., .. -. . . .," * S S.- -S

3.4. Summary 23

mation and presented a taxonomy for digital machines. This taxonomy makes ref-

erence to the way in which a system exchanges information. In particular, if such .

exchanges are asynchronous, we can have different amounts of information about the

asynchronous signals. Unsynchronous machines are value-safe machines that don't

know in advance anything about the values of the signals they receive. Escapement

machines are value-safe machines that know in advance the values of the asynchronous

signals they receive, and also know that these signals will not change until acknowl-

edged. The Uncertainty Theorem precludes unsynchronous machines that are both

value-safe (do not get confused with the values with which they operate) and time-safe .

(know time with a bounded error), and still have arbitrary asynchronous inputs.

The next two chapters deal with unsynchronous and escapement machines. We

will use the framework presented in this Chapter to develop and analyze different

organizations for value-safe GA-LS machines.

, .. P. V

:..-'..:.'.:.:

- .,. * , .. .

Chapter A

Unsynchronous Systems
* -' -. .'

In the previous chapter we defined unsyncronous systems as value-safe, globally-

asynchronous, local ly-synchronous (GA-LS) machines that interact at the global level -

by exchanging asynchronous signals whose values the recipient does not know in ad-

vance, and whose transitions may occur at arbitrary times in relation to the recipient's

clock. We study unsynchronous machines before escapement machines because they

are structurally simpler and because the properties of the asynchronous signals they

exchange are simpler.

This chapter starts by discussing how to design unsynchronous, GA-LS, value-safe -

machines. To make the discussion clear, we introduce a pair of' building blocks: a

stretchable clock and a synchroizcr withi a mietastability detector. We describe them

functionally here; detailed circuits appear in the appendices. These blocks arc used to .~.-

build unsynchronous machines, which are proved to be value-safe. Finally, we develop

models to calculate the performance of unsynchronous machines.

§4.1 The Unsynchronotis Mecha[ism

Unsynchronous machines must be able to deal withi external signals that may make

transitions at arbitrary times in relation to the local clock. Such asynchronous signals

do not need to satisfy aity particular protocol, and we will call thwn une~,nchronized

signals. In contrast, asynchronous signals also include those about which we may know

in advance in which direction they will inake a transition. We (lenoLe an unsynchronized0

signal X as Xn.u An unsynchronized signal may cliange value at arbitrary titnes, in

4.2. Building Blocks for Value-Safe Circuits 25

arbitrary directions. Such a signal may have a digitally undefined value at any time.

Therefore, if we sample it without any modification (e.g., with a multistable latch that p -
simply samples a value and holds it, but does not modify it), and then attempt to use

it, sometimes we will use a value that is digitally undefined, making the system not

value-safe.

Note that some higher level protocol may require that X ., not be withdrawn 6 .

until some other event happens. Such restrictions are not necessary to guarantee value

safety for an unsynchronous machine.

To capture an unsynchronized signal as a digitally defined value requires a synchronizer;

i.e., a regenerative bistable circuit that will be stable only for digitally defined values.

Unfortunately, as we saw in Chapter 2, such a device will yield digitally undefined values

with non-zero probability when given a bounded amount of time for synchronization,

resulting in different digital components of the receiving machine making inconsistent

interpretations of the value, possibly leading to failure of the system. Therefore, we .

must explore alternatives. Since what we want are value-safe GA-LS machines, we are

forced to allow an unbounded amount of time for the synchronization and to use a

synchronizer that will indicate explicitly when it has completed the synchronization, as

suggested by Pechoucek [37] and by Stucki and Cox [43]. Therefore, we need a circuit

that will be able to detect metastability and also a means for waiting for the completion

of the synchronization without reintroducing a new synchronization problem. In the

next section we provide a functional description of such circuits. " "

§4.2 Building Blocks for Value-Safe Circuits

Before we talk about the notation and methodology for designing unsynchronous

systenis, we will describe functionAly some simple but userul basic blocks: a variable-

speed, 2-phase, sLoppable clock and a synchronizer with a metastability detector.

Knowing the function of the blocks makes it much simpler to explain the unsynchronous

machines, even if afterwards one does not use precisely these basic blocks. More

detailed information, as well as an nMOS implementation, can he found in the appen-

dices. Note that once the blocks are designed and their tinting verified, we can provide

a higher-level functional description of the corresponding circuits, which need not refer

to any internal or external delays.

, -

26 4.2. Building Blocks for Value-Safe Circuits

4.2.1 A Variable-Speed, 2-phase, Stoppable Clock

Designs for clocks that will stretch a phase for unbounded periods of time have

been proposed by Seitz [39]. The stretching signal is asserted synchronously with a

phase, and de-asserted an arbitrary period of time later. Next we provide a functional

abstraction for one particular design.

The clock generates two non-overlapping phases (pi and o2), and has in addition

two inputs (stretch, and stretch.,) for stretching the V 1 and o2 phases respectively.

In the absence of stretching, phases have a length determined by an external analog

control.

stretch-phi2 -a.

CLOCK 4 speed-

stretch-phil

phil phi2

Figure 6. A Variable-Speed, Stoppable Clock " "

The stretch lines should be asserted synchronously with the phases of the clock

and cleared asynchronously by some other process. Stretch signals must rise within a

bounded period around the rising edge of the phase they will stretch (e.g., a stretchw6 may

rise as a q-,pt signal or as a vq-po signal). The falling edge or a stretch signal, which -"

indicates that there is no longer a need for stretching the phase, has no restrictions as

to when it may come.
1"

As long as the corresponding stretch signal is asserted, the corresponding phase

will not terminate. A stretch signal does not change the length of ensuing gaps and

phases; it just displaces them to the right on tie time axis. A stretch signal that falls

before the phase would have normally ended produces no stretching.

4.2.2 A Synchronizer with a Metastability Detector

The synchronizer shown in the next figure generates an explicit completion signal -

when it has finished the synchronization. It operates under the same principles as Seitx

.......... ,

I S

i.3. Structures for Unsynchronous Systems 27

Lrbiter (39, 401. It receives two inputs: asynchronous data upon which there are no

iming restrictions whatsoever, and a q-VI sampling signal. It produces two outputs:

.synchronized data signal which is s-pl and a stretch-Po2 signal. The data becomes '.,-.

Lvailablc on the clock cycle following the one in which it is sampled.

Sample (q-phil)

Synchronized Output (s-phil)

Asynchronous Input Synchronizer
Stretch Output

Figure 7. A Synchronizer with a Metastability Detector -7

The stretch output may glitch harmlessly during p, (we will never use it during

Pt), while a value is being sampled. The stretch signal may stay high during jo2 as

long as the synchronization is not complete yet. The stretch signal is guaranteed not

to rise during P2: it can be high from before jP2, and fall before or after (p2, but once

it falls, it stays low throughout o2 and up to the next Vo1. The stretch-(o2 output from

the synchronizer must be able to stretch the V2 phase for an unbounded period of time - -

to guarantee that the synchronized data be digitally-defined [37, 6, 39] at the end of

the synchronization period. -

-- .

§4.3 Structures for Unsynchronous Systems .

The general structure or unsynclronous systems is a global ensemble or locally syn-

chronous tmach ines (IMs), interacting ;..yntclronously with each other through synlhronizers

that provide completion information. Since the machines are locally synchronous, a

possible way of giving an unbounded syuchronization time is to have the machine latch

a value in one clock cycle, and use it in the following cycle, with the following cycle

"arriving" only when the received signal becomes stable, as shown in the next figure.

Connecting the output or the metastability detector to the "stretch" control or the

clock assures that when the purely synchronous part of the machine attempts to use a S

value, by construction, it must be digitally defined.

*.-- a...-. -..-... ,....-..........
IU

4.3. Structures for Unsynchronousa Systems

Pun roiely Sychonu Macn

Figure 8. Block Diagram of an Unsynchronous Structure

sampling clock

received signal

signal seen internally

-sirthin~

Figure 9. Waiting by Stretching a Clock Phase

It is important to note that there are theorems that preclude the design of un--

synchronous machines that are value-safe and time-safe. It is tempting to "improve"

the structures we propoe in "harmless" ways sowas to avoid the possibility oh'stretching

the clock for unfbounded periodis. Nonectheless, such rnodi icafioris in variably involve

subtle bugs, since suchl machines, unfortunately, are as iinpossibIc as perpetual motion

machines. ~

Although there are no theorems that preclude the valiic-safety or' unsynchronous

machines, nothing says that dropping the time-sal'cty requiremncnt actually produces

value-safety. Therefore, it is important to show that we have riot somehow hidden

a synchronization problem in the ruetastability dectection or int thc stretchable clock.

Next is a constructive proof that unsynchronoils mnachines arc value-sare.

tructures for Unsynchronous Systems 29

a) A pulse generator (PG): The PG emits a single pulse of fixed duration when

put falls. The output is produced by delaying the input and inhibiting the output 0

the input is high, as shown in the next figure:

input
output

Figure 10. A single pulse generator

'b) A clock module (CM): A CM produces a single output which is the OR of a

h input signal and the output of a pulse generator (PG), as shown in the next

i.- Slii.('--

inputP. +.put ~ ~~~~otput . -i:---'._

stretch phase

Figure 11. A clock module

(c) A stretchable clock: Put 2 CMs in a ring, feeding the output of each one to the_ .

L of the other, with an intervening delay in between each CM. If the stretch lines

6in low, the output of each module will trigger the other one, and their outputs

be a sequence or non-overlapping alternating pulses (vi and P2). To start the

ation, pulse either of the stretch lines.

C.M. elyC.M. delay

str-phiI phiI str-phi2 phi2

Figure 12. A stretchable clock -

L it

.. . .~ ~~

- --_Wr V .. ;r- r r . - . . _ . :- . :,- -

p 6

[he Unsynchronous Limiting Speed 43

Ld that at the required clock rate, its MTBF is just 0.5 sec. If we use an unsyn-

ous machine instead, we know that the MTBF will climb to oo. The question P .

such a huge reliability increase, what performance loss is acceptable? Using the

ion above and a typical value of ,,- 500MhZ for 4y nMOS, L 10-";%! Thus,

[chronous machines can work with absolute reliability and without a speed loss

iditions so severe as to render synchronous designs virtually useless.

The Unsynchronous Limiting Speed

;ince unsynchronous machines cannot suffer synchronization failures, it is reason-

;o ask how they respond if we crank up the clock. The propagation delays within

urely synchronous part of a given LM set a limit to the frequency of the clock.

ver, synchronization effects impose another limit. Since increasing the nominal p

ency increases the number of stretched cycles, there is a limit to the average speed

ich the system will run. This limit is shown qualitatively in the figure below, and

ill now derive it quantitatively.

tc

Limiting Speed

Unsynchronous

fn

Figure 19. Limit Speed for Unsynchronous Systems

.,ct d be thc duty cycle of the clock, f,, the base rate of the stretchable clock that

to the system, and f.the actual frequency at which the systemT is running, taking

tccount the stretching. Then:

. .-.- . °.. . .-. .

.

.

* 4.6. Quantitative Evaluation of Unsynchronous Machines

fC

/

Loss

USynchronous

fn

Figure 18. Speed Loss for Unsynchronous Systems

Next we derive the function L(f,,) for the unsynchronous machine. From equation

=1- I- (4.6)
1+ !>!eX~ntl +

Note that one part of this equation is identical to the MTBF.,,, of a synchronous

mnachine being clocked at the samei frequency f,,so:

I +XmMBFv (4.7)

Since I/X,,, is the cxpccted time for a flip-flop to exit from a metastable state,

MTDF. 1 > I/Xtir, S0 vinX, 1. Therefore,

Lua MTJBf"svn --- (4.8)

This equation is very interesting because it links the reliability of a synchronous machine

with the throughput or an unsynchronous one that performs the same task, both

clocking at the same speed, and being perturbed asynch~ronously at the same rate.

To understand the implications or this result, assume that We Were to perrormn time 0

Following experiment. We build a synchronous machine in 41t nMOS technology, but

6 Speed Loss 41

D(t)

Tout Tmax

Figure 17. Bounded vs Unbounded MTBF

Therefore, the probability of having the UNSY machine fail to respond quickly

ough may be smaller than the probability of the UNSYB machine having a syn-

ronization failure. Since bounded stretching requires more complicated circuits, we .. *?.-

D better off with a simple unsynchronous machine than with the hybrid UNSYB ...-

ichine, whose reliability is not clearly superior.

2.

8.6 Speed Loss _

Thc throughput equation (4.4) provides a measure of the speed or an unsyn-

ronous machine. Define the loss of throughput as L = I - T, which is zero for

nchronous systems. If we plot fc, the average frequency of the clock, as a function of

thc nominal frequency of the clock, we get a straight line at 450 for a synchronous

item. For an unsynchronous one, the faster we drive it, the high~er tile percentage

cycles that will be stretched, and the higher the througl[puL loss. The qualitative

havior is shown in the figure below.

_7~ .oo 71-' 7-

40 4.6. Quantitative Evaluation of Unsynchronous Machines

With a timer, the UNSYB is no longer value-safe because the timer's output is

unsynchronized with respect to the disappearance of metastability in the synchronizer. 0

This race is dangerous: if the synchronizer remains metastablc throughout the full time-

out period, then begins to resolve towards True precisely when the timeout mechanism

is trying to steer the result to a logically defined value (False), the system may fail.

Note that if the synchronizer resolves before this critical window, there is no problem.

If it attempts to remain metastable longer, the value is cleared cleanly by the timeout

mechanism. Only if it tries to resolve towards True in a very narrow window W exactly

after the full timeout period will there be a synchronization failure.

.I.- * - ..=

4.6.5.2 Evaluation of Unsynchronous Machines with Bounded Stretching

We compare UNSYBs with UNSYs and with conventional synchronous machines

(SYN). The comparison with SYNs is straightforward. Suppose that a SYN running at

a clock speed f, samples a datum in each clock cycle and pipelines its synchronizations

through k stages to improve reliability. Suppose that the UNSYB also runs at fc, but

has no pipelining of synchronizations, and that T0,, = qfc. By making q - k big

enough, say 20 clock cycles, the UNSYB will be much more reliable than the SYN, and

simpler too, since it does not use pipelining. The disadvantage is that the UNSYB will

have a worst-case time error q times that of the SYN machine.

Although UNSYIs have advantages over SYNs, UNSYBs do not compare so favor- 0

ably with UNSYs. If we use a timeout mechanism, it must be because for the given

application it is critical to always respond within a bounded period T,,a.,; there is

no other use for the timeout. Therefore, we will say that UNSY fails (riot from syn-

chronization failure, but from not meeting other system constraints) if it does not 0 0

respond by T,,,... An UNSYB has a timer that it can set it to wake itself up early

enough to guarantee that by T,,., it has already responded.

Let a = Tm. - T. From equation (2.3), the probability that a given clock '%.".

cycle will result in a metastability event lasting at most a time t is fdWe - t. The

corresponding density function is D(t)-- XmfdWe - x"st. The failure rate for UNSYs

will be given by D(t)dt, while the failure rate for UNSYB will be proportional ."

to KT, ,-Wl2 D(t)dt. Since D(1) is a very ralpidly decreasing exponential curve, the " "

first integral can easily be smaller than the second, as can he seen in the following

figure:

....... q o* °., .

4.6.5 Unsynchronous Systems with Bounded Stretching (UNSYD) 39

advantages over them. .

4.6.5.1 A Synchronizer with a Feedback Timer

Suppose we add to a basic value-safe circuit a timeout mechanism that limits the

length of time that a synchronization may take [13]. If after a time To, the signal

being synchronized is still metastable, the timeout mechanism will attempt to force

the value being resolved into a pre-dtermined value (e.g., False): p O

S q -p h il"

X s y n c h r e r a m e t a s t a b i l i t y d e-to ao a
S Y N C

C L O C K
" " " ". -

clear sync phil phi2 ve-input pulses

meout

""TIMER init

"-: ':: '"::'

regularly l'rorn the clock. If it doesn't receive a pulse for a certain time, say several clock

periods, it produces an output pulse. This pulse is used to terminate the mietastable
state by forcing the samnpled value to zero.

From an external viewpoint, the UNSYB has similar properties to those of unsyn-

chronous machines with unbounded stretching (UNSY), except that the UNSY: is no

longer absolutely safe, and its worst case time error is bounded. In spite of no longer

having absolute reliability, it may have a good reliability. Furthermore, note that the
reliability point atc a system works need not be fixed at the time the hardware ., . -

is being designed, but can be selected by setting the length of the timeout while the

system is actually running.

..............................
n.(U SY) e cep t at he NS B i nL-...---...............

* 0

38 4.6. Quantitative Evaluation of Unuynchronous Machines

Synchronous Unsynchronous

MTBF 000

Expected

Throughput 1__

Worst Case

Throughput10

E xpectcd _

Time Error f J i4
Worst Case 00

Time Error

Figure 15. Performance and Reliability

4.6.5 Unsynchronous Systems with Bounded Stretching (UNSYB)

There are a variety of ideas that make it "virtually impossible" for the system to
fail, but still give a bounded time error. Hecre is one such system. The practical merits
of it arc not clear, but it will allow us to analyze a typical improvement. Wc will see

that such improvemnents are not worthiwhile becauise the resulting structures are more
complicated than unsynchronous inacitines, but do not have clear speed or reliability

4.6.4 A Summary of Performance and Reliability Measures 37

absolute error will be. Since whenever a machine needs to know the time it can ask

some high precision source, the error with which the machine knows the time need not

accumulate longer than a clock cycle. Therefore the expected error in the measure of

time will be given by the granularity of the clock: Eltime errorl = EjgthJik]/2.

For a fixed-clock system, the expected error is For systems with stretchable

clocks, it is: . _ ** _

I
.d We-X. °

Ej-er- f we-x"'t (4.5) .
+2X,,,

from equation (4.3). Both synchronous and unsynchronous machines can ask what I .

the time is whenever they need it, so the total error need not be bigger than the
error acquired in one clock cycle. Note that although the worst-case time error that
can accumulate in a single clock cycle is unbounded for unsynchronous machines, the %

expected time error can be made virtually as small s that of synchronous machines.

I".. o. ""°

, -:, - _.. -

4.6.4 A Summary of Performance and Reliability Measures

In the previous sections we have calculated a number of basic measures of perfor-

mance and reliability for synchronous and unsynchronous machines. The following .

table summarizes those results. Thcse results will be used to derive strong conclusions ..

about the relative merits of both kinds or machines when we discuss speed loss, limiting -

speed, and real-time applications.

- -- - - - - -.- , - - -

38 4.6. Quantitative Evaluation of Unsynchronous Machines

where Elgehiclk] is the average length of a clock, and str > t, indicates an event where

the clock stretches longer than t,.. Since the clock stretches as long as mnetastability

persists, P(atr>t.) = Pmt(t>t,). Clearly E'Igth~cjcItr<-tj since that is the
minimum clock period and no stretching beyond t,. occurs. From equation (2.3), .--.

The remaining factor we still do not know in equation (4.1) is Eigthqdkjatr>trO,

the expected length of a clock cycle when a metastability event is not resolved within

E~gthtfcikstr>trI + / tP(.tr>ti.t,->t,)dtk. .

- J-+ftx~~t~dt(4.2)

We could also arrive at equation 4.2 by noticing that if we stretch the regeneration

Period, we are stretching the whole clock cycle by the same amount. For an exponential

distribution, the residual probability 1201 is also exponentially dlistributed with the same

parameter. Since the expected value of an exponentially distributed random variable is

1/Xn, the residual probability that gets added to the normal clock length -L~ is 1/xm.

Using equation (4.2) in equation (4.1):

EIthlIlaki (T± --)fdWe"",- + -(I fdWe">-t)

1 fd~)%mt?(4.3)

This expression gives the expected frequency fc, and solving for the throughput yields:.

=T1 (4.4). -

4.6.3 Expected Time Error

Although the worst case time error can be quite high, we know that the likelihood

of such a high error is small, so it is interesting to know prccisely what thc average

VS

4.6.2 Performance: Expected Throughput_.5

that a flip-flop will remain metastable for a time t or longer is P(mett) = fdWe - >t,.

where fd is the rate of asynchronous data transitions and Xm and W are technology- -

dependent parameters. The mean time between synchronization failures for a syn-

chronous machine is MTBF,, = e't/fjdW, where fc is the clock frequency of the

machine.

With stretchable clocks, reaching the end of a clock cycle with the synchronizer still

metastable implies that the cycle stretches, but not that the system fails. Therefore,

since there are no synchronization failures, MTBF,,,,,,, 0o.

4.6.2 Performance: Expected Throughput

Unsynchronous systems are more reliable. What do they lose? Performance: some

clock cycles will be stretched, slowing the machine. Next we will s.,,)w that this loss " '

is negligible. In fact, we will show that we can compensate for this stretching, and . :

actually run faster than with conventional machines.

Performance loss comes in two forms: reduced average speed or throughput, and

unbounded response time. The bulk of this analysis deals with the average case; we

will analyze the worst case when we deal with real-time systems.

Let f,, be the nominal clock frequency and f, the actual average frequency at

which the system runs Laking into account the occasional stretching of clock cycles.

Define the normalized throughput ;w T = flfn. For a synchronous machine, T. -

1, but for an unsynchronous machine, as more cycles stretch, Tuo becomes smaller.

To calculate Tn we have to take into account that some clock cycles will not result

in metastability; some will, but will resolve within a normal clock length; and finally,

some will stretch a clock phase beyond its normal length. Solving the conditional

expectations, yields the expected clock length and the throughput.

Let F-gIhjxjy0 be the expected duration of an event z, given that a condition y is - -.

satisfied. Since the resolution time is not reduced beyond t, even if the synchronizer

settles sooner than t,, we must split the calculation of' Ea1gLhdkJ into two parts:

Egt& i iki- E= ,hd,,>,.P(A,>t,) + EWjgthclatr<tjP(l,<t,)

-)+ (4.1)

." 5.,- °

: : :'" .''i

S.. ' .?..----. ..---.
a..... " - "* .. .

-. 7- b-% 7.%ob

$4 4.6. Quantitative Evaluation of Unsynchronous Machines

to be met by unsynchronous machines, guaranteeing the value-safe operation of the

machine as a whole, given the correct operation of the LMs. In the appendices we [, .

provide such a rules system, assuming strict-two-phase LMs. The strict-two-phase

assumption is convenient, though not necessary: we can accommodate other organizing " , -
principles for the synchronous components by making minor changes in the rules. The -.-. ...

rules for designing value-safe unsynchronous systems are accordingly quite general.

§4.6 Quantitative Evaluation of Unsynchronous Machines

In previous sections we have reviewed how metastability can be a problem for

conventional synchronous systems and how unsynchronous systems can overcome this

problem. To decide whether the solution is good we will compare their performance

and reliability with that of conventional machines with non-stretchable clocks. We will

show that unsynchronous machines can be clocked faster and are much more reliable

than conventional synchronous machines.

This section presents a quantitative analysis of the tradeoffs between time and

value uncertainty. As extreme cases, we will obtain the time uncertainty of value-safe

systems and the synchronization failure rate of conventional systems. We will also

explore systems with "bounded stretching" of the clock; such systems have properties

that are midway between those of fixed-clock machines ani those of unsynchronous

machines. These models yield worst-case and average-case measures of performance 7,

and reliability. The MTBFs and a new normalized throughput measure prove that

unsynchronous machines are superior to conventional synchronous ones for many high- •

performance applications, including some real-time applications.

4.6.1 Reliability

To compare quantitatively the effects of metastability on conventional and unsyn-

chronous machines, we need reasonable models for the behavior of regenerative elements

(e.g., flip-flops) and of the communicating subsystems. 2 From Chapter 2, the probability

211amurabi discussed sonic reliability issues: "if a house rell and his owner is dead the builder I to be
dead," but he seems not to have cared about synchronisation failures.

A A..*,..* . * . *"..* ° ,

4.5. Automatic Verification 33

In the figure above, system A receives X.,,., which it samples during W t. It never

needs to stretch P02, but occasionally it may have to stretch o, . It produces an output

Z that is synchronous for A, but since B runs from an independent clock, it must go
through a synchronizer before B can use it. B uses some other external signal Y, which

is also synchronized. Since B samples both Y and Z during o ,it may have to stretch

P2 if any of 1 or B2 go metastable. Note that if only one of BI or B2 is metastable,

the other one keeps the value it has sampled safely until both are ready to go on.

Note that if an LM had for some reason sampled data both on o, and on V2s, the

corresponding clock would have had stretch inputs for both phases.

Since the unsynchronized signals have no semantics associated with them, the | .

programs running in each machine will determine their meaning. For example, Z might
be a request for some resource, and X its corresponding acknowledge, while Y might

be the output of an A/D converter, providing the temperature of an engine. In such a

case, the X/Z pair might follow some particular protocol, while clearly Y would not. It

might be that A is the master and B a slave or vice versa, or perhaps B is an arbiter and

Z/Y are requests for a resource. Note that value safety does not imply "correctness". . "'

For example, if A sends values to B much faster than B can read them, B will lose
values. Hence, appropriate protocols are necessary. In any event, the system remains

value-safe.

§4.5 Automatic Verification

We have discussed a way of building global structures that link together many

locally synchronous machines. Assuming the correct operation of the synchronous

components, it would be useful to provide guarantees about the operation of the global

unsynchronous machine as a whole.

In a sense, unsynchronous machines are fairly simple, since the purely synchronous

part of each iLM remainhs unaltered, and, assuming the correctness of each component

LM, we only need to make sure that every external unsynchronized signal is properly

synchronized. Verilication can be restricted to the interfaces between LMs because the

modularity of the lMs is preserved by the shielding synchronizers. It is only necessary

to check that the unsynchronized signals are synchronized to the appropriate clock .- :-':
phase and that all the stretch signals generated by the synchronizers are appropriately

connected to the stretch inputs o the clock.

Note that rules can provide an efficient way of stating the constraints that have

., ' '2 '.'-

5*4.4. Am Unsynchronous Machine wihwoPhase Cokn

%...,

%

X~~unsy)~ A-me 0
4.pi

Xsyn~ .,ph I
AFalse str-phi2I

False -- trpi

*~ph I I ph****

Yextunsy Synhronzer 2.me
B2I

- .

Ys.%

Figure14. ABasicValucS ynchronous yhine

T'p

./ 4 .

F Figure 14........ . A %i au-aeUsnhoosSse

- e
°

p o

4.4. An Unsynchronous Machine with Two-Phase Clocking S

§4.4 An Unsynchronous Machine with Two-Phase Clocking

For the sake of concreteness we will show next an unsynchronous machine com-

posed of several locally-synchronous machines (LMs). Each of the LMs can be a -

synchronous, strict-two-phase machine encapsulated in a shell that provides a clock

and an interface with other LMs. Here we use the clock and synchronizer that was O

described above. V.

Each LM must use the clocking signals provided by its own stretchable clock. All

* asynchronous inputs to each LM are synchronized with SMDs, and the corresponding

stretch signals are ORed together and fed to the stretch input of the local clock. In

an appendix we provide a formalization of this structure, which consists of rules that

,-. allow us to verify the value-safety of an unsynchronous machine. What follows is a -

simple example that shows how we can tie the components together.

In the unsynchronous system in the next figure, we have two LMs exchanging un- .-'.

synchronized signals. They also receive unsynchronized signals from the outside. Each

unsynchronized signal is fed to a synchronizer, which transforms it into a stablep j signal. :.-

The OR of the metastability detection lines coming out from all the synchronizers in

each LM is sent to the stretchW, input of the local stretchable clock.

N- ..

'%*.***° . *..'

PT~~ .. .

i..",.-'.'" "-" -

so 4.3. Structures for Unsynchronous Systems

If a stretch-Wo2 input is raised as a V-V'2 signal, nothing happens to VO2 if stretch-

'p2 drops before 'pl. On the other hand, if stretch-'p2 remains high after the time

when the corresponding PG goes low, it will prevent 'P2 from falling, and will stretch

*it for as long as the stretch remains asserted. Meanwhile, 0 is not being rctriggered,

but once Vp2 goes low, a V,~ pulse will be emitted, and the clock will proceed normally.

Notice that a race in between the falling of PG's output and the failing of a stretchL.

* line produces no glitches whatsoever because they are being ORed, so the output will

consist simply of the one falling last.

(d) A synchronizer with metastability detection (SMD): A Vp, -clocked D flip-flop

* samples the input data, and feeds its Q and Q outputs to an analog comparator whose I .9

* output will be low only if Q and Q differ by more than a given threshold. The output

* of the comparator is ANDed with a V2~ clock signal.

asynch. input __D
comp. str-phI2

phil phi2

Figure 13. A synchronizer with metastability detection

The SMD samples data on V1 only, and thc only way in which~ its flip-flop can

go mietastable is if X is changing at 'pl. In this case, Q and Q will he similar, t
.

* instead of having complementary values. Hecnce, if the metastability does not subside

*until V2 , stretch-'p2 will be asserted as a v-'P 2 signal. If metastability hasn't Subsided by

the time the PG corresponding to 'P2 goeS low, V2' will be stretched as long as necessary.

* Note that we can set the comparator so that it begins to drop its output when Q and

Q exit front the digitally- undefined region. When the flip-flop eventually Stabilizes, the

comparator wilt make stretcm-'P2 ratli, SO We can1 Ilatch Q With V I withm Lhe certainty of

*latching a digitally-delined value, and the resulting machine is valuc-sare.

'Togh not true of every flip-flop, over-damped symnmetric flip-flops have this property. Once their

outputs djiffer by more than. a given value, it is guaranteed that within a bounded intecrval of time

they will have stabilized completely to digital values.

44 - __4.6. Quantitative Evaluation of Unsynchronous Machines

t.=d/f,". (4.9)

From equation (4.4), the throughput of an unsynchronous machine is:

T= (4.10)
+n t,. L.. *t

Since T

In d . W e x t (4.11)

and we can calculate the limiting speed by taking the limit of fc when f," tends to

infinity:

Ic max =lim 1

=' Ar 1 -xt

A-0± + fe-d/.(4.12)

IdW

Hence *

f. nanxfd inax (413

This equation tells us that for unsynchronous machines, tile product of tile cffective

clock frequency and thce freqjuency of asynchronous perturbation have a technology-

dependent limit. If we attempt to drive an uiriynclironous system too rast, eventually

the systcm will self-adjust to a limiting spced controlled by the dccay spccd or its flip-

flops, and not by f,. Therefore, it is important to know if this limit is high enough.

For typical values for 4 p nMOS technology, we get that fc jj fTI;X 5 101 lIZ2,

which is so high for this technology that it does not limlit us in any way. In gceneral, for

any technology, we will reach other limits well before reachiing anything close to thle

unsynchronous limit speed.

%22

* 4.8.8 Real-Time Systems ___ __457

4.6.8 Real-Time Systems

For those systems for which we are concerned only aboi.. the reliability and average

performance of the system, delayed results are clearly better than timely garbage.

However, there are some real-time systems for which the response time is critical. The

key issue is that for different people "real-time" means completely different things: a

banker needs real-time processing of transactions; a steel mill needs real-time control

of the roller position to produce a sheet of uniform thickness; a plane has real-time

control of its turbines; a dynamic memory has to be refreshed in real-time, etc. To

differentiate among all these, define a critical time t, as the maximum time allowable

for synchronization.

Except when we discussed unsynchronous machines with bounded stretching, we

only considered unsynchronous machines with absolute reliability. Now we have to

contend quantitatively with the possibility of failure due to slow response. Using

equation (2.3) gives the expected time until a metastability event lasting t , from which

we derive the reliability of an unsynchronous machine for a given real-time application: ,- .-.

MTBFun.s P(.t,>t.) (4.14)

"' -d

To give a feeling for the numbers we are dealing with, for tc = lmsec, MTBFu,,. .

for 4u nMOS is several times the estimated life of the Earth. This result is rather

encouraging, but not conclusive yet, because exponentials shrink as fast as they grow.

Under tighter conditions we would have to re-check our numbers. However, we can

. instead obtain a technology-independent quality measure (Q) that will allow us to

. decide in a more general way whether an unsynchronous structure is appropriate.

Let Q = MTBFf.a, where f,,,, is the maximum clock frequency at which

* the system runs, and the MTBF takes into account both synchronization failures and

. failures to respond in time. MTI1F,, will be given by equation (2.4), and ".BFunsy
will be given by equation (4.14), so -:

Q -eX(tc-€, (4.15)
... -.. ,., :. -

where t, is the regeneration time allotted for the synchronous machine.

In some applications (e.g., data capture) a synchronous system can pipeline the

data so as to have a longer synchronization time, making t, - t,. However, at t, = t,

%- -% -

• ,4,,o,7.ko,

"a° .-°, S. o

46 4.6. Quantitative Evaluation of Unsynchronous Machines

the synchronous system is always at the limit of failing to respond quickly enough. .'..'-

Therefore, the designer must build in a safety margin, so t, will be smaller than t,. Let . O

k. < I be the safety factor, where t, = kotc. For any technology, the regeneration time

t,. should be several times larger than the expected decay time of a flip flop. Therefore

t, >> 1/Xm, and

Quriay > e(/k,-. (4.16) . O

Hence, if pipelining is possible, Qsn can be almost as good as Q, "---

However, there are applications for which both average and worst case response

times are important (e.g., arbitration), where pipelining may not be applicable. An

unsynchronous machine can do up to one arbitration per clock cycle, and it fails when

it does not respond within t,. A synchronous machine doing the same task fails when it

"" does not resolve an arbitration within t, = 1/fn. As expected, if because of real-time " "

constraints, the system fails as soon as the clock is actually stretched at all (t, = 1/f"), -

the unsynchronous machine must run at the same speed as the synchronous one to have
the same reliability. Replacing 1/k. with t,/t, = tefn in equation 4.16, we get:

Q" > e"'f- (4.17) O

However, t, > l/fn for any reasonable design, because otherwise the systems would

. have no safety margins. By allowing tc to be just a few clock cycles, the unsynchronous

machine will arbitrate with a speed.reliability product hundreds of times higher than a -

"- synchronous machine built in the same technology.

Since reasonable real-time constraints cannot be at the granularity level of the
" clock, we can conclude that even for real-time applications unsynchronous systems are

better titan synchronous ones.

4.6.9 H-igh-Precision Stretchable Clocks L

The low probability of long stretchings opens another design possibility: if for some

reason we needed a stretchable clock that kept time with the precision of a crystal
clock, we could phase- lock it to a crystal clock, using an extremely slow feedback locking --." -" .- .. "

-* loop. Stretching a cycle would not interfere with the locking mechanismn, which would

not respond quick enough to alter the basic clock frequency due to a stretch event, but

* *- . .- . "-" ..-.--... -. .,.. .. ,.

V. -. IP. "'

4.6.9 High-Precision Stretchable Clocks 47

nonetheless would make it run in-phase in the long run. The only draw-backs would

be that to start up the clock it would take many more cycles than for a normal crystal .
clock, and also that with some non-zero probability the locking could interfere with
the stretching if the stretching lasted for a period that were comparable to the time.. "

constants involved in the feedback loop.

Alternatively, as suggested in [Hann], two variable speed clocks layed on the same

chip can be controlled by the same voltage reference, so their normal frequency is

quite close. One of the stretchable clocks is phascd-locked to a crystal reference,

and its phases are never stretched. The other stretchable clock, which produces the

actual clock signal used by the system, can have its phases stretched. In this way, _ -
the stretching does not interfere with the phase-locking, independent of the stretch

duration. The normal frequency at which the system runs is not exactly that of the

crystal reference, but will be quite close. For example, the processor in the next figure

uses this scheme to obtain a stable frequency from a stretchable clock [15]. (The cyclic

shift register divides the locking-frequency so that a lower reference-frequency can be

used [14].) ' --

Processor
ref.freq. .

source . -.- ,,.- .,;=

str-phi I sir-phi2

phil1 freq-phase low-pass

stretchable-clock 1 comparator fiter

phi Ignd

stretchable-clock 2 0

register serial output'.-.-.----'"

speed control voltage

Figure 20. Phase-Locking a Stretchable Clock

%

• m -a''-"o.o
============

:~. °% ' -l ,°

48 4.7. Conclusion

§4.7 Conclusion

We have seen a very general organization for building value-safe unsynchronous

machines, and we studied the relation between the global unsynchronous structure ,..-. --.

and a particular organization for the local synchronous machines. We analyzed quan-

titatively the trade-offs between reliability, throughput, and real-time constraints, and

concluded that unsynchronous machines can run at much higher speeds and with much

higher reliabilities than equivalent synchronous machines. . --

* .:

.-- i. " - .- .o

. • . -

..- -- -.-"."

* **o. * 0**.

,;,_..,,.,, ,1 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 3 7,, . ,,7,, 1.. . _, ,. 7' 77 7 7 , •. . - - -' - % - . 1 V . n

ClwpteT 5

Escapement Systems

When we dealt with unsynchronous systems we did not use any information

about how or when asynchronous inputs could change. In contrast, an escapement

organization (EQ) docs not know when an external asynchronous signal may change,

but knows in advancc the direction of the transition. We will use this knowledge about .

the asynchronous signals to build value-safe GA-LS systems without synchronizers of

any kind.

Front the communications point of view, unsynchronois systems are very general,

but if we do not need such generality, their generality wastes time and area. By

using more structured signals that obey certain protocols, E~s have the following ~:-

advantages over unsynchronous systems: less area, since E~s do not use a synchronizer;

faster response, since E~s do not need synchronization clock cycles; and deterministic

response time, since E0s have no metastability detector to wait for. Lastly, their clock

re-starts in phase with incoming external asynchronous signals. .-

In Section I we describe the escapement inechanismn, whiich is used in Section

2 to assemble value-sare GA-LS machines. Section 3 discusses some optimnizations

that imiprove the performance and reduce the area needed to implement aix HO. Next,

Section 4 analyzes how to provide correctness guarantees through verification of the%

EQ specifications and compilation of the specifications onto hardware. Fiunally, Section .

5 evaluates the performance of M~s.

".-,.-. -.':-. .

- I- . .-.. * '.-A.

so 5.1. The Escapement Mechanism

§5.1 The Escapement Mechanism ' "

To develop a feeling for the operation of EOs, we show the operation of a simple

escapement machine (SEM) that embodies the second "fundamental solution" approach
suggested by Pechoucek in [37]. The EO mechanism must know in advance the direction ' .

of each transition that the external signal will make. To build a complete EO requires

some kind of communications protocol. For convenience, we will use the 2-cycle

communication protocols described in Chapter 2.

We trace the flow of control throughout a transaction of this SEM with an external
slave, as shown in the figure below. Initially both Req and Ack are low while the SEM p
is computing. When Req is raised the clock of the SEM is stopped until Ack is received.
When the SEM restarts it knows Ack has arrived (otherwise it would still be stretching

S02), so it can do other computations and eventually it can lower Req, again stopping
the clock. Eventually, Ack will fall too, bringing the system back to its initial state.

Note that the SEM receives asynchronous acknowledges without using a synchronizer.

Req(vq-phi2)

Ack

* . '. 2'

Computation

str-ph12

Clock

SSynchronous Phil Phi2

Transacion Machine

Block Diagram Logic Diagram

Figure 21. A Simple EO Master

In terms of a state diagram, suppose that after state Si (see next figure) the
EO is ready to receive some asynchronous request, which will be handled in S2. We
denote such conditional transitions by changing the normal transition arcs used in state

diagrams to squiggles labeled with the transition condition.

- -

5.1. The Escapement Mechanism 51

s1 (ready for Req) - -

4- Req

S2 (handle Req)

Figure 22. Escapement Stretching: State Diagram

The squiggle can be interpreted as stretching state S1 until the external condition

Req is satisfied, as in the figure below:

,stretch

Clock

Figure 2.. Escapement Stretching: Implementation

The behavior of this system can be readily seen in the following timing diagram.

Note that as soon as soon as the request arrives the system can enter S2 and start

handling it, witlout ever having actually sampled the request signal.

state sI - .

Req

Figure 24. Escapement Stretching: Timing

The escapement mechanism does not have any hidden metastability problem.

Examining unsynchronous machines gives insight about how EOs avoid problems with

metastability. When an unsynchronous machine receives an external unsynchronous

signal, it uses this signal as a discriminant to choose amnong different states into whlich

it can inake a transition. Using Lte squigg'le notation loosely, note that unsynclironous

machines stretch a clock phase until metastability subsides, and then make a transition

0°• . °o .° °•o

t S-Z

so 5.1. The Escapement Mechanism

to one of two states (corresponding to a Boolean decision), as shown in the next figure:

S1.

4 - ~Completion = Not Metastable

S2a 82b

Figure 25. Stretching in Unsynchronous Systems

Unsynchronous machines circumvent the DRV theorem by giving unbounded time for a

decision. E~s avoid such decisions altogether: they have only non-bifurcating squiggles,

as shown in the next figure, and cannot choose between different states based on an

external asynchronous signal

S1

4--Completions, External Signal

82

Figure 26. Stretching in Escapement Systems

The escapement "wait" in also different from a conventional synchronous busy wait

(which is not value-safe):

.5 . .. ~

~ - ~ ''~~ o-.W....o...

X-,7 .*,1. "-,7", -7 77

,1. The Escapement Mechanism 53

x. .

Cond Do True Cond

False

A A

Figure 27. Difference Between Busy Wait and Stretch Wait

Having seen the differences between the ways in which escapement, unsynchronous,

bLd synchronous systems handle asynchronous inputs, we can focus on how the escape- I .
nent mechanism avoids metastability problems. Remember from Chapter 4 that for

,he clock to operate correctly the stretch-V2 input to the clock must be asserted as a
rq-po., signal, and that the only constraint on the falling edge is that it cannot rise again

n the same clock cycle once it falls. Call So, S, S2,... the sequence of states traversed

)y the EO. If a request must arrive before the EO enters state S1 , the request will not

;o away before the EO emits an acknowledge, and the request must fall before the EO

rnters state S2 , we can make stretchP2 = V2 A (So A Rq v St A Req).

Consider what may happen when Req r . First, when V, in So, Req may still be
:cro, in which case the EO stretches from ptuntil the request arrives. Second, the -

'equest may have already arrived, in which case no stretching at all occurs, and the

O proceeds to St. Finally, the request may arrive concurrently with V.,, in which case

,he stretch- o2 line will glitch for a bounded period after V2 without any effect on the

lock. Note in all three cases that once strctch- 2 falls, it will not rise again within So.

I'he behavior going from S1 to 5.,! when Req1 is analogous with the exception that the

tretching occurs while Req is high. Since the EO handles all asynchronous inputs in ""'""'"'" ""'""

,his way, these inputs cannot trigger mctastahle conditions anywhere else, and as long

Ls both communicating machines respect the communication protocol they will renmain

ralue-safe.

There is an interesting parallel with the unsynchronous mechanism: the stretch

ignals that are generated by the escapement mechanisin interact with the clock in
tg!xactly the same way as the stretch signals generated hy t~he metastability detector of :.::::,

S•-,%

. *..-..-: .. *

54 5.2. Structures for Escapement Machines

unsynchronous machines. Hence, the synchronizer with metastability detector can be

considered as an interface of an escapement machine that allows it to receive unsyn- t
chronized signals.

There is also an important difference with the unsynchronous mechanism: while

an unsynchronous machine can sample numerous lines, one after the other, until it

finds some condition it is looking for, an EQ will stop as soon as a condition to traverse . e
a squiggle-arc is not satisfied. Hence, unsynchronous machines can poll multiple lines

effectively, but E~s cannot.

§5.2 Structures for Escapement Machines

This section explores the kind of structures that can be built using the escapement

mechanism. For clarity, some of the chosen examples are not as fast or compact as

they could be and are used mainly to emphasize different aspects of E~s. In particular,__

we will discuss various structures suited for controllers, servers, pipelines, and arrays. .

The E~s will be described with logical diagrams and also with state diagrams -

extendIed with the squiggle-arc notation (ESDs). Each squiggle will have associated

arrows labeled with Lte conditions required to traverse the squiggle. The source of the

arrow will indicate the source of this signal, which typically will be somec state in the .

ESD of another LM.

* S

6.2.1 Basic E09

We have seen that E~s must communicate using some protocol (e.g., the 2-cycle

protocol) to know in advance in which direction the asynchronous inputs may change.

The simplest possible state diagrams tht implement a 2-cycl e protocol are the two
interlocked loops shown in the figure below:

•, , •- • S .

V- V -°

Basic EOs 55

Rte

h. *-".o. ,

S - At

Rfeq . --/ '",.-.-o

Master Slave

Figure 28. A Basic Master-Slave EO

e diagram above shows only the control How. Between each one of those control
ions we can insert a computation, which is denoted by a Ci. The Cis are arbitrary
ions that the LM may carry out, including both computations and communication
,h other LMs. The ESD in the following figure has all the Cis possible in a basic LM

p..
-

° , -..- ° .

* 0

."_ 0. _ :. :.

0. - .:. :o .

5.2. Structures for Escapement Machines

Rt

02

4-Ack

C3

R4

4-Ack

Figure 29. State Diagram of a Basic Master LM

The Cis form the basis for a notation uscd to distinguish among basic LMs. The ---

achino above is a 01234 EO. It can support a 2-cyclc protocol. Eliminating C3 and C4 ' ~--

'oduces a C12 EO, which can not do more than one data transfer pcr full h~andshake,

only a 4-cycle protocol could be supported (see Chapter 2 for a brief discussion on

'otocols).

2.2 Mapping the Extended State Diagrams onto Hardware

The ESD notation is unambiguous and complete for EOs, and the transformation -. R.

ESIs into logic diagrams is straight- forward. Thc following two rules indicate how

do this mapping:

*Multiple Arrows: If there are n arrows with associated transiLion conditions

Condi pointing to the samne squigglec, they arc tranisformecd into a single arrow

with an associated condition COND =Cond, A Cond2 A .. A Cond,,

)ping the Extended State Diagrams onto Hardware 57

iggles: For each squiggle with an associated transition condition Cond, there

be a signal Last that indicates the completion of the task preceding the 0

;le. Last must never be raised at any other point in the ESD. For each

;le in the LM, there will be a stretch signal S = Last A Cond. The OR of all

retch signals is fed to the stretch input of the clock.

,v these rules are used to map the Master LM of the figure below onto a logic

For simplicity assume that Req t and Reqlare S-Vo2 and that two S-'P2 Signals

the completion of C2 and C4 respectively.

C1

C1
Rt Req

C2

Ajck __ C2

R4, Req
C4

Ack 04
6-' At

Figure 30. ESD for a Master 01234 EQ

ng to the second mapping rule, for each arrow, form the conjunction of the last

xceding the squiggle and the external condition for stretching, generating two

signals: La.st(C2) -ack and Last(C4) -Ack). Olt these stretch signals and send

the clock, as shown in time following igure:

-~ -. - - - - --- -

hesis of EOs 71

is its own clock. Since achieving phase lock takes some time, each block is

ceded by a preamble whose only purpose is to ensure that when the actual data 1 ft

,-ts, the recipient will sample it in the middle of each frame. For high speeds,

preamble is many clock cycles long, so if the blocks are short the loss may

significant (Moreover, sometimes metastability will prevent the receiver from

ieving lock in the allotted time).

EO combines the advantages of both schemes but without oversampling or a

amble: The sender starts each block with a start bit. The recipient EO only

ds to stretch until it is awakened by the start bit. Since the EO starts its

.k in phase with the incoming data, it has no problem in sampling directly the -

Idle of each frame. If blocks are long, the sender must also encode a clock signal

h the data, to which the EO will lock after some number of cycles. Note that

EO can start sampling data while it is achieving lock because it starts being

cisely in phase, instead of starting with a random phase. Thus the EO does -

lose time during a preamble and does not need to over-sample. Note that this

broach requires that the rising edge of the start bit not have dynamic hazards. -.-

ynthesis of EOs

hough the escapement mechanism by itself is simple, the resulting EOs can be

nplex. This section shows methods to handle the design complexity. Our design

D0ogy uses a specification formalism and a set of rules that control how LMs

tabled and connected to other LMs. The purpose of the specifications and the

two-fold: helping the designer with a vocabulary and a structure that makes

gn process simpler, and also guaranteeing that the resulting machine complies

specifications.

'ification and automatic synthesis are two paths followed to obtain programs

guaranteed to be correct respect to their specilications. The fundamental

r' we want guaranteed is value-safety. Unfortunately, as is shown in an appendix,

fety of EO circuits is undecidable. Hence, it is impossible to create a program

I verify an arbitrary circuit and tell whether or not it is a value-safe EO.

nrefore, we developed a low-level specification fornalism that can be compiled L..

into hardware. The class of machines that can be described with this formalism

...-. ° o

5.4. Performance and Reliability of Escapement Machines

.4 Performance and Reliability of Escapement Machines

The operation of EOs does not have the interesting probabilistic characteristics of

synchronous machines, but in fact that is better: the analysis is exceedingly simple.

response time can be bounded with probability 1. It does not need synchronizers to

value-safe, and of course cannot suffer synchronization failures since it does not do

y synchronization.

The following two characteristics give EOs them their main performance ad-

ntages: (a) EOs respond immediately once a handshaking signal arrives, and (b) EOs

itart the clock in phase with the edge of the handshaking signal.

Unsynchronous machines can also handle the protocols that are mandatory for

EOs, but for unsynchronous machines, a full handshake involves the reception of 4

unsynchronized signals (ReqtAcktReqland Acki). Each of the four synchroniza-

tions takes one clock cycle for the actual synchronization, plus an average of half

a cycle that is lost because the signal has to arrive before the actual sampling

occurs. Therefore unsynchronous machines spend 6 clock cycles per handshake for ...

synchronization, versus none used by the EO.

The following example will show the advantages of starting in phase. Suppose a %. ..

system must receive serial data at extremely high speeds. Each data block starts

at arbitrary times, but the bit-rate is known to some error c. There are two

basic approaches that are used to receive blocks of data, which are exemplified by

UARTS and by the Ethernet, and EOs combine the advantages of both.

1) In a UART, the receiver over-samples (typically at 16 times the bit-rate) to detect

the rising edge of a siart-bit (a I bit which indicates the beginning of a block).

hlaving detected Lie edge of the start bit with reaonaIe accuracy, and knowing

the bit-rate, it can sample each bit in the middle of its frame (tie interval in which

a bit value appears on the line). This approach has multiple limitations: the blocks

must be short enough that the receiver does not drift too far off from the middle

of each frame, the bit-rate cannot be really high, because over-sampling requires

the receiver to operate at speeds much higher than the bit-rate; arid sampling for

the edge of the start-bit can result in a metstable state.

Z) In an Ethernet, the data carries an embedded clock signal to which the receiver

77 - .7-: 7 ".: -e - _,. . 2 . -.

p._o

ignal.Packing in Parallel C2 EOs 69

LM mast emit a SetRequest, and later it must emit a Join signal indicating 02 is

ete. The Join signal is ANDed with the stretching condition [Req v Ack]. Thus, p

gnal is necessary for the fork, and another one for the join. This section shows

single signal is sufficient when LMs use 2-phase clocking. ' '

ransform the ESD of the parallel 02 master as shown in the next figure. Note

nside the loop the ordering of operations has not changed. In the entry to the _

there is now an additional join preceding the first fork. This is of no consequence

se the join condition must hold before executing a fork. For example, for a basic

nly an initialization that clears all handshaking signals can precede the basic loop.

the first join precedes the first fork in the transformed EO, but it corresponds .-. '

tretch that does not take place.

C1 R join."-"

fork Ci nul fork Loop fork

C2 C2 C2

join join

Figure 45. Rolling the C2 Loop

.ct fork-vp0 ,sV2 be emitted by the synchronous control of the EO. Qualifying the

ignal with p, , we obtain the Join-vqVn signal; qualifying the fork signal with o2,

)tain SetReq-qo2. lHence, we can use a single signal, by displacing the fork and

vithin the basic loop, as in the figure below.

phase unpacked order packed order
fork join

2 fork
-.7

Loop ."
body .'"".'-'."

2 join :. ::::'' :.-

Figure 46. Packing Fork and Join

-o- 2..... .

5.3. Optimization of EOs

SetReq
Req

-J -"o" I ', . ""

Ack

Figure 4 . Master-Set SR Flip-Flop

rhe master-set flip-flop is faster, since it need not delay the out-going request until

;etReq is low, and it requires no assumptions about relative delays. Whichever im-

)lementation is chosen, we will call this circuit a fork box.

Finally, to take care of the join, a stretch on ReqvAck, placed at the bottom of ."

,he ESD loop, will ensure that the LM can proceed with a new CI only after the Ack is*

,eceived. The following figure shows the resulting EO. Note that even if C1 is empty,

,he optimization still applies. -

CI

Se~ qset out Req .,. 5. -

Fork-Box •5 '.'5-'.
Clear - '-"-"" ,--

Ack•-. -. .-- .--

M- -- Ack Req-

Figure,". 44. Parlle C2 orC1,E

i.3.2 Signal-Packing in Parallel C2 EOs ' -...

For the parallel C2 master shown in the previous section, the synchronous control

. - .-. -.. .

. ° .% .- -

.3.1 Parallel C12 EOs 67

" The only task in the life of FP is to clear Req when Ack comes.

" The purpose of the join is to complete the current cycle of the LM before . ..

starting a new one.

Let us modify the C12 EO, but using only valid EO primitives and preserving its "

Dgical characteristics. Req can become accessible to MP and FP by storing Req in an " - -

1R flip-flop that can be set by MP's signal SetReq and cleared by FP. Conceivably,

r the slave is very fast compared with MP, the acknowledge could come back while -

he MP is still setting the flip-flop, possibly ending in a metastable state. Since the

orotocols guarantee that Ack will not arrive before Req is emitted, it is enough to delay

ending out Req until SetReq falls (SetReq stays high for a single clock phase), as shown

ri the next figure:

SetReq

- .. - . . _

Req

Ack

Figure 42. Set-Inhibit SR Flip-Flop '---,'.

4ote that we must ensure that the inhibition path from SetReq to Req is faster than the

oath from SetReq to Req via the NOR gate; it is easy to implement a circuit for which

his delay assumption always holds. Nonetheless, a less obvious and better solution is

o use a master-set SRt flip-flop:

. .. . ~

.- . .

as 5.3. Optimization of EOs

Rf
C2

~--Ack

4Ak

4- *ik

Figure 40. A 012 EQ

In the EQ shown above, 02 i. already running in parallel with the [Re qt , AclctJ
half of the communication, but on the [Re ql, AckiJ half, it must idle. Hence, 02 should '

occur in parallel with the second half of the communication, as shown in the next figure.
The EQ has been transformed into a main processor (MP) and a fork processor (FP).

I Fork

'MP Il
C2 R4I FP

Figure 41. A 012 BO with a Fork

Notice that: . ~'

*Neither forks nor joins are available primitives in escapemnent systems.

*Rcq is a variable shared by two processors: MP' sets it; FP' clears it.

5.3.1 Parallel C12 Ela 65

would not be able to tell that such a switch of mastership has occurred. Note that this

solution is analogous to what we do to switch mastership with unsynchronous machines.

The switch of mastership is hidden from the hardware, which becomes just a substrate

on top of which a more complex behavior is implemented in "software". Therefore, at -...

the hardware level the master/slave relationship can conveniently remain static (the

"hardware master" initiates the communication), while the mastership switch occurs

in the next layer 144) above the EO hardware.

§5.3 Optimization of E~s ..

In basic EOs, while signals propagate between LMs, the LMs are idle. This lost time. ...

is significant for 02 and 012 E Os, but it can can saved by overlapping communication

and computation. This section shows how E~s can be modified to achieve this overlap

while remaining value-safe. Other optimizations are shown in the appendices.

5.3.1 Parallel C12 E~s

In a C 1234 master, from the moment when a request is sent until the acknowledge

is received, 02 can be computing something else. Analogously, 04 is overlapped with

the interval starting when the request falls and ending when the acknowledge ralls.

Therefore, thle 01234 has some parallelism within the LM.

On thle other hand, with 012 and with C2 structures, we have paralleli-.m, between

the first. half of thle handshake and C2, but during the second half or thle handshake

the LM has to remain idle, as shown in the next figure. Hence, we need to overlap

the full handshake with 02. This overlap will substantially improve the performance

only if the duration of 02 is similar to the time used by tile communication: if tile -

communication were much slower, it would completely dominate the throughput; if

the communication were much faster, not much is gained by overlapping it with 02.

7_0.

94 5.2. Structures for Escapement Machines

above the master/slave relation between LMs is fixed at design time. Nonetheless, for

more flexible structures than those of systolic arrays it is desirable to have different

LMs be masters at different times. The following analysis suggests that the mastership

switch should be done one abstraction layer [44] above the EO hardware.-.-%: ,. .

* ... u- m- -

Suppose an EO consists of two LMs, which at some point will exchange mastership.

The original master (LM1) initiates the transactions, and both machines operate in the

top sub-loop shown in the following figure:

Req

AL Communicate Master/Slave Communicate

Ack

Req

Communicate Slave/Master Commulnicate

-U-"-. "e * . '- .

-- -'.. -" "°

Ack

WMI LM2

Figur 89. Mastership Switch between LMs

LM, and LM2 can agree that after some event, both will make a transition to the

bottom sub-loops. After the last acknowledge of W2, LM2 becomes the master and

will send requests instead of acknowledges. Therefore, LMI will have to dletect that

LM2's last acknowledge has fallen, and] some timte 1.,, later, that Lite first request

from LM2 has arrived. Since the period L/Match is determined solely by LM2, LMI must

detect a pulse, instead of following the 2-cycle protocol.

Alternatively, at a given time, we can think of the LM that will wait next as the.

actual slave. In this way, the relative ordering of tbc edges of the req/ack signals is never

changed, butt the internal logic of the LMs re-interprets these signals. This is a safe

way of transferring mastership, even though an observer lookinig at, the handshiake lines

Figre39.Materhi.Swtc bewe L ,.,.,,

5.2.4 Complex BOa

C1

R2f

L C4 RI'

R4t R3t

-'--

Figure 87. ESD for a Mesh of Interconnected LMs

Second, consider introducing somg structure to the way in which LMs are con-

nected. For example, we can asscemble thc grid shown in the flgurc below, which is

suited for systolic arrays. Each LM is master of the LM to its right, and master or the

LM below.

Fiur 88. A M rtnglrgrdE

Finally co1i2 a3 mo1c4lxmsesi eainsi.Nt hti h ahn

ac0

.. q

LM LM LM LM

.

9ur $8 A -etnua rdB

Fialy comie a.. mor comle m*.i relaionhip N....... that intemahn

al 5.2. Structures for Escapement Machines

Stage n Buffer n Stage n + 1

Ak n..

Figure 96. Improved Utilization Schedule of a C1 Pipeline with Interstage Buffers -. "- ; "

5.2.4 Complex E~s ,:.:.:."..

The EQ structures we have discussed are fairly simple. Thcy wcre assembled by 1_

connecting a sequence of basic E~s whose ESDs consisted of simple loops. The EQ i::::: ..

mechanism allows much more general structures. We can generalize the EQ structures,..,.....,

by using LMs whose ESDs have more than just the basic loop, by interconnecting the .'"°%" :..,..:.

LMs in multidimensional meshes (instead of just one-dimensional pipelines), and by1 """ " .::

having the master/slave relations between LMs change while the EQ is running. This I 0

section shows that the complexity of the resulting E~s can be substantial. L".."-.:.

First consider an [,1M with a complex loop. When an ILM hias a basic I'SI) loop .-.. :-..''

only, it is obvious that it will comply witlt a 2-cycle protocol; for more complex ESDs, -V

all possible paths must also comply with the 2-cycle protocol to assemble an EO. As an ..-... ;...

example, the next figure shows a LM that is a slave of LM1 and master of both LM2-'" :-"-"

and LM4. The ellipses stand for parts of the ESD corresponding to computations and '-'-,..,.'

M. i n

communications with other machines that were not drawn. Note that each LM can -.. ._--.
interleave the communications with many other [LMs, since each Cd may contain not S.: '0

only computations, but also communications with other LMs. r'-'''.:'

- . S - . .--

- . -' , .. **~ -*% <~ %. % " . °- . ..

.:-:.....-::
n.:.:.-....

:. ,,,...... . _. =.,,2. '. .- --.------- ---- ---.- ,- .. ., ... Ac .,• ',,. ,,

5.2.3 Pipelines 61

Stage n Stagen+1

te .
0

Req 4;N
Ack ~ M e n~ % .

4-....-.' ,°%
n~

e 0

Req 1

-e.-ReqAc/ pe "..j"''""1"

. - - "

Figure 35. Operation Schedule of a Simple Cl-only Escapement Pipeline P

For this pipeline, at any time half the machines are computing while the other half

are waiting. However, waiting consists just of stretching a clock phase. Hence, if the

computational tasks are short and take a single clock cycle, actually all machines will

be computing all the time, and no time will be lost. Remember that if the stretch line

goes low before the normal end of a clock phase, the phase is not actually 'stretched,

so the machines need not always delay each other.

[f each C1 computation takes several clock cycles, the fact that odd and even

stages alternately sleep wastes approximately half the potential computational power

of the pipeline, as can be readily seen in the schedule above. If we interpose EO buffer

stages in between the original stages, the stages and buffers will sleep alternately. The

loss is now much smaller because the buffers are fast, while the stages take several clock

cycles. TJherefore, as can be seen in the ncxt schedule, the efficiency of the pipeline can

be improved considerably with buftering.

- - -......-... ,. ...-...-..

- -. - - - -

o 5.2. Structures for Escapement Machines

Stagen
Reqn- 1 Reqn .

-- - -"-- -- -. t.Stretch :'':"':"

Figure 34. Stage of a C1 Simple Pipeline

To understand how the pipeline operates, assume that before entering the main

loop of each stage, each LM has been initialized so that the Rcq and Ack flags have

been cleared. Once in the main loop, each stage will wait for Req from its master --

and for Ack from its slavc before proceeding with its corresponding C1. Once C1 is

completed, the LM goes through the communication part of the loop, and eventually ...

ends up back at the top of the loop. When the request from the left rises and the

acknowledge from the right falls, it will start a new loop.

The behavior of the pipeline can be more easily understood in the following

schedule, where the active periods are shaded and the idle periods are white. One

" loop through the ESD corresponds to one shaded segment in the schedule.

? -' ." .'- ,..

.. '- -'.*" -.'- "7,.-

..,. :< ;.-

..... - - 7 -- " ,-. _0 .- _ .' -". - . ., :- : , ...;

' 7 -1,

L0

5.2.3 Pipelines 5

that satisfies the 2-cycle protocol may be connected safely to an EO, independently of

its internal structure.) We can connect C1 basic EOs as shown below. In the following

figures, note that the indices correspond to the stages, not to the interfaces. Also note

that only the communication control is shown.

Ack Req

• ... >. --... > .

A At-R-

Ack - N.
4 4 .1* ~Req

- - AtR& 4 A4..R 4, -

Stage n Stage n+ 1

Figure .93. ESD for a Simple C1 Pipeline

Foor concreteness sake, we apply again the mapping rules to gencrate the logic
diagram corresponding to a stage. The transformation is straightforward, and we can

apply the mapping rules to the J SD mechanically, without having to think about the

behavior of the machine at the circuit level: Stretch. = R-eq.(Re" ._ I + Ack.+ 1) +

Reqn(Req.-I + Aik-n+I. Therefore, the logic diagram for each stage is:

S.-.-.-....

*58 5.2. Structures for Escapement Machines

Req SynhronousMachin

Figure 31. Master-Slave 01234 Circuit

Note that 01234 reduces to the SEM of the introduction if 02 and 04 are eliminated:
-=~6 t- 9

C

Rt

A -0

R4.S

Figure 92. ESD of the SHM

Therfor, fr SM, the strcteli condition or the Matster 012:14 reduce to just: .-

stretchP2 = (Req -Ack) + (ifeq Ack) = Ack ®g Req, ~jj

which is the stretch condition used in the logical diagram shown in the introduction.

* 5.2.3 Pipelines

To assemble a pipeline, simply connect a sequence of basic Eck.. (A machine

I S

72 5.5. Synthesis of EOs

is naturally smaller than the set of arbitrary machines that can be described with logic

diagrams, and value-safety of EOs specified with this formalism is decidable. This

section first presents the specification notation, then the algorithms to verify value-

-.. safety, and finally the rules for mapping the specifications into efficient hardware.

*l 5.5.1 A Language Extension for EOs

We already have a graphic notation in the ESDs, but it has several drawbacks.

* The ESDs get cumbersome for anything but the basic EOs. They are insufficient ,

for the optimized EOs without interspersing logic diagrams, and they are inadequate

" for specifying EOs in a way that value-safety can be guaranteed. Therefore we will

introduce a new, textual, EO specification language (EQL), whose purpose is to describe

the EOs clearly and concisely, to guarantee value-safety by enforcing the protocols and

*- the escapement mechanism for all asynchronous interactions, and to admit efficient -" -

-i compiling into efficient hardware.

To avoid re-inventing control languages [25] or more general hardware specification

languages, we show how to extend any existing control language with our new EO-

.. related constructs. The strict 2-phase clocking discipline (see Chapter 2) will be used
for the LMs only to show clearly a'nd concretely the interactions between the JMs

within the EO.

Let the "Cs" of the ESDs stand for any expression or statement or the substrate

language (SL) to be extended. Next, we describe each new construct of the EeL, show

examples, and propose a syntax for them (which readers are welcome to change to suit

their taste). For simplicity, assume that we use positive logic.

To describe the global relat;ons between LMs, there is a single "binding" section for 0

the whole EO, which spefifies the connections of the handshake lines across LMs. Each

handshaking line comprises a pair of request/acknowledge wires. The L4M that appears

first in each binding statement initiates the communication over the corresponding

handshaking lines.
eo EOName; .:.
bindings:

mod l.handsh3 #mod2.handsh7, s-..

mod2.handsh2 #mod3.handshl,
modt.handshl #inod3.handsh6; ,

Each LM emits (synchronously with the local clock) and receives (with combina-

.-

p

5.5.2 Verifying Value-Safety of an EO Specification 73

tional logic that feeds into the stretch input of the local clock) handshaking signals.

Hence, for each LM there is a declarative part in which the local name and type of

each handshaking line is given. A "//" indicates concurrency of communication and

computations (see the EO Optimization section above). For example:
modules: ModuleNameList;

handshake rI : Datal, Data2, ... , GrantBus;
//handshake 8'p2: OpenChan, CloseChan;

Each LM will be able to set, clear, and test some handshake lines; it is up to

the SL to decide how to handle the rest of the synchronous operations. For setting, .- ' -

clearing or testing some line X, the following operators are used:
X? / return TRUE if X is ON */
X ? /~ return TRUE if X is OFF */

Xi /* set X*
X! /* clear X */
)a /* forkX*/
)e /* join X*/
X)0 /" join-fork on X "/ .,

For example, when a master and a slave communicate over line X, for the master

Xf. is a Reqt, while for the slave it is an Ack t . Whichever party waits for the other

to set a line X will indicate it with Xl?. Note that this notation is consistent with the

symmetric master-slave interpretation proposed when discussing mastership switching,

where it was pointed out that the only difference between them is that the master opens

the communication.

To make the mapping onto efficient hardware straightforward, we leave the de-

signer the ability to indicate when each optimization discussed in the Optimization

section should be used. For a parallel communication over line X, only two operators

are necessary because the fork box handles the testing and clearing of X. Ilence, it is

necessary to indicate only when the parallel C2 may start the fork on X (X) and when

the computation has to wait for the communication to complete before proceeding after

a join on X (x). For packed join-fork, a single operator (M.) is enough.

5.5.2 Verifying Value-Safety of an EO Specification

To guarantee that an IM specified with the EOL can only result in a value-safe . *.

machine requires (a) global checking of the inter-LM bindings, and (b) local checking

of the order in which handshaking lines are handled, to satisfy the communication

protocols. Any problem related to the appropriate connection of stretch signals, choos-

-~~~~~ ~~~ -. --. - -- - -- - - - -- - -

74 5.5. Synthesis of EOa

ing the right phases, and other details of the escapement mechanism are also handled

by the compilation, so the EO designer has no way of introducing an error here.

(a) Each binding statement must have a different module name on each side (a master

and a slave). The compiler generates the corresponding request/acknowledge pair
of wires.

(b) For checking that communication protocols are satisfied, notice that no matter how . .

many interleaved communications with different LMs there may be, each one can

be checked by itself. To check a handshaking line X, it is sufficient that all possible

paths within the EO specification satisfy the communication protocol (see Chapter

2). For example, for a master on signal X, operators on X must satisfy the ordering -7 •
X.;... XI7;... X4I;... XI?;..., while for a slave on X they must satisry the ordering

XT?;... X.;... X?;... X1; No path may contain only part of this sequence,

nor may control jump into the middle of a sequence, since either would clearly

violate the communication protocol.

5.5.3 Compilation of EO Specifications onto Hardware

Rules for mapping a verified EO specification into ant efficient circuit are presented

next. "Efficient" means they result in circuits as compact and fast as those that can

be designed by a competent designer and similar to ones that have appeared in the

literature.

For simplicity assume that the signals generated by the synchronous control logic

(SCL) are v-Soe ,s-Io2, and that the stretchop1 and stretchPo2 inputs or the clock are

qualified inside the clock with io, and o2 respectively. Rules 1 to 4 cover all machines

described in the section on structures for EOs.--

R1. Handshake declarations: For each handshake signal X there are two physical

wires, labeled Xeq and X.,k, that are used to handshake with other LMs.

R2. Outgoing handshake wires: For each handshake signal X, the SCL will have 3

associated outputs: X, X.1?and Xli9. X is connected to Xreq if the LM is a master

on X, or to Xc if the L1M is a slave. :

R3. XI!and XI!: For each set or clear command, the SC, will set or clear X.

R4. XI?and XI?: The SCL asserts XIor XJ?only for a single clock cycle. Let T be X.,,

-. .
," %" -° °," . -o

J..:....-.,,-..-*..-...;-

5.5.3 Compilation of EQ Specifications onto Hardware 75

for a master' and for Xrcq otherwise. For each XT, stretch VO2 when [TA XT?],
and for each)Q.?, stretch Ve2 when [T A XI.?] Using RI-R4 gives machines such

as the following:

set/clear
x oxreq Z

test IL
SCL 4

test
Xt?

Phil PhI2

Clock

Xack

Figure 4 7. EO: master on X.

For thc structures described in the Optimization section, Parallel C12 17Os suibsection,
rulcs RI and R5 to R7 map the specifications onto circuits such as the one in the next

figure. The SOL emits an Xf.,k signal that corresponds to Sctltcq for mnastcrs and to

SetAck for slaves, and an Xi, signal. For simplicity assumei both are v-V 1 8~-(2 -

R5. //handshake: F-or each parallel handshake signal X, there will be a fork box with

the following pins: Xset, Xclea and Xot FPor a master on X, connect Xout#Xreq

and Xclear#Xac.A. For a slave on X, connect Xout#Xack and Y,.e#Xcear.

R6. V: F-or each fork command, the SCL asserts Xf,,k for a single clock cycle. ...-

Connect the output of [Xfp,k AND VO21 to X.,.

R7. X?: For each join command, stretch V2 When [Xj 0in A End(X)], where End(X)=

[Xack V X,,,q] for a master on X, and End(X) =[ack vX.]otherwise. Trho

SCL asserts X,0in only for a single clock cycle.N

V%.

76 -.- _________ 5.5. Snhssof EOu

I I

Phil Ph2X~tXe

joinq

Fork-box

Figure 48. Parallel C12: master on X.

For the structures described in the Optimization section, Signal Packing in 0.2 E~s

subsection, rules III, R5, and R8 map the specifications onto circuits such as the one

in the next figure. End(X) is used as in R7. .--

R8.)a!: For each V.! command, the SCL~ asserts X--VPo I M 2 only for a single clock
cycle. Stretch v when [XI A Enad(X)I and connect the output of IXI'AND (P2 1

to x.41t.

L 7

5.5.4 Specifying, Verifying, and Compiling an EO: An Example 77

Phi2

Xset ,.-.. .X .

Phil Phi2 Xout p Xreq

Fork-box , .- . . .

Xclear

Xack

Figure 49. Signal-Packed C2: master on X.

5.5.4 Specifying, Verifying, and Compiling an EO: An Example

To recapitulate, we introduced the EOL to be able to guarantee the value-safety

of EO circuits and to simplify their design. Also, we needed to avoid Lthe notational

complexity of the ESDs for the LM description for anything beyond the Basic loop,

and in particular for optimization, where a mixed ESD/Logical notation was used, and

also for the EO description, where even in the Simple Pipelines the multiple req/ack

links needed for each ,aster/slave relation were cumberso,,e. The IOL satislies all of

those requzisites, and is used next to describe formally the behavior of Seitz's Pipeline

Modules (SPM) [391. Then, we verify and compile their specification.

Seitz's SPM is shown in the next figure. From the description of the SPMs and

their circuit [39], the SIM behaves as an EO that is a slave of its neighbor to the left

and a master of the one to the right. The clock runs all the time except when the EO

needs input data that is not ready, or when it needs to output data but the output

buffers are still in use from the previous transaction.

\\... %\. ..

.. , ., . .,".,

0.- ;-..,

78 5.5. Synthesis of EOs

U*--,L.

. .

Clc

Ack Req

ECLOC

Req Load Load

Figure 50. The original 5PM (from [391)

Using the EOL, we can specify an EO that behaves like the SPM described above.

Suppose an LM SPM2 has a master SPMI and a slave SPM3, so the pipeline has 3

stages:

eo SPM; i

bindings
SPMI.loadout # SPM2.Ioadin,
SPM2.loadout # SPMV3.loadin; * .-..-

modules: SMPI, SPM2, SPM3;
//handshake, Yphil: loadin, loadout;

5.5.4 Specifying, Verifying, and Compiling an EO: An Example 79

Initialize;
loop K~

loadoutl!;

end

Figure 51. SPM Specification with the EOL

The verification is trivial, since there are only two independent parallel handshake

signals, cach of which is invoked once per loop with a join-fork command, satisfying a

4-cycle communication protocol.

Now, the middle module, SPM2, is compiled into a circuit using the mapping rules.

For clarity we apply the rules only to the SPM2-SPM3 relation, since the SPM2-SPMI

relation is almost identical. 0

(1) From the binding section we find that SPM2 is a master of SPM3 on loadout,

requiring 2 handshake wires (R11), labeled loadoutre,, and loadout.,Ik.

(2) The SOL will output (118) loadoutf,k-VPot, asserting it for one clock cycle when

the SOL reaches thc state where loadoutl! appears in the code. ~

(3) Titere will be a fork box (115) connected. as follows: loadoutcze..r#loadout.ck and

loadoiit0 .t # loadoutteq. -

(4) The output of [loadoutb ork AND P2 is fed to the loadout.ci input of the fork box

(118).

(5) Finally, the output of (loadoutf0 ,1k AND (loadoutreq OR loadout.,Aij] is fed to the

stretch-poi input or the clock.

(6) Applying the same rules to the SPM2-SPML relation, we can obtain the slave side

of the circuit, completing the SlPM2 control shown in the following figure:

17.'~

80 5.6. Summary

Load nutload~tac

IA)adifl IoaddOt
v-phil v-phi I.

Phi2 l'hi2

mnAck Phi Pi2 Otc

out setou

Figure 52. Compiled SPM

Notice that thc compiled SPM compares favorably with the original SPM of [391.

It is a member of a general family of circuits, the EO specification can be modified and

recompiled easily, and value-safety can be guaranteed. Also note that this circuit is

very simple to construct using our synthesis technique, and that we could build more

complex machines with ease.

§5.6 Summary

An architectural alternative for designing value-sare GA-LS systeins without using

synchronizers hasm been presented, and it was found thiat such ITachinesC haIve ;1 varie-ty
and complexity that exceeds lby far that or u isynachronOtis inaclimes. The E-',s were

optimized to allow increased parallelism between computation and communication, anid

a specification language (EOL) was proposed. The EOL~ allows a designer to describe

and modify the specifications of EOs easily, in spite of thc possible complexity of the

corresponding circuits. This specification can be automatically verified for value-safety,

and then compiled onto compact and fast circuits.

The main limitation of E~s is that they cannot poll a multiple set of lines,

Summary 8

that their GA communication must follow a 4-cycle or a 2-cycle communication

tocol. When their performance was discusscd it was seen that if the application

.- -.. , "r -. '.'

be accommodated by an EO structure, E~s can out-perform evcn unsynchronous

Nhnes. E~s do not use synchronizers, cannot have unbounded stretching periods, r •

s- ,,- -.. .~

S~mm~rx ml , .. *-..-

ben accmmdate y anchructreuets an retat-eir o ck iv n nynhose ith:-..

)ming requests.

%a-

",.. S -.. .

S iii'

, S":

Jonclusion

1 Summary and Concluding Remarks

Synchronous systems cannot grow in complexity without limit because they have to

nteract with other components that cannot share the same clocking controls, because

of delays in the communication across a system, and because of clock skews. However,

r we partition a system all the way down to its simplest possible sub-components,

he communication mechanisms between these elements would dominate the space and

unme used for the actual computations. As a consequence of these two opposing factors,

ye chose to use a GA-LS structure.A

We analyzed the GA interactions in between LS machines, centering on the han-

[ling of completion signals and on two kinds of reliability, called value-safety and time-

afety. This analysis led to a taxonomy of architectures, where we distinguished two

;eneral classes of value-safe GA-LS machines that we called unsynchronous (those that

'eceive asynchronous signals on which there is no restriction whatsoever) and escape-

nent (those interacting asynchronously following particular cor mmu nication protocols). K:

rhe rest of the dissertation covered the analytic and synthetic problems posed by these

wo classes of machine.

The discussion of unsynchronous machines began with a study of a stretchable

lock and a synchronizer with a metastability detector, which we' then used to build

ralue-safe GA-LS machines. We dcveloped a probabilistic model to analyze quantita-

aively the trade-oils between reliability, throughput, and real-time constraints, and

• - . • "4 - .°, ,-

,estions for Further Study 8.

ded that unsynchronous machines can run at higher speeds and with much

reliabilities than equivalent synchronous machines using conventional clocks and

onizers.

,capement machines take advantage of knowing in advance the direction in which

tronous inputs can make a transition; they are value-safe without synchronizers.

iuiring that asynchronous inputs follow particular protocols, we developed EOs P

our advantages over unsynchronous nachines: they require less hardware, since

o not use synchronizers; they respond faster, since EOs do not need synchroniza-

ock cycles; they respond in bounded time, since EOs have no metastability detec-

wait for; and their clocks re-start in phase with the edges of incoming external .

ironous signals. EOs are structurally much more complex than unsynchronous

nes, but we showed how to verify the value-safety of EOs and how to compile -.-

ecilications onto efficient hardware.

i the appendices, we prove several theorems relevant for the design of GA-LS P
nes. The DRV theorem proves it is not always possible to decide in a bounded

it of time if an analog signal is above a given threshold. The Uncertainty theorem

that a machine that solves a DRV problem cannot have certainty about both time

xe values with which it operates. Finally, a theorem about the undecidability

ue-safety for EO circuits shows that it is impossible to decide algorithmically

er an EO circuit is value-safe. We also discuss in other appendices the design "" " -

-tchable clocks and show examples of our techniques in use in actual integrated

conclusion, this thesis provides a new theoretical and practical framework for

!sign of reliable, high-performance GA-LS machines.

iggestions for Further Study

'he following paths may be worth pursuing:

rcuits and Processing: It would be useful to have faster and more compact designs I._..
stoppable clocks, possibly linking the speed controls of the clock to some process

pendent parameter, so that a process resulting in faster gates would automati- .

;ly result in a faster clock. It would also be interesting to study the phase-locking '. " " '. -

cuits needed to build unsynchronous machines with high-precision stretchable

cks (Chapter 4) and the locking mechanisms needed to switch a stretchable

,; -' ' . ' . " yT ." "~ r ' ,: ." ,: ; -- " : _.' - *. " .' "" " : .: " • "s : " ", ' :': = " '.' ° "2 ' '.', _,. ° " " ",' =.-' ." . '

.. l

p.

2. Suggestions for Further Study

ock between internal and external frequency control (see the Performance and

eliability of EOs section in Chapter 5). Such work should address design mar-

ins, reproducibility, and yields for both stretchable clocks and synchronizers with *." "

ietastability detectors (see Chapter 4).

lgorithms and Architectures: It would be interesting to experiment with nets of

Ms with various topologies (see the Complex EOs section in Chapter 5) and to P

evelop algorithms that would take full advantage of the resulting architectures.

'he choice of appropriate granularity for both unsynchronous and escapement

iachines is an open question. It might be possible to perform a statistical analysis

D use the freedom given by the partial ordering of same tasks in the LMs, reordering

hem so as to maximize the throughput of the global system (see Optimization in ..- ..

he appendices).

ystems and Networks: The discussions of the fundamental communication prob-

;ms covered individual asynchronous signals and ways to handle them safely and . 6

uickly (see Chapter 3). There are actually many classes of signals: e.g., controls,

ddressing lines, data lines, etc. It would be valuable to define systematically the

iteractions between these classes of signals given different delay and skew assump-

ions and also to develop protocols and circuits to provide convenient ways to link

tructured buses with the synchronous components of unsynchronous or escapement

ystems.

.%

References

ns, R. et. al.: "Real- Time Detection of Latch Resolution Using Threshold

sa", United States Patent No. 3,515,993, June 1970.

wal, A. and Salz, A.: "Mips-X:- The External Interface", internal report, Nov.

,omputer Systems Laboratory, Stanford University.

wala, T.: "Putting Petri Nets to Work", IEEE TO, December 1979. L

A. and Ullman, J.: "Principles of Compiler Design", Addison Wesley (1978)

!au, F.: "A Synchronous Approach for Clocking VLSI Systems", IEEE JSSC,
SC-17, No. 1, February 1982.

strong, D. et. al.: "Design of Asynchronous Circuits Assuming Unbounded

Delays", IEEE TC, Vol. C-18, NO.12, December 1969.

acci, M.: "An Introduction to ISPS", CMU-CS-78- 137, Department of Computer
ice, Carnegie Mellon University (1980). 0 _

D. and Zchna, P.: "Probability", B~rooks/ Cole Ptiblishing Co. ([971)

0s, J. atid Johnsoni, B.: "Equivalence of the Arbiter, the Synzchronizer, the

hi, and the Inertial Delay", IE~EE TC, VoI.c-32, No.7, July 1983.

I.: "Time Loss Through Gating of Asynchronous Logic Signal Pulses ", IEEE
February 1966.

iey, J. & Rosenrberg, F.: "Characterization and Scaling of MOS Flip-Flop

2rmance in Synchronizer Applications", Caltech Conrcrencc on VLSI, January *

RFD-AI154 624 GLOBAILLY-ASYNCHRONOUS LOCALLY-SYNCHRONOUS SYSTENS(U) 2/2
I STAINFORD UNIV CR DEPT OF COMPUTER SCIENCE D M CHAPIRO
I OCT 84 STAN-CS-84-1826 MDA93-83-C-0335

UNCLSSIFIED F/G 9/2 NL

mE17EEEE
EomhohmhEEEEE

NII

~lu

Il 1.25 _1111'4 11.6

i-I II - 111 I f

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS-I963-A

, -. ,, :. , _ .. .- -. * .* .- -, . . -. . . - *. * **.t 4 * * .., . *

*,- ;. . :. - ,** . - . - .*.. , .

' * % % d -

80 References

[12] Chaney, T.: "Measured Flip-Flop Responses to Marginal Triggering", IEEE TC,

Vol. c-32, No.12, December 1983.

[13] Chapiro, D. and Mathews, R.: "Clocking Cells", Chapter 3 of "The VLSI Designer's ' ""
Library", Addison Wesley (1983), Newkirk, J. and Mathews, R. (eds.) [.:"

(14] Chapiro, D.: "A Clocking Chip for Mips-X", forthcoming internal report, Nov.

1984, Computer Systems Laboratory, Stanford University.

[151 Chapiro, D.: "Clock-Stretching Strategies for Mips-X", forthcoming internal report,
Nov. 84, Computer Systems Laboratory, Stanford University.

[16] Chapiro, D.: 'Interrupt Handling in Mips-X", forthcoming, Computer Systems
Laboratory, Stanford University.

[171 Couranz, G. and Wann, D.: "Theoretical and Experimental Behavior of Synchro- -

nizers Operating in the Metastable Region", IEEE TC, Vol.c-24, No.6, June 1975.

[18] Dennis, J.: "A Preliminary Architecture for a Basic Data-Flow Processor", Com-
putation Structures Group Memo 102, Project MAC, MIT, August 1974.

[19] Eichenberger, P.: forthcoming thesis, Department of Electrical Engineering, Stan-
ford University. '.'.

[20] Feller, D.: "An Introduction to Probability Theory and its Applications", John
Wiley & Sons Inc (1950).

[21] Friedman, A.: "Synthesis of Asynchronous Sequential Circuits with Multiple-Input . .

Changes", IEEE TC, Vol. c-17, No.6, June 1968.

(22] Gurd, J. and Watson, I.: "Data Driven System for High Speed Parallel Computing

- Part 2: Hardware Design", University of Manchester, Computer Design, July r
1980.

123] Halpern, J. and Moses, Y.: "Knowledge and Common Knowledge in a Distributed -. .

Environment", Proceedings of the 3rd annual ACM SIGACT-SIGOPS Symposium

on Principles of Distributed Systems, 1984.

[24] lanna, M.: personal communication. '

[25] Hennessy, J.: "Slim: A Simulation and Implementation Language for VLSI Micro-

code", Department of Electrical Engineering, Stanford University, Calirornia (1981).

(26] Hill, F. and Peterson, G.: "Introduction to Switching Theory and Logical Design",

John Wiley (1974).

[271 Hloare, C.: "Monitors: An Operating System Structuring Concept", CACM, Vol
17, No.10, October 1974.

i:. .. ° ,-- .. - --,.. , .

References 87

[281 Hollaar, L.: "Direct Implement ation of Asynchronous Control Units", IEEE TO,
Vol. 0-31, No.12, December 1982.

1291 Hurtado, M.: "Dynamic Structure and Performance of Asymptotically Bistable

Systems ", D.Sc. Dissertation, Department of Electrical Engineering, Washington
University, St. Louis (1975).

[30] Hurtado, M. and Elliot D.: "Ambiguous behavior of logic bistable systems", Proc.0

13-th Allerton Conf. on Circuit and Systems Theory, Oct. 75. -..

[31] Manna, Zohar: "Mathematical Theory Of Computation", Addisson Wesley (1974).

132] Marino, L.: "General Theory of Metastable Operation", IEEE TO, Vol. c-30, No.2,

S February 1981.

[331 Mathews, R., Watson, 1. and Chenevert, D.: "The Medium Tester Hardware

Manual", Department of Electrical Engineering, Stanford University, 1984.

[341 Mead, C. and Conway, L.: "Introduction to VLSI Systems", Addison Wesley,
1980. .',.-..

[31Nordman, B. and McCormick, B3.: "Modular Asynchronous Control Design", IE EE
TO, Vol. 0-26, No.3, March 1977.

(361 Noice, D.: "A Two-Phase Clocking Discipline for Digital Integrated Circuits", PhD0
Thesis, Department of Electrical Engineering, Stanford University (Feb 1983).

[371 Pechoucck, M.: "Anomalous Response Times of Input Synchronizers", IEEE TO,
Vol. c-25, No.2, February 1976.

S(381 Rosenberger, F. and Chancy, T.: "Flip-Flop Resolving Time Test Circuit", IEE
JSSC, Vol. SC-17, No.4, August 1982.

[391 Seitz, C.: "Asynchronous Systems", Chapter 7 of "Introduction to VLSI Systems"
by Mead and Conway, Addison Wesley (1982).

(40] Seitz, C.: "Ideas About Arbiters", Lambda, 1-at Quarter, 1980.

1411 Singh, N.: "A design methodology for self-Limed systems", Masters Thesis, Depart-

ment or E lectrical Engineering, MIT, MIT/LCS/1Th1-258 (1981).

[421 Stoll, P.: "How to Avoid Synchronization Problems", VLSI Design (Nov/Dec

r 1982).

(43] Stucki, M. & Cox, J.: "Synchronization Strategies", CalteeIi Conference on VLSI, .

January 1979.

1441 Tanenbaom, A.: "Computrr Networks", Prentice Hall Inc. (1981).

88 References

[451 Unger, S: 'Asynchronous Sequential Switching Circuits", John Wiley and Sons,
Wiley- Interscience, 1989.

[461 Veendrick, H.: "The Behavior of Flip-Flops Used as Synchronizers and Prediction

of their Failure Rate", IEEE JSSC, Vol. SC-15, No.2, April 1980.

[47) Wann, D. et. al.: "A Fundamental Problem Associated with the Physical Realization

of Certain Classes of Petri Nets", Tech. Mem. No.215A, April 1977, Computer
Systems Laboratory, Washington University, St. Louis, Missouri.

[48] Wormald, E.: "A Note on Synchronizer or Interlock Maloperation", IEEE TO,
March 1977.

.° . . ° .- ,%

Abbreviations

B. Boolean.

.- .. .- '

* '., . -. °£'.

A/D: analog to digital. """" .
Ack: acknowledge. -:"::
B. Boolean.

Cond: condition.

d: delay.

D: decay.

DRV: decision on a real value.

EC: external clock.

EO: escapement organization.

EOL: specification language ror escapement organizations.

ESD: extended state diagram.

fd: data frequency. -

f,: clock frequency.
f,: nominal clock frequency.

FSM: finite staLe machine.

GA: globally-asynchronous.

HO: harmonics- to-clear set.
I: input.

IC: integrated circuit.

L: loss.

LM: local machine.

LS: locally-synchronous.

ME: memory element.

MTBF: medium time between failures.

0: output.

q: qualified.

R: real.

. .- 1.

go Abbreviations

Req: request.

5: stable.
SCL: synchronous control logic.t
SEM: simple escapement machine. .. *

SL: substrate language.

SN: storage node. -

SPM: Seitz's pipeline modules.
T: throughput.
unsy: unsynchronous, unsynchronized. ~
unsyb: unsynchronous with bounded stretching.
V: valid.

vq- valid-qualified.

Appendix A: Stretchable Clocks """

.. . -.'. -

It is possible to construct variable-speed stretchable clocks as in [39] or by assembling
a ring of modules as in Chapter 4. Nonetheless, such clocks are not all that convenient,

and since stretchable clocks are crucial for unsynchronous and escapement machines,
it is worthwhile to analyze them and to consider how to design and improve them in a
systematic way.

Although digital clocks are normally designed using analog methods, we can abstract
the key analog components by providing their functional description. Then different

circuits can be built with these primitive blocks, and the global behavior can be
determined without using analog methods outside the primitive components. We
provide physical implementations for two such primitives; then we obtain the behavior

of the clock from the solutions to equations that model the clock, using the functional ~-
description of the primitive elements.

§1 Primitive Elements: Delays and Decays

A delay element is the first primitive, and we use the notation out =d(in&). For
concreteness, assume we build it using combinational logic, as shown in the next figure.

Call r the switching-time of a gate in the technology being used.

s • .- -, -= " m

*.. .- o...

* " 4* * .* -. ,..

1. Primitive Elcments: Delays and Decays
." 4 0o "o ,

in . . o • -

in out u*

_ .. -

delay

Figure 53. A delay element

When a digital input to a delay element changes value, the output will follow the input

a time Idi later, assuming the input transition time is of the order of magnitude of a few

r, and the input does not change again within a period smaller than Idi. If the input

does not satisfy these assumptions, we do not care what happens with the output, since

we will always satisfy them when modeling the clock.

The second primitive is a "decay", and we use the notation out =D(in). For concrete-

ness sake, assume we build it using the nMOS circuit shown in the next figure. A decay

is an asymmetric delay that delays rising edges much less than it delays falling edges.

Let JD738, I be the delay for int, and I Df.11 be the delay for iraij. We assume that if an

input pulse is shorter than fD7 j8 .j, the output may be digitally undefined. Otherwise,

input pulses will be stretched by an amount IDf,11I - 1D718.j

We can implement a decay element by modifying an nMOS dynamic memory element:

IDriaei can be fairly short (the propagation tinie through a few gates), and lDia11I i5

the time it Lakes to lcak the charge from the storage node. To control the speed at

which charge leaks, we use a pass transistor whose gate is controlled by an externally

set analog voltage. This decay speed control allows us to change j Df1 jl over a wide

range without affecting IDrisel.
1

2.1 An inversion /delay ring l

vdd

in- out
storage

Pnode

outL
gnd decay speed

Figure 54. A decay element

§2 Clock Generation

We will build clocks by interconnecting almost identical modules. Each module, as well -

as the signals it emits, will be distinguished by a subindex. Given an ordered set of ni

modules, we define next(i) as mood,1(i + 1), i.e., the next one in a ring of modules.

Trhe approach we follow next is to usC the delay and decay functions to state equations :

that have oscillatory solutions in the time domain. Bly analyzing these equations we will

be able to derive most of the relevant properties arid limitations of the corresponding

circuits.

2.1 An inversion /delay ring

Coven if it were possible to build inverters without dlelays, we could not use them to

build a clock, as can be seen in equation (AAi), which does not have an oscillatory

solution in time: .*

Onext(i) =i-.(l

Therefore, we must introduce delays: let d be the delay involved in computing an . ..-

inversion. The equation for a normal ring oscillator is:

*Onext(i) =d(f$,), (A.2)

94 2. Clock Generation

which has ar oscillatory solution, but only for n odd. To change the speed of the clock

the delay through some modules must be altered (e.g., Seitz [391 selects one of several .
alternate paths with different delays).

2.2 An inhibition / decay ring O

There are a number of other equations that have oscillatory solutions, but we will go

directly to the one we use for stretchable clocks. In the following equation:

fnext() = ',A D(O,), (A.3)

if O, were high for a period longer than IDieI, D(O1) would go high. Nonetheless, the

inhibition path prevents stage 4next(i) from going high until i falls. Therefore, a stage

goes high only after its predecessor goes low, and stays high for a decay period IDfl. .. O
A more complete equation (which takes into account the delay involved in computing

the AND) would be:

Onext(i) d(W'i A D(4')), (A.4)

which has an oscillatory solution for both and even n.

Since we have decoupled the rise and fall time delays, we can elongate a phase by in-

creasing IDf.111i without affecting the length or succeeding phases. If we take n = 4, we
can obtain two non-overlapping clock phases separated by gaps and have independent

controls for the normal length of each one of these.

2.3 An inhibition / decay ring with stretching I 0

To introduce stretching, we must be able to extend the output of a stage for an arbitrary

period (as long as some stretch signal remains asserted), as in the next equation:

*next(i) = (i A D(ti)I v stretch, (A.5)

which of course has the same oscillatory solution as equation A.4 when no stretch

occurs. Clearly, if stretch is raised at arbitrary times, or has hazards, the solution to
equation A.5 shows that these will show up in the output of the stage. Hence, we allow b S

stretching of a phase only when its corresponding phase is already active (i.e., stretch

•- °.......,....-...,,.o..... .. ,-.,, -,

I An inhibition Idecay ring with stretching 95

ust be qualified Onext(t)). Therefore the equation gets modified as follows:

*Onext(i) [W'j A V(b) [dinext(i) A stretch next(i)] . (A.6)

iequation A.6, if stretch goes away before the normal end of the decay, it will not

fect the phase length, but if it stays longer, the phase is extended. If thc stretch0

gnat had a dynamic hazard after the end of thc decay, equation A.6 shows that it

)uld be propagated to $ncext(i). To avoid this hazard, we require that stretchb, only be

]owed to make hazard-free transitions to zero during 4Pj, which is a requirement that -

met by the stretching needs of both escapement and unsynchronous machines. Note S

kequation A.6 that 40nex.t(i), as well as all succeeding gaps and phases, are not affected

iany way aside from being delayed, no matter how long -0i is stretched (i.e., no gap .

r phase gets ever shortened or lengthened due to a stretching of a preceding phase).

I this point, the partially developed clock looks as follows:

stretch

in out I

stretch-ph12 gnd

phi2 ~H-~----

out rnodule4 in 4-out mnodule3 in4

Lin modulel out -oin mnodule2 out

Fiure 55. ASiified StretchableClock pi

I S

P6 2. Clock Generation

Pulsing one of the stretch lines for a long period starts this clock, and phases or

gaps can be stretched for unbounded periods by asserting their corresponding stretch 0

controls (e.g.,we stretch V2 by asserting the stretch input of module 4 with a signal

that rises as a q-V2 signal). The normal length of phases and gaps can be set with their

corresponding speed controls.

2.4 Inhibiting the Next Stage

In principle, it seems that the clock shown above is fine, and in fact it even works p -

for a few days before harmonics appear, or the clock stops. To discover the reason

and to cure these problems, we analyze equation A.6. What follows is a more complete

version of equation A.6 that takes into account the relevant combinational delays:

Onext(i) "-[d (Fi)AD(Oi)] V d2 [' next()Astretchnext(i]. (A.7)

Succeeding phases should not be high at the same time, but we can see in equation

A.7 that Onext(i) will become high IDi,,I time after 4Ii, unless the inhibition path - "

(which takes Id II time) is faster. Therefore we must satisfy:

dit < ID,i..l (A.8)"'"-"":"-"

for Ocxt(.) not to glitch. "

2.5 Phase Length
p 0

Because or the inertial characteristics of the decay, it will lilter out any pulse that

is too narrow. Therefore, we must guarantee that:

10i > ID,..I, (A.9) I '

so that a stage detects that the previous stage has gone high and then low. In terms

or energy, each stage must emit a pulse long enough to provide the energy to fully -.

charge the next stage. Otherwise, the clock signal going around the loop ,,f modules '--

disappears, as can be experimentally verified Iby running the clock of 1131 faster than _ S

this limiting speed.

1° 0

..

-. -~ - . .•. .,"E"..-,'..,' S-,' -

tecting and Eliminating Harmonics 97

tartup

n a ring oscillator, "all phases low" is an unstable condition (not a solution to

rresponding equation A.2). Nevertheless, since V i{4j =_ 0} is a possible solution

uation A.7, an explicit mechanism that will detect this condition and start the ...-- ..

,hable clock is necessary.

f when the clock is not running one pulse is sent through one stretch line, equation

rdicates that the oscillatory behavior will persist. Hence, we modify the equation " "'

oy changing it for only one value of i, that for convenience we take as 1.

i 1: *next(i) [idT) A D($Pj)] V d2(0flext(i) A stretchnext(i)) v start, (A.10) 0

e start is obtained by NORing the values of the storage nodes of all the stages.

lo not NOR the outputs of all the stages, because they never overlap. Note that

is no harm in having start be very long (it is a pre-start stretch), but if it were p
Ise shorter than IDri.eI, the clock would not start properly. Hence, we make the '.'-

anism for detection of "all stages low" very slow.

Detecting and Eliminating Harmonics

For ring oscillators, harmonics may be unstable, but in the stretchable clock of.

tion A.7, harmonics can persist indefinitely. That is, we may have

[PFor n > k > 1: 4b A qb.+ i 01. (A.11) .. ''.'--

that although the , ' -,n to equation A.7 with the initial conditions of equation

has no solution wher. harmonics are present, if somehow we manage to

iduce harmonics, these are able as the desired oscillaion for n > 2. This

'ein can be verified experimentally with the clock of 113], when there is a power

h. Therefore, we must check for all possible harmionics. O1 course, there is no

antee that after a power glitch the rest of the system will continue operating, but

ast the clock must recover automatically.

We can talk of the harmonics in terms of how many modules apart (k) the waves -

Lraveling (e.g., for the basic frequency, k = n). For k = 1, the inhibit mechanism

ie modules prevents it. Every harmonic with k > [n/21, is delected as an n - k I.

rionic. Also, it is redundant to check for any harmonic k, such that it is a harmonic

-..... :

* S

* 5. Value and Time Uncertainty

ust solve a DZV problem it cannot have both value and time safety.

'heorem 2. No system that has components that have to solve DRV problems can

ve both value and time certainty. That is, if such a system knows with certainty the ":".. .

zlues with which it is operating, then it cannot know with certainty what the time is, **-:.

nd vice versa. p

'roof:

(a) If the system always attempts to compute in bounded amounts of time (e.g., it

ses a free-running clock that provides its time reference), it is subject to the conse-

uences of the DRY theorem, so we know it will have uncertainty about values.

(b) If the system doesn't require the DO problems be solved in a bounded amount

f time, it is not bound by the DOV theorem, but it will lose track of time. Since the time . -

3r the completion of the PRY problem is unbounded and cannot be pre-determined

y any other part of the system, the component itself must generate a completion

ignal C when it is done. It is not possible to poll C at regular intervals because of the

orollary of the DRV theorem that says that sampling an asynchronous line is in itself

PRV problem, nor can we receive interrupts because they are logically equivalent to ..- . - -

oiling a line. Since C is asynchronous with respect to all of the other signals in the .- -' .'. -

ystem, any scheme that will actively attempt to decide whether the answer is ready will

c-introduce the DPR problem. Hence, the only way to avoid checking synchronously

Dr the arrival of Cis to let the system become inactive at some point before Cmay .. S -

rrive, and let it resume activity only when triggered by this completion signal. For K . . "

he internal clock of the system, inactivity means that it must stretch one of its phases .

r gaps until C arrives. Call the resumption of activity after C "wake up".

If, on waking up, the system needs to know what time it is (or equivalently,

ow long has the PDR computation taken), it cannot consult its own clock because

lie clock had to be stopped throughout the DR computation, rendering its count of

ime uncertain (we have absolutely no bounds on how much error it has accumulated).

lence, the system must consult an external clock (EC) that didn't stop during this

tretching period. EC will be asynchronous respect to C, so that when the system

fakes up, its internal clock will also be asynchronous respect to EC. If the system .

tternpted to get the time from EC, it would find a synchronization problenm that ,-

rould re-introduce a PRY problem. Therefore, it cannot have certainty about the time

nd remain value-safe. Q.E.D. I

.
.~................................'...i '

* 0

Llue and Time Uncertainty l

se-locking, it is possible that when the phase-locking period has finished, the phases

be completely out of sync. .

"Solutions" to the DRV Problem
p O'

There are three main lines for impossible machines that attempt t,. solve the

:hronization problem incorrectly. They deserve comment because there have been

nany erroneous solutions proposed with these common bases.

,atches with different thresholds: two flip-flops with different thresholds r, and r2 p .

.re used, with both thresholds contained within [False,iax, True,,,1 1 . Hence, when

ampling a value, given the bounded slope at which the input may change, at most .

ine of the flip-flops may go metastable. The problem with this "solution" is that to

hoose which flip-flop has the digital value is by itself another DJRV problem, because

Boolean decision is being based on two inputs, one of which may be digitally- -

|ndefined.

vfultiple sampling: with the same motivation, two samples of an input line are taken, *.

wsuming that once a signal rises it will not fall until some acknowledging occurs. _..

Dlearly, at most one flip-flop may go metastable, but again chosing the right one is

k D2V problem by itself.

Jsing noise: since a flip-flop in a metastable state is not stable, a small noise signal is

ntroduced with the hope of forcing the Ilip-flop out of its metastable region quickly. .

4oise, being random, may bring the system out of a metastable region, but it may """"-

6LSO drive it back into a metastable situation just when the system begins to evolve

owards a stable state.

Value and Time Uncertainty

If some components or a synchronous system must solve DRV problems, they will

ietimes generate digitally-undefined values that may cause problems throughout the .

,cm. Eventually, these values may either show up in the output, or may affect the

trol of the system itself if feed-back of any sort is involved.

Earlier we discussed value-sarety and tiine-safety, and how to build value-safe .

ynchronous machines that were not time-safe. Now we prove that if a machine

.-....-... ... '..-.-. . ..
/ -dl--

110 3. The DOZ Clas and the Corollaries of the ARV Theorem

3.4 Corollary: Synchronization and Sampling of Digital Signals

Both synchronization and sampling of digital asynchronous signals involves decid-

ing if a digital asynchronous signal has arrived or not within a time window. It gets - -

reduced to the arbitration problem by looking at the local clock and the sampled signal

as two signals for which we have to decide which one arrived first. Within each clock

cycle we have to decide if we have seen a signal or not. If it has arrived within the P.

current clock cycle, it means it came before the clock's falling edge, but if it hasn't,

it means the clock's falling edge came first. Therefore, the arrival question is equiv-

alent to asking which of two signals arrived first, which is the arbitration DR, problem.

Hence, any source of asynchronous interrupts will sometimes get an acknowledge that At

will be digitally undefined, ad polling a line of an asynchronous device may result in

a digitally undefined reading.

3.5 Corollary: Phase Locking

To lock a recurring signal S to a reference signal R, it may be necessary to change

the frequency of S or its phase. Any action that retards the next zero-crossing of

S we will call "slow-down", while an action that advances it we will call "speed-up".

S and R are defined over a continuous domain (time) and can be initially displaced

with respect to each other by any time interval. Hence, to make the speed-up or slow-

down decisions, we must compute some real-valued difference fIunction that provides

the necessary information to make the right Boolean decision, which is a DOV problem.

However, in phase locking, the ultimate result is not Boolean, so in principle we need

not make any Boolean decision yet.

Let a function SP(Av) of the phase error (AV), indicate when to speed up or slow

down. Stable points must have SP -= 0. Since the machine does not distinguish phase"

errors of multiples of 3600, .9/'(Ap) must be periodic with period 360)". Ilence, at 00

and at 3600, MI'(Ap) must cross the zero axis with the same slope. Therefore, t-ere

must be at least one other value T in [00, 3601 where SP 0 0, which is a metastable

point.

Since it is not possible to solve the problem within the real domain, we are forced

to attempt a Boolean decision, by pushing the system in one or the other direction

when it is close to T. llowever, to decide that the system is close enough to r is -

by itself a DRV problem. Therefore, no matter what clever device is used to achieve .'-' "

3.3 Corollary: Arbitration .109

3.3 Corollary: Arbitration ' ". -. -.

Arbitration involves deciding which of two (or more) asynchronous signals arrived

earlier, so as to grant some resource to the sender of the first signal. Let R,, denote

an n-dimensional real space, and Bn, an n-dimensional Boolean space. The two signals

correspond to two real functions defined over the time domain, and granting the

resource to one or the other requestor corresponds to a single Boolean value. Therefore, . .

our problem has to map a value in R2 into a value in B 1 .

If we attempt to map R 2 into B 2 , we find that since the arrival of each one of

the two signals is asynchronous, just to decide that any one of them has arrived is .

equivalent to the A/D conversion problem: to decide that a continuous signal has

arrived, we must define thresholds that allow us to make the distinction between

"arrived" and "not-arrived". Since these thresholds define a DRV problem, determining

that an asynchronous signal has arrived is also DRy. -

Alternatively, we can first map from R2~ into R, with some function (RR1) defined

on R, whose values contain all the information necessary to decide which one arrived

first (presumably some sort of difference function). No matter what transformation

we chose, once we have this single, real-valued function, we still have to apply a

transformation (RB) from R, into B to perform arbitration. RB cannot yield constant

answers, so there must be intervals in RI such that RB is True in some of them .''"": " -, "

and False in others. These intervals must cover the target domain of RR, since RR

must have the necessary information to produce the decision. The intervals cannot be

overlapping because that would result in a conflicting answer. Hence, the intervals must

be semi-open and contiguous, and must cover the target domain of RR. Hach one of the

real values (presumably a single one) that correspond to the boundaries between these

segments marks a threshold that distinguishes the values in RB's definition domain for

which R1 is True from the ones for which R13 is False. Clearly, cachi one of those p

thresholds defines a DRV problem for RB. -.......- "

Hence, we can also apply the PRV theorem here, and say that any arbiter that

must grant an available resource to the user who requested it first some fixed time '.-

after the request was made will sometimes grant it to nobody and sometimes to several-i.. . -

users at once. What will happen depends on how will the digital users interpret the

digitally-undefined signals that the arbiter will sometimes generate.
* ..:

S'o'°-

I..o

108 3. The DRV Cla and the Corollaries of the DRV Theorem

a PDR problem. Sometimes we will take shortcuts and simply show that some problem

is equivalent to some other problem we already showed was DRV..p

Some of these corollaries have been already proved, but the proofs are much more -.

complicated [32] or just limit themselves to equivalence proofs [9]. The reason our : ..-..

proofs are simpler is that we can use the DRV theorem, which does not assume that the

circuit that solves the DRV problem is bistable, so we need not prove that a bistable is S -

needed to solve a particular D) problem. I - -

3.1 Corollary: A/D Conversion

A one-bit A/D conversion corresponds exactly to the DKR class definition. Therefore,

we can apply the theorem above and conclude that any one-bit A/D converter will

sometimes require more time to produce a result than the time given to produce it.

Y.
If we have more than one bit, we have the same problem with any of the bits, no

matter what encoding we use: for each bit that conveys information, there must exist

some value T of the analog signal at which this bit will switch from being off to on.

The switching value T defines a new DRV problem whose answer is given by that bit

of the digital output. Hence, we should expect that any A/D converter will sometimes

produce a non-digital output if it is given a bounded amount of time to sample an

analog line and convert its value into a digital output."......

3.2 Corollary: Schmitt trigger

Some of the "solutions" to metastability problems have attempted to use Schmitt

triggers. Independently of the hysteresis cycle of a Schmitt trigger, if a signal that starts 0 0

with its minimal value increases its value monotonically during an interval [to, to 1, the

Schmitt trigger will have 1A) switch from off to on at its high triggering-point 7hig.-

Throughout [t,1) the output of the Schmitt trigger indicates whether the input is

higher than Tigh or not, which is a DRY problem. Analogously, T1o defines another

DRV problem on decreasing ramps.

Since the proposed inputs fall completely within the domain of admissible inputs

for a Schmitt trigger, we can apply the ARV theorem and conclude that there are input

patterns for which a Schmitt trigger may switch half way and remain with an undefined A

output as long as necessary to cause trouble.

.~~~~' . .' ',

- ,Z~ -- 7 % N7 w;o %7

V

3. The D ZV Clams and the Corollaries of the DRV Theorem 107

and f(1 > T + 6) > OT.,., where OT.,, and OF&I.. are constanta whose difference is

bigger than the given e. p

Since the slope of f corresponds to the gain of the circuit, the slope must be

bounded, and because of the continuity assumption, f must have a non-empty region

within IT -6, T + 6) such that OF.a.e < 0 < Or'r,.e. For this region, 0 cannot be

mapped onto True or False because of the limited accuracy assumption. Therefore, no 0

combinational circuit will produce only digital outputs, given an arbitrary input.

Graphically, this function also models a mechanical inverter as the one in the next

figure, with a rigid lever. The input sets the position of the left arm of the lever, and "

the output is indicated by the right arm on the dial. In terms of the figure, there are F, -7 _

positions of the arm for which obviously the output is not digital.

-".- .

Input r-
."""" " "

Fgure 59. A combinational decision lement

Therefore, we are forced to consider sequential circuits to solve the DOV problem.

But, if we can solve the DRV problem in a bounded period using a sequential machine,

then we could build with it a "perfect synchronizer" (one that cannot remain metastable

for unbounded periods [91) for a synchronous machine, contradicting Marino's theorem.

Therefore, it is not possible to solve the DRV problem in a bounded amount of time. .-.- o
Q.E.D. a

§3 The DRV Class and the Corollaries of the PDV Theorem

The DRV class contains numerous problems or practical interest. We will show S

that problems belong to the DRV class by showing that their solution requires solving

.

° .

7-- - -.- - 7 77 W' VT 1 137 -7 .7 7 .--.

106 2. Proof of the DRV Theorem

Call bounded any change that is bounded above by some positive value, and

also below by a non-zero value (i.e., a two-sided bound). The discussion will refer

only to voltages for the sake of conciseness, but in gencral we could reformulate the

arguments using other physical parameters (e.g., currents). The basic physical modeling

assumptions that will be used are:

Accuracy Assumption: For any implementation of a logic circuit there is a value

6 such that the circuit cannot distinguish consistently and correctly between values

less than 6 apart.

*Continuity Assumption: Assume that voltages are everywhere continuous and

differentiable functions of time (i.e., voltage/time curves are smooth).

There are some fairly obvious implications of these assumptions. The first one is

that different digital values must be some bounded voltage apart so that they can be

distinguished as different values. The second one is that no observable value change

can be instantaneous because different values must differ by a bounded amount and

because of the continuity assumption. Third, the gain of any device must be bounded, . -

-o ,

because otherwise it would be possible to construct devices that violate the continuity .*...-.a

assumption.

We will prove next that the basic assumptions lead to the impossibility of solving

the DRV problem in a bounded amount of time.

The DRV problem: given the assumptions of limited accuracy and continuity of

values, measure a voltage and decide if it is above or below a certain threshold.

An incorrect answer is acceptable for voltages less than 6 apart from the given

threshold, but the answer must be a digitally-defined value.

a-. - o" .

12 Proof of thc DRVTheorem

Theorem 1. There is no machine that can solve the RVproblem in a bounded

amount of time.

Proof: Suppose that we attempt to build a combinational machine f that solves the

DRV problem. Its circuit must map the input I and the threshold t onto an output

0. To decide whether the output should be mapped onto True or onto Faise, given the

limited accuracy assumption, te difference between 0 for I < b - 6 and 0 for I >

T +6 should be bigger than some given e > 0. Hence, we make f(I < T -6b) < Or-.-

a - a.°°.-. - ..°

. -.'..aa

.... a'a a~ .. a~~ a a -°a a - ° a .. - ° a°a.a.

Appendix C: The DRV and Uncertainty Theorems

" '* 0- o .

In this appendix we present proofs of the D.RV theorem and the Uncertainty theorem.

Theorems similar to the PRV theorem have been presented before [32, 9]. Here, some- ~-V

what weaker assumptions are made, so that the conclusions can be applied much more

directly to a variety of problems. The Uncertainty theorem and the conclusions derived

from it are new.

§ 1 Notation and Assumptions

As was discussed in Chapter 2, as far as the operation or lhistables is concernedl,

Marino's paper (321 is conclusive in proving that sequential circuits exposed to inputs

that can change asynchronously with respect to the activity of the circuit cannot avoid

metastable conditions.

Our approach builds on Marin"o's theorem in the following way: we both assume

non-anticipatory, continuous mnach~ines whose history can be suibsurncd (ror Lte purpose

of predicting future bchavior) in the "state" of thc riachitte. The mrain 'Jiflerence is

that we do not assume our systems to be sequential inachincs, and that instead of

proving that our systems cannot avoid metastability, we prove that they cannot make

some kinds of decisions under particular conditions. When the cV theorem is invoked

in order to prove that some operation may produce metastability, it is not necessary to

prove first that a sequential machine is necessary to and the operaion (as would

be needed with Marino's theorem).

As was discssed in...pter.2,.as..r.a... h.. peration'o... stab.es s-concerne,....-....
. o.

104 2. MIoe-X
I *

Mips-X is a high-performance, pipelined, RISC (reduced instruction set computer), .

multi-microprocessor system, currently being developed at Stanford under the direction

of John Hennessy and Mark Horowitz. Local caches and co-processors are used to in- ;..::.-.:.

crease the performance of the machine. To handle the interaction among the processor,

the local caches, the co-processors and main memory, different variations of EOs (see :

Optimization of EOs in Chapter 5) are being considered [15, 21.

Since Mips-X is designed to run with a 2-phase, 20MHZ clock, and very short

gaps, the stretchable clock can be made out of two stages. The automatic start-up

mechanism (see Appendix A) has been made external to the clock, and since a 2-stages

stretchable clock can't have harmonics (see Appendix A) the resulting CMOS version

of the clock [14] is extremly simple (it has approximately one-third the number of gates

of the clock shown in Appendix A). For frequency stability, the scheme described in Az--

Chapter 4 (High-Precision Stretchable Clocks) will be used [14]. -

. '.

I -

...................................

....................................

Appendix B: Experimetal Machines .103

x x

F0

phhi2

Wid vdd w.

Figure~~~~~ ~ ~ ~~ 58.- A ycrnzrwt eatblt eeto

-Z_

Appendix B: Experimental Machines

* § 1 The Medi um Tester

The Medium Tester [331, is a functional tester for digital ICs, which is being used

by several universities. The tester is implemented basically with three custom chips.

One of these chips, the Test Controller, communicates asynchronously with an LSI-11

* to exchange test vectors and other inf'ormation necessary to set or test the values of

the pins of the cbip being tested. To attain a very high reliability, the Medium Trester

has an unsynchronous architecture.

The Medium Tester uses the stretchable clock shown in Appendix A and synchronizers

with metastability detection as the one shown in the following figure, which was also

compiled and compacted using Lava [191. This synchronizer samples an asynchronous :

input during V, and may infrequently request a stretch Of W2~. The synchrornivid data .- x-

is available in the output as a s-up, signal. It pipelines the synchronizations, so that it

can do one synchronization in each Cull clock cycle (for more details see [131 39, ID)...-

p, v

10e 3. Implementation

vdd

phi2P 6

spead(gap2l)

aPeed(PhI2)

inpegd(phil)

'x I

phil-.

Figure 57. 2-Phuse, Variable Speed, Stretchable Clock

3. Jpaet~li

Vdd

In out

Figure 56. Clearing the Storage Node

13 Implementation

Next we show an implementation or a 2-phase, variable speed, stretchable clock ~

* that incorpviates harmonic detection and elimination and the automatic start-up fea-

tures discused above. This clock has becn used in actual integrated circuits. The

* layout of this nMOS ciArcuit was compiled and compacted automatically using Lava

p •

98 2. Clock Generation

of another k2 that is being checked. Therefore, we must only choose a pair of modules•'

at a distance k, for the values that appear in the harmonics-check set, which is defined

by the following recursive equation:

HOC {i f[1 > i > 1) - {i) 3 a multiple of i in HC}. (A.12)

2*

For a 4-modules unit, for example, we need to put a single check between modules I

and 3, but for a 2-modules unit, no check is necessary.

Hence, for each value in HC, we chose a pair (i, j) such that (j - i) E HC, and we

define I .

harmonicij = d4(4 A $j), (A.13)

where d4 is the time it takes to compute the harmonic detection. It is important to note

that if we extend the clock to n-phases, d4 remains a constant because IJICI < n/2,

so each of the n modules is used for at most one harmonic term.

In equation A.7 there is no way of making a harmonic solution vanish. Therefore,

we must add a "clear" term to equation A.7, so that the non-stretching term becomes:

.'next(i) = [d1 (f) A D(4,) A clear($,)]. (A.14)

The remaining question is how to connect the "harmonicij detected" outputs to the

"harmonic clear" inputs. Analyzing the solutions to equation A.14, we find that it is

i! not enough to just clear either module i or module j, because this equation exhibits !. -.

memory, so we need to clear either i and next(i), or j and next(j). This inconvenient

memory effect appears because, although modules next(i) and next(j) are both low while

harmonici, is on, their respective decay elements remember that their predecessors were

1 high and attempt to go high as soon as the harmonic itself is eliminated. Therefore,

-° , -we can chose to clear one or the other wave (i or j), but we must clear a stage and its

successor, so we get:

clear(i) - clear(next(i)) - harmonicij, (A.15)

where clear may be implemented by having in each stage an alternate, fast discharge

path for the storage node of the decay, turned on by the "clear" signal, as shown in

the next figure:

... _........-... *..-.....-.-.......-..- -.........-. -..- .-.-.,..- .- ,.-.-,-
.-. '.. - -'".'. -* ..''".''''., *- ..'''',---' '-'-.- **'',..-* r' -,-""'',.-.'''',-,-''''-.-

5. Value and Time Uncertainty 11"

Thus, unsynchronous machines cannot be time-safe, and any scheme that attempts

to bound their time uncertainty will destroy value-safety. It is also interesting to note B .

that at any time, even though we cannot know the time with certainty, we can know

what the time used to be when we first wanted 'o know it. This may sound puzzling,

* but it simply means that if we want to check the time shown by EC without risk of

value confusion, we can use a synchronizer with metastability detection, connected to a

local stretchable clock, as was shown in Chapter 4. But, when we get the time reading

we do not know if now EC has produced a stretching of our internal clock precisely --

when it was trying to give us the actual time, so in fact we get to know with certainty

what the time was when we asked for it, but not what it is at the moment when we 6 -

receive it. It is important that we can know at least what the time used to be when we - 6

asked for it, because it means that our uncertainty about time corresponds to a single

transaction, instead of accumulating forever.

•. "~~~ 0.o .DO

,... S,-o*

':, ,'." * *55. .'

-- :i::::::c:-s :

*[*4 J2:-* .e ..

4 -~ -~ -'- -- O.-o

A ; , S . ° • :S o.

Appendix D: Verification.2-'-S - *

Ap i pendix disuse verificatie orcns fecpmn n nycrnu

.,...c.....-.L v

This appendix discusscs verifying the correctness of escapement and unsynchronous

circuits. For verification purposes, it is convenient if one can describe the variety of
signals that connect the different devices with some small number of signal types, state

precisely in which ways these signals can be connected, and what are the resulting su m,

oetypes of the combind signals. Types are associated to a few signals at design time,

-pand then arc propagated automatically to the rest of the circuit using the rules. Errors

are found by detecting that invalid type combinations appear, during the propagation
'(phase. . 5

Verifying the "correctness" of a system, does not mean that "the system will work

expected". Correctness must be defined respct to some predicate. In our case, the

-." strongest assertion that we will make is that if locally synchronous machines, verified

correct respect to their specifications, are linked according to our rules, then the whole

system will be value-safe. For convenience, we will assume the LMs follow a strict

- 2-phase clocking discipline (see Chapter 2), although we could use any other reasonable
* synchronous clocking mnethod for the LMs. Since signals that indicate metastable "- .'":

conditions or control stretching of phases have no adequate counterpart in the strict
,.."two-phease theory, we will introduce new types. . .. '..

LuThere are some aspects that can be checked automatically very easily, and are not
.. relevant here, so for clarity, we assume that there are no und riven nodes, that there are ,.'. '

.- no dangling inputs or outputs, that there are no "fighting" conditions (different gates ::-..-. '

"controlling the sarre node), that power has been appropriately connected, and that any •.,

4necessary analog controls are connected correctly. Assuime positive logic for sinmplicity,.' ":'-

r. Furthermore, assume that at design time the corTpIonents o1" each LM are tagged a.s,., ..

... * SS,,* ? S S S. ' *. , 'a .. -,%

~ *% . ~'**. .. 555% '-Y-;-~;~%K:...-..-8-,.~ - ~*~ * * V

1.2 Rules 115
.-. ..•...-

belonging to a particular LM, so that when we verify the global machine, inter-LM

boundaries are obvious. For clarity, we will use V 1 and V2 instead of talking about .
"one phase" and "the other phase". Obviously, the argument holds if we exchange '

all p, for V2 and vice versa. When we say connect, we mean to join the lines making...,"

them a single electrical node; otherwise we use the word combine and we indicate what .. -

gates do the combining. When we talk about "gate logic", we mean combinational

logic without pass transistors or any other kind of "switch logic". Node will stand for -.

an "electrical node".

§1 Verification of Unsynchronous Machines

1.1 Types

. Unsynchronized Signals: Any signal Xu,, arriving from another clocking

domain (generated by another LM).

e Stretch Signals: Stretch signals will be of type stretch, and will have a subtype -

pi or Vc2 according to the phase that they should stretch.

1.2 Rules

A well-formed unsynchronous OA-LS machine satisfies the following rules:

* Clocks: Each synchronous sub-system has only one stretchable clock. The
clock may have two input pins of type stretchv, and stretches Thesc signals and

the functional description of the clock provide the lowest level abstraction of the
clock that the system designer deals with. The clock designer deals with lower

level abstractions, which are discussed in another appendix.

* Logic-Sense Propagation: Civen we know the logic sense with which stretch

signals were generated by the synchronizer and the sense they are expected to .

have at the clock (both assumed positive logic), it is simple to propagate a sign
with each stretch signal, such that this sign is inverted when the logic is inverting.

It is then trivial to detect compatible inputs to gates and whether the final sense

they have when they arrive at the clock is correct or not.

.-...-. .. ,.. .

..:. "..:.,.:.-...'. ; ,' .:_ : ..'.-.-..-.--..: .,.,: . -..- ..:, ,.....:..-...- :.--,... -...-:..........-...-.. . -.- ,.. .- ,..-.

lie 1. Verification of Unsynchronous Machines

o Connection of Stretch Signals: They can be connected with other stretch

signals with the same phase and sign.

* Combination of Stretch Signals: Stretch signals can be combined in a

hazard-free way through gates whose Boolean simplification (taking the complete .' ~
paths from their origin to the clock stretch input) must result in a single OR gate. .

Note that if the stretch logic diagram has a tree topology, it will be hazard-free.

All stretch inputs to the same gate must be of the same phase and sign.

stretch-phil

Ystretch

ZatretchClock

False slretch-ph12

Figure 60. Stretch Combinations

e Combination of Unsynchronized Signals: They can be combined using

any sort of logic with signals of strict types. The type of any such combination is

unsynchronizf d.

*Synchronisation: Each sub-system may have any number of synchronizers,

each or which can take one unsynchronized input. The sampling control of the-

synchronizer will be a qualified signal. The synchronized output will bc stable on ,. .

the qualification phase of the sampling signal, while the generated stretch signal

will have a complementary phase.

* SaMPle6 n
'.9p

H Xsyn +

Xunb7E Synchronizer

I-XMet
_______________________ Istr~pWi i*

Figure 61. Synchronizer Types

2. Incompletenes of Verification for EOs 117

1.3 Value-Safety of Well-Formed Unsynchronous Systems

Whenever a signal has to cross a boundary across synchronization domains, when

it enters the other machine, it is fed to a synchronizer that transforms its unsy type - -

to a stable type. There is no need to connect stretch signals of other types. Hence,

we only check that they are combined correctly with other stretch signals, so that the

machine will proceed only when all synchronizers are stable.

Therefore, each LM works synchronously, and the synchronizer/clock encapsula-.-

tion, given by the functional definition of the clock and the synchronizer and by the

combination rules, guarantees that any external signal that an LM may need will ac-

quire the appropriate strict type, thereby preserving the value-safety of the system as, -

a whole.
t

§2 Incompleteness of Verification for EOs

In this section we show that there is no general way to guarantee safety for EOs .-..- .

by just analyzing the circuit. Although we saw that we can verify the value-safety of

unsynchronous circuits, we will see this is not possible for EO circuits.

EOs verification is harder because the clock stretch input is no longer shielded by -

a fairly limited number of possible combinations of outputs from local synchronizers.. .*-

Instead, the clock stretch input is controlled directly by logic that combines external

and local signals. Just to introduce a note of optimism, remember that the synthesis

mechanism for EOs (Chapter 5) allows us to generate EOs that are value-safe by

construction, so this section is mainly of theoretical interest.
be

Theorem 1. Rules Systems for Safe EOs: There is no algorithm that can guarantee

value-safety or time-safety for escapement organizations, given a description of the

circuit, i.e., we cannot write a program that will tell us whcthcr arbitrary I-O circuits

are value-safe or not.

Proof: The stretch inputs of a clock are formed by a conjunction of an external

stretch condition and an internal signal that indicates that the system has reached a

state at which this stretch condition is allowed to cause stretching. If the internal

signal happens to rise at some incorrect time, there are two possibilities that produce

problems:

:. :' : . 9.a'. ' .

~- •
0

2. Incompleteness or Verification for EOs

(a) The external condition will drop after some action by the LM, but the LM is sleeping,

and the system deadlocks. Hence, even if it is value-safe, it doesn't work. .

(b) From the semantics of Req and Ack signals we normally know the transition

direction of stretch signals, but now things may be out of order, and we no longer

have certainty about the direction of the transition of the external condition for the . -"

stretch. If Cond happens to rise by the end of the phase that was to be potentially 0

stretched, we have a race between the end of the clock and Cond. If such a race

occurs, the stretch inputs to the clock may no longer be dynamic-hazard free,

thereby fouling up the clock operation. The clock now may glitch or stay in an

incorrect stretch. Hence, we cannot count on any subsequent digital operation in •

the system nor on the clock to continue operating, so we lose both value-safety and

time-safety.

The key issue is that we cannot rule out these situations by just looking at the T%

circuit because finding that some flag will not be set at the wrong time is equivalent

to Turing's Halting Problem.1 Hence there is no general method to verify arbitrary

EO circuits and guarantee that they cannot enter a deadlock as in (a) or a metastable

state as in (b). Q.E.D. 3

1.°

2.1 Verification of Well-Formed EQ Circuits

It was seen in the theorem above that the rules for circuit descriptions are per force

going to be incomplete for verifying them. Therefore, we might attempt to circumvent

this theorem by solving a simpler problem: we request the designer to supply assertions

about the EO. The designer would have to guarantee the correct operation of the inter-

LM communication protocols that depend on the programs running on the synchronous

LMs and a consistent interpretation of each inter-LM signal as regards to meaning and

logic sense. Hence, we would be simply passing the critical problem to the designer anl

not solving the key issues. What would be left for the verification would be to prevent

things like mistakenly connecting an address line to a handshake line, making sure lines

are not left dangling, qualifying stretch lines on the appropriate phases, etc. Although

this is far from guaranteeing safety, it might reduce the possibilities for errors. '.

'Since the EO Is a FSM with unbounded 10, it can simulate a FSM with two unbounded push-down. 0
stacks, which Is equivalent to a Turing Machine 1311. '.*

.*D

i 0

3. Conclusion 119

In this sense, such rules could be thought of as the syntactic checks of a strongly

typed language, which catch many trivial errors at an early stage. Nonetheless, the *
synthesis mechanisms we discussed in Chapter 5 dominate this alternative in every -

respect, because they can guarantee value safety and because they simplify the design

process considerably without a loss in performance.

§3 Conclusion

We have seen that it is possible to develop rules for the verification of value
safety for unsynchronous circuits, but that this cannot be done for general BQ circuits.0
Nonetheless, since we have developed synthesis algorithms for EQ circuits that generate
efficiently value-safe efficient EQ circuits from higher level specifications, we do not
attempt to go around this theoretical result, and restrict verification of circuits to

unsynchronous machines.0

0

*V "

4o °o 9

-+' .' . + . .

- 4 4*~*.''t
-.

*;*o°"'*
..

+-

.. - - - . , , ! , ._ , ,. . . .- -t f .. . - . - -, ., . .- o. ... -.- .

Appendix E: More Escapement Optimizations

i.-.. .-. ... *.

The following optimizations speed up the EOs, or simplify their circuitry, by-

modifying their ESDs. As long as the partial ordering imposed by the communica-

tion protocols is satisfied and the application-dependent constraints are satisfied, both

handshaking operations and computations can be moved to other places in the ESD.

In particular, if each LM has several independent relations with other LMs, there may

be many tasks that can be freely reordered. .

§1 Flag Merging

Flag merging is a modification of the ESD that results in an area-speed tradeoff.

Although the arrows pointing to different squiggles of a givc LM can be handlcd

independently, if we merge some of the arrows, we can reduce the number of signals

emitted by the synchronous control logic (SCL) because for each squiggle the SCI, must .

emit a Last signal indicating the completion of the task preceding the squiggle.

Call each state transition (arc or squiggle) a step. Call the portion of l1SI) between

two steps (SI and S2) a program. We will say that S, and S2 commute (Si o S2) - -.

if the semantics of these steps allows to commute their order without altering the

functional specification of the EO. No operations on the same handshaking signal can

be commuted; for all other situations, the designer must know if a commutation is -

possible. We will say that a step S and a program P arc commutative (s o P) if all

steps in P are commutative with respect to S.

..............................44...'...-.:. :...:
.. ft..ft . .'q,* --..-....-t.-*....*.-

2. Stretch Merging

Clearly, an EO remains functionally invariant if a step S is displaced to another
place in the state diagram if the program P defined by the old and new positions of S

is commutative with respect to S.

Let X and Y be two independent handshaking lines, and call the two programs
defined by IX t, Y t] and [X 1, Y 1], P t and P 1, respectively, as shown in the figure
below. If (X T oP t) A (X I oP 1), then X t and X I could be displaced to where Y t

and Y 4 are, respectively. Hence X and Y can be merged into a single flag:

X44

Fiur 62. Fla Merging

The .on-re L will "gob

('-.°% •, " ,

Figure 62. Flag Merging ", ." . .' ' '

The transformed LM will have rewer flags to handlc, so that it will be smaller and

simpler, but the global EO may be slowed down. For example, the modified LM may

delay a response because it has to complete some unrelated task before it can send the
common (merged) completion signal. For example in the simple pipeline of Chapter 5,

each LM sent a request to the right and an acknowledge to the left, which were merged

into a single signal, thereby making the machine slower but smaller.

§2 Stretch Merging

We saw that flag merges simplify the LMs9, but may slow them down. Stretch
mcrges do not change the logical complexity or the LMs, but- may speed the EQ by

delaying to the last possible moment the checking or conditions that may result in..

stretching a ph~ase. The LM can overlap uaseful computation with~ the time required for
the external stretch condition to disappear.

~ . % ~ .%*".o.*-o.°. ° -".

lot 2. Stretch Merging

Let S, and S2 be two stretch conditions associated with two different squiggles

in the ESD, and let P be the program dlefined between t he two stretch conditions. If

(Si o P), then S1 can be computed (checked) in parallel1 with S2, as can be seen in - -

the next two transformations. First, we can commute S1 and P, and the two stretch

conditions will end up one after the other:

PP

S2 4- Si

P II

0 0

*1 0

Figure 6. Stretch ongrnc.

I. Replacing Squiggles by Arcs M23

Hence, the previous transformations yields the stretch condition:

(LastQ A SI) v (Lastp A S2) - lastp A (St v S2).

rhe LM waits for St only after the completion of P, instead of waiting before computing

P. . '.

.) -. - -F'.

13 Replacing Squiggles by Arcs

It is possible to suppress altogether some stretch squiggles when the stretch will _ .

never actually occur. For example, suppose that LM1 can guarantee that it will

always respond to LM2 so fast that whenever LM2 goes to check for the reply, the

reply has already arrived. Then LM2 need not stretch-wait for the reply, and instead

it can proceed directly to the following state. In terms of the ESD, we have replaced

a squiggle-arc by an arc, and in terms of the logic diagram, we have eliminated a few

gates.

* .•. *%

*.', '... .. .

* . 9-. '

- . .- -- ' .'

- .,., ,- ,,-' -. ,

,.. 4., *...,........;, *.... '''"'"-'"-""''''--"''...-.'.7<"''';. .'-.-'.

FILMED

7-85

DTIC

04-

.. -
!.7 %14

