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Globally-Asynchronous

Locally-Synchronous Systems

_L Abstract

This thesis provides a new framcework for the design of very high performance
digital machines. The new theoretical results which are presented have practical
implications, and lead to a better understanding of possibilities and limitations in
the design of computers, communication hardware and other digital machinery.

The discussion centers on different organizations for globally-asynchronous, locally-
synchronous systems, and covers the following issues: organizations for complex digital
systems, mectastability as a limitation for high performance, structures for two classes
of non-conventional architectures, optimization, performance, reliability, and design
techniques.

We present new algorithms to compile the specifications of such machines onto
efficient circuits, and to verify the correctness of the resulting machines. The models
we developed for the analysis of the tradcoffs between different variables that affect the
safety of operation of these systems, show that the proposed urganizations result in
extremcly fast and reliable digital machines. The proposed organizational schemes can
be used within a wide range of architectures, and integrated circuits designed according
to this methodology have been developed and tested.
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Chapter 1

Introduction

Let us start by looking at the top level organization of a digital system. Complex
items have many components interacting with each other in different ways. In
nchronous systems, each of these components receives a common periodic signal
ock) that is used to control its operation and its interaction with other components.
wever, a typical computer will have components such as CPUs, disks, terminals, and
mmunication lines that clearly cannotl be all tied to the same clock. Ience, complex
stems arc not designed as a single synchronous block, but as an ensemble of locally-
achronous components interacting with ecach other without a global clock. When we
rtition a system into sub-components that do not share the same clock, we say that
2y are asynchronous respect to each other.

There is still another another reason that suggests further partitioning of the
mponc ts: When signals arc transmitted, they take some time to arrive to their
stinatio. *ing a limit on how far a datum can travel within a clock cycle. In

neral, the s a synchronous component is, the faster it can be clocked.!

In conclusion, synchronous systems cannot grow in complexity without limit be-
use they have to interact with other components that cannot share the same clocking
ntrols, because of delays in the communication across a system, and because of clock

2wWS.

Iso, within a synchronous block, clocking signals will arrive at the sub-components with possibly
Terent delays (this is called clock skew). The larger Lhe delays, the harder it is to keep the skew
nall, and as the skew becomes Jarger (approaches the duration of the clock period), the synchronous
»eration becormnes more dillicult. Hence, skew is another limilatiou Lo the size of synchronous blocks.
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. Machines with Stretchable Clocks 15

tter in that the extra edges may be needed anyway to provide time references for
t-up and hold times, de-skewing, and other purposes (e.g., sending addresses before

ta on a write operation), and it requires less logic in the communications mechanism.

For a more extensive treatment of communication problems, the reader is referred
[44].

1.7 Machines with Stretchable Clocks

The main motivation behind machines with stretchable clocks has been to avoid
e metastability problems we have discussed and to implement self-timed structures.
retchable clocks can stretch a clock phase for an unbounded period of time, but
metheless continue with a normal gap and normal cycles immediately after the
retching, t.e., clock cycles succeeding a stretched cycle are only displaced in time,
it not affected otherwise. Stretchable clocks are described in more detail in [39], and
so later in Chapter 4 and in the appendices.

Pechoucek proposes stopping the clock as long as a flip-flop remains metastable
7], or stopping the clock until an external event occurs. Stucki [43] shows in more
tail how asynchronous signals can be sampled with a synchronizer that detects
ctastability, and how to use this information to stretch a clock cycle as long as may be
:cessary for the metastable state to subside. In this way, Stucki avoids synchronization
ilures at the expense of infrequently allowing clock phases Lo stretch for unbounded
riods of time. Attempts to bound the stretching period do not work (see Chapters
and 4); for cxample, the suggestion in [43] about using a time-out re-introduces
nchronization problems that it had previously eliminated, moving the failure from
ie place in the circuit (the asynchronous sampling) to another onc (the decision to

-sample the data when the time-out arrives).

Scitz Pipeline Modules [39] are particularly interesting in that they consist of
cally-synchronous machines communicating asynchronously in such a way that they
» not need synchronizers to handle that interaction, but still do not have synchroniza-
»n problems. They use a 4-cycle handshaking protocol Lo communicate asynchronously
th other machines. The handshaking signals interact with a stretchable clock and
ay stop a local machine on a particular phase when what it needs from its neighbor
ocessors is not available, letting the clock continue when the resource becomes avail-

fc. Unfortunately, the only way of fully understanding why the SPM works is to

p— T Sl A T IR E T i L S A S S Mgt g g SR NN L S et LI R M A S




14 2.6. Low-Level Asynchronous Communication Protocols

can grow linearly with a [39], while 1/)\,, and W decrease approximately linearly with
a [42, 29]. If we maintain the size of the chip, and the number of synchronizers grows
approximately as the number of devices along the periphery of the system, the chip
reliability decreases approximately with the square of the scaling factor.

§2.6 Low-Level Asynchronous Communication Protocols

When two digital machines need to communicate, which forms of communication
are possible depends upon' the assumptions the designer can make about delays. For
example, if we know nothing at all about the time it may take for another system to
respond to a request, clearly we cannot use the approach used internally to synchronous
systems, where a worst case delay is assumed, and after this time has elapsed it is
implicitly known that whatever the system had to do is actually done. Instead, the
systems must exchange signals to request tasks to be done, to indicate that tasks
are completed, and also possibly to acknowledge the reception of some of the signals
thcmselves. The particular way in which this exchange of signals may proceed is known
as a communication protocol.

In a commonly used set of asynchronous protocols, the communicating parties
exchange what can be looked upon as a polite handshake. For our purposes we
arc mainly concerned with 2-cycle (transition-scnsitive) and 4-cycle (level-sensitive)
handshakes. In both there is a request (Req) signal to request some action, and an
acknowledge (Ack ) for the request.

What distinguishes the protocols above is the way in which the signal transitions
arc used. The actual meaning of the I2eqand Ack signals is not given by the protocol.
The request may in fact be a command, or maybe even a request for a new command;
the acknowledge may indicate that the request has been satisfied, or that the request
has been received; cte. The protocol only establishes the temporal order of RRegand

Ack : irrespective of the interpretation, a request always precedes an acknowledge.

For both 2-cycle and 4-cycle signaling, the Reqand Acksignals make the same
transitions in the same order to complete a lull cycle: Req! < Ack' < Req! < Ack!, where
the arrows denote rising or falling cdges of signals. Their only difference resides in the
fact that 2-cycle signaling uses the rising cdges to accomplish one transaction (e.g., a
data transfer), and the falling edges to accomplish a second one, while 4-cycle signaling
makes a single transaction with the complete cycle. The advantage of 2-cycle signaling
is that it uses fewcr signal transitions [39], and is thercforc Faster. 4-cycle signaling is

................
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}.5. Quantifying Synchronization Failure 18

where \,, is the probability of exit per unit time (decay rate). Experimental results
:onfirm that this model is quite accurate [42,38, 12].

Assume we are sampling data that may make transitions at random times, and
that the probability that a data transition will occur within a given clock cycle depends
only on the duration of the clock cycle. Assume that as the clock period tends to zero,
the probability that more than one transition occurs within the same phase tends to
zero faster than the clock period. For any real application, we could assume that it
becomes zero altogether below some clock period. These two assumptions are nccessary
and suflicient conditions [8] to know that the transitions are generated by a Poisson

'—:x—;(:‘i, where A\ = f4, which is the expected number of data

process Pp(At) =
transitions per unit time.

Call W the window of time around a clock edge where a data transition would
trigger a metastable condition. For a Poisson process with rate fy, the distribution of
events over a bounded interval W is uniform [8), and the expected number of arrivals in
such an interval is f; W. Therefore, the probability of entering a metastable condition
at the beginning of each clock cycle is:

P(mety—g) = faW. (2.2)

From equations (2.1) and (2.2), the probability that a given clock cycle will result in
metastability that lasts at most a time £ is:

P(met;) = P(met;|met,—-o) P(mety.—o)

= faWemt, (2.3)

For conventional systems with fixed clocks, if the synchronizer is still metastable

when the time ¢, allotted for synchronizalion is exhausted, we say there has been
a synchronization failure. Let [, be the sampling clock [requency. The probability
of failure in a single clock period is then P(fail in 1 cycle) = P(met:>:,). Since we
assumed independent data transitions, the number of failures in n clock eycles will
have a binomial distribution with an expected number of failures n P(fail in L cycle).
Therclore, the MTBF for a conventional machine with a fixed clock period is:

ermts

MTBF = t/E[number of failures per unit time] = W
cld

(2.1)

As integration and operating speeds increase, this failure problemn becomes more
relevant. Let a denote the scaling factor [39]. Within a reasonable range, f. and fq
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12 2.5. Quantifying Synchronization Failure

reports of MTBFs of synchronizers built using newer technologies [12]. The following
references were chosen based on their rcadability. Catt [10] analyzed the delays involved
in the usc of bistables for synchronization purposes. Chaney et al. [12] and Pechoucek
[37] pointed out the risk involved in the metastable operation of flip-llops. Hurtado and
Elliot [30] have shown that metastability of Hip-flops is unavoidable under reasonable
(but restricted) conditions. Barros and Johnson [9] have shown that given a perfect
synchronizer (one that will never enter a mctastable condition) one could make a perfect
arbiter (one that will always produce an arbitration in a bounded amount of time) and
vice versa. Vecndrick has shown that noise does not decrease metastability risks [46).
Chaney has provided some recent extensive measurements of {lip-flop response under
marginal triggering [12]. The phenomenon involved is subtle enough that impossible
devices to get around metastability [48] are sometimes proposed. Finally, for bistables,
Marino’s paper [32] is conclusive. It rigorously proves under very weak conditions that
synchronous sequential circuits exposed to inputs that can change asynchronously with
respect to the clock of the circuit cannot avoid metastable conditions.

The conventional solution to the metastability problem is to run a synchronous
system slowly cnough, so that the probability of failure is acceptably small. In some
cascs it is possible to pipeline several lip-flops, or use alternatc synchronizers and
multiplexers, instead of reducing the clock speed, to obtain an adequate synchronization
time. Nonctheless, if the response time is critical, as is the case for most arbitration
problems, pipelining will nol help, and the system must be slowed down. In any event,
such systems will occasionally [all prey to metastability during synchronization.

§2.5 Quantifying Synchronization Ifailure

The :time it takes a flip-flop to cxit f[rom the mectastable region is unbounded.
Nevertheless, the probability that it remains metastable has been found by cmpirical
methods Lo decrease exponentially with the duration of the phenomenon. There are
theoretical modcels that explain this behavior as lollows. Assume that a melastable
flip-flop has no memory as to how long it has been in a metastable region, and that the
probability of decaying to a stable state is time-invariant. The only distribution that is
“memoryless” is an exponential distribution 1 —e >t [8, 20]. Hence, the probability
that a flip-flop remains metastable for a period of time ¢t or longer, given that it was
metastable at t = 0, is '

P(met |met,..q) = e~ ", (2.1)

....................
-----




2.4. Synchronizers, Metastability and Synchronization Failure

the flip-flop remains undecided, they are in a metastable state.

Why do we care about this situation? If we sample a signal, as in the figure below,
we certainly want to use it some time afterwards (e.g.,in the next clock cycle). But,
by the timc we want to use it, there is no guarantee that the flip-flop will no longer be
metastable.

sampling clock

|
I
|
__/ L T
received signal | |

————— — — =
"seen" signal ——4—?—|_ I._ — — - uge

4
FAILURE

Figure 4. Synchronization Failure

When a flip-flop enters a metastable state, the probability of exit to some other
state in a fixed time interval is very high, but not 1. The probability of sampling a
signal and placing a {lip-flop in a mectastable state is very small, but is a practical
concern [12]. In actual digital systems, asynchronous signals may be sampled at such
a high rate, giving so little time lor the synchronizer to evolve out of the metastability
region, Lhat a significant fraction of the synchronizations may not be completed, leaving
the Qip-flop in a metastable state. Thus, the system is still cxposed to the same kind
of inconsistent interpretations of the input data as a system without synchronizers.

There is abundant physical evidence produced al the Washington University of
St. Louis and clsewhere [42, 37, 47, 38, 17, 12] that shows that metastability is a real
problem, and there is also mathematical evidence [32] thal suggests that metastability
is an inescapable fundamnental problem for any synchronous scquential system with
asynchronous inputs.

A number of researchers have contributed Lo the related literature, which goes back
to the 50s, when metastability was noted as a possible cause of transient malfunctions;
the 60s saw a spurt of activity in this area, but currently it is dormant aside from
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10 2.4. Synchronizers, Metastability and Synchronization Failure

pointer but not read a character, or read a character but not advance the pointer, or
give a green light to two intersecting streets, or open the air compressor intake but
close the kerosene valve of a jet engine).

To avoid such problems, asynchronous signals are never used directly, but are first
fed to a synchronizer, which is typically a D flip-flop or an equivalent regenerative
circuit that is not stable at intermediate (digitally undefined) values. The external
signal is sampled, hcld for a while in the flip-flop, and later used by the receiver.

The problem is that a flip-flop, like all bistable elements, has two potential energy
minimae (the stable states) and a maximuin scparating the local minimae, as can be
seen in the figure below.

Energy
%

metastable

''''''''
.....

.......

State
false digitally-undefined true

Figure 8. Energy of a I'lip-Flop

Although any system will be stable only at the encrgy minimac, it can be metastable? ::‘:j"_::':.-:fj--‘::.
at the cncrgy inflection points. To make an analogy, imagine a pencil “perfectly”
balanced on its tip, or a ball preciscly located on top of a hill. If nothing disturbed it,
it might stay there for a long while. As long as the ball remains on top of the hill, or

4When a system is metastable its state remains stationary, but any slight perturbalion may push it ""—‘—_"——"
away from this state. e
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2.4. Synchronizers, Metastability and Synchronization Failure 9

completion signals have slowed the original designs as much as the self-timing has
speeded them, with no significant net gain [6].

Nonctheless, the sclf-timed design paradigm has been influential in many different
ways, as exemplificd by Petri nets [3], data-low machines [18, 22], variable-spced adders,
self-timed modules {41], Muller’s C-clement-based modules, Seitz’s self-timed modules
[39], and Pechoucek’s “fundamental solutions” [37], to name just a few. In all of these,
the common feature is the ability to generate completion signals and to use these signals
appropriately to control the sequencing of computations that take an amount of time
that may not be known in advance.

Self-timed structures are quite diverse, but for our purposes, they can be classified
along one important dimension, whose relevance will become apparent later: those
schemes that use arbiters3 or equivalent mechanisms, and those that don’t. From the
list in the previous paragraph, for example, Petri nets can represent machines that do
have arbiters, and data-flow machines need arbitration mechanisms, but Seitz’s pipeline
self-timed modules (SPMs) don’t use them.

§2.4 Synchronizers, Metastability and Synchronization Failure .

Those sclf-timed machines that use arbiters, synchronizers, or other equivalent
mechanisms lace a substantially dilferent problem from the ones that don't. Similar
asynchronous interactions also occur when synchronous componcents sample asynchronous
data or require an arbitration to get access to some resource. In this section, we will
discuss what the problem is and the impact it has on machinc organization.

When two synchronous systems are run from indcpendent clocks and have to
communicate with cach other, they need to take special care in handling the signals
received from cach other. The reason is that since they do not share a common
time rcference, the recciver may sample what the sender sent precisely when the
corresponding signal is changing. The receiver may get an intermediate value, which
is digitally undefined. If it were to use that valuc without further ado, different
components of the receiver might make inconsistent digital interpretations of the value,
with the possible consequent failure of the recciver (e.g.,it might advance a buffer

3An arbiter is a device capable of receiving requests for a unique resource, from multiple sources, and
assigning the resource in the order in which the requests arrived. Most important, it can tell who
arrived first.
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8 2.3. Self-Timed Machines

example, it is possible to avoid some kinds of hazards? if we can guarantee that no
more than one input can change asynchronously before the system has settled [45), or
if several may change, if they satisfy minimum delay constraints [45, 21] between each
signal change. In gencral, a machine connected to several other asynchronous machines
must not require such guarantees because it cannot know in advance the times at which
other machines may atiempt to interact with it.

In general, because the restrictions we pointed above cannot be satislied in practice,
these classical methods are not applicable to the design of globally-asynchronous com-

puters. Instead, designs have tended mostly to remain synchronous, using “synchronizers”
at system boundaries, or have gone in the “self-timed” direction. We will discuss these
two approaches in the following sections.

§2.3 Self-Timed Machines

The literature on self-timed machines abounds with interesting concepts. It was
recognized very early that it might be advantageous to have cach component compute
at its own speed and emit a completion signal on finishing whatever task it was assigned.
Any component carrying out some task needs some time to complete it, and obviously
we cannot ask for the results before this time has elapsed. In synchronous systems, a
worsli-casc assumption is made about how long it might take to complete the task, and
this time is measured by a centralized clock.

‘

In contrast, in a sclf-timed structure, the component that performs the task also
indicates when it has finished, thereby allowing other components to use the results
right away, instead of always waiting for the worst-case time. The advantage is obvious:
self-timed machines can run at a speed related to the average case, instead of the worst
case. The disadvantage is that cach component must have extra circuitry (a) to compute
its own completion signals, and (b) to check for completion of requests it may make
to other components. These completion signals, which are exchanged to control the

sequencing of operations, arc called handshaking signals.

Most machines that have been designed with this approach have [ailed to realize
the expected improvements, because the circuits required to compute and handle the

2When a signal that should maintain a constant valve glitches briefly, we say there is a “static hazacd”,
and when a signal that should have made a single transition bounces before settling to its new value,
we say there is a “dynamic hazard” [45).
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2.2. Classical Approaches to Asynchronous Design 7

v-phil W S'Dhiz
T
phit

Figure 1. Making a valid signal stable

If all the inputs to a combinational logic block are s-o, , the outputs are also s-p, .
If some (or all) the inputs are v-( and the rest of the inputs are s-p; , the outputs are
v-p, . To generate a q-p; signal, AND a s-¢, signal and ¢, .

V-Phil  comened hit SPhit hit v-phit
v-phi ; -phi -phit
sphit —i P phil  e——d ap phit va-phi

Figure 2. Propagation of Signal Types

§2.2 Classical Approaches to Asynchronous Design

It would be very nice if we could stay within the relatively simple world of synch-
ronous syslems, but as we saw in Lthe introduction, we cannot run disks, communication
lines, terminals, conlrollers, cte., all (rom the same clock. In consequence, we must
analyze how components talk to each other when they are mutually asynchronous
' (¢.e., when they have independent clocks).

Classical asynchronous design focuses on extending the methods that are used
for synchronous machines to the asynchronous domain. The results in this field are
abundant and very interesting, and a thorough coverage can be found in Unger’s [45).
Nonctheless, they generally focus on design problems at a very low level of integration,
and put scvere restrictions on the kind of asynchronous signals they handle. For
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é 2.1. A Synchronous Design Methodology

L8

2.1.1 Basic Strict Types

Assume that there is a two-phase (| and . ), non-overlapping clock, as is common

Y

in MOS dcsigns [34]. For brevity, the definitions of the signal types refer just to oy,
but of course the same holds for g . All signal types are referred to the rising and
falling edges of the clock phases (tp{, ot, prand cp.ﬁ).l The types of intcrest are:

-
LN

T et
'-.

e Asignal Xisvalide, (Xvep, ) if it settles in a bounded period after tp{:md remains
unchanged at least until qp%. If we increased the length of the phase ¢, X’s settling
would stay anchored to sp{.

. e A signal Y is stablep, (Ysp,) if it settles in a bounded period after péand
remains unchanged at least until the next ). If we increasced the length of the
©2-p1 gap, Y’s settling would remain anchored to pé.

‘ e Asignal Z is qualifiedp; (Zqyp, ) if it can only be asserted no later than a bounded
E period around p!and is cleared no later than a bounded period around lp{(e.g. ,it
; can be generated ANDing a stablep, signal with ¢, in which case it will follow
the rising and falling edges of the clock with a delay bounded by the time it takes
to AND the clock and the stable signal).
i o A signal W is valid-qualifiedp( (Wvqyp ) if it is generated by ANDing a valide signal

with ©,. Wvqp, is like Wqp;, with the exception that it may glitch during a
bounded period around tp{.

Note that these relations must hold independent of the lenglh of clock phases.

55 2.1.2 Somc Propertics and Composition Rules

Let a ) -ME be a memory clement that receives its input during ¢, . Its input
must be al least of type v-p, (it can be s-py ), and the sampling control signal must be at
least q-p, (it can be o} ). A p - ME will have a s-py output. A dynamic nMOS memory
element appears in the figure below, where a pass transistor samples a v-p, signal and
loads a capacitive storage node during ;. The output of the inverter will be s-og,

-
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and will change again only with the rising edge of the following ) .

1For brevity, both the notation and the results of [36] are presented here in a slightly different and
simplificd way.




Chapter 2
Background and Previous Work
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tj’. This chapter provides the necessary background for understanding the issues
discussed in this dissertation, making it more self-contained. It is assumed that the
reader already has some familiarity with digital system design.

Therc have becen numerous approaches to the design of digital machines, each
focusing on some particular problem. We will start by discussing a synchronous clocking
discipline that we can use for our locally-synchronous components. Then we will
see why the classical approach to asynchronous design is not uscful for our globally-
asynchronous structures. Subsequently we will discuss issues rclevant to interaction
between machines that do not share a common clock; these issucs are sclf-timing,
synchronization failure, and some asynchronous communication protocols. The chapter
concludes with a review of some proposals for the use of stretchable clocks for the
implementation of self-timed machines, which avoid synchronization failures.

§2.1 A Synchronous Design Methodology

The problems of synchronous design are, in general, well understood. For our
. locally-synchronous modules, it is convenient to borrow the structure and notation
of some synchronous discipline. We will use the strict two-phasc clocking discipline
of Noice [36) (although we could as easily use any other rcasonable scheme) because
although we will focus more on the global non-synchronous interaction, we will still
need a consistent notation to describe the interactions between the non-synchronous
machinery and the synchronous components, and among the synchronous components
themselves.
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4 1.1. Scope and Qutline

to compile them into circuits.

We chose to put all the detours, no matter how interesting or subtle, in appendices,
so that the core of the ideas is not “hidden by the trees”. Generally, the appendices
develop some central ideas in greater depth, but are not necessary to get the overall
picture or to understand the main body of the thesis.
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1.1. Scope and Outline s

AL

e Lack of a unified general approach, which is evident in bugs in some published
circuits [48] and in some interesting (but hard to modify) locally-synchronous,
globally-asynchronous machines [39].

e Arca inefficiency in completely sclf-timed approaches, with the consequent speed
penalties.

e e,
{2 T I I LY

e Overly restrictive design disciplines that require some kind of functional module
for any operation, no matter how simple it may be.

- Therefore, an attempt is made here to solve at least part of those problems by develop-
. ing a practical, unifying theory that is flexible and general, allowing a more systematic
design of reliable high-performance machines.

': §1.1 Scope and Outline

This thesis presents a unifying theory that leads to a better understanding of pos-
sibilities and limitations in the design of digital machines. The core of the thesis is a
new set of general organizations for reliable, high-performance, globally-asynchronous,
locally-synchronous machines, and methods for analysis and syuthesis of these machines.
A probabilistic model and calculations for spced and reliability compare them with

Y-

(' - . . . . 13

- conventional machines. New algorithms allow us to transform high-level specifications

- of these machines into arca-cflicient and time-cfficient circuits that can never have
metastability problems.

Chapler 2 provides background on digital design, on synchronization and metas-
tability, on self-timed machines, on asynchronous corumunication protocols, and on
N machines with stretchable clocks.

Chapter 3 explores digital communications, discusscs the reasons for the structures
we will study, lays down the basic assumptions, introduces the “valuc-salety” and
“time-salely” concepts, and develops a new characterization for compuling machines
). that opcns two basic paths that are explored in Chapters 4 and 5.

Chapter 4 explores the class of “unsynchronous” machincs, explains how they are
constructed and why they attain value-safety. Then, it analyzcs their performance and
reliability, and compares it with that of conventional machines.

Chapter 5 deseribes the class of “cscapement” machines, discusses their perfor-
mance, analyzcs optimizations, and presents algorithms to verify their value-safety and




1. Introduction

Since everything points in the direction of breaking synchronous systems into
smaller systems interacting asynchronously, a natural question arises: Why not break
them all the way down to their smallest components? The answer can be found
by examining communication costs. Sub-components of a synchronous systems can
communicate in simple ways by agreeing on the time windows in which one will send
some datum to thc other, but if these sub-components do not share a common clock,
they have to resort to more complex (in time and area) mechanisms to transfer the same
datum. Ultimately, if we partitioned a system all the way down to the simplest possible
sub-components (all interacting asynchronously with each other), the communication
mechanisms between elements would dominate the space and time used for the actual
computation.

As a consequence of these two opposing factors, there is an optimum middle ground
for the structure of a system where we do not have a monolithic synchronous system,
but also we do not partition the system all the way down into its simplest components.
The synthesis and analysis of such globally-asynchronous, locally-synchronous systems
is the focus of this thesis. The particular aggregation level at which we will stop the
partitioning is technology and application dependent. Nonetheless, to give a feeling for
the kind of structures we will study, we can give some loosc bounds: assume that the
synchronous components may range in size from about a thousand transistors (possible
a part of a chip) up to what might fit in a rack.

With the advance of device technologics, faster and bigger computers are being
built, and the costs are shifting from the active elements to the communication lines.

Conscquently, rescarchers have atlempted to partition systems in ways that allow each
component to run at speeds limited only by their internal structure, and not by the
overall system size {45, 39). Measured by their acceptance in industry, most of these

attempts have failed, and only part of this failure can be attributed to industry’s inertia :
or to the “not invented here” syndrome. ?:___
We will not attempt a critical survey here, but to understand somne of the reasons :'_‘.j o
behind prevalent design practices, it is worth citing a few problems in previous ap- RO
proaches: E‘
e Overly restrictive asynchronous design methods, in which the restrictions that e

are put on how or how many signals may change makes the design of complex B

systems virtually impossible and extremely cumbersome [45, 21].




16 _ 2.7. Machines with Stretchable Clocks

stare at the circuit and draw timing diagrams. A careful delay analysis is required to
implement this machine.

These machines with stretchable clocks implement Pechoucek’s two “fundamental
solutions” [37], and can be looked upon as two points in a design space that we will
explore in depth in Chapters 4 and 5.
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Chapter 3

Machine Organization

P In the introduction we discussed the reasons for our focus in machines that have
a globally-asynchronous, locally synchronous, (GA-LS) structure. Here we discuss
two particular kinds of rcliability, valuc-safety and time-safety. Then we propose a
taxonomy of machines that is based mainly on how the completion of activities is
handled. The taxonomy provides a framework for the analysis of GA-LS architectures,
which is useful for understanding and designing high-performance GA-LS machines.

We saw in the introduction that there are strong reasons for partitioning high
performance machines into synchronous clusters intcracting asynchronously with each

other. The appropriate size for each synchronous cluster is {:chnology-dependcnt and

problem-dependent, and should be determined by the architect of the machine for
cach specilic case. In the introduction we proposed reasonable upper and lower limits,
- but our analysis is indcpendent of granularity and details of system partitioning. We
simply provide ways to make these machines communicate quickly and rcliably with
cach other.

In this Chapter we delinc the kind of synchronization problems that we must face
when designing hardware, to guarantee that the next higher abstraction level [1-1] will

operate with Boolean values delined over a discretized Lime. Note that traditional

software synchronization problems [27] assume a cowpletely digital universe and a
. discretized time, which is inadequate for hardware, and . their solutions do not extend
to hardware synchronization.

- We analyze how digital machines handle completion signals, and develop a taxonomy P '!3

based on the assumplions the designer makes about these completion signals. We
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18 3.1. Completion Handling
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present the value-safety and time-safety concepts, and two new theorems that focus
our research on GA-LS machines on 2 classes of GA machines. These classes explored
in Chapters 4 and 5.

§3.1 Completion Handling

What follows describes the hardware design problem that we consider and the
basic assumptions we make. We will use this conceptual framework togcther with the
value-safety and time-safety concepts to analyze the ways in which the asynchronous
interactions can take place.

3.1.1 Computation Model

We want a general model applicable to any kind of machine, independent of its
particular architecture. Clearly we should be satisfied to be able to compute anything
that can be computed with a Turing Machine [31]. Partial recursive functions can
compute anything that is Turing computable. We choose this formalism because it is
rich enough to compute anything our hardware can compute (without any nccessary
similarity with the actual hardware structure), and allows us to rcach general conclu-

sions without being distracted by the details of how computation, memory, and timing
arc rclated in the hardware iimplementation.

Assume we model our computations with such functions, mapping elements X
from an alphabet ¥ = {0, 1,v} onto itself, where 0 and 1 are boolcan values and v
is a value that is digitally undecfined. Since our concern is for rcal machines, not only
logical constructs, we must specify how variables are represented physically. Assume
that variables are represented by some conlinuous physical parameter V. Furthermore,
assume that this paramcter is a function of continuous time t. It is necessary Lo have
a physically realizable mapping from the variables representation onto our computing
alphabet, and there are many obvious possibilities for this (e.g., V' > Viaigh min — 1,
V < Vioewmax +* 0 and Vioy max £V < Vaigh win - 'U)-

For the sake of design convenicnce, assume that our computing machine is broken
into a aumber of functions f;(XX), and that these functions take recursively or iteratively
results from previous invocatlions. Assutne that any such invocation takes a time § > 0.
6 depends primarily on the function f; that we are computing, but may also depend
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3.1.2 Uses of Completion Knowledge 19

on the values of the arguments, or even on the state of the whole machine. This time,
which we call the completion time, may or may not be known to some given precision,
and may or may not be bounded. If we attempt to use the result of a computation
before it is completed, we assume that the result may not be defined, and we assign
it the conventional value of v [31]. Note that although by using this model we do
not need to talk about memory and timing in the sense used by clocking disciplines
[36], we have introduced timing in a restricted sense when we partitioned the machine

into many functions, each of which produces results used at a latter time by other
functions.

3.1.2 Uses of Completion Knowledge

Assume that we are interested only in finai results defined over the sub-alphabet
D = {0,1}. The basic problem is that even if we supply digitally defined inputs, we
need to know when each computation has been completed so as to proceed with the
next one. The way in which we are going to obtain completion information opens a
number of design alternatives that depend on what we know about the delays and what
use we want to make of this knowledge:

(2) If we know the values of all delays, we may choose to definc intervals of time over
which we guarantee that the inputs to succeeding functions become digitally defined.
Using this information together with the structure of the machine we can calculate the
times at which the computations will be completed, and control the llow of intermediate
results through the machine. Note that this knowledge of the delays allows for the
tightest timing, but a timing scheme that took advantage of all this information could
be very complex.

(b) If the delays are not precisely known, but we have bounds on the time it may
take to compute each funclion, we may choose to give every computation the time
needed in the worst case by the slowest function. Clearly, a synchronous machine can
provide this kind of control, and its clock implicitly generates completion signals.

(c) We may not have any bounds on the delays, but still need Lo provide completion
signals that indicate when the inputs to functions arc available {6]. This last case divides
into several sub-alternatives:

(c.1) Each function block may provide an explicit output signal indicating when its
e own computation has been completed. Most typically, this kind of mechanism appears
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in self-timed machines.

(c.2) We may have no bounds on the delays, nor a completion signal. The conven-
tional approach to this problem is to assume a special function (a synchronizer), that
can take a digitally undcfined value and usually produce a digitally defined value in
a bounded amount of time. For digitally defined values it is an identity function;
otherwise it assigns randomly a 0 or a 1, or with a much smaller probability a wv.
The structure can be designed so that the results are not affected by the occasional
random digital (0 or 1) assignments (by using appropriate redundant information in
the communications protocols), and we will get mostly correct digital results. This ap-
proach puts this structure within the class of those synchronous machines that handle
asynchronous inputs with conventional synchronizers.

(c.3) Under the same conditions as in c.2, we may use another special function
that is also a synchronizer, but is different from thc previous one in that instead
of probabilistically assuming the completion of the synchronization, it generates an
explicit completion signal [43, 1]. This approach puts this structure within the class of
sclf-timed machines.

Nonc of these organizations dominates the others in every aspect and application.
This being the case, the big question is: How and when can we combine these organiza-
tions, what are the limitations of such hybrids, what structures arc appropriate to
implement them, how can we guarantee their correct operation, and what advantages
can we get from them? Belore answering this question, we will focus it more by describ-
ing fundamental problems in asynchronous communication. We constrain the possible
answers by introducing two new theorems and a taxonomy that will guide our answers.

§3.2 Value-Safety and Time-Safety

it has been shown under very general conditions that any sequential synchronous
system subject to asynchronous inputs is liable to enter metastable states [32), which
may lead to unavoidable system failure. It is important to note that this is not only
an interesting theoretical problem, but also a very praclical concern, and failures in
design of interfaces, as well as experimental results, attest to this fact {17, 47, 12, 42].
More generally, we characterize the problem formally by stating the following theorem
(which is proved in an appendix):

DRV Theorem: It is impossible to make a DBoolean decision about a conlinuous
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value with a finite precision instrument in a bounded amount of time.

This theorem suggests classifying a computing machine along 2 dimecnsions: (a)
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whether it always manages to make Boolean decisions, and (b) whether it takes bounded

amounts of time to produce its results. We call the machines that can guarantee their

""."‘r

results to be digitally defined value-safe, and the machines that can guarantee the
boundedness of their completion time time-safe.

§3.3 A Taxonomy Based On Completion

The notion of completion and how we handle it is central to our approach. There
are two key features that we may or may not know (or choose to use) about a completion
signal. (a) We may not know when it happens in relation to our local notion of time.
For example, for signals internal to a synchronous machine, we know when they may
change respect to the local clock, but we cannot know at what time in relation to our
clock an interrupt may come. (b) We may not know what happens at completion. For
example, for an asynchronous request following a 2-cycle communication protocol we
know in advance that when it arrives, its corresponding linc will become asserted and
will not be de-asserted until it is acknowledged. When sampling a signal that comes
from an unclocked A/D converter, we don’t know in advance what value it will have at
the complction of a sampling interval nor when it will change again. These possibilities
give rise to four kinds of machines, shown in the figure below.

What
no yes
no Qnsynchvonous / I \Escapemenl /
00 y
when |99 __ __ _en
yes Synchronous l Uninteresting
(1.0) | (1)

Figure 5. A Taxonomy Based on Completion

Class (1,0) contains all globally synchronous machines. Class (0,0) contains among
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others the machines considered by asynchronous design in [45, 21], arbiters (9, 39}
and synchronizers [9, 42, 32]. Class (1,1) is clearly uninteresting, since the completion
signal carries no information (we know in advance both when will it arrive and what
its value will be). Class (0,1) contains some kinds of self-timed machines, but not those
containing arbiters [39], which are partially in class (0,0). We arc going to focus on
value-safe machines of class (0,0) and class (0,1), which we call unsynchronous and
escapement machines respectively.

Note that this taxonomy does not establish classes along traditional synchro-
nous/asynchronous or hetero-timed/self-timed lines. No existing terms exactly match
the taxonomy, which addresses more fundamental aspects of communication than
traditional taxonomies. Moreover, words like “asynchronous” and “self-timed” have
already acquired many meanings.!

At this point we introduce a corollary of the Uncertainty Theorem that further
constrains our solutions (a formal proof of this new theorem appears in the appendices):
No unsynchronous system can be both value and time safe. That ts, ¢f it knows with
certainly the values with which it operates, then it cannot know with certainty the time.

Clearly an unsynchronous machine that has both properties is precluded by the
theorem above, but machines that satisly one or the other property at least are not
precluded. We are interested in those machines that are value-safe, or that are at
least extremely value and time reliable (:.e., mostly safe, but failing with a known low
probability).

The importance of these distinctions and of studying each class scparately will
become apparcnt later, when we propose a practical design mcthodology for high-
performance machines in the unsynchronous and escapement classes. Currently, there
are few proposals and fewer designs in each of these two classes {37, 39, 43], and they
are clearly outside the tcchnological mainstream, in part duc to performance and design
problems that we attempt to solve.

§3.4 Summary

We have analyzed some problems related to the communication of digital infor-

lpor cxample, asynchronous dcsign, referring to designs withoul a clock, asynchronous processes in

g P
synchronous machines [27], asynchronous signals cntering a synchronous system, asynchronous meant
as self-timed in [6}, sclf-timed in the restricted sense of (39] and sclf-timed in general, etc.
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mation and presented a taxonomy for digital machines. This taxonomy makes ref-
erence to the way in which a system exchanges information. In particular, if such
exchanges are asynchronous, we can have different amounts of information about the
asynchronous signals. Unsynchronous machines are value-safe machines that don’t
know in advance anything about the values of the signals they receive. Escapement
machines are value-safe machines that know in advance the values of the asynchronous
signals they receive, and also know that these signals will not change until acknowl-
edged. The Uncertainty Theorem precludes unsynchronous machines that are both
value-safe (do not get confused with the values with which they operate) and time-safe
(know time with a bounded error), and still have arbitrary asynchronous inputs.

The next two chapters deal with unsynchronous and escapement machines. We
will use the framework presented in this Chapter to develop and anaiyze different
organizations for value-safe GA-LS machines.
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Chapter 4
Unsynchronous Systems
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In the previous chapter we defined unsynchronous systems as value-safe, globally-
asynchronous, locally-synchronous (GA-LS) machines that interact at the global level
by exchanging asynchronous signals whose values the recipient does not know in ad-
vance, and whose transitions may occur at arbitrary times in relation to the recipient’s
clock. We study unsynchronous machines before escapement machines because they
are structurally simnpler and because the properties of the asynchronous signals they
exchange are simpler. '

This chapter starts by discussing how to design unsynchronous, GA-LS, value-safe
machines. To make the discussion clear, we introduce a pair of building blocks: a
stretchable clock and a synchronizer with a metastability detector. We describe them
functionally here; detailed circuits appear in the appendices. These blocks arc used to
build unsynchronous machines, which are proved to bec value-safe. Finally, we develop
models to calculate the performance of unsynchronous machines.

§4.1 The Unsynchronous Mechanism L
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Unsynchronous machines must be able to deal with external signals that may make S
transitions at arbitrary times in relation to the local clock. Such asynchronous signals "‘"“"“““‘
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do not nced to satisfy any particular protocol, and we will call them unsynchronszed
signals. In contrast, asynchronous signals also include those about which we may know
in advance in which direction they will make a transition. We denote an unsynchronized

signal X as Xyn,,. An unsynchronized signal may change value at arbiteary times, in
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arbitrary directions. Such a signal may have a digitally undefined value at any time.
Therefore, if we sample it without any modification (e.g., with a multistable latch that
simply samples a value and holds it, but does not modify it), and then attempt to use
it, somctimes we will use a value that is digitally undelined, making the system not
value-safe.

Note that some higher level protocol may require that Xyp,, not be withdrawn
until some other event happens. Such restrictions are not necessary to guarantee value
safety for an unsynchronous machine.

To capture an unsynchronized signal as a digitally defined value requires a synchronizer;

1.e., a regenerative bistable circuit that will be stable only for digitally defined values.
Unfortunately, as we saw in Chapter 2, such a device will yield digitally undefined values
with non-zero probability when given a bounded amount of time for synchronization,
resulting in different digital components of the receiving machine making inconsistent
interpretations of the value, possibly lecading to failure of the system. Therefore, we
must explore alternatives. Since what we want are value-safe GA-LS machines, we are
forced to allow an unbounded amount of time for the synchronization and to use a
synchronizer that will indicate explicitly when it has completed the synchronization, as
suggested by Pechoucek [37] and by Stucki and Cox [43]. Therefore, we need a circuit
that will be able to detcct metastability and also a means {or waiting for the completion
of the synchronization without reintroducing a new synchronization problem. In the
next section we provide a functional description of such circuits.

§4.2 DBuilding Blocks for Value-Safe Circuits

Before we talk about the notation and methodology for designing unsynchronous
systems, we will describe functionally some simple bul useful basic blocks: a variable-
speed, 2-phase, stoppable clock and a synchronizer with a metastability detector.
Knowing the function of the blocks makes it much simpler to explain the unsynchronous
machines, even if alterwards onc docs not use preciscly these basic blocks.  More
detailed information, as well as an nMOS implementation, can be found in the appen-
dices. Note that once the blocks are designed and their timing verified, we can provide

a higher-level functional description of the corresponding circuits, which nced not refer
to any internal or external delays.

NPT
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4.2.1 A Variable-Speed, 2-phase, Stoppable Clock

Designs for clocks that will stretch a phase for unbounded periods of time have
been proposed by Seitz [39]. The stretching signal is asserted synchronously with a
phase, and de-asserted an arbitrary period of time later. Next we provide a functional
abstraction for one particular design.

The clock generates two non-overlapping phases (p, and p2 ), and has in addition
two inputs (stretch,, and stretch,, ) for stretching the ¢, and p, phases respectively.
In the absence of stretching, phases have a length determined by an external analog
control.

stretch-phi2 —ﬁ
CLOCK r‘— speed

3 }

phit phi2

stretch-phi1t —

Figure 6. A Variable-Speed, Stoppable Clock

The stretch lines should be asserted synchronously with the phases of the clock
and cleared asynchronously by some other process. Stretch signals must rise within a
bounded period around the rising edge of the phasc they will stretch (e.g., a strelch,,, may
rise as a q-p; signal or as a vq-p, signal). The falling cdge of a stretch signal, which
indicates that there is no longer a need for stretching the phase, has no restrictions as
to when it may come.

As long as the corresponding stretch signal is asserted, the corresponding phase
will not terminate. A streteh signal does not change the length of ensuing gaps and
phases; it just displaces them Lo the right on the time axis. A stretch signal Lhat falls
before the phase would have normally ended produces no stretching.

4.2.2 A Synchronizer with a Mectastability Detector

The synchronizer shown in the next figure generates an explicit completion signal
when it has Gnished the synchronization. It operates under the same principles as Seita
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wrbiter [39, 40]. It receives two inputs: asynchronous data upon which there are no
iming restrictions whatsoever, and a q-p, sampling signal. It produces two outputs:
v synchronized data signal which is s-; and a stretch-pgsignal. The data becomes
wailable on the clock cycle following the one in which it is sampled.

Sample (q-phi1)

{

Asynchronous Input —p Synch ronizer

=% Synchronized Output (s-phit)

Leep  Stretch Output

Figure 7. A Synchronizer with a Metastability Detector

The stretch output may glitch harmlessly during ¢ (we will never use it during
p1 ), while a value is being sampled. The stretch signal may stay high during ¢ as
long as the synchronization is not complete yet. The stretch signal is guaranteed not
to rise during 3 : it can be high from before qp;, and fall before or after (pL , but once
it falls, it stays low throughout 3 and up to the next tp{. The stretch-p, output from
the synchronizer must be able to stretch the @, phase for an unbounded period of time
to guarantec that the synchronized data be digitally-dcfined [37, 6, 39] at the end of
the synchronization period. 4

§4.3 Structures for Unsynchronous Systems

The gencral structure of unsynchronous systems is a global enscmble of locally syn-
chronous machines (1.Ms), interacting asynchronously with cach other through synchronizers
that provide completion information. Since the machines are locally synchronous, a
possible way of giving an unbounded syunchronization time is to have the machine latch
a value in one clock cycle, and use it in the following cycle, with the following cycle
“arriving” only when the received signal becomes stable, as shown in the next figure.
Connccting the output of the metastability detector to the “stretch” control of the
clock assures that when the purely synchronous part of the machine attempts to use a
value, by construction, it must be digitally defined.

\( - - .- ‘.;‘. %' ‘‘‘‘‘ .:'- .: -~ .:- .:. ''''''

st o ..‘.;..n. 9% g% e, <" :'




28 4.3. Structures for Unsynchronous Systems

i "metastability"
ref:elved Synchronizer y 1 Clock
signal
synghromzed phi
signal

Purely Synchronous Machine

Figure 8. Block Diagram of an Unsynchronous Structure

sampling clock

received signal —f E

signal seen internally __/_:-__ — e e —
s!retching

Figure 9. Waiting by Stretching a Clock Phase

It is important to note that there are thcorems that preclude the design of un-

synchronous machines that are value-safe and time-safe. It is tempting to “improve”

the structures we propose in “harmless” ways so as to avoid the possibility of stretching

the clock for unbounded periods. Nonetheless, such modilications invariably involve
subtlc bugs, since such machines, unfortunately, are as impossible as perpetual motion
machines.

Although therc are no theorems that preclude the valuc-safety of unsynchronous
machines, nothing says that dropping the time-safety requirement actually produces
value-safcety. Thercfore, it is important to show that we have not somchow hidden
a synchronization problem in the metastability detection or in the stretchable clock.
Next is a constructive proof that unsynchronous machines arc value-safe.
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a) A pulse generator (PG): The PG emits a single pulse of fixed duration when
put falls. The output is produced by delaying the input and inhibiting the output
the input is high, as shown in the next figure:

{147« 11} QUEp——
T o
L]

Figure 10. A single pulse generator

'b) A clock module (CM): A CM produces a single output which is the OR of a
ch input signal and the output of a pulse generator (PG), as shown in the next

e.
i Jo- 1
input —1LPC | |-}—m— output
stretch p!\ase
Figure 11. A clock module
(¢) A stretchabie clock: Put 2 CMs in a ring, feeding the output of cach one to the trm‘. .

L of the other, with an intervening delay in between cach CM. If the stretch lines
in low, the output of cach module will trigger the other one, and their outputs
be a sequence of non-overlapping alternating pulses (o, and @2 ). To start the
lation, pulse either of the stretch lines.

L CM. delay > CM. delay

v ] v
str-phil phit str-phi2 phi2

Figure 12. A stretchable clock
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«d that at the required clock rate, its MTBF is just 0.5 sec. If we use an unsyn-
ous machine instead, we know that the MTBF will climb to oco. The question
- such a huge reliability increase, what performance loss is acceptable? Using the
ion above and a typical value of \,,, = 500MHZ for 44 nMOS, L = 107%%! Thus,
ichronous machines can work with absolute reliability and without a speed loss
iditions so severe as to render synchronous designs virtually useless.

The Unsynchronous Limiting Speed

jince unsynchronous machines cannot suffer synchronization failures, it is reason-
;0 ask how they respond if we crank up the clock. The propagation delays within
urely synchronous part of a given LM set a limit to the frequency of the clock.
ver, synchronization effects impose another limit. Since increasing the nominal
ency increases the number of stretched cycles, there is a limit to the average speed
iich the system will run. This limit is shown qualitatively in the figure below, and
ill now derive it quantitatively.

s tc

Limiting Speed

-
—
-

-
~

" Unsynchronous

e
v

/ fn

Figure 19. Limit Specd for Unsynchronous Systems

sct d be the duty cycle of the clock, f,, the base rate of the stretchable clock that
to the system, and f. the actual frequency at which the system is running, taking
wccount the stretching. Then:
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4 fc

Synchronous

/ Unsynchronous

fn

Figure 18. Speed Loss for Unsynchronous Systems

Next we derive the function L{f,) for the unsynchronous machine. From equation
(4.4):

1 1

Luney =1~ = ' 4.6

unsy 1+ !i{—"‘—wﬁc—kmt, 1+ 5},_'_3;_.%: ( )
m din

Note that one part of this equation is identical to the MTBF,,, of a synchronous
machine being clocked at the samc frequency f,, so:

1
1+ A\nMTBF,,,

Lunsy = (4.7)
Since 1/)\,, is the expected time for a flip-flop to exit from a metastable state,
MTDF yyn >> 1/Am, 30 synim >> 1. Therefore,
L4 b ] l
Lun.v M.I‘Bl"vn =] x__ . (4.8)
m

This equation is very interesting because it links the reliability of a synchronous machine
with the throughput of an unsynchronous one that performs the same task, both
clocking at the same speed, and being perturbed asynchronously at the same rate.

To understand the implications of this result, assume that we were Lo perform the
following experiment. We build a synchronous machine in 44 nMOS technology, but
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Figure 17. Bounded vs Unbounded MTBF

Therefore, the probability of having the UNSY machine fail to respond quickly
ough may be smaller than the probability of the UNSYB machine having a syn-
ronization failure. Since bounded stretching requires more complicated circuits, we
¢ better off with a simple unsynchronous machine than with the hybrid UNSYB
aichine, whose reliability is not clearly superior.

6.6 Spced Loss

The throughput equation (4.4) provides a mcasure of the speed of an unsyn-
ronous machine. Deline the loss of throughput as L = 1 — T, which is zcro for
nchronous systems. Il we plot f,, the average frequency of the clock, as a function of
, the nominal frequency of the clock, we get a straight line at 45° for a synchronous
stem. [or an unsynchronous one, the faster we drive it, the higher the percentage
cycles that will be stretched, and the higher the throughput loss. The qualitative
havior is shown in the figure below.
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With a timer, the UNSYB is no longer valuc-safe because the timer’s output is
unsynchronized with respect to the disappearance of metastability in the synchronizer.
This race is dangerous: if the synchronizer remains metastable throughout the full time-
out period, then begins to resolve towards True precisely when the timeout mechanism
is trying to steer the result to a logically delined value (False), the system may fail.
Note that if the synchronizer resolves before this critical window, there is no problem.
If it attempts to remain metastable longer, the value is cleared cleanly by the timeout
mechanism. Only if it tries to resolve towards True in a very narrow window W exactly
after the full timeout period will there be a synchronization failure.

4.6.5.2 Evaluation of Unsynchronous Machines with Bounded Stretching

We compare UNSYDs with UNSYs and with conventional synchronous machines
(SYN). The comparison with SYNs is straightforward. Suppose that a SYN running at
a clock speed f. samples a datum in cach clock cycle and pipclines its synchronizations
through k stages to improve reliability. Suppose that the UNSYB also runs at f,, but
has no pipelining of synchronizations, and that T,y = q f.. By making ¢ — & big
enough, say 20 clock cycles, the UNSYB will be much more reliable than the SYN, and
sitnpler too, since it does not use pipelining. The disadvantage is that the UNSYB will
have a worst-case time crror g times that of the SYN machine.

Although UNSYBs have advantages over SYNs, UNSYBs do not compare so favor-
ably with UNSYs. If we use a timcout mechanism, it must be because for the given
application it is critical to always respond within a bounded period T,.q.; there is
no other use for the timecout. Therefore, we will say that UNSY fails (not from syn-
chronization failure, but from not meeting other system constraints) if it does not
respond by Tynaz. An UNSYB has a timer that it can sel it to wake itscll up carly
cnough Lo guarantec that by Tpa, it has alrcady responded.

Let 3 = Thaz — Tout. From cquation (2.3), the probability that a given clock
cycle will result in a metastability event lasting at most a time t is fyWe >mt. The
corresponding density function is D(t) = A\ faWe >t The failure rate for UNSYs
will be given by f;:““ D(t)dt, whilc the failure rate for UNSYB will be proportional

Toue +tW/2 . . . . .
to fT.,.‘.‘—W//z D(t)dt. Since D(l) is a very rapidly decreasing exponential curve, the
first integral can casily be smaller than the sccond, as can be seen in the following
figure:
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advantages over them.

4.6.5.1 A Synchronizer with a Feedback Timer

Suppose we add to a basic value-safe circuit a timeout mechanism that limits the
length of time that a synchronization may take [43]. If aftcr a time Ty, the signal
being synchronized is still metastable, the timeout mechanism will attempt to force
the value being resoived into a pre-dctermined value (e.g., False):

ls q-phit

sampie metastability
xuns'y__' -1 stretch-phi2
YN
SYNC ) cLOCK
—
clear sync phi1 phi2
timeout
TIMER init |

Figure 16. An unsynchronous machine with bounded stretching

The synchronizer has a metastability detector and also an override input that forces
the sampled value to zero. The timer is a watchdog Lthat expects o receive input pulses
regularly from the clock. If it doesn’t reccive a pulse for a certain time, say several clock
periods, it produces an output pulse. This pulsc is used to tcrminate the mectastable
state by forcing the sampled value to zero.

From an external viewpoint, the UNSYD has similar propertics to those of unsyn-
chronous machines with unbounded stretching (UNSY), except that the UNSYD is no
longer absolulely safc, and its worst case time error is bounded. In spite of no longer
having absolute reliability, it may have a good reliability. Furthermore, note that the
reliability point at which a system works need not be fixed at the time the hardware
is being designed, but can be selected by setting the length of the timeout while the
system is actually running.
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Synchronous Unsynchronous
MTBF . : 0o
Expected . 4
Throughput 14+ L4fnT erme,
Worst Case ) o
Throughput

Expected i “Amts
b o + M

Time Error

Worst Case 1
Time Error

Figure 15. Performance and Reliability

4.6.5 Unsynchronous Systems with Bounded Stretching (UNSYB)

There are a variety of ideas that make it “virtually impossible” for the system to
fail, but still give a bounded time error. Ilerc is one such system. The practical merits
of it arc not clear, but it will allow us to analyze a typical improvement. We will see
that such improvements are not worthwhile because the resulting structures are more
complicated than unsynchronous machines, but do not have clear speed or reliability
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absolute error will be. Since whenever a machine needs to know the time it can ask
some high precision source, the error with which the machine knows the time need not
accumulate longer than a clock cycle. Therefore the expected error in the measure of
time will be given by the granularity of the clock: £ftime crror] = Eygen[cix] /2.

For a fixed-clock system, the expected error is 2—}: For systems with stretchable
clocks, it is:

1 WeAmtr
Eﬂ‘"]’ = — 4 Il.__e_._

ar. T (4.5)

from equation (4.3). DBoth synchronous and unsynchronous machines can ask what
the time is whenever they need it, so the total error need not be bigger than the
error acquired in one clock cycle. Note that although the worst-case time error that
can accumulate in a single clock cycle is unbounded for unsynchronous machines, the
expected time error can be made virtually as small as that of synchronous machines.

4.6.4 A Summary of Performance and Reliability Mcasures

In the previous sections we have calculated a number of basic measures of perfor-
mance and reliability for synchronous and unsynchronous machines. The lollowing
table summarizes those results. These results will be used to derive strong conclusions
about the relative merits of both kinds of machines when we discuss speed loss, limiting
speed, and rcal-time applications.
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where Ejgp[ctk] is the average length of a clock, and str > ¢, indicates an event where
the clock stretches longer than t,. Since the clock stretches as long as metastability
persists, P(str>t,) = Pret(t>t.). Clearly Eignfctklatr<t.] = 7':, since that is the
minimum clock period and no stretching beyond ¢, occurs. From ecquation (2.3),
P(str>t,) = fyWe > mt,

The remaining factor we still do not know in equation (4.1) is Ejgep [Jciklstr>er],
the expected length of a clock cycle when a metastability event is not resolved within
t,:

oo
Elgmﬂclklur>tr]] = -}- +/ tP(atr>t|atr>t,)dt

n t,

1 oo
—“Am(t—=t,)
f" +/‘" te dt (4.2)

~LyL
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We could also arrive at equation 4.2 by noticing that if we stretch the regeneration
period, we are stretching the whole clock cycle by the same amount. For an exponential
distribution, the residual probability [20] is also cxponentially distributed with the same
parameter. Since the expected value of an exponentially distributed random variable is
1/Xm, the residual probability that gets added to the normal clock length -,1"— is 1/ \m

Using equation (1.2) in cquation (4.1):

Exgunlel] = (- + -—-)faWe"‘""' + -~(1 — faWe™mtr)

N faWe~ —Xent, (4.3)
fn Am

This expression gives the expected frequency fe, and solving for the throughput yields:

Turuy L (4.4)

l + L{" —X'ntr

4.6.3 Lxpected Time Error

Although the worst case time crror can be quite high, we know that the likelihood
of such a high crror is simall, so it is intercsting to know preciscly what the average
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that a flip-flop will remain metastable for a time ¢ or longer is P(met;) = fyWe ™ ¢,
where f; is the rate of asynchronous data transitions and \,, and W are technology-
dependent parameters. The mean timec between synchronization failures for a syn-
chronous machine is MT BF,y, = e*~'" [ f. faW, where f. is the clock frequency of the
machine.

With stretchable clocks, reaching the end of a clock cycle with the synchronizer still
metastable implies that the cycle stretches, but not that the system fails. Therefore,
since there are no synchronization failures, MT BFy,,, = oo.

4.6.2 Performance: Expected Throughput

Unsynchronous systcms are more reliable. What do they lose? Performance: some
clock cycles will be stretched, slowing the machine. Next we will s.ow that this loss
is negligible. In fact, we will show that we can compensate {or this stretching, and
actually run faster than with conventional machines.

Performance loss comes in two forms: reduced average speed or throughput, and
unboundcd response time. The bulk of this analysis deals with the average case; we
will analyze the worst case when we deal with real-time systems.

Let f,. be the nominal clock frequency and f. the actual average frequency at
which the system runs laking into account lhe occasional sirciching of clock cycles.
Define the normalized throughput as T = f./fn. For a synchronous machine, T,yp ==
1, but for an unsynchronous machine, as more cycles stretch, Ty, nyy becomes smaller.
To calculate Tynsy we have to take into account that some clock cycles will not result
in mectastability; some will, but will resolve within a normal clock length; and finally,
some will stretch a clock phase beyond its normal length. Solving the conditional
expectations, yields the expected clack length and the throughput.

Let Fyyinfziv] be the expected duration of an cvent z, given that a condition y is
satisfied. Since the resolution time is not reduced beyond ¢, even if the synchronizer
settles sooner than t,, we must split the calculation of Elgghﬂclk[l into two parts:

E[,mﬂclkﬂ = qumunlklatr>t,]]P(atr>t,) + Eggu,ﬂclk!ntrs:,np(ntrSt,)

= E[qmﬂclklatr>l,]]l’(atr)t,) + Ewu,ﬂclklatrﬂt,l](l - I’(ur>t,)), (4-1)
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to be met by unsynchronous machines, guaranteeing the value-safe operation of the
machine as a whole, given the correct operation of the LMs. In the appendices we
provide such a rules system, assuming strict-two-phase LMs. The strict-two-phase
assuraption is convenient, though not necessary: we can accommodate other organizing
principles for the synchronous components by making minor changes in the rules. The
rules for designing value-safe unsynchronous systems are accordingly quite general.

§4.6 Quantitative Evaluation of Unsynchronous Machines

In previous sections we have reviewed how metastability can be a problem for
conventional synchronous systems and how unsynchronous systems can overcome this
problem. To decide whether the solution is good we will compare their performance
and reliability with that of conventional machines with non-stretchable clocks. We will
show that unsynchronous machines can be clocked faster and are much more reliable
than conventional synchronous machines.

| This section prescnts a quantitative analysis of the tradecoffs between time and
value uncertainty. As extreme cases, we will obtain the time uncertainty of value-safe
systems and the synchronization failure rate of conventional systems. We will also
cxplore systems with “bounded stretching” of the clock; such systems have properties
that are midway between those of fixed-clock machines and those of unsynchronous
machines. These models yicld worst-case and average-case measures of performance
and reliability. The MTBFs and a new normalized throughput measurc prove that
unsynchronous machines are superior to conventional synchronous ones for many high-
performance applications, including some real-time applications.

4.6.1 Reliability

To compare quantitatively the effects of metastability on conventional and unsyn-
chronous machines, we nced rcasonable models for the behavior of regencrative elements
(e.g., Mip-flops) and of the communicating subsystems.2 From Chapter 2, the probability

2Hamurabi discussed some celiability issues: “If a house fell and his owner is dead the builder is to be
dead,” but he scems not to have cared about synchronizalion failures,
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In the figure above, system A receives Xynsy, which it samples during ¢, . It never
needs to stretch p;, but occasionally it may have to stretch ¢, . It produces an output
Z that is synchronous for A, but since B runs from an independent clock, it must go
through a synchronizer before B can use it. B uses some other external signal Y, which
is also synchronized. Since B samples both Y and Z during ¢, , it may have to stretch
@2 if any of Bl or B2 go metastable. Note that if only one of Bl or B2 is metastable,
the other one keeps the value it has sampled safcly until both are ready to go on.
Note that if an LM had for some reason sampled data both on ¢; and on 2, the
corresponding clock would have had stretch inputs for both phases.

Since the unsynchronized signals have no semantics associated with them, the
programs running in each machine will determine their meaning. For example, Z might
be a request for some resource, and X its corresponding acknowledge, while Y might
be the output of an A/D converter, providing the temperature of an engine. In such a
case, the X/Z pair might follow some particular protocol, while clearly Y would not. It
might be that A is the master and B a slave or vice versa, or perhaps B is an arbiter and
Z/Y are requests for a resource. Note that value safety does not imply “correctness”.
For example, if A sends values to B much faster than B can read them, B will lose
values. Ilence, appropriate protocols are necessary. In any event, the system remains
value-safe,

§4.5 Automatic Verification

We have discussed a way of building global structures that link together many
locally synchronous machines. Assuming the correct operation of the synchronous
componcnts, it would be uscful to provide guarantees about the operation of the global
unsynchronous machine as a whole.

In a sense, unsynchronous machines are fairly simple, since the purely synchronous
part of cach LM remains unaltered, and, assuming the correctness of cach component
LM, we only need Lo make sure that every external unsynchronized signal is properly
synchronized. Verilication can be restricted to the interfaces between LMs because the
modularity of the [.Ms is preserved by the shiclding synchronizcrs. It is only nccessary
to check that the unsynchronized signals are synchronized to the appropriate clock
phase and that all the streteh signals generated by the synchronizers are appropriately
connccted Lo the streteh inputs of the clock.

Note that rules can provide an eflicient way of stating the constraints that have
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4.4. An Unsynchronous Machine with Two-Phase Clocking

§4.4 An Unsynchronous Machine with Two-Phase Clocking

For the sake of concreteness we will show next an unsynchronous machine com-
posed of several locally-synchronous machines (LMs). Each of the LMs can be a
synchronous, strict-two-phase machine encapsulated in a shell that provides a clock
and an interface with other LMs. Here we use the clock and synchronizer that was
described above.

Each LM must use the clocking signals provided by its own stretchable clock. All
asynchronous inputs to each LM are synchronized with SMDs, and the corresponding
stretch signals are ORed together and fed to the stretch input of the local clock. In
an appendix we provide a formalization of this structure, which consists of rules that
allow us to verify the value-safety of an unsynchronous machine. What follows is a
simple example that shows how we can tie the components together.

In the unsynchronous system in the next figure, we have two LMs exchanging un-
synchronized signals. They also reccive unsynchronized signals from the outside. Each
unsynchronized signal is fed to a synchronizer, which transforms it into a stabley, signal.
The OR of the metastability detection lines coming out from all the synchronizsers in
each LM is sent to the stretch,, input of the local stretchable clock.
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If a stretch-; input is raised as a v-pgsignal, nothing happens to . if stretch-
©2 drops before goé. On the other hand, if stretch-p2 remains high after the time
when the corresponding PG goes low, it will prevent 2 from falling, and will stretch
it for as long as the stretch remains asserted. Meanwhile, ¢, is not being retriggered,
but once w2 goes low, a ) pulse will be emitted, and the clock will proceed normally.
Notice that a race in between the falling of PG’s output and the falling of a stretch
line produces no glitches whatsoever because they are being ORed, so the output will
consist simply of the one falling last.

(d) A synchronizer with metastability dctection (SMD): A o, -clocked D flip-flop
samples the input data, and feeds its @ and @ outputs to an analog comparator whose
output will be low only if @ and @ differ by more than a given threshold. The output
of the comparator is ANDed with a ¢, clock signal.

asynch. input {
yn P o Q comp. str-phi2

Ol

phit phi2

Figure 13. A synchronizer with metastability detection

The SMD samples data on ©, only, and the only way in which its flip-flop can
go metastable is if X is changing at ©]. In this casc, @ and @ will be similar,!
instead of having complcmentary values. Ifence, if the metastability docs not subside
until <p.£, stretch- . will be asserted as a v-pg signal. If metastability hasa’t subsided by
the time the PG corresponding to o2 goes low, p, will be stretched as long as necessary.
Note that we can sct the comparator so that it begins to drop its output when @ and
Q cxit from the digitally-undcfined region. When the {lip-llop eventually stabilizes, the
comparator will make stretch-p, fall, so we can latch @ wilth go..l,with the certainty of
latching a digitally-dcfined value, and the resulling machine is value-safe.

lThough not true of every lip-flop, over-damped symmetric flip-flops hiave this property. Once their
outputs differ by more than a given value, it is guarantced that within a bounded interval of time
they will have stabilized completely to digital values.
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t, = d/ fn. (4.9)
From cquation (4.4), the throughput of an unsynchronous machine is:

1
T = . (4.10)
1 + ,_dxf_::-‘zC“‘Xvntr

Since T = f./fn,

] }‘_C =1- ————f“{°we-*m", (4.11)
< n m

-

b-

and we can calculate the limiting speed by taking the limit of f. when f, tends to
infinity:

. [
fc max = lim V,:’
fato 14 BfWennt,

1
= lim .
frn—oo ~+ f::'e—)\md/f,. (4.12)

— Am
faW

Hence

fc nmxfd max = X_v;’n_ : (4.13)
This equation tells us that for unsynchronous machines, the product of the effective
clock frequency and the frequency of asynchronous perturbation have a technology-
dependent limit. If we attempt Lo drive an unsynchronous system too fast, eventually
the system will self-adjust to a limiting spced controlled by the decay speed of its fip-
flops, and not by f.. Therefore, it is important to know if this limit is high enough.

For typical values for 4u nMOS technology, we get that f. . famax == 5 10'YHZ2,
which is so high for this technology that it does nol limit us in any way. In general, for

any technology, we will reach other limits well belore reaching anything close to the
unsynchronous limit speed.
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4.6.8 Real-Time Systems

For those systems for which we are concerned only abou. the reliability and average
performance of the system, delayed results are clearly better than timely garbage.
However, there are some real-time systems for which the response time is critical. The
key issuc is that for dilferent people “rcal-time” means completely different things: a
banker nceds real-time processing ol transactions; a steel mill nceds real-time control
of the roller position to produce a shect of uniform thickness; a plane has real-time
control of its turbines; a dynamic memory has to be refreshed in real-time, etc. To
differentiate among all these, definc a critical time ¢, as the maximum time allowable
for synchronization.

Except when we discussed unsynchronous machines with bounded stretching, we
only considered unsynchronous machines with absolute reliability. Now we have to
contend quantitatively with the possibility of failure due to slow response. Using
equation (2.3) gives the expected time until a metastability event lasting t., from which
we derive the reliability of an unsynchronous machine for a given real-time application:

ex,,.c.
- fcfdw .

MTBF psy = Platr>t.) (4.14)

To give a lecling for the numbers we are dealing with, for ¢, = 1msec, MTBF y,,
for 44 nMOS is several times the estimated life of the Earth. This result is rather
encouraging, but not conclusive yet, because exponentials shrink as fast as they grow.
Under tighter conditions we would have to re-check our numbers. Ilowever, we can
instcad obtain a technology-independent quality measure (Q) that will allow us to
dccide in a more general way whether an unsynchronous structure is appropriate.

Let @ = MTDBF faz, Wwhere fio. is the maximum clock frequency at which
the system runs, and the MTBF takes into account both synchronization failures and
failures to respond in time. MTBF,,,, will be given by equation (2.1), and MTBFyney
will be given by equation (4.14), so

Qun‘” bN (t ~t )
2 = e"m\te r 4.15
Qun ’ (4.15)

where ¢, is the regencration time allotted for the synchronous machine.

In some applications (e.g.,data capture) a synchronous system can pipeline the
data so as to have a longer synchronization time, making ¢, = ¢t.. However, at ¢, = ¢,

..........
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the synchronous system is always at the limit of failing to respond quickly enough.
Therefore, the designer must build in a safety margin, so t, will be smaller than t.. Let
k, < 1 be the safety factor, where t, = k,t.. For any technology, the regeneration time
t, should be several times larger than the expected decay time of a flip flop. Therefore
t, >> 1/A\m, and

Quney o 17kt (4.16)
Qayn

Hence, if pipelining is possible, @,yn can be almost as good as Qunsy-

However, there are applications for which both average and worst case response
times are important (e.g., arbitration), where pipelining may not be applicable. An
unsynchronous machine can do up to one arbitration per clock cycle, and it fails when
it does not respond within ¢.. A synchronous machine doing the same task fails when it
does not resolve an arbitration within t, = 1/f,. As expected, if because of real-time
constraints, the system fails as soon as the clock is actually stretched at all (t. = 1/f,),
the unsynchronous machine must run at the same speed as the synchronous one to have
the same rcliability. Replacing 1/k, with t./t, = t.f, in equation 4.16, we get:

Qunsy > efef—1 (4.17)

Qbyn

However, t. > 1/f, for any reasonable design, because otherwise the systems would
have no safcty margins. By allowing ¢, to be just a few clock cycles, the unsynchronous
machine will arbitrate with a speed.reliabilily product hundreds of times higher than a
synchronous machinc built in the same technology.

Since rcasonable rcal-time constraints cannot be at the granularity level of the
clock, we can conclude that even for real-time applications unsynchronous systems are
better than synchronous ones.

4.6.9 High-Precision Stretchable Clocks

The low probability of long stretchings opens another design possibility: if for some
reason we needed a stretchable clock that kept time with the precision of a crystal
clock, we could phase-lock it to a crystal clock, using an extremely slow feedback locking
loop. Stretching a cycle would not interfere with the locking mechanism, which would
not respond quick enough to alter the basic clock frequency due to a stretch event, but
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nonetheless would make it run in-phase in the long run. The only draw-backs would
be that to start up the clock it would take many more cycles than for a normal crystal
clock, and also that with some non-zero probability the locking could interfere with
the stretching if the stretching lasted for a period that were comparable to the time
: constants involved in the feedback loop.

e ewmmmw * v Y s =

' Alternatively, as suggested in [Hann], two variable speed clocks layed on the same
chip can be controlled by the same voltage reference, so their normal frequency is
- quite close. One of the stretchable clocks is phased-locked to a crystal reference,
and its phases are never stretched. The other stretchable clock, which produces the
actual clock signal used by the system, can have its phases stretched. In this way,
the stretching does not interfere with the phase-locking, independent of the stretch
duration. The normal frequency at which the system runs is not exactly that of the
crystal reference, but will be quite close. For example, the processor in the next figure
uses this scheme to obtain a stable frequency from a stretchable clock [15]. (The cyclic

shift register divides the locking-frequency so that a lower reference-frequency can be
used [14].)
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§4.7 Conclusion

We have seen a very general organization for building value-safe unsynchronous
machines, and we studied the relation between the global unsynchronous structure
and a particular organization for the local synchronous machines. We analyzed quan-
titatively the trade-ofls between reliability, throughput, and real-time constraints, and
concluded that unsynchronous machines can run at much higher speeds and with much
higher reliabilities than equivalent synchronous machines.




Chapter 5
Escapement Systems

When we dealt with unsynchronous systems we did not use any information
about how or when asynchronous inputs could change. In contrast, an escapement
organization (EO) docs not know when an external asynchronous signal may change,
but knows in advance the direction of the transition. We will use this knowledge about
the asynchronous signals to build value-safe GA-LS systems without synchronizers of
any kind.

From the communications poiat of view, unsynchronous systems are very general,
but if we do not nced such generality, their generality wastes time and arca. By
using roore structurcd signals that obey certain protocols, EOs have the following
advantages over unsynchronous systems: less area, since EOs do not use a synchronizer;
faster response, since £Os do not nced synchronization clock cycles; and delerministic
responsc time, since EOs have no metastability detcclor to wait for. Lastly, their clock
re-starts in phase with incoming external asynchronous signals.

In Scction 1 we describe the escapemenl mechanism, which is used in Scction
2 to asscinble value-sale GA-LS machines. Section 3 discusses some optimizations
that imnprove the performance and reduce the area nceded to implement an EO. Next,
Section 4 analyzes how to provide correctness guarantees through verification of the
EO specifications and compilation of the specifications onto hacdware. Finally, Section

5 evaluates the performance of EQs.

R T R e——— ) ers Jn- s Aetec Mt M e didh Sy et dlana e Ange 4
- PO AR, S Rt i i - . DA P .

A
"

.




50 5.1. The Escapement Mechanism

§5.1 The Escapement Mechanism

To develop a feeling for the operation of EOs, we show the operation of a simple
escapemcnt machine (SEM) that embodies the second “fundamental solution” approach
suggested by Pechoucek in [37]. The EO mechanism must know in advance the direction
of each transition that the external signal will make. To build a complete EO requires
some kind of communications protocol. TFor convenience, we will use the 2-cycle
communication protocols described in Chapter 2.

We trace the flow of control throughout a transaction of this SEM with an external
slave, as shown in the figure below. Initially both Req and Ack are low while the SEM
is computing. When Req is raised the clock of the SEM is stopped until Ack is received.
When the SEM restarts it knows Ack has arrived (otherwise it would still be stretching
2 ), so it can do other computations and eventually it can lower Req, again stopping
the clock. Eventually, Ack will fall too, bringing the system back to its initial state.
Note that the SEM receives asynchronous acknowledges without using a synchronizer.

Req(vq-phi2)
A Ack
'y
) —_
Computation *
sir-phi2
A Clock
v Synchronous Phil  Phi2
Transaction Machine _ _I
Block Diagram Logic Diagram

Figure 21. A Simple EO Master

In terms of a state diagram, supposc that afier state Sl (sce next figure) the
EO is ready to receive some asynchronous request, which will be handled in S2. We
denote such conditional transitions by changing the normal transition arcs used in state
diagrams to squiggles labeled with the transition condition.
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(ready for Req)
<4—— Req
(handle Req)
Figu}e 22. Iiscapement Stretching: State Diagram

The squiggle can be interpreted as stretching state S1 until the external condition
Req is satisfied, as in the figure below:

Req—
S1 D—- stretch

Clock

Figure 28. Escapement Stretching: Implementation

The behavior of this system can be rcadily seen in the following timing diagram.
Note that as soon as soon as the request arrives the system can center S2 and start
handling it, without ever having actually sampled the request signal.

state ——1 St s2

Req /
Figure 24. Escapement Stretching: Timing

The escapement mechanism does not have any hidden metastability problem.
Examining unsynchronous machines gives insight about how EOs avoid problems with
metastability. When an unsynchronous machine reccives an external unsynchronous
signal, it uses this signal as a discriminant to choose among different states into which
it can make a transition. Using the squiggle notation looscly, note that unsynchronous
machines stretch a clock phase until metastability subsides, and then make a transition
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to one of two states (corresponding to a Boolean decision), as shown in the next figure:

4= Completion = Not Metastable

Figure 25. Stretching in Unsynchronous Systcms

Unsynchronous machines circumvent the DRV theorem by giving unbounded time for a
decision. EOs avoid such decisions altogether: they have only non-bifurcating squiggles,
as shown in the next figure, and cannot choose between different states based on an
external asynchronous signal

g~ Completion = External Signal

Figure 26. Stretching in Escapement Systems

The escapement “wait” is also different from a conventional synchronous busy wait
(which is not value-safe):
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Cond ——p ’ o Cond ——p
Faise

Figure 27. Difference Betwcen Busy Wait and Stretch Wait

Having seen the differences between the ways in which escapement, unsynchronous,
ind synchronous systems handle asynchronous inputs, we can focus on how the escape-
nent mechanism avoids metastability problems. Remember from Chapter 4 that for
he clock to opcrate correctly the stretch-, input to the clock must be asserted as a
rq-p signal, and that the only constraint on the falling edge is that it cannot rise again
n the same clock cycle once it falls. Call Sy, Sy, Sq,... the sequence of states traversed
)y the EO. If a request must arrive before the EO enters state Sy, the request will not
to away before the EO emits an acknowledge, and the request must fall before the EO
‘nters state Sy, we can make stretchpy = @y A(SpA Req v S| A Req).

Consider what may happen when Req!. First, when qp-B in Sy, Req may still be
iero, in which case the EQ stretches from p&until the request arrives. Second, the
‘equesl may have already arrived, in which case no stretching at all occurs, and the
30 proceeds to S;. Finally, the request may arrive concurrently with p;, in which case
he stretch-, line will glitch for a bounded period after <p.E without any cffect on the
lock. Note in all three cases that once stretch-y falls, it will not rise again within Sp.
I'he behavior going from S, to Su when Req! is analogous with the exception that the
tretching oceurs while Req is high. Since the 15O handles all asyacheonous inputs in
his way, these inputs cannot trigger mctastable conditions anywhere clse, and as long
s both communicating machines respect the communication protocol they will remain
ralue-safe.

There is an interesting parallel with the unsynchronous mechanism: the stretch
ignals that are generated by the escapement mechanisin interact with the clock in
xactly the same way as the stretch signals generated by the metastability detector of
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unsynchronous machines. Hence, the synchronizer with metastability detector can be
considered as an interface of an escapement machine that allows it to receive unsyn-
chronized signals.

There is also an important difference with the unsynchronous mechanism: while
an unsynchronous machine can sample numerous lines, one after the other, until it
finds some condition it is looking for, an EO will stop as soon as a condition to traverse
a squiggle-arc is not satisfied. Hence, unsynchronous machines can poll multiple lines
effectively, but EOs cannot.

§5.2 Structures for Escapement Machines

This section explores the kind of structures that can be built using the escapement
mechanism. For clarity, some of the chosen examples are not as fast or compact as
they could be and are used mainly to emphasize different aspects of EOs. In particular,
we will discuss various structures suitcd for controllers, servers, pipclines, and arrays.

The EOs will be described with logical diagrams and also with state diagrams
extended with the squiggle-arc notation (ESDs). Each squiggle will have associated
arrows labeled with the condilions required to traverse the squiggle. The source of the

arrow will indicate the source of this signal, which typically will bec some state in the
ESD of another LM.

5.2.1 Basic EOs

We have scen that EOs must communicate using some protocol (e.g., the 2-cycle
protocol) to know in advance in which dircction the asynchronous inputs may change.
The simplest possible state diagrams that implement a 2-cycle protocol are the two
interlocked loops shown in Lihc figure below:
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Master Slave

Figure 28. A Basic Master-Slave EO

e diagram above shows only the control low. Between each one of those control
lons we can insert a computation, which is denoted by a C;. The C;s are arbitrary
ions that the LM may carry out, including both computations and communication
h other LMs. The ESD in the following figure has all the C;s possible in a basic LM
p.

ivse, .,
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(XX

4— Ack

000

4—— Ack

Figure 29. State Diagram of a Basic Master LM

The C;s form the basis for a notation used to distinguish among basic LMs. The
achinc above is a C1234 EO. It can support a 2-cycle protocol. Eliminating C3 and C4
oduces a C12 EO, which can not do more than one data transfer per full handshake,

only a 4-cycle protocol could be supported (see Chapter 2 for a bricf discussion on
otocols).

2.2 Mapping the Extended State Diagrams onto Ilardware

The ESD notation is unambiguous and complete for 1XOs, and the transformation
ESDs into logic diagrams is straight-forward. The following two rules indicate how
do this mapping;:

e Multiple Arrows: If there are n arrows with associated transition conditions

Cond; pointing to the same squiggle, they are transformed into a single arrow
with an associated condition COND = Condy ACondy A---ACond,.

..........

.......
............

.,
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iggles: For each squiggle with an associated transition condition Cond, there
be a signal Last that indicates the completion of the task preceding the
tle. Last must never be raised at any other point in the ESD. For each
tle in the LM, there will be a stretch signal S = Last ACond. The OR of all
retch signals is fed to the stretch input of the clock.

» these rules are used to map the Master LM of the figure below onto a logic
. For simplicity assume that Req'and Reg'are s-p2 and that two s-y, signals
the completion of C2 and C4 respectively.

c1
C1
Rt Req
C2 -
Ack
R

Figure 30. ESD for a Master C1234 EO

ng to the sccond mapping rule, for cach arrow, form the conjunction of the last
xceding the squiggle and the external condition for stretching, generating two
signals: Last(C2)- Ack and Last(C4)- Ack). OR these stretch signals and send
» the clock, as shown in the following figure:
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ts its own clock. Since achieving phase lock takes some time, each block is
ceded by a preamble whose only purpose is to ensure that when the actual data
'ts, the recipient will sample it in the middle of cach frame. For high speeds,
preamble is many clock cycles long, so if the blocks are short the loss may
significant (Moreover, sometimes metastability will prevent the receiver from
ieving lock in the allotted time).

EO combines the advantages of both schemes but without oversampling or a
amble: The sender starts each block with a start bit. The recipient EO only
ds to stretch until it is awakened by the start bit. Since the EO starts its
'k in phase with the incoming data, it has no problem in sampling directly the
Idle of each frame. If blocks are long, the sender must also encode a clock signal
h the data, to which the EO will lock after some number of cycles. Note that
EO can start sampling data while it is achieving lock because it starts being
cisely in phase, instead of starting with a random phase. Thus the EO does
lose time during a preamble and does not need to over-sample. Note that this
roach requires that the rising edge of the start bit not have dynamic hazards.

ynthesis of EOs

hough the cscapement mechanism by itself is simple, the resulting EOs can be
nplex. This scction shows mecthods to handle the design complexity. Our design
ology uses a specilication formalism and a set of rules that control how LMs
mbled and connected Lo other LMs. The purpose of the specifications and the
two-fold: helping the designer with a vocabulary and a structure that makes
gn process simpler, and also guaranteeing that the resulting machine complies
specifications.

ification and aulomatic synthesis are two paths followed to oblain programs
: guaranteed to be correct respect to their specifications. The fundamental
y we want guaranteed is value-safety. Unfortunately, as is shown in an appendix,
fety of EO circuits is undecidable. Hence, it is impossible to create a program
| verily an arbitrary circuit and tell whether or not it is a value-safe EO.

ercfore, we developed a low-level specification formalism that can be compiled
into hardware. The class of machines that can be described with this formalism
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.4 Performance and Recliability of Escapement Machines

The operation of EOs does not have the interesting probabilistic characteristics of
synchronous machines, but in fact that is better: the analysis is exccedingly simple.
response time can be bounded with probability 1. It does not need synchronizers to
value-safe, and of course cannot suffer synchronization failures since it does not do
y synchronization.

The following two characteristics give EOs them their main performance ad-
ntages: (a) EOs respond immediately once a handshaking signal arrives, and (b) EOs
itart the clock in phase with the edge of the handshaking signal.

} Unsynchronous machines can also handle the protocols that are mandatory for
EOs, but for unsynchronous machines, a full handshake involves the reception of 4
unsynchronized signals (Reg',Ack' Reg'and Ack!). Each of the four synchroniza-
tions takes one clock cycle for the actual synchronization, plus an average of half
a cycle that is lost because the signal has to arrive before the actual sampling
occurs. Therefore unsynchronous machines spend 6 clock cycles per handshake for
synchronization, versus none used by the EO.

) The following example will show the advantages of starting in phase. Suppose a
system must receive serial data at extremely high speceds. Each data block starts
at arbitracy times, but the bit-rate is known to some error €. There are two
basic approaches that are used to reccive blocks of data, which are exemplified by
UARTS and by the Ethernet, and EOs combine the advantages of both.

1) In a UART, the receiver over-samples (typically at 16 times the bit-rate) to detect
the rising cdge of a start-bit (a 1 bit which indicates the beginning of a block).
Having detected the edge of the start bit with reasonable accuracy, and knowing
the bit-rate, it can sample cach bit in the middle of its frame (Lhe interval in which
a bit valuc appears on the linc). This approach has multiple limitations: the blocks
must be short enough that the receiver docs not drift too far off from the middle
of cach frame, the bit-rate cannot be really high, because over-sampling requires
the receiver to opcrate at speeds much higher than the bit-rale; and sampling for
the edge of the start-bit can result in a metastable state.

2) In an Ethernet, the data carries an cmbedded clock signal to which the receiver
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LM must emit a SetRequest, and later it must emit a Join signal indicating C2 is
ete. The Join signal is ANDed with the stretching condition [Req v Ack]. Thus,
gnal is necessary for the fork, and another one for the join. This section shows

. single signal is sufficient when LMs use 2-phase clocking.

‘ransform the ESD of the parallel C2 master as shown in the next figure. Note
nside the loop the ordering of opcrations has not changed. In the entry to the
there is now an additional join preceding the first fork. This is of no consequence
se the join condition must hold before executing a fork. For example, for a basic
nly an initialization that clears all handshaking signals can precede the basic loop.
, the first join precedes the first fork in the transformed EO, but it corresponds

tretch that docs not take place.

<t fork-vip, s, be emitted by the synchronous control of the EO. Qualifying the
ignal with ¢, , we obtain the Join-vqp, signal; qualifying the fork signal with o9,
iain SetReq-qp. . llence, we can use a single signal, by displacing the fork and

C1
fork

C2
join

L

Ct=null
| s

fork
C2
join

|

Roll join
Loop

fork

07

-

Figure 45. Rolling the C2 Loop

vithin the basic loop, as in the figure below.

phase unpacked order packed order
T 1 fork join
2 fork
Loop M
body .
1
l 2 join

Figure 46. Packing Fork and Join

.....
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Setl
Req  Req

Ack

Figure 48. Master-Set SR Flip-Flop

Che master-set flip-flop is faster, since it need not delay the out-going request until
jetReq is low, and it requires no assumptions about relative dclays. Whichever im-
slementation is chosen, we will call this circuit a fork box.

Finally, to take care of the join, a stretch on Reqv Ack, placed at the bottom of
he ESD loop, will ensure that the LM can proceed with a new C1 only after the Ack is
‘cceived. The following figure shows the resulting EO. Note that even if C1 is empty,
the optimization still applies.

C1
MP
k SetReq set out |——» Req
Fork-Box
clear

C2

Ack
<+— Ack | Req

Figure 44. Parallel C2 or C12 EO

5.3.2 Signal-Packing in Parallel C2 EOs

For the parallel C2 master shown in the previous scction, the synchronous control
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e The only task in the life of FP is to clear Req when Ack comes.

e The purpose of the join is to complete the current cycle of the LM before
starting a new one.

Let us modify the C12 EQO, but using only valid EO primitives and preserving its
ogical characteristics. Req can become accessible to MP and FP by storing Req in an
'R flip-fop that can be set by MP’s signal SetReq and cleared by FP. Conceivably,
[ the slave is very fast compared with MP, the acknowledge could come back while
he MP is still setting the Aip-flop, possibly ending in a metastable state. Since the
rotocols guarantee that Ack will not arrive before Req is emitted, it is enough to delay
ending out Req until SetReq falls (SetReq stays high for a single clock phase), as shown
n the next figure:

SetReq

L—D__ Req
Ack

Figure 42. Sct-Inhibit SR Flip-Flop

Vote that we must ensure that the inhibition path from SctRcq to Req is faster than the
rath from SctReq to Req via the NOR gate; it is casy to implement a circuit for which

his delay assumption always holds. Nonctheless, a less obvious and better solution is
o use a master-set SR flip-flop:
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+ 4— Ack

<4— Ack

Figure 40. A C12 EO

In the EO shown above, C2 is already running in parallel with the [Req!, Ack']
half of the communication, but on the [Req!, Ack!] half, it must idle. Hence, C2 should
occur in parallel with the second half of the communication, as shown in the next figure.
The EO has been transformed into a main processor (MP) and a fork processor (FP).

\.——-—/

Figure 41. A C12 EO with a Fork

Notice that:
e Ncither forks nor joins are available primitives in cscapement systcms.

e Req is a variable shared by two processors: MP sets it; P clears it.
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5.3.1 Parallel C12 EOs 65

would not be able to tell that such a switch of mastership has occurred. Note that this
solution is analogous to what we do to switch mastership with unsynchronous machines.
The switch of mastership is hidden from the hardware, which becomes just a substrate
on top of which a more complex behavior is implemented in “software”. Therefore, at
the hardware level the master/slave relationship can convenicntly remain static (the
“hardware master” initiates the commmunication), while the mastership switch occurs
in the next layer [44) above the EO hardware.

§5.3 Optimization of EOs

In basic EOs, while signals propagate between LMs, the LMs are idle. This lost time
is significant for C2 and C12 EOs, but it can can saved by overlapping communication
and computation. This section shows how EOs can be modified to achieve this overlap
while remaining value-safe. Other optimizations are shown in the appendices.

5.3.1 Parallel C12 EOs

In a C1234 master, from the moment when a request is sent until the acknowledge
is received, C2 can be computing something clse. Analogously, C4 is overlapped with
the interval starting when the request falls and ending when the acknowledge falls.
Therelore, the C1234 has some parallelism within the LM.

On the other hand, with C12 and with C2 structures, we have parallelism between
the first half of the handshake and C2, but during the sccond half of the handshake
the LM has to remain idle, as shown in the next figure. Hence, we nced to overlap
the full handshake with C2. This overlap will substantially improve the performance
only if the duration of C2 is similar to the time used by the communication: if the
communication were much slower, it would completely dominate the throughput; if
the communication were much faster, not much is gained by overlapping it with C2.

..........
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above the master/slave relation between LMs is fixed at design time. Nonetheless, for
more flexible structures than those of systolic arrays it is desirable to have different
LMs be masters at different times. The following analysis suggests that the mastership
switch should be done one abstraction layer [44] above the EO hardware.

Suppose an EO consists of two LMs, which at some point will exchange mastership.
The original master (LM1) initiates the transactions, and both machines operate in the
top sub-loop shown in the following figure:

Req
. — —— —
Compute & Compute & L
* Communicate Master/Slave Communicate
S— —_— —
Ack
AT A
a—" - = —~
Compute & Compute &
Communicate Slave/Master Communicate
S— ~_— e —
Ack
LMt LM2

Figure 89. Mastership Switch between LMs

LM1 and LM2 can agrec that after some event, both will make a transition to the
bottom sub-loops. After the last acknowledge of 1LM2, LM2 becomes the master and
will send requests instead of acknowledges. Therclore, LM1 will have to detect that
1.M2’s last acknowledge has fallen, and some time £yyiien later, that the first request
from LM2 has arrived. Since the period L,y icn is determined solely by LM2, LM1 must
detect a pulse, instead of following the 2-cycle protocol.

Alternatively, at a given time, we can think of the LM that will wait next as the
actual slave. In this way, the relative ordering of the edges of the req/ack signals is never
changed, but the internal logic of the LMs re-interprets these signals. This is a safe
way ol transferring mastership, even though an observer looking at the handshake lines
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Figure 87. ESD for a Mesh of Interconnected LMs

Second, consider introducing some structure to the way in which LMs are con-
nected. For cxample, we can asscmble the grid shown in the Ggure below, which is
suited for systolic arrays. Each LM is master of the LM to its right, and master of the
LM below.

Figure 88. A rectangular grid EO

Finally, consider a more complex mastership relationship. Note that in the machine

T
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Stage n Buffern Stagen +1

2
%/

Figure 386. Improved Utilization Schedule of a C1 Pipeline with Interstage Buffers

5.2.4 Complex EOs

The EO structures we have discussed are fairly simple. They were asscmbled by
connecting a scquence of basic EOs whose ESDs consisted of simple loops. The EO
mechanism allows much more general structures. We can generalize the EO structures
by using LMs whose ESDs have more than just the basic loop, by interconnecting the
LMs in multidimensional meshes (instead of just one-dimensional pipclines), and by
having the master/slave rclations between LMs change while the EO is running. This
scction shows that the complexity of the resulting EOs can be substantial.

First consider an LM wilth a complex loop. When an LM has a basic 1S1) loop
only, it is obvious that it will comply with a 2-cycle protocol; for more complex [ESDs,
all possible paths must also comply with the 2-cycle protocol to asscmble an I[NO. As an
example, the next figure shows a LM that is a slave of LM1 and master of both LM2
and LM4. The ellipses stand for parts of the ESD corresponding to computations and
communications with other machines that were not drawn. Note that each LM can
interleave the communications with many other LMs, since cach C; may contain not
only computations, but also communications with other LMs.
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Stage n Stagen+1
W
Ack omimufi e//\ Rﬂn
T Ack
SO 5
Ack myshigate /&-‘_"_’
4"' -_ e
«— —
o

Figure 85. Operation Schedule of a Simple C1-only Escapement Pipeline

For this pipcline, at any time half the machines are computing while the other half
are waiting. Ilowever, waiting consists just of stretching a clock phase. Hence, if the
computational tasks are short and take a single clock cycle, actually all machines will
be computing all the time, and no time will be lost. Remember that if the stretch line
gocs low before the normal end of a clock phase, the phase is notl actually stretched,
so the machines neced not always delay cach other.

If each C1 computation takes several clock cycles, the fact that odd and even
stages alternately slcep wastes approximately half the potential computational power
ol the pipeline, as can be readily scen in the schedule above. If we interpose 1XO buffer
stages in between the original stages, the stages and buffers will sleep alternately. The
loss is now much smaller because the buffers are fast, while the stages take several clock
cycles. Thercflore, as can be seen in the next schedule, the cfficiency of the pipeline can

be improved considerably with buffering,
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Figure 84. Stage of a C1 Simple Pipeline

To understand how the pipeline operales, assume that beforc entering the main
loop of cach stage, each LM has been initialized so that the Req and Ack flags have
been cleared. Once in the main loop, cach stage will wait for Reg from its master
and for Ack from its slave before proceeding with its corresponding C1. Once Cl1 is
completed, the LM goes through the communication part of the loop, and eventually
ends up back at the top of the loop. When the request from the left rises and the
acknowledge from the right falls, it will start a new loop.

The behavior of the pipeline can be more easily understood in the following
schedule, where the active periods are shaded and the idle periods arc white. One
loop through the ESD corresponds Lo one shaded segment in the schedule.
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that satisfies the 2-cycle protocol may be connected safely to an EQ, independently of
its internal structure.) We can connect C1 basic EOs as shown below. In the following
figurcs, note that the indices correspond to the stages, not to the interfaces. Also note
that only the communication control is shown.

Stage n + 1
Figure 83. ESD flor a Simple C1 Pipeline

For concreteness sake, we apply again the mapping rules to generate the logic
diagram corresponding to a stage. The transformation is straightforward, and we can
apply the mapping rules to the ESD mechanically, without having to think about the
behavior of the machine at the circuit level: Stretch, = Reg, (Req, ., + Acknyi) +

Req,(IReqn- + Ackq. ). Therefore, the logic diagram for cach stage is:
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B
- o ] Str-phi2
Clock
LastC2(sphi2) LastC4(sphi2) phi2 phil
Req Synchronous Machine - I

Figure 81. Master-Slave C1234 Circuit

Note that C1234 reduces to the SEM of the introduction if C2 and C4 are eliminated:

P T

L

Figure 382. ESD of the SEM

Therefore, for SEM, the streteh condition of the Master C1234 reduces to just:
stretchpy = (Req - Ack) + (RReq - Ack) = Ack @ Regq,
which is the stretch condition used in the logical diagram shown in the introduction.

65.2.3 Pipelines

To assemble a pipcline, simply connect a sequence of basic ECs. (A machine
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is naturally smaller than the set of arbitrary machines that can be described with logic
diagrams, and value-safety of EOs specified with this formalism is decidable. This
section first presents the specification notation, then the algorithms to verify value-
safcty, and finally the rules for mapping the specifications into efficient hardware.

5.5.1 A Language Extension for EOs

We already have a graphic notation in the ESDs, but it nas several drawbacks.
The ESDs get cumbersome for anything but the basic EOs. They are insufficient
for the optimized EOs without interspersing logic diagrams, and they are inadequate
for specifying EOs in a way that value-safety can be guaranteed. Therefore we will
introduce a new, textual, EO specification language (EOL), whose purpose is to describe
the ILOs clearly and concisely, to guarantee value-safety by enforcing the protocols and
the escapement mechanism for all asynchronous interactions, and to admit efficient
compiling into efficient hardware.

To avoid re-inventing control languages [25] or more general hardware specification
languages, we show how to extend any existing control language with our new EQO-
related constructs. The strict 2-phase clocking discipline (see Chapter 2) will be used
for the LMs only to show clearly and concretely the interactions between the I.Ms
within the EO. '

Let the “Cs” of the ESDs stand for any cxpression or statement of the substrate
language (SL) to be extended. Next, we describe each new construct of the EOL, show
examples, and propose a syntax for them (which readers are welcome to change to suit
their taste). For simplicity, assume that we use positive logic.

- To describe the global relations between LMs, there is a single “binding” scction for
the whole EO, which sperifies the connections of the handshake lines across LMs. Each
handshaking line comprises a pair of request/acknowledge wires. "The LM that appears
first in ecach binding statement initiates the communication over the corresponding

handshaking lines.

eo EOName;

bindings:
mod1.handsh3 #mod2.handsh?,
mod2.handsh2 #mod3.handshl,
modt.handshl ##mod3.handsh6;

Each LM cmits (synchronously with the local clock) and reccives (with combina-
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tional logic that feeds into the stretch input of the local clock) handshaking signals.
Hence, for each LM there is a declarative part in which the local name and type of
each handshaking line is given. A “//” indicates concurrency of communication and

computations (see the EO Optimization section above). For example:
modules: ModuleNameList;
handshake vy, : Datal, Data2, ..., GrantBus;
//handshake sp2: OpenChan, CloseChan;

Each LM will be able to set, clear, and test some handshake lines; it is up to
the SL to decide how to handle the rest of the synchronous operations. For setting,

clearing or testing some line X, the following operators are used:
Xr /* return TRUE if X is ON */
xp? /* return TRUE if X is OFF */

X [*setX?*/

X /* clear X */

X [*forkX*/

x /¥ join X */

xa /* join-fork on X */

For example, when a master and a slave communicate over line X, for the master

XJ! is a Req', while for the slave it is an Ack'. Whichever party waits for the other
to set a line X will indicate it with X}?. Note that this notation is consistent with the
symmectric master-slave interpretation proposed when discussing mastership switching,
wherc it was pointed out that the only difference between them is that the master opens

the communication.

To make the mapping onto cflicient hardware straightlforward, we leave the de-
signer the ability to indicate when cach optimization discussed in the Oplimization
section should be used. For a parallel communication over line X, only two operators
arc necessary because the fork box handles the testing and clearing of X. Ilence, it is
necessary to indicate only when the parallel C2 may start the fork on X (X!) and when
the computation has to wait for the conmunication to complele before procceding alter
a join on X (X?). For packed join-fork, a single operator (X?) is enough.

5.5.2 Verifying Value-Safety of an IO Specification

To guarantee that an LM specilied with the EOL can only result in a valuc-safe
machine requires (a) global checking of the inter-LM bindings, and (b) local checking
of the order in which handshaking lines are handled, to satisly the communication
protocols. Any problem related to the appropriate connection of stretch signals, choos-
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ing the right phases, and other details of the escapement mechanism are also handled
by the compilation, so the EO designer has no way of introducing an error here.

(a) Each binding statement must have a different module name on each side (a master
and a slave). The compiler generates the corresponding request/acknowledge pair

of wires.

(b) For checking that communication protocols are satistied, notice that no matter how
many interleaved communications with different LMs there may be, each one can
be checked by itself. To check a handshaking line X, it is sufficient that all possible
paths within the EO specification satisfy the communication protocol (see Chapter
2). For example, for a master on signal X, operators on X must satisfy the ordering
XM, X750 XJ... XJ?;..., while for a slave on X they must satisly the ordering
X170 Xi... XI%... XJ%.... No path may contain only part of this scquence,
nor may control jump into the middle of a sequence, since either would clearly
violate the communication protocol.

5.5.3 Compilation of EOQ Specifications onto Hardware

Rules for mapping a verified EO specification into an efficient circuit are presented
next. “Efficient” mcans they result in circuits as compact and fast as those that can
be designed by a competent designer and similar to oncs that have appeared in the
literature.

For simplicity assume that the signals generated by the synchronous control logic
(SCL) are v-p; ,8-p2. and that the stretchp, and stretchyp, inputs of the clock are
qualified inside the clock with ¢, and g3 respectively. Rules 1 to 4 cover all machines
described in the section on structures for EOs,

R1. Tllandshake declarations: For cach handshake signal X there are two physical
wires, labeled X,y and X,ci, that are used to handshake with other LMs.

R2. Outgoing handshake wires: For each handshake signal X, the SCL will have 3
associated outputs: X, X]?and XJ?. X is connccted to X,.q if the LM is a master
on X, or to X,ck if the LM is a slave.

R3. Xand XJ!: For cach sct or clear command, the SCL will set or clear X.

R4.  Xj?and X|?: The SCL asscrts X{?or X|?only for a single clock cycle. Let T be Xge
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for a master, and for X,., otherwise. For each XI?, stretch p, when [T A X7?],
and for each XJ?, stretch oy when [TA X|?]. Using R1-R4 gives machines such
as the following:

set/clear
X » Xreq
test
SCL xe
X1? test
A A
Phi1 Phi2
\ R
Clock
StrPhi2
| Xack

Figure 47. BO: master on X.

For thc structures described in the Optimization section, Parallel C12 12O0s subscction,
rules R1 and R5 to R7 map the specifications onto circuits such as the one in the next
figure. The SCL emits an Xyorx signal that corresponds to SctRReq {or masters and to
SetAck for slaves, and an Xjoin signal. For simplicity assume both are v-o ,s-p02.

R5. // handshake: For each parallel handshake signal X, there will be a fork box with

the following pins: X,et, Xctear and Xoue. For a master on X, connect Xout #Xreq
and X jeqr#Xack- For a slave on X, connect Xou:# Xack and ?,CQ#X,,,CM.

R6. X! For cach fork command, the SCL asserts Xyopk for a single clock cycle.
Connect the output of [Xsork AND 03] to X,et.

R7. X2 For cach join command, stretch w2 when [Xjoin A Fnd(X)], where End(X) =
[Xack V Xreq) for a master on X, and End(X) = [Xycx vV X,eq) otherwise. The
SCL asserts X;,in only for a single clock cycle.
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fork
scL X
X? 1 eniz
a4 b
Xset
Phi1t Phi2 Xout
join
i Fork-box
Clock
Xclear
StrPhi2 b

Figure 48. Parallel C12: master on X.

For the structures described in the Optimization section, Signal Packing in C2 EQOs
subsection, rules R1, R5, and R8 map the specifications onto circuits such as the one

in the next figure. End(X) is used as in R7.

R8. X%: For cach X command, the SCL asserts X?-vp, ,8¢0, only for a single clock
cycle. Stretch ¢ when [X?A End(X)] and connect the output of [XRAND 4]

to xnc- '
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y
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x
SCL ‘

Phi2

A A

Xset
Phit Phi2 Xout —» Xreq
N Fork-box
Clock

Xclear

StrPhit A

""_<:C ~<— Xack |

IFigure 49. Signal-Packed C2: master on X.

5.5.4 Spccifying, Verifying, and Compiling an EQ: An Example

To rccapitulate, we introduced the EOL to be able to guarantee the value-safety
of EO circuits and to simplify their design. Also, we neceded to avoid the notational
complexity of the ESDs for the LM description for anything beyond the Basic loop,
and in particular for optimization, where a mixed ESD/Logical notation was used, and
also for the EO description, where even in the Simple Pipelines the multiple req/ack
links nceded for cach master/slave relation were cumbersome. The 1SOL satisfies all of
those requisites, and is used next to describe formally the behavior of Seitz’s Pipeline

Modules (SPM) (39]. Then, we verify and compile their specification.

Scitz’s SPM is shown in the next figurc. I'rom the description of the SPMs and
their circuit [39), the SI’M behaves as an EO Lhat is a slave of its neighbor to the left
and a master of the one to the right. The clock runs all the time except when the EO

needs input data that is not ready, or when it needs to outlput data but the output - A
buflers are still in use from the previous transaction. '.::::-.::::::',:.‘:f:::-
AL SR SRS
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A
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(4-cycle)

0. ¢|
A Clock

——.{ CLOCK
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.........
-------
. e LI
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Figure 50. The original SPM (from [39})

Using the EOL, we can specify an EO that behaves like the SPM described above.
Suppose an LM SPM2 has a master SPM_l and a slave SPM3, so the pipeline has 3

eo SPM;

bindings:
SPM1.loadout # SPM2.loadin,
SPMz2.loadout # SPM3.loadin;

modules: SMI’1, SPM2, SP’M3;
// handshake, vphil: loadin, loadout;

5.5. Synthesis of EQs

!

Output data

}

Output link

(4-cycle)

-----------------
...........................
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Initialize;
loop
{--

loadin®;
cee}
loadout®;

end

Figure 51. SPM Specification with the EOL

The verification is trivial, since there are only two independent parallel handshake
signals, cach of which is invoked once per loop with a join-fork command, satisfying a
4-cycle communication protocol.

Now, the middle module, SPM2, is compiled into a circuit using the mapping rules.
For clarity we apply the rules only to the SPM2-SPM3 rclation, since the SPM2-SPM1
relation is almost identical.

(1) From the binding section we find that SPM2 is a master of SPM3 on leadout,
requiring 2 handshake wires (R1), labeled loadout,., and loadout, .

(2) The SCL will output (R8) loadout sori-vep; , asserting it for one clock cycle when
the SCL reaches the state where loadout® appears in the code. '

(3) There will be a fork box (R5) connected as follows: loadoutcieq,#loadoutycr and
loadout,,# loadout,.q.

(4) The output of [loadoutsork AND 4] is fed to the loadout,.; input of the fork box
(R8).

(5) Finally, the output of [loadoutsorix AND (loadout,., OR loadout,cx)] is fed to the
stretch-p, input of the clock.

(6) Applying the same rules to the SPM2-SPM1 relation, we can obtain the slave side
of the circuit, complcting the SI’M2 control shown in the following ligure:

LI P L S ST S
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Load ‘lnput I.oad O}ltLatch
P SCL. A
i ( i_‘  |Loadin LoadOut
v-phil  v-phil
Phi2 T Phi2
lnﬁ‘:k sct Phit Phi2 set OutReq
< out out >
Clock
Fork-box Fork-box
StrPhil
clear clear

L—' OutAck

InRecq

Figure 52. Compiled SPM

Notice that the compiled SPM compares favorably with the original SPM of [39].
It is a member of a general family of circuits, the EO specification can be modified and
recompiled easily, and value-safcty can be guaranteed. Also note that this circuit is
very simple to construct using our synthesis technique, and that we could build more
complex machines with case.

§5.6 Summary

An architectural alternative for designing value-sale GA-LS systems without using
synchronizers has been presented, and it was found that such machines have a variety
and complexity that exceeds by lar that of unsynchronous machines. The 13Os were
optimized to allow increased parallelism between computation and communication, and
a specification language (EOL) was proposed. The EOL allows a designer to describe
and modify the spccifications of EQOs easily, in spite of the possible complexity of the
corresponding circuits. This specification can be automatically verilicd for value-safety,
and then compiled onto compact and [ast circuits.

The main limitation of IEQs is that they cannot poll a wultiple set of lines,
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that their GA communication must follow a 4-cycle or a 2-cycle communication
tocol. When their performance was discussed it was scen that if the application
be accommodated by an EO structure, EOs can out-perform even unsynchronous
hines. EOs do not use synchronizers, cannot have unbounded stretching periods,
»ond immediately to asynchronous requests, and restart their clock in phase with
yming requests.
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Jonclusion

1 Summary and Concluding Remarks

Synchronous systems cannot grow in complexity without limit because they have to
nteract with other components that cannot share the same clocking controls, because
if delays in the communication across a system, and because of clock skews. However,
[ we partition a system all the way down to its simplest possible sub-components,
he communication mechanisms between these elements would dominate the space and
ime used for the actual computations. As a consequence of thesc two opposing factors,
ve chose to usc a GA-LS structure.

We analyzed the GA interactions in between LS machines, centering on the han-
lling of complction signals and on two kinds of reliability, called value-safety and time-
afety. This analysis led to a taxonomy of architecturcs, where we distinguished two
reneral classes of value-safc GA-LS machines that we called unsynchronous (those that
eccive asynchronous signals on which there is no restriction whatsoever) and escape-
nent (those interacting asynchronously following particular communication protocols).
Che rest of the disscriation covered the analytic and synthetic problems posed by these
wo classes of machines.

The discussion of unsynchronous machines began with a study of a strctchable
lock and a synchronizer with a metastability detector, which we then used to build
ralue-safe GA-LS machines. We developed a probabilistic model to analyze quantita-
ively the trade-ofls betwcen reliability, throughput, and real-time constraints, and
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ded that unsynchronous machines can run at higher speeds and with much
reliabilities than equivalent synchronous machines using conventional clocks and

‘onizers.

scapement machines take advantage of knowing in advance the direction in which
ironous inputs can make a transition; they are value-safe without synchronizers.
juiring that asynchronous inputs follow particular protocols, we developed EOs
our advantages over unsynchronous .nachines: they require less hardware, since
o not use synchronizers; they respond faster, since EOs do not need synchroniza-
ock cycles; they respond in bounded time, since EOs have no metastability detec-
wait for; and their clocks re-start in phase with the edges of incoming external
ironous signals. EOs are structurally much more complex than unsynchronous
nes, but we showed how to verify the value-safety of EOs and how to compile
ecifications onto cfficient hardware.

1 the appendices, we prove several theorems relevant for the design of GA-LS
nes. The DRV thcorem proves it is not always possible to decide in a bounded
it of time if an analog signal is above a given threshold. The Uncertainty theorem
that a machine that solves a DRV problem cannot have certainty about both time
1e values with which it operates. Finally, a theorcm about the undecidability
uc-safety for EOQ circuits shows that it is impossible to decide algorithmically
er an EO circuit is value-safe. We also discuss in other appendices the design
stchable clocks and show examples of our techniques in use in actual integrated

S,

1 conclusion, this thesis provides a new thcoretical and practical framework for
sign of reliable, high-performance GA-LS machines.

iggestions for IPurther Study

'he following paths may be worth pursuing:

reuits and Processing: It would be useful to have faster and more compact designs
' stoppable clocks, possibly linking the speed controls of the clock to some process
pendent paramecter, so that a process resulting in faster gates would automati-
ly result in a faster clock. It would also be interesting Lo study the phase-locking
cuits needed to build unsynchronous machines with high-precision stretchable
cks (Chapter 4) and the locking mechanisms nceded to switch a stretchable




2. Suggestions for Further Study

ock between internal and external frequency control (see the Performance and
cliability of EOs section in Chapter 5). Such work should address design mar-
ms, reproducibility, and yields for both stretchable clocks and synchronizers with
ietastability detectors (see Chapter 4).

Jgorithms and Architectures: It would be interesting to experiment with nets of
Ms with various topologics (see the Complex EOs section in Chapter 5) and to
evelop algorithms that would take full advantage of the resulting architectures.
‘he choice of appropriate granularity for both unsynchronous and escapement
1achines is an open question. It might be possible to perform a statistical analysis
o use the freedom given by the partial ordering of some tasks in the LMs, reordering
hem so as to maximize the throughput of the global system (see Optimization in
he appendices).

ystems and Networks: The discussions of the fundamental communication prob-
'm$ covered individual asynchronous signals and ways to handle them safely and
uickly (see Chapter 3). There are actually many classes of signals: e.g., controls,
ddressing lines, data lines, etc. It would be valuable to define systematically the
ateractions between these classes of signals given different delay and skew assump-
ions and also to develop protocols and circuits to provide convenient ways to link
tructured buses with the synchronous components of unsynchronous or escapcment
ystems.

------
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A/D: analog to digital.

Ack: acknowledge.

B: Boolean.

Cond: condition.

d: delay.

D: decay.

DRV : decision on a real value.
EC: external clock.

EQ: escapement organization.

EOL: specification language for escapement organizations.

ESD: extended state diagram.
fa: data frequency.

fe: clock frequency.

Jn: nominal clock frequency.
FFSM: finite state machine.
GA: globally-asynchronous.
HC: harmonics-to-clear set.
I: input.

IC: integrated circuit.

L: loss.

LM: local machine.

LS: locally-synchronous.

ME: memory element.
MTBF: medium time between failures.
O: output.

q: qualified.

R: real.
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90 Abbreviations

Req: request.

s: stable.

SCL: synchronous control logic.

SEM: simple escapement machine.

SL: substrate language.

SN: storage node.

SPM: Scitz’s pipeline modules.

T: throughput.

unsy: unsynchronous, unsynchronized.
unsyb: unsynchronous with bounded stretching.
v: valid.

vq: valid-qualified.




Appendix A: Stretchable Clocks

It is possible to construct variable-speed stretchable clocks as in [39] or by assembling
a ring of modules as in Chapter 4. Nonetheless, such clocks are not all that convenient,
and since stretchable clocks are crucial for unsynchronous and escapement machines,
it is worthwhile to analyze them and to consider how to design and improve them in a
systematic way.

Although digital clocks are normally designed using analog methods, we can abstract
the key analog components by providing their lunctional description. Then different
circuits can be built with these primitive blocks, and the global behavior can be
determined without using analog methods outside the primitive components. We
provide physical implementations for two such primitives; then we obtain the behavior
of the clock from the solutions to equatlions that modcl the clock, using the functional
description of the primitive elements.

§1 Primitive Elements: Declays and Decays

A dclay clement is the first primitive, and we use the notation out = d(in). For
concreteness, assume we build it using combinational logic, as shown in the next figure.
Call 7 the switching-time of a gate in Lhe technology being used.
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98 1. Primitive Elcments: Delays and Decays

N I S
e T e
out

delay

Figure 53. A dclay element

When a digital input to a aclay element changes value, the output will follow the input
a time |d| later, assuming the input transition time is of the order of magnitude of a few
7, and the input does not change again within a period smaller than |d|. If the input
does not satisfy these assumptions, we do not care what happens with the output, since
we will always satisfy them when modeling the clock.

The sccond primitive is a “decay”, and we use the notation out = D(in). For concrete-
ness sake, assume we build it using the nMOS circuit shown in the next figure. A decay
is an asymmetric delay that delays rising edges much less than it delays falling edges.
Let [Dyise| be the delay for int, and |Dyqy| be the delay for in]. We assume that if an
input pulse is shorter than |{D,;,e|, the output may be digitally undefined. Otherwise,
input pulscs will be stretched by an amount |[Dyay| — [ Dyisel-

We can implement a decay element by modifying an nMOS dynamic memory clement:
[Dyrise| can be faicly short (the propagation time through a few gates), and |Dyay) is
the time it takes to lcak the charge from the storage node. To control the speed at
which charge leaks, we use a pass transistor whosc gate is controlled by an externally
sct analog voltage. This decay specd control allows us to change [Dgqu| over a wide
range without affecting [Dy;pel-
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Figure 54. A decay element

§2 Clock Generation

We will build clocks by interconnecting almost identical modules. Each module, as well
as the signals it emits, will be distinguished by a subindex. Given an ordered set of n
modules, we define next(z) as mod,(i + 1), ¢.e., the next one in a ring of modules.

The approach we follow next is to use the delay and decay functions to state equations
that have oscillatory solutions in the time domain. By analyzing these equations we will
be able to derive most of the relevant properties and limitations of the corrcsponding
circuits.

2.1 An inversion / delay ring

Even if it were possible to build inverters without delays, we could not use them to
build a clock, as can be scen in equation (A.1), which does not have an oscillatory
solution in time:

Phext(s) = ®;. (A.1)

Therefore, we must introduce delays: let d be the delay involved in computing an
inversion. The cquation for a normal ring oscillator is:

q’next(i) = d(@'.-), (A.2)
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2. Clock Generation

which has ar oscillatory solution, but only for n odd. To change the speed of the clock
the delay through some modules must be altered (e.g., Seitz [39] selects one of several
alternate paths with different delays).

2.2 An inhibition / decay ring

There are a number of other equations that have oscillatory solutions, but we will go
directly to the one we use for stretchable clocks. In the following equation:

Ppext(s) = S A D(®,), (A.3)

if ®; were high for a period longer than |D,;,.], D(®;) would go high. Nonetheless, the
inhibition path prevents stage ®pext(i) from going high until ®; falls. Therefore, a stage
goes high only after its predecessor goes low, and stays high for a decay period |Dzqul.
A more complete equation (which takes into account the delay involved in computing
the AND) would be:

Poext(i) = d(P: A D(®;)), (A.4)
which has an oscillatory solution for both and even n.

Since we have decoupled the rise and fall time dclays, we can clongate a phase by in-
crcasing |Dqu| without affecting the length of succecding phases. If we take n = 4, we S e
can obtain two non-overlapping clock phases scparated by gaps and have independent
controls for the normal length of each onc of these. - T

2.3 An inhibition / decay ring with stretching

To introduce stretching, we inust be able Lo extend the output of a stage for an arbitrary
period (as long as some sirelch signal remains asserled ), as in the next equation:

¢m,:xt,(i) = [E/\ D(¢.)] v stretch, (A,S)

which of course has the same oscillatory solution as equation A.4 when no stretch
occurs. Clearly, if stretch is raised at arbitrary times, or has hazards, the solution to

cquation A.5 shows that these will show up in the output of the stage. Hence, we allow
stretching of a phase only when its corresponding phase is alrcady active (i.e., stretch

............
......

...................
..............................................................................
.........................................................................
o Ceut.
-----
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ust be qualified ®peyy(s)). Therefore the equation gets modified as follows:

‘pnext(i) = FQ_{/\D((I’;')] \% [q’next(:’) AstretChncxt(,-)]. (A.S)

| equation A.6, if stretch goes away before the normal end of the decay, it will not
fect the phase length, but if it stays longer, the phase is extended. If the stretch
gnal had a dynamic hazard after the end of the decay, equation A.6 shows that it
»uld be propagated to ®peyy(i). To avoid this hazard, we require that stretchq, only be
lowed to make hazard-free transitions to zero during ®;, which is a requircment that
met by the stretching needs of both escapement and unsynchronous machines. Note
| equation A.6 that ®,.y(;), as well as all succeeding gaps and phases, are not affected
| any way aside from being delayed, no matter how long ®; is stretched (i.e.,no gap
r phase gets ever shortened or lengthencd due to a stretching of a preceding phase).

.t this point, the partially developed clock looks as follows:
I stretch

CLOCK MODULE vdd ‘—}>‘
in | N _ . OUt
in ft >
i
1

9nf:1-_|_\‘-l=l_l and

| decay speed
stretch-phi2 gnd
str str
phi2
< out  modules in ﬁ out  moduled in

Lot in modulet out b in module2 out -
phi1

str str

clk-init stretch-phit

Figure 55. A Simplificd Stretchable Clock
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Pulsing one of the stretch lines for a long period starts this clock, and phases or
gaps can be stretched for unbounded periods by asserting their corresponding stretch
controls (e.g., we stretch p, by asserting the stretch input of module 4 with a signal
that rises as a q-p, signal). The normal length of phases and gaps can be set with their
corresponding speed controls.

2.4 Inhibiting the Naoxt Stage

In principle, it seems that the clock shown above is fine, and in fact it even works
for a [ew days before harmonics appear, or the clock stops. To discover the reason
and to cure these problems, we analyze equation A.6. What follows is a more complete
version of cquation A.6 that takes into account the relevant combinational delays:

d’next(:‘) = [dl(E)/\ D(‘P.-)] v d2[¢next(:‘)/\StTetChnext(i)]' (A~7)

Succeceding phases should not be high at the same time, but we can see in equation
A.7 that ®gcx(s) will become high |D,j,e] time after ®;, unless the inhibition path
(which takes |d;| time) is faster. Therefore we must satisfy:

dit< ID,-,'.,' (A.8)

for ®ycxi(i) Not to glitch.

2.5 Phase Length

Because of the inertial characteristics of the decay, it will filter out any pulse that
is too narrow. Therclore, we must guarantee that:

l‘bil > lDriul» (AQ)

so that a stage detects that the previous stage has gone high and then low. In terms
of energy, cach stage must emit a pulse long cnough to provide the energy to fully
charge the next stage. Othcrwise, the clock signal going around the loop of modules

disappears, as can be experimentally verified by running the clock of [13] faster than
this limiting speed.

......................
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itartup

n a ring oscillator, “all phases low” is an unstable condition (not a solution to
rresponding equation A.2). Nevertheless, since Vi{®; =0} is a possible solution
uation A.7, an explicit mechanism that will detect this condition and start the
‘hable clock is necessary.

f when the clock is not running one pulse is sent through one stretch line, equation
ndicates that the oscillatory behavior will persist. Hence, we modify the equation
vy changing it for only one value of ¢, that for convenicnce we take as 1.

1=1: ‘bnext(i) = [d]i(b,')/\ D((p,')] \"4 d‘z(‘pnext(i) /\stretchnext(,')) \" start, (A.IO)

e start is obtained by NORing the values of the storage nodes of all the stages.
lo not NOR the outputs of all the stages, because they never overlap. Note that
: i3 no harm in having start be very long (it is a pre-start stretch), but if it were
Ise shorter than |D,;,.|, the clock would not start properly. Hence, we make the
1anism for detection of “all stages low” very slow.

Dctecting and Eliminating Harmonics

For ring oscillators, harmonics may be unstable, but in the stretchable clock of
tion A.7, harmonics can persist indclinitely. That is, we may have

[For n>k>1 :d’,'A‘bk.H'#()]. (A.ll)

: that although the « ' *"~n to equation A.7 with the initial conditions of equation
' has no solution where. “ harmonics are present, if somehow we manage to
duce harmonics, these arc "able as the desired oscillation for n > 2. This
lem can be verified experimentally with the clock of [13], when there is a power
h. Therefore, we must check for all possible harmonics. Of course, there is no
antce that after a power glitch the rest of the system will continue operating, but
ast the clock must recover automatically.

We can talk of the harmonics in terms of how many modules apart (k) the waves
iraveling (c.g., for the basic frequency, k = n). For k = 1, the inhibit mechanism
1¢ modules prevents it. Every harmonic with & > [n/2], is detected as an n — k
nonic. Also, it is redundant to check for any harmonic ky such that it is a harmonic
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2 5. Value and Time Uncertainty

ust solve a DRV problem it cannot have both value and time safety.

'heorem 2. No system that has components that have to solve DRV problems can
ave both value and time certainty. That is, if such a system knows with certainty the
slues with which it is operating, then it cannot know with certainlty what the time is,

nd vice versa.

'roof :

(a) If the system always attempts to compute in bounded amounts of time (e.g., it
ses a free-running clock that provides its time reference), it is subject to the conse-
uences of the DRV theorem, so we know it will have uncertainty about values.

(b) If the system doesn’t require the DRV problems be solved in a bounded amount
f time, it is not bound by the DRV theorem, but it will lose track of time. Since the time
or the completion of the DRV problem is unbounded and cannot be pre-determined
y any other part of the system, the component itself must generate a completion
ignal C when it is done. It is not possible to poll C at regular intervals because of the
orollary of the DRV theorem that says that sampling an asynchronous line is in itself
- DRY problem, nor can we receive interrupts becausc they are logically equivalent to
olling a line. Since Cis asynchronous with respect to all of the other signals in the
ystem, any scheme that will actively attempt to decide whether the answer is ready will
c-introduce the DRV problem. Hence, the only way to aveid checking synchronously
or the arrival of Cis to let the system become inactive at some point before C may
rrive, and let it resume activity only when triggered by this completion signal. For
he internal clock of the system, inactivity means that it must stretch one of its phases
r gaps until C arrives. Call the resumption of activity after C “wake up”.

If, on waking up, the system neceds to know what time it is (or equivalently,
ow long has the DRV computation taken), it cannol consult its own clock because
he clock had to be stopped throughout the DRY computation, rendering its count of
ime uncertain (we have absolutely no bounds on how much error it has accumulated).
lence, the system must consult an external clock (EEC) that didn’t stop during this
tretching period. EC will be asynchronous respect to C, so that when the system
rakes up, its internal clock will also be asynchronous respect to EC. If the system
ttempted to get the time from EC, it would find a synchronization problem that
rould re-introduce a DRV problem. Therclore, it cannot have certainty about the time
nd remain valuc-safe. Q.E.D. §
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se-locking, it is possible that when the phase-locking period has finished, the phases
' be completely out of sync.

“Solutions” to the DRV Problem

There are threec main lines for impossible machines that attempt t.. solve the
hronization problem incorrectly. They deserve comment because there have been
nany erroneous solutions proposed with these common bases.

.atches with different thresholds: two Aip-flops with different thresholds 7, and
rc used, with both thresholds contained within [Falseax, Truemin]. Hence, when
ampling a value, given the bounded slope at which the input may change, at most
ne of the flip-flops may go metastable. The problem with this “solution” is that to
hoose which flip-flop has the digital value is by itself another DRV problem, because
. Boolean decision is being based on two inputs, one of which may be digitally-
indcfined.

viultiple sampling: with the same motivation, two samples of an input line are taken,
wssuming that once a signal rises it will not fall until some acknowledging occurs.
Clearly, at most one flip-flop may go mectastable, but again chosing the right one is
v DRV problem by itself.

Jsing noise: since a llip-flop in a metastable state is not stable, a small noise signal is
ntroduced with the hope of forcing the flip-flop out of its metastable region quickly.
Voise, being random, may bring the system out of a metastable region, but it may
Iso drive it back into a metastable situation just when the system begins to evolve
owards a stable state.

Value and Time Uncertainty

If some componcnts of a synchronous system must solve DRV problems, they will
ietimes generate digitally-undefined values that may cause problems throughoul the
;em. Eventually, these values may either show up in the output, or may affect the
trol of the system itsell if feced-back of any sort is involved.

Eacliecr we discussed valuc-safety and time-safety, and how to build value-safe
ynchronous machines that were not time-safe. Now we prove that if a machine
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3.4 Corollary: Synchronization and Sampling of Digital Signals

Both synchronization and sampling of digital asynchronous signals involves decid-
ing if a digital asynchronous signal has arrived or not within a time window. It gets
reduced to the arbitration problem by looking at the local clock and the sampled signal
as two signals for which we have to decide which onc arrived first. Within each clock
cycle we have to decide if we have seen a signal or not. If it has arrived within the
current clock cycle, it means it came before the clock’s falling edge, but if it hasn’t,
it means the clock’s falling edge came first. Therefore, the arrival question is equiv-
alent to asking which of two signals arrived first, which is the arbitration DRV problem.
Hence, any source of asynchronous interrupts will sometimes get an acknowledge that
will be digitally undefined, and polling a line of an asynchronous device may result in
a digitally undefined reading.

3.5 Corollary: Phase Locking

To lock a recurring signal S to a reference signal R, it may be nccessary to change
the frequency of S or its phase. Any action that retards the next zero-crossing of
S we will call “slow-down”, while an action that advances it we will call “speed-up”.
S and R are dclined over a continuous domain (time) and can be initially displaced
with respect to cach other by any time interval. Hence, to make the speed-up or slow-
down dccisions, we must compute some rcal-valued diflerence function that provides
the necessary information to make the right Boolean dccision, which is a DRV problem.
However, in phase locking, the ultimate result is not Boolean, so in principle we need
not make any Joolean dccision yet.

Let a function SP(Ap) of the phase error (Ayp), indicate when Lo speed up or slow
down. Stablc points must have SP = 0. Since the machine does not distinguish phase
errors of multiples of 360°, S/’(Ap) must be periodic with period 360°. ence, at 0°
and at 360°, S’(Ap) must cross the zero axis with the same slope. Therelore, there
must be at lcast one other value T in [0°, 360°] where SP = 0, which is a metastable
point.

Since it is not possible to solve the problem within the real domain, we are forced
to attempt a Boolean decision, by pushing the system in onc or the other direction
when it is close to T. [lowever, to decide that the system is close cnough to 7 is
by itsclf a DRV problem. Therefore, no matter what clever device is used to achicve
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8.3 Corollary: Arbitration

Arbitration involves deciding which of two (or more) asynchronous signals arrived
earlier, so as to grant some resource to the sender of the first signal. Let R, denote
an n-dimensional real space, and B,, an n-dimensional Boolean space. The two signals
correspond to two real functions defined over the time domain, and granting the
resource to one or the other requestor corresponds to a single Boolean value. Therefore,
our problem has to map a value in R; into a value in B;.

If we attempt to map Ry into B;, we find that since the arrival of each one of
the two signals is asynchronous, just to decide that any one of them has arrived is
equivalent to the A/D conversion problem: to decide that a continuous signal has
arrived, we must define thresholds that allow us to make the distinction between
“arrived” and “not-arrived”. Sincc these thresholds define a DRV problem, determining
that an asynchronous signal has arrived is also DRV .

Alternatively, we can first map from R; into R; with some function (RR) dcfined
on R; whose valucs contain all the information necessary to decide which one arrived
first (presumably some sort of difference function). No matter what transformation
we chose, once we have this single, real-valued function, we still have to apply a
transformation (RB) from R, into B, to perform arbitration. RB cannot yicld constant
answers, so there must be intervals in R, such that RDB is True in some of them
and Falsc in others. These intervals must cover the target domain of RR, since RR
must have the necessary information to produce the decision. The intervals cannot be
overlapping because that would result in a conllicting answer. Ilence, the intervals must
be semi-open and contiguous, and must cover the target domain of RR. lach onc of the
real values (presumably a single one) that correspond to the boundaries between these
segments marks a threshold that distinguishes the values in RB’s definition domain for
which RDB is Truc from the onecs for which RB is False. Clearly, cach one of those
thresholds defines a DRV problem for RB.

[lence, we can also apply the DRV theorem here, and say that any arbiter that
must grant an available resource Lo the user who requested it first some fixed time
after the request was made will sometimes grant it to nobody and somelimes to several
users at once. What will happen depends on how will the digital users interpret the
digitally-undefined signals that the arbiter will sometimes gencrate.
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a DRV problem. Sometimes we will take shortcuts and simply show that some problem
is equivalent to some other problem we already showed was DRV .

Some of these corollaries have been alrcady proved, but the proofs are much more
complicated [32] or just limit themselves to equivalence proofs [9]. The rcason our
proofs are simpler is that we can use the DRV theorem, which does not assume that the
circuit that solves the DRV problem is bistable, so we need not prove that a bistable is
needed to solve a particular DRV problem.

3.1 Corollary: A/D Conversion

A one-bit A/D conversion corresponds exactly to the DRV class definition. Therefore,
we can apply the theorem above and conclude that any one-bit A/D converter will
sometimes require more time to produce a result than the time given to produce it.

If we have more than one bit, we have the same probiem with any of the bits, no
matter what encoding we use: for each bit that conveys information, there must exist
some value T of the analog signal at which this bit will switch from being off to on.
The switching value T defines a new DRV problem whose answer is given by that bit
of the digital output. Hence, we should expect that any A/D converter will sometimes
produce a non-digital output if it is given a bounded amount of time to sample an
analog linc and convert its value into a digital output.

3.2 Corollary: Schmitt trigger

Some of the “solutions” to metastability problems have attempted to use Schmitt
triggers. Independently of the hysteresis cycle of a Schmitt trigger, if a signal that starts
with its minimal value increascs its value monotonically during an interval [tg, ¢y], the
Schmitt trigger will have to swilch from off to on at ils high triggering-point Thigh.
Throughout [y, ;] the output of the Schmitt trigger indicates whether the input is
higher than Tpign or not, which is a DRV problem. Analogously, T, defines another
DRY problem on decreasing ramps.

Since the proposed inputs fall completely within the domain of admissible inputs
for a Schmitt trigger, we can apply the DRV theorem and conclude that there are input
patterns for which a Schmitt trigger may switch half way and remain with an undefined
output as long as necessary Lo cause trouble.
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and f(I > T +6) > Oreye, Where Orpue and Opal,e are constants whose difference is
bigger than the given e.

Since the slope of f corresponds to the gain of the circuit, the siope must be
bounded, and because of the continuity assumption, f must have a non-empty region
within [T — 6, T + 6] such that Opatee < O < Orryue. For this region, O cannot be
mapped onto True or False because of the limited accuracy assumption. Therefore, no
combinational circuit will produce only digital outputs, given an arbitrary input.

Graphically, this function also models a mechanical inverter as the one in the next
figure, with a rigid lever. The input sets the position of the left arm of the lever, and
the output is indicated by the right arm on the dial. In terms of the figure, there are
positions of the arm for which obviously the output is not digital.

Output

Figure 59. A combinational decision clement

Therefore, we arc forced to consider sequential circuits to solve the DRV problem.
But, if we can solve the DRV problem in a bounded period using a sequential machine,
then we could build with it a “perfect synchronizer” (one that cannot remain metastable
for unbounded periods [9]) for a synchronous machine, contradicting Marino’s thcorem.
Therelore, it is not possible to solve the DRV problem in a bounded amount of time.

Q.E.D. N

§3 The DRV Class and the Corollaries of the DRV Theorem

The DRV class contains numecrous problems of practical interest. We will show
that problems belong to the DRV class by showing that their solution requires solving
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Call bounded any change that is bounded above by some positive value, and
also below by a non-zero value (i.e.,a two-sided bound). The discussion will refer
only to voltages for the sake of conciseness, but in gencral we could reformulate the
arguments using other physical parameters (e.g., currents). The basic physical modeling
assumptions that will be used are:

e Accuracy Assumption: For any tmplementation of a logic circuit there is a value
& such that the circuit cannot distinguish consistently and correctly between values
less than § apart.

e Continuity Assumption: Assume that voltages are everywhere continuous and
differentiable functions of time (i.e., voltage/time curves are smooth).

There are some fairly obvious implications of these assumptions. The first one is
that different digital values must be some bounded voltage apart so that they can be
distinguished as different values. The sccond one is that no observable value change
can be instantancous because different values must differ by a bounded amount and
because of the continuity assumption. Third, the gain of any device must be bounded,
because otherwise it would be possible to construct devices that violate the continuity
assumption.

We will prove next that the basic assumptions lead to the impossibility of solving
the DRV problem in a bounded amount of time.

e The DRV problem: given the assumptions of limited accuracy and continuity of
values, measure a voltage and decide if it is above or below a certain threshold.
An incorrect answer is accceptable for voltages less than & apart from the given
threshold, but the answer must be a digitally-defined value.

§2 Proof of the DRV Theorem

Theorem 1. There is no machine lhat can solve the DRV problem in a bounded
amount of time.

Proof: Suppose that we attempt to build a combinational machine f that solves the
DRV problem. Its circuit must map the input J and the threshold T onto an output
0. To decide whether the output should be mapped onto True or onto False, given the
limited accuracy assumption, the differcnce between O for I < T —6 and O for I >
T +6 should be bigger than some given ¢ > 0. Hence, we make f(I < T —6) < Oratse
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Appendix C: The DRV and Uncertainty Theorems

In this appendix we present proofs of the DRV theorem and the Uncertainty theorem.

Theorems similar to the DRV theorem have been presented before [32, 9]. Here, some-
what weaker assumptions are made, so that the conclusions can be applicd much more
directly to a variety of problems. The Uncertainty theorem and the conclusions derived
from it are new.

§1 Notation and Assumptions

As was discussed in Chapter 2, as far as the operation of bistables is concerned,
Marino's paper [32] is conclusive in proving that sequential circuits exposed to inputs
that can change asynchronously with respect to the activity of the circuit cannot avoid
metastable conditions.

Our approach builds on Marino's theorem in the following way: we both assume
non-anlicipatory, continuous machines whose history can be subsumed (for the purpose
of predicting futurc behavior) in the “state” of the machine. The main diflcrence is
that we do not assume our systems to be scquential machines, and that instead of
proving that our systems cannot avoid metastability, we prove that they cannot make
some kinds of dccisions under particular conditions. When the DRV theorem is invoked
in order Lo prove that some operation may produce metastability, it is not nccessary to
prove first that a scquential machine is necessary to performn the operation (as would
be nceded with Marino’s theorem).

........
.......
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§2 Mips-X

Mips-X is a high-performance, pipelined, RISC (reduced instruction set computer),
multi-microprocessor system, currently being developed at Stanford under the direction
of John Hennessy and Mark Horowitz. Local caches and co-processors are used to in-
crease the performance of the machine. To handle the interaction among the processor,
the local caches, the co-processors and main memory, different variations of EOs (see
Optimization of EOs in Chapter 5) are being considered (15, 2].

Since Mips-X is designed to run with a 2-phase, 20MHZ clock, and very short
gaps, the stretchable clock can be made out of two stages. The automatic start-up
mechanism (see Appendix A) has been made external to the clock, and since a 2-stages
stretchable clock can’t have harmonics (see Appendix A) the resulting CMOS version
of the clock [14] is extremly simple (it has approximately one-third the number of gates
of the clock shown in Appendix A). For frequency stability, the scheme described in
Chapter 4 (High-Precision Stretchable Clocks) will be used [14].
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stretch-bar vdd output

Figure 58. A Synchronizer with Metastability Detection
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Appendix B: Experimental Machines
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§1 The Medium Tester

The Medium Tester [33], is a functional tester for digital ICs, which is being used
by several universities. The tester is implemented basically with three custom chips.
One of these chips, the Test Controller, communicates asynchronously with an LSI-11
to exchange test vectors and other information necessary to sct or test the values of
the pins of the chip being tested. To attain a very high reliability, the Medium Tester

has an unsynchronous architecture.

The Medium Tester uscs the stretchable clock shown in Appendix A and synchronisers
with metastability detection as the onc shown in the following figure, which was also
compiled and compacted using Lava [19]. This synchronizer sainples an asynchronous
input during ¢, and may infrequently rcquest a stretch of . The synchronized data
is available in the output as a s-, signal. It pipelines the synchronizations, so that it
can do one synchronization in each (ull clock cycle (for more details see [13, 39, 1]).
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speed(gap12)

Figure 57. 2-Phase, Variable Speed, Stretchable Clock
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Figure 56. Clearing the Storage Node

§3 Implementation

Next we show an implementation of a 2-phase, variable speed, stretchable clock
that incorpurates harmonic detection and climination and the automatic start-up fea-
tures discussed above. This clock has been used in actual integrated circuits. The
layout of this nMOS circuit was compiled and compacted automatically using Lava
(19).
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of another kg that is being checked. Therefore, we must only choose a pair of modules
at a distance &, for the values that appear in the harmonics-check set, which is defined
by the following recursive equation:

HC = {3 [g] > i > 1} — {i] 3 a multiple of i in HC}. (A.12)

For a 4-modules unit, for example, we need to put a single check between modules 1
and 3, but for a 2-modules unit, no check is necessary.

Hence, for each value in HC, we chose a pair (1, j) such that (j — ¢)€ HC, and we
define

harmonic; ; = d4(®i A ®;), (A.13)

where d, is the time it takes to compute the harmonic detection. It is important to note
that if we extend the clock to n-phases, d4 remains a constant because |IIC| < n/2,
so each of the n modules is used for at most one harmonic term.

In equation A.7 there is no way of making a harmonic solution vanish. Therefore,
we must add a “clear” term to equation A.7, so that the non-stretching term becomes:

Dpext(sy = [d1(®:) A D(®;) A clear(®;)]. (A.14)

The remaining question is how to connect the “harmonic; ; detected” outputs to the
“harmonic clear” inputs. Analyzing the solutions to equation A.14, we lind Lhat it is
not enough to just clear cither module ¢ or module 7, because this equation exhibits
memory, so we nced to clear either 7 and next(s), or j and next(s). This inconvenient
memory cffect appears because, although modules next(:) and next(y) are both low while
harmonic;,; is on, their respective decay clements remember that their predecessors were
high and attempt to go high as soon as the harmonic itsell is climinated. Thercfore,
we can chose to clear one or the other wave (7 or j), but we must clear a stage and its
successor, so we get:

clear(z) = clear(next(z)) = harmonic, ;, (A.15)

wherc clear may be implemented by having in cach stage an alternate, fast discharge
path for the storage node of the decay, turned on by the “clear” signal, as shown in
the next Ggure:
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5. Value and Time Uncertainty 118

Thus, unsynchronous machines cannot be time-safe, and any scheme that attempts
to bound their time uncertainty will destroy value-safety. It is also interesting to note
that at any time, even though we cannot know the time with certainty, we can know
what the time uscd to be when we first wanted %0 know it. This may sound puzzling,
but it simply means that if we want to check the time shown by EC without risk of
value confusion, we can use a synchronizer with metastability detection, connected to a
local stretchable clock, as was shown in Chapter 4. But, when we get the time reading
we do not know if now EC has produced a stretching of our internal clock precisely
when it was trying to give us the actual time, so in fact we get to know with certainty
what the time was when we asked for it, but not what it ts at the moment when we
receive it. It is important that we can know at least what the time used to be when we
asked for it, because it means that our uncertainty about time corresponds to a single
transaction, instead of accumulating forever.
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Appendix D: Verification

This appendix discusses verifying the correctness of escapement and unsynchronous
circuits. For verification purposes, it is convenient if one can describe the variety of
signals that connect the different devices with some small number of signal types, state
precisely in which ways these signals can be connected, and what are the resulting
types of the combincd signals. Types are associated to a few signals at design time,
and then are propagated automatically to the rest of the circuit using the rules. Errors
are found by detecting that invalid type combinations appcar, during the propagation
phase.

Verifying the “correctness” of a system, docs not mean that “the system will work
as expected”. Corrcctness must be defined respect to some predicate. In our case, the
strongest assertion that we will make is that if locally synchronous machincs, verified
correct respect to their specifications, are linked according to our rules, then the whole
system will be value-safe. For convenience, we will assume the LMs follow a strict
2-phase clocking discipline (see Chapter 2), although we could use any other reasonable
synchronous clocking mcthod for the LMs. Since signals that indicate mctastable
conditions or control stretching of phases have no adequate counterpart in the strict
two-phase theory, we will introduce new types.

Therc are some aspects that can be checked automatically very casily, and are not
relevant here, so for clarity, we assume that there are no undriven nodes, that there are
no dangling inputs or outputs, that there are no “fighting” conditions (different gates
controlling the same node), that power has becn appropriately connected, and that any
necessary analog controls are connected correctly. Assume positive logic for simplicity.
Furthermore, assume Lthat at design time the components of ecach LM are tagged as
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1.2 Rules 115

. belonging to a particular LM, so that when we verify the global machine, inter-LM
« boundaries are obvious. For clarity, we will use ¢, and ¢ instead of talking about
“one phase” and “the other phase”. Obviously, the argument holds if we exchange
all p, for py and vice versa. When we say connect, we mean to join the lines making
them a single clectrical node; otherwise we use the word combine and we indicate what
gates do the combining. When we talk about “gate logic”, we mean combinational
logic without pass transistors or any other kind of “switch logic”. Node will stand for
N an “electrical node”.

;,_l,l-l-._ﬂ_'

§1 Verification of Unsynchronous Machines

1.1 Types

e Unsynchronized Signals: Any signal X,,,, arriving from another clocking
domain (generated by another LM).

e Stretch Signals: Stretch signals will be of type stretch, and will have a subtype
1 or p2 according to the phase that they should stretch.

1.2 Rules

A well-formed unsynchronous GA-LS machinc sztisfies the following rules:

e Clocks: Each synchronous sub-system has only one stretchable clock. The
clock may have two input pins of type stretch,, and stretch,, These signals and
the functional descriplion of the clock provide the lowest level abstraction of the
clock that the system designer deals with. The clock designer deals with lower
level abstractions, which are discussed in another appendix.

e Logic-Sense Propagation: Civen we know the logic sense with which stretch
.'f. signals were generated by the synchronizer and the sense they are expected to
: have at the clock (both assumed positive logic), it is simple to propagate a sign
with cach stretch signal, such that this sign is inverted when the logic is inverting.
It is then trivial to detect compatible inputs to gates and whether the final sense
they have when they arrive at the clock is correct or not.
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e Connection of Stretch Signals: They can be connected with other stretch
signals with the same phase and sign.

e Combination of Stretch Signals: Stretch signals can be combined in a
hazard-free way through gates whose Boolean simplification (taking the complete
paths from their origin to the clock stretch input) must result in a single OR gate.
Note that if the stretch logic diagram has a tree topology, it will be hazard-free.
All stretch inputs to the same gate must be of the same phase and sign.

Xstretch

stretch-phit
Ystretch

Zstretch
Clock

False =t stretch-phi2

Figure 60. Stretch Combinations

e Combination of Unsynchronized Signals: They can be combined using
any sort of logic with signals of strict types. The type of any such combination is
unsynchronized.

e Synchronization: Each sub-system may have any number of synchronizers,
each of which can take onc unsynchronized input. The sampling control of the
synchronizer will be a quals fied signal. The synchronized output will be stable on
the qualification phase of the sampling signal, while the generated stectch signal
will have a complementary phase.

Samplg' o "
]
X xsynstnble.phi ",*‘
unsy Synchronizer
- xmetsthphii’.

Figure 61. Synchronizer Types
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1.3 Value-Safety of Well-Formed Unsynchronous Systems

Whenever a signal has to cross a boundary across synchronization domains, when
it enters the other machine, it is fed to a synchronizer that transforms its unsy type
to a stable type. There is no need to connect stretch signals of other types. Hence,
we only check that they are combined correctly with other stretch signals, so that the
machine will proceed only when all synchronizers are stable.

Therefore, each LM works synchronously, and the synchronizer/clock encapsula-
tion, given by the functional definition of the clock and the synchronizer and by the
combination rules, guarantees that any external signal that an LM may need will ac-
quire the appropriate strict type, thereby preserving the value-safety of the system as
a whole.

§2 Incompleteness of Verification for EOs

In this section we show that there is no gencral way to guarantee safety for EOs
by just analyzing the circuit. Although we saw that we can verify the value-safety of
unsynchronous circuits, we will see this is not possible for EO circuits.

EOs verification is harder because the clock stretch input is no longer shiclded by
a lairly limited number of possible combinations of outputs from local synchronizers,
Instead, the clock stretch input is controlled dircctly by logic that combines external
and local signals. Just lo introduce a note of optimism, remember that the synthesis
mechanism for EOs (Chapter 5) allows us to generate EOs that are value-safe by
construction, so this section is mainly of theoretical interest.

Theorem 1. Rules Systems for Safe EOs: There ts no algorithm that can guarantee
value-safety or time-safety for escapement organizalions, given a description of the
circuil, i.c., we cannol write a program that will lell us whether arbitrary 2O circusls
are value-safe or not.

Proof: The stretch inputs of a clock are formed by a conjunction of an external
stretch condition and an internal signal that indicates that the system has reached a
state at which this stretch condition is allowed to cause stretching. If the internal
signal happens to rise at somnc incorrect time, there are two possibilities that produce
problems:
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(a) The external condition will drop after some action by the LM, but the LM is sleeping,
and the system deadlocks. Hence, even if it is value-safe, it doesn’t work.

(b) From the semantics of Req and Ack signals we normally know the transition
direction of stretch signals, but now things may be out of order, and we no longer
have certainty about the direction of the transition of the external condition for the
stretch. If Cond happens to risc by the end of the phase that was to be potentially
stretched, we have a race between the end of the clock and Cond. If such a race
occurs, the stretch inputs to the clock may no longer be dynamic-hazard free,
thereby fouling up the clock operation. The clock now may glitch or stay in an
incorrect stretch. Hence, we cannot count on any subsequent digital operation in
the system nor on the clock to continue operating, so we lose both value-safety and
time-safety.

The key issue is that we cannot rule out these situations by just looking at the

circuit because finding that some flag will not be set at the wrong time is equivalent
to Turing’s Halting Problem.! Hence there is no general method to verify arbitrary
EO circuits and guarantee that they cannot enter a deadlock as in (a) or a metastable
state as in (b). Q.E.D. §

2.1 Veriflication of Well-Formed EQO Circuits

It was seen in the thcorem above that the rules for circuit descriptions are per force
going to be incomplete for verifying them. Thercfore, we might attempt to circumvent
this thcorem by solving a simpler problem: we request the designer to supply assertions
about the EOQ. The designer would have to guarantce the correct operation of the inter-

LM communrication protocols that depend on the programs running on the synchronous
LMs and a consistent interpretation of cach inter-LM signal as regards to meaning and
logic sense. Ience, we would be simply passing the critical problem to the designer and
not solving the kcy issues. What would be left for the verification would be to prevent
things like mistakenly connecting an address line to a handshake line, making surc lines
are not left dangling, qualifying stretch lines on the appropriate phases, ctc. Although
this is far from guaranteeing safety, it might reduce the possibilities for errors.

18ince the EO is a FSM with unbounded 1/0, it can simulate a F'SM with two unboundcd push-down
stacks, which is equivalent to a Turing Machine [31].
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In this sense, such rules could be thought of as the syntactic checks of a strongly
typed language, which catch many trivial errors at an early stage. Nonetheless, the
synthesis mechanisms we discussed in Chapter 5 dominate this alternative in every
respect, because they can guarantee value safety and because they simplify the design
process considerably without a loss in performance.

§3 Conclusion

We have seen that it is possible to develop rules for the verification of value
safety for unsynchronous circuits, but that this cannot be done for general EO circuits.
Nonetheless, since we have developed synthesis algorithms for EO circuits that generate
efficiently value-safe efficient EO circuits from higher level spccifications, we do not
attempt to go around this theorctical result, and restrict verification of circuits to
unsynchronous machines.




Appendix E: More Escapement Optimizations

The following optimizations speed up the EOs, or simplify their circuitry, by
modifying their ESDs. As long as the partial ordering imposed by the communica-
tion protocols is satisfied and the application-dependent constraints are satisfied, both
handshaking operations and computations can be moved to other places in the ESD.
In particular, if each LM has several independent relations with other LMs, there may
be many tasks that can be freely rcordered.

§1 I'lag Merging

I'lag merging is a modification of the ESD that results in an arca-speed tradeofl.
Although the arrows pointing to different squiggles of a given LM can be handled
independently, if we merge some of the arrows, we can reduce the number of signals
cmitted by the synchronous control logic (SCL) because for each squiggle the SCL must
cmit a Last signal indicating the completion of the task preceding the squiggle.

Call cach state transition (arc or squiggle) a step. Call the portion of ESD between
two steps (S; and S.) a program. We will say that S; and Sy commute (S, o Sy)
if the scmantics of these steps allows to commute their order without altering the
functional specification of the £O. No operations on the same handshaking signal can
be commuted; for all other situations, the designer must know if a commutation is

possiblc. We will say that a step S and a program P are commutalive (S o P) if all
steps in P are commutative with respect to S.
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Clearly, an EO remains functionally invariant if a step S is displaced to another
place in the state diagram if the program P defined by the old and new positions of S
is commutative with respect to S.

Let X and Y be two independent handshaking lines, and call the two programs
defined by [X 1,Y 1] and [X |,Y {], Pt and P |, respectively, as shown in the figure

below. If (X 1 oP1) A (X | oP ), then X t and X | could be displaced to where Y
and Y| are, respectively. llence X and Y can be merged into a single flag:

I

Figure 62. Flag Merging

The transformed LM will have fewer flags to handlc, so that it will be smaller and
simpler, but the global EQO may be slowed down. For example, the modilied LM may
delay a responsc because it has to complete some unrelated task before it can send the
common (merged) complection signal. For cxample in the simple pipcline of Chapter 5,
each LM sent a request to the right and an acknowledge to the left, which were merged
into a single signal, thereby making the machine slower but smaller.

§2 Strcetch Merging

We saw that flag merges simplify the LMs, but may slow them down. Stretch
merges do not change the logical complexity of the LMs, but may speed the EO by
delaying to the last possiblc moment the checking of conditions that may result in
stretching a phase. The LM can overlap useful computation with the time required for
the external strcich condition to disappear.
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Let S; and Sz be two stretch conditions associated with two different squiggles
in the ESD, and let P be the program defined between t he two stretch conditions. If
(S1 o P), then S; can be computed (checked) in paralle] with S, as can be seen in
the next two transformations. First, we can commute S; and P, and the two stretch

conditions will end up one after the other:

<4+— St

.
St —»

82 ——p +— 82

ss 00
esse

Figure 63. Stretch Moving

Since the two stretch conditions succeed cach othe r without any intermediate
computation, they sharc the same “last task” before th ¢ stretch, and conscquently,
the conjunction with the internal condition for stretchin g will be the same for both

squiggles:
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Hence, the previous transformations yields the stretch condition:
(lastg AS)) v (lastp A S2) +— lastp A(Siv S2).

The LM waits for S| only after the completion of P, instcad of waiting before computing
P.

§3 Replacing Squiggles by Arcs

It is possible to suppress altogether some stretch squiggles when the stretch will
never actually occur.  For example, supposc that LM1 can guarantce that it will
always respond to LM2 so fast that whenever LM2 goes to check for the reply, the
reply has already arrived. Then LM2 nced not stretch-wait for the reply, and instead
it can proceed directly to the following state. In terms of the ESD, we have replaced
a squiggle-arc by an arc, and in terms of the logic diagram, we have eliminated a few
gates.




MR UG g S v IO A

Mt 1 ;_1

[ 3 LR AR Ak Sl Rt Tk Sty
N q."s'q A VAN, tn
M I S A T IR R )
~ hE) % .




