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Abstract. A robot exploring an unknown environment may need to build a world model from sensor measurements.
In order to integrate all the frames of sensor data, it is essential to align the data properly. An incremental approach
has been typically used in the past, in which each local frame of data is aligned to a cumulative global model, and
then merged to the model. Because different parts of the model are updated independently while there are errors in
the registration, such an approach may result in an inconsistent model.

In this paper, we study the problem of consistent registration of multiple frames of measurements (range scans),
together with the related issues of representation and manipulation of spatial uncertainties. Our approach is to
maintain all the local frames of data as well as the relative spatial relationships between local frames. These spatial
relationships are modeled as random variables and are derived from matching pairwise scans or from odometry.
Then we formulate a procedure based on the maximum likelihood criterion to optimally combine all the spatial
relations. Consistency is achieved by using all the spatial relations as constraints to solve for the data frame poses
simultaneously. Experiments with both simulated and real data will be presented.

Keywords: sensor-based mobile robotics, laser range scanning, mapping, range scan registration, range scan
alignment

1. Introduction

1.1. Problem Definition

The general problem we want to solve is to let a mobile
robot explore an unknown environment using range
sensing and build a map of the environment from sensor
data. In this paper, we address the issue of consistent
alignment of data frames so that they can be integrated
to form a world model. However, the issue of building a
high-level model from registered sensor data is beyond
the scope of this paper.

A horizontal range scan is a collection of range
measurements taken from a single robot position. In
previous robot navigation systems, range scans have
often been used for robot self-localization in known
environments (Cox, 1991). Using range measurements
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(sonar or laser) for modeling an unknown environment
has also been studied in the past (Leonard et al., 1990;
Crowley, 1989; Gonzalez et al., 1994). A range scan
represents a partial view of the world. By merging
many such scans taken at different locations, a more
complete description of the world can be obtained.
Figure 1 gives an example of a single range scan and a
world model consisting of many scans.

The essential issue here is to align the scans properly
so that they can be merged. But the difficulty is that
odometry information alone is usually inadequate for
determining the relative scan poses (because of odom-
etry errors that accumulate). On the other hand, we are
unable to use pre-mapped external landmarks to cor-
rect pose errors because the environment is unknown.
A generally employed approach of building a world
model is to incrementally integrate new data to the
model. When each frame of sensor data is obtained, it
is aligned to a previous frame or to a cumulative global
model. Then the new frame of data is integrated into the
global model by averaging the data or using a Kalman
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Figure 1. Building world model from range scans: (a) one range scan in a simulated world; (b) model consisting of many scans. The small
circles show the poses at which the scans are taken.

Figure 2. An example of consistently aligning a set of simulated scans: (a) original scans badly misaligned due to accumulated pose errors;
(b) the result of aligning these scans based on a network of relative pose constraints. The constraints are indicated by line segments connecting
pairs of poses. Two types of constraints are used: those derived from aligning a pair of scans (marked by both solid and dotted lines), and those
from odometry measurements (marked by solid lines).

filter (Ayache and Faugeras, 1989; Kriegman et al.,
1989; Leonard et al., 1990; Crowley, 1989; Gonzalez
et al., 1994). A major problem with this approach is
that the resulting world model may eventually become
inconsistent as different parts of the model are updated
independently. Moreover, it may be difficult to resolve
such inconsistency if the data frames have already been
permanently integrated.

To be able to resolve inconsistency once it is detected
at a later stage, we need to maintain the local frames
of data together with their estimated poses. In addi-
tion, we need a systematic method to propagate pose
corrections to all related frames.

Consider an example as shown in Fig. 2(a). The robot
starts atP1 and returns to a nearby locationPn after

visiting P2, . . . , Pn−1 along the way. By registering the
scan taken atPn against scanPn−1, the pose ofPn can
be estimated. However sincePn is close toP1, it is also
possible to derive posePn based onP1 by matching
these two scans. Because of errors, the two estimates
of Pn could be conflicting. If a weighted average of
the two is used as the estimate ofPn, the pose ofPn−1

should also be updated as otherwise the relationPn−1Pn

will be inconsistent with its previous estimate. This
inconsistency could be significant if the looped path is
long. Similarly, other poses along the path should also
be updated. In general, the result of matching pairwise
scans is a complex, and possibly conflicting, network
of pose relations. We need a uniform framework to
integrate all these relations and resolve the conflicts.
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In this paper, we present such a framework for con-
sistently registering multiple range scans. The idea of
our approach is to maintain all the local frames of data
as well as a network of spatial relations among the lo-
cal frames. Here each local frame is defined as the
collection of sensor data measured from a single robot
pose. The robot pose, in some global reference frame,
is also used to define the local coordinate system of the
data frame. Spatial relations between local frames are
derived from matching pairs of scans or from odometry
measurements. We treat the history of robot poses in
a global coordinate system (which define all the local
frame positions) as variables. Our goal is to estimate all
these pose variables using the network of constraints,
and register the scans based on the solved poses. Con-
sistency among the local frames is ensured as all the
spatial relations are taken into account simultaneously.

Figure 2 shows an example of consistently aligning
a set of simulated scans. Part (a) shows the original
scans badly misaligned due to accumulated pose errors.
Part (b) shows the result of aligning these scans based
on a network of relative pose constraints (with edges
indicated by line segments).

1.2. Related Work

The first project that systematically studied the consis-
tency issue in dynamic world modeling is the HILARE
project (Chatila and Laumond, 1985). In this system,
range signals are segmented into objects which are as-
sociated with local object frames. Each local frame
is referenced in an absolute global frame along with
the uncertainty on the robot’s pose at which the object
frame is constructed. New sensor data are matched to
the current model of individual object frames. If some
object which has been discovered earlier is observed
again, its object frame pose is updated (by averaging).
In circumstances that the uncertainty of some object
frame is less than the uncertainty of the current robot
pose, as it happens when the object frame is created ear-
lier, and later the robot sees the object again, the robot’s
pose may be corrected with respect to that object frame.
After correcting the current robot pose, the correction is
propagated backwards with a “fading” effect to correct
the previous poses. Although the HILARE system ad-
dressed the issue of resolving model inconsistency, its
solution has the following potential problems. First of
all, the system associates local frames with “objects”.
But if the results of segmenting sensor data or match-
ing the data with model are imperfect, the “objects”

and therefore the local frames may not be defined or
maintained consistently. When a previously recorded
object is detected again, the system only attempts to
update the poses (and the associated frames) along the
path between the two instances of detecting this object,
while the global consistency among all frames in the
model may not be maintained. HILARE uses a scalar
random variable to represent the uncertainty of a three-
degree-of-freedom pose, therefore it can not model the
confidences in the individual pose components.

Moutarlier and Chatila presented a theoretical
framework for fusing uncertain measurements for en-
vironment modeling (Moutarlier and Chatila, 1989).
They first discussed two types of representations:
relation-based and location-based. In relation-based
representation, an object is related to another by the
uncertain transform between their reference frames. A
network of relationships is maintained as the world
model. When new observations are made, all the rela-
tionships need to be updated to preserve consistency.
In location-based representation, the global references
of individual object frames are maintained together
with their uncertainties. When objects are re-observed,
these object frames and other related frames are up-
dated with respect to the global reference frame. Af-
ter comparing these two approaches, Moutarlier and
Chatila choose to use the location-based approach.
They treat the object and robot locations as state vari-
ables and maintain all the object variance/covariance
matrices as state information. A stochastic-based for-
mulation for fusing new measurements and updating
the state variables is introduced. In addition to a global
updating approach, they also introduced a relocation-
fusion approach which first updates the robot position
based on the new observations and then updates the
object frames. The relocation-fusion approach reduces
the influence of sensor bias in the estimation, although
the algorithm is suboptimal.

In a series of work by Durrant-Whyte (1987, 1988a,
1988b), the problem of maintaining consistency in a
network of spatial relations was studied thoroughly.
In their formulation, the environment model is repre-
sented by a set of spatial relations between objects. A
probabilistic fusion algorithm similar to the Kalman
filter is employed to integrate new measurements to
thea priori model. When some relations are updated
as a result of new observations, the consistency among
all relations are enforced by using explicit constraints
on the loops of the network. The updating procedure
is formulated as constrained optimization and it allows
new observations to be propagated through the network
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while consistency between prior constraints and ob-
served information is maintained. In another similar
approach, Tang and Lee (1992) formulated a geometric
feature relation graph for consistent sensor data fusion.
They proposed a two-step procedure for resolving in-
consistency in a network of measurements of relations.
In the first step, a compromise between the conflicting
measurements of relations is achieved by the fusion of
these measurements. Then in the second step, correc-
tions are propagated to other relations in the network.

The difficulty in maintaining model consistency in
a relation-based representation is that the relations are
not independent variables. Therefore additional con-
straints are needed in formulating an updating pro-
cedure. The constrained optimization approach seems
very complicated and difficult to apply in practice.

In view of the previous methods, we present a new
approach which has the following distinctive charac-
teristics:

1. We use an unambiguous definition of an object
frame as the collection of sensor measurements ob-
served from a single robot position. Thus we avoid
the difficult task of segmenting and recognizing ob-
jects (which the previous methods rely on in order
to create and update object frames). It is also im-
portant to note that we use a robot pose to define
the reference for an object frame. In a local frame,
the relative object positions with respect to the robot
pose are fixed (whose uncertainty is no more than
bounded sensing errors). During the estimation pro-
cess, when the robot position in the global reference
frame is updated, effectively the global coordinates
of all objects in the current frame are updated ac-
cordingly. Therefore by maintaining the history of
robot poses, we also maintain the spatial relation-
ships among the object frames.

2. Our approach uses a combination of relation-
based and location-based representations. We treat
relations as primitives, but treat locations as free
variables. This is different from the pure relation-
based approach in that we do not directly update the
existing relations in the network when new observa-
tions are made. We simply add new relations to the
network. All the relations are used as constraints to
solve for the location variables which, in turn, de-
fine a set of updated and consistent relations. On
the other hand, our approach is different from the
location-base approach by Moutarlier and Chatila
(1989) in that we do not assume the covariance

matrices between the object frames as known. Our
state information is the entire set of raw relations.
We derive the covariance matrices at the same time
as we solve for the position variables.

3. We obtain direct spatial relations between object
frames. Because our object frames are tied to robot
poses, odometry measurements directly provide
spatial relations between the frames. More impor-
tantly, we may align two overlapping frames of data
(in our case range scans) to derive more accurate re-
lations between frames. In previous approaches, the
robot typically relies on odometry to first determine
its new pose. Then the detection of objects allows
the robot pose as well as the object locations to be
updated. Since the relations between object frames
are updated rather indirectly through the robot pose,
biases in odometry measurements may lead to di-
vergence in the estimation of object positions, as re-
ported in Moutarlier and Chatila (1989). Moutarlier
and Chatila propose an algorithm that is supposed to
address the divergence problem at the expense of a
sub-optimal solution. Our formulation does not have
this problem, as we obtain direct spatial relations be-
tween object frames by aligning the data, and there-
fore we are less sensitive to odometry biases.

2. Overview of Approach

We formulate our approach to multiple scan registra-
tion as one of estimating the global poses of the scans,
by using all the pose relations as constraints. Here the
scan poses are considered as variables. A pose relation
is an estimated spatial relation between the two poses
which can be derived from matching two range scans.
We also obtain pose relations from odometry measure-
ments. Finally, we estimate all the poses by solving
an optimization problem. The issues involved in this
approach are discussed in the following subsections.

2.1. Deriving Pose Relations

Since we use a robot pose to define the local coordinate
system of a scan, pose relations between scans can
be directly obtained from odometry which measures
the relative movement of the robot. In Section 4.2,
we will discuss the representation of odometry pose
constraint and its uncertainty.

More accurate relations between scan poses are de-
rived from aligning pairwise scans of points. Here any



       
P1: KCU/JHR P2: KCUP1: KCU/JHR P2: KCU

Autonomous Robots KL490-02-Lu September 19, 1997 11:21

Globally Consistent Range Scan Alignment 337

pairwise scan matching algorithm can be used. One
possible choice is the extension to Cox’s algorithm
(Cox, 1991) where line segments are first fit to one
scan and then points in another scan are matched to the
derived line segments. In our previous studies, we pro-
posed another scan matching algorithm which is based
on direct point to point matching (Lu, 1995; Lu and
Milios, 1997). In either case, the scan matching al-
gorithm takes two scans and a rough initial estimate
of their relative pose (for example from odometry in-
formation) as input. The output is a much improved
estimate of the relative pose.

After aligning two scans, we can record a set of
corresponding points on the two scans. This corre-
spondence set will form a constraint between the two
poses. In Section 4.3, we will formulate this type of
constraint and its uncertainty as used in the estimation
algorithm.

When we match two scans, we first project one scan
to the local coordinate of the other scan, and discard the
points which are likely not visible from the second pose.
The amount of overlap between two scans is estimated
empirically from the spatial extent of the matching parts
between the two scans. A pose relation is only derived
when the overlap is significant enough (larger than a
given threshold).

2.2. Constructing a Network of Pose Relations

Given the pairwise pose relations, we can form a net-
work. Formally, the network of constraints is defined
as a set of nodes and a set of links between pairs of
nodes. A node of the network is a pose of the robot
on its trajectory at which a range scan is taken. Here a
pose is defined as a three dimensional vector(x, y, θ)t

Figure 3. Example of constructing a network of pose relations from matching pairwise scans: (a) a simulated environment where the scan
poses are labeled by circles; (b) the network of pose relations constructed from matching overlapping scans.

consisting of a 2D robot position and the home orien-
tation of the rotating range sensor. We then define two
types of links between a pair of nodes. First, if two
poses are adjacent along the robot path, we say that
there is aweak linkbetween the two nodes which is the
odometry measurement of the relative pose. Second,
if the range scans taken at two poses have a sufficient
overlap, we say that there is astrong linkbetween the
two nodes. To decide whether there is sufficient overlap
between scans, we use an empirical measure. The spa-
tial extent in the overlapping part of two scans should
be larger than a fixed percentage of the spatial extent
covered by both scans.

For each strong link, a constraint on the relative pose
is determined by the set of corresponding points on the
two scans given by the matching algorithm. It is possi-
ble to have multiple links between two nodes. Figure 3
shows an environment and the constructed network of
pose relations.

2.3. Combining Pose Relations in a Network

The pose relations in a network can be potentially in-
consistent because they are not independent variables
(the number of relations may be more than the degrees
of freedom in the network), while the individually es-
timated relations are prone to errors. Our task is to
combine all the pose relations and resolve any inconsis-
tency. This problem is formulated as one of optimally
estimating the global poses of nodes in the network.
We do not deal with the relations directly. Rather, we
first solve for the nodes which constitute a set of free
variables. Then a consistent set of relations which rep-
resents a compromise of alla priori relations is defined
by the poses on the nodes.
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An optimization problem is defined as follows. We
construct an objective function from the network with
all the pose coordinates as variables (except one pose
which defines our reference coordinate system). Ev-
ery link in the network is translated into a term in the
objective function which can be conceived as a spring
connecting two nodes. The spring achieves minimum
energy when the relative pose between the two nodes
equals the measured value (either from matching two
scans or from odometry). Then the objective function
represents the total energy in the network. We finally
solve for all the pose variables at once by minimizing
this total energy function.

2.4. The Three-Node Example

Using the 3-node example, we illustrate the difference
of our formulation from previous approaches.

Assume that the network consists of three nodes:
P1, P2, P3, and three relationsT1 = P1P2, T2 = P2P3,
T3 = P3P1. When there is new measurementT̄1 for
relationT1, the algorithm by Durrant-Whyte (1988a)
updates the three relations toT ′1, T ′2, T ′3 based on an
optimization criterion which is subject to the constraint
T ′1T ′2T ′3 = I .

In our approach, we pool together all the rela-
tions T1, T2, T3, as well T̄1 to form an optimiza-
tion problem and solve for a new estimate for the
nodes: P′1, P′2, P′3. These node positions define a
consistent set of relations:T ′1 = P′1P′2, T ′2 = P′2P′3,
T ′3 = P′3P′1. Note that the node positions are free vari-
ables so we do not need to solve a complex constrained
system.

Moutarlier and Chatila (1989) also treat the node
positions as variables when updating the network with
new measurements. But they assume the knowledge
of covariance matrices among thea priori estimates of
P1, P2, P3. However, we only require the variances
of individual measurement errors on the relationsT1,
T2, T3, T̄1, which are directly available from sensor
models.

The rest of the paper is organized as follows. In
Section 3, we present the optimization criterion by con-
sidering a generic optimal estimation problem. We de-
rive a closed-form solution in a linear special case. In
Section 4, we formulate the pose relations as well as the
objective function in the context of range scan regis-
tration. The closed-form solution derived in Section 3
is applied to solve for the scan poses. In Section 5, we
present experimental results.

3. Optimal Estimation from a Network
of Relations

In this section, we formulate a generic optimal esti-
mation algorithm which combines a set of relations
in a network. This algorithm will later be applied in
Section 4 in the context of robot pose estimation and
scan data registration.

3.1. Definition of the Estimation Problem

We consider the following generic optimal estimation
problem. Assume that we are given a network of uncer-
tain measurements aboutn+1 nodesX0, X1, . . . , Xn.
Here each nodeXi represents ad-dimensional position
vector. A link Di j between two nodesXi andX j rep-
resents a measurable difference of the two positions.
Generally, Di j is a (possibly nonlinear) function of
Xi and X j and we refer to this function as the mea-
surement equation. Especially interesting to us is the
simple linear case where the measurement equation is
Di j = Xi − X j .

We model an observation ofDi j as D̄i j = Di j +
1Di j where1Di j is a random Gaussian error with
zero mean and known covariance matrixCi j . Given a
set of measurements̄Di j between pairs of nodes and
the covarianceCi j , our goal is to derive the optimal
estimate of the positionXi ’s by combining all the mea-
surements. Moreover, we want to derive the covariance
matrices of the estimatedXi ’s based on the covariance
matrices of the measurements.

Our criterion of optimal estimation is based on the
maximum likelihoodor minimum varianceconcept.
The node positionXi ’s (and hence the position differ-
enceDi j ’s) are determined in such a way that the condi-
tional joint probability of the derivedDi j ’s, given their
observations̄Di j ’s, is maximized. If we assume that all
the observation errors are Gaussian and mutually inde-
pendent, the criterion is equivalent to minimizing the
following Mahalanobis distance (where the summation
is over all the given measurements):

W =
∑
(i, j )

(Di j − D̄i j )
tC−1

i j (Di j − D̄i j ). (1)

Even if the observation errors are not independent, a
similar distance function can still be formed. However,
it will involve the correlation matrices of the measure-
ments. The assumption of independence is actually not
necessary in our formulation. The assumption makes
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practical sense as the covariances of errors are difficult
to estimate.

A typical application of the optimal estimation prob-
lem is in mobile robot navigation, where we want to
estimate the robot pose and its uncertainty in three de-
grees of freedom(x, y, θ). The observations are the
relative robot poses from odometry, and also possible
from matching sensor measurements. We want to uti-
lize all the available measurements to derive the optimal
estimate of the robot poses. Note that in this applica-
tion, the measurement equation is non-linear because
of theθ component in the robot pose.

Our approach above differs from the one typically
used within a Kalman filter formulation, in which only
the current pose is estimated, while the history of pre-
vious poses and associated measurements is collapsed
into the current state of the Kalman filter. Our objec-
tive, however, is not simply getting fromA to B safely
and accurately, but also building a map of the environ-
ment. It is, therefore, meaningful to use all the mea-
surements obtained so far in the mapping process. The
old poses themselves are not particularly useful. But
we are using the poses to define local object frames.
Thus maintaining the history of robot poses is equiv-
alent to maintaining the structure of the environment
model. The advantage of using a pose to define a data
frame is that it is unambiguous and it avoids the dif-
ficult segmentation and object identification problem
present in other work.

Next, we study the case when the measurement equa-
tion is linear and we derive closed-form solutions for
the optimal estimates of the nodes and their covari-
ances. Later, we will solve the non-linear robot pose
estimation problem by approximately forming linear
measurement equations.

3.2. Solution of Optimal Linear Estimation

We consider the special case where the measurement
equation has the simple linear form:Di j = Xi − X j .
HereXi , i = 0, 1, . . . ,n are the nodes in the network
which ared-dimensional vectors and theDi j ’s are the
links of the network. Without loss of generality, we
assume that there is a linkDi j between every pair of
nodesXi , X j . For eachDi j , we have an observation
D̄i j which is assumed to have Gaussian distribution
with mean valueDi j and known covarianceCi j . In
case the actual linkDi j is missing, we can simply
let the correspondingC−1

i j be 0. Then the criterion for
the optimal estimation is to minimize the following

Mahalanobis distance:

W=
∑

0≤i< j≤n

(Xi − X j − D̄i j )
tC−1

i j (Xi − X j − D̄i j ).

(2)

Note thatW is a function of all the positionXi ’s.
Since we can only solve for relative positions given
the relative measurements, we choose one nodeX0

as a reference and consider its coordinate as constant.
Without loss of generality, we letX0 = 0 and then
X1, X2, . . . , Xn will represent the relative positions
from X0.

We can express the measurement equations in a ma-
trix form as

D = HX (3)

whereX is thend-dimensional vector which is the con-
catenation ofX1, X2, . . . , Xn; D is the concatenation of
all the position differences of the formDi j = Xi − X j ;
and H is the incidence matrix with all entries being
1,−1, or 0. Then the functionW can be represented
in matrix form as:

W = (D̄− HX)tC−1(D̄− HX) (4)

whereD̄ is the concatenation of all the observations
D̄i j for the correspondingDi j andC is the covariance
of D̄ which is a square matrix consists ofCi j ’s as sub-
matrices.

Then the solution forX which minimizesW is given
by

X = (HtC−1H)−1HtC−1D̄. (5)

The covariance ofX is

CX = (HtC−1H)−1. (6)

If the measurement errors are independent,C will be
block-diagonal and the solution can be simplified. De-
note thend×nd matrixHtC−1H by G and expand the
matrix multiplications.

We can obtain thed × d sub-matrices ofG as

Gii =
n∑

j=0

C−1
i j

Gi j = −C−1
i j (i 6= j ) (7)
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Denote thend-dimensional vectorHtC−1D̄ by B. Its
d-dimensional sub-vectors are the following (letD̄i j =
−D̄ j i ):

Bi =
n∑

j=0; j 6=i

C−1
i j D̄i j . (8)

Then the position estimates and covariance can be writ-
ten as

X = G−1B; CX = G−1. (9)

The above algorithm requiresG = HtC−1H to be in-
vertible. If the network is fully connected and the in-
dividual error covariances are normally behaved, we
believe it is possible to prove thatG is invertible. Note
the dimension ofG (number of free nodes) is less than
or equal to the dimension ofC (number of edges) in a
fully connected graph.

3.3. Special Networks

We will apply the formula in Eq. (9) to two interesting
special cases as in Fig. 4. First, if the network con-
sists of two serially connected links,D01 andD12, the
derived estimate ofX2 and its covariance matrix are

X2 = D01+ D12 (10)

C2 = C01+ C12 (11)

Another case to consider is the network which consists
of two parallel linksD′ andD′′ between two nodesX0

andX1. If the covariance of the two links isC′ andC′′,
the estimate ofX1 and its covariance are given by

X1 = (C′−1+ C′′−1)−1(C′−1D′ + C′′−1D′′) (12)

C = (C′−1+ C′′−1)−1 (13)

The solution is equivalent to the Kalman filter formu-
lation. The above two cases correspond to the com-
pounding and merging operations given by Smith and

Figure 4. (a) Serial connection; (b) parallel connection.

Figure 5. A wheatstone bridge network.

Cheeseman (1986), which are used to reduce a complex
network to a single relation. Smith and Cheeseman’s
algorithm has a limitation that it only applies to net-
works formed by serial and parallel connections.

Consider the network in the form of a Wheatstone
bridge (Fig. 5). The estimate ofX3 can not be obtained
through compounding and merging operations. There-
fore, the method by Smith and Cheeseman can not be
directly applied to simplify this network,1 while in our
method, the variablesX1, X2, X3 can be solved from
the linear systemGX = B where

G=

C−1
01 + C−1

12 + C−1
13 −C−1

12 −C−1
13

−C−1
12 C−1

02 + C−1
12 + C−1

23 −C−1
23

−C−1
13 −C−1

23 C−1
13 + C−1

23


(14)

B=


C−1

01 D̄01+ C−1
12 D̄12+ C−1

13 D̄13

C−1
02 D̄02− C−1

12 D̄12+ C−1
23 D̄23

−C−1
13 D̄13− C−1

23 D̄23

 . (15)

The covariance matrix for the estimated positionX3 has
a nice symmetric form (derived by expandingG−1):

C−1
3 =

(
C−1

01 C−1
02

)
×
(

C−1
01 + C−1

12 + C−1
13 −C−1

12

−C−1
12 C−1

02 + C−1
12 + C−1

23

)−1

×
(

C−1
13

C−1
23

)
(16)
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4. Derivation of Pose Relations

In this section, we will apply the optimal estimation
algorithm, as derived in Section 3, to the robot pose
estimation and scan data registration problem. To do
this, we need to derive linearized measurement equa-
tions for the pose relations. In the following subsec-
tions, we study a constraint on pose difference given by
matched scans or odometry measurements. For each
constraint, we formulate a term in the form of Maha-
lanobis distance. For convenience in discussions of
pose measurements, we will first define a pose com-
pounding operation.

4.1. Pose Compounding Operation

Assume that the robot starts at a poseVb = (xb, yb, θb)
t

and it then changes its pose byD = (x, y, θ)t relative
to Vb, ending up at a new poseVa = (xa, ya, θa)

t . Then
we say that poseVa is the compounding ofVb andD.
We denote it as:

Va = Vb ⊕ D. (17)

The coordinates of the poses are related by:

xa = xb + x cosθb − y sinθb (18)

ya = yb + x sinθb + y cosθb (19)

θa = θb + θ. (20)

This is the same compounding operation as defined by
Smith and Cheeseman (1986). If we consider that an
absolute pose defines a coordinate system (thexycoor-
dinates of the origin and the direction of one axis), and
a relative pose defines a change of coordinate system
(a translation followed by a rotation), then the com-
pounding operation gives the pose which defines the
new coordinate system after the transformation. The
compounding operation is not commutative, but it is
associative. We can thus define the compounding of a
series of poses.

It is also useful to define the inverse of compounding
which takes two poses and gives the relative pose:

D = Va ª Vb. (21)

The coordinates are related by the following equations:

x = (xa − xb) cosθb + (ya − yb) sinθb (22)

y = −(xa − xb) sinθb + (ya − yb) cosθb (23)

θ = θa − θb. (24)

If Dab is the relative poseVaªVb, the reversed relative
poseDba = Vb ª Va can be obtained fromDab by a
unary operation:

Dba = ªDab = (0, 0, 0)t ª Dab. (25)

We can verify that(ªD)⊕ V = V ª D.
We also want to define a compounding operation

between a full 3D poseVb = (xb, yb, θb) and a 2D
position vectoru = (x, y)t . The result is another 2D
vectoru′ = (x′, y′)t . We still denote the operation as

u′ = Vb ⊕ u. (26)

The coordinates foru′ are given by the first two equa-
tions of the full 3D pose compounding (Eqs. (18, 19)).
This 2D compounding operation is useful for trans-
forming an non-oriented point (typically from a range
sensor) from its local sensor coordinate system to the
global coordinate system.

4.2. Pose Relations from Matched Scans

Let Va andVb be two nodes in the network and assume
there is a strong link connecting the two poses. From
the pairwise scan matching algorithm, we get a set of
pairs of corresponding points:ua

k, u
b
k, k = 1, . . . ,m,

where the 2D non-oriented pointsua
k, u

b
k are from scan

Sa andSb, respectively. Each pair(ua
k, u

b
k) corresponds

to the same physical point in the robot’s environment
while they are represented in different local coordinate
systems. If we ignore any sensing or matching errors,
two corresponding points are related by:

1Zk = Va ⊕ ua
k − Vb ⊕ ub

k = 0. (27)

If we take the random observation errors into account,
we can regard1Zk as a random variable with zero mean
and some unknown covarianceCZ

k . From the corre-
spondence pairs, we can form a constraint on the pose
difference by minimizing the following distance func-
tion:

Fab(Va,Vb) =
m∑

k=1

∥∥(Va ⊕ ua
k

)− (Vb ⊕ ub
k

)∥∥2
. (28)

If we notice that a pose change is a rigid transformation
under which the squared Euclidean distance‖ ·‖2 is in-
variant, we can rewrite the function in an equivalent
form:

Fab(Va,Vb) =
m∑

k=1

∥∥((Va ª Vb)⊕ ua
k

)− ub
k

∥∥2
. (29)
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ThusFab is a function ofD′ = Va ª Vb. The solution
of D′ which minimizesFab can be derived in closed-
form (see Lu, 1995). The relationD′ = Vaª Vb is the
measurement equation.

In order to reduceFab into the Mahalanobis dis-
tance form, we linearize each term1Zk. Let V̄a =
(x̄a, ȳa, θ̄a)

t , V̄b = (x̄b, ȳb, θ̄b)
t be some close esti-

mates ofVa and Vb. Denote1Va = V̄a − Va and
1Vb = V̄b − Vb. Let uk = (xk, yk)

t = Va ⊕ ua
k ≈

Vb ⊕ ub
k (the global coordinates of a pair of matching

points). Then for small1Va and1Vb, we can derive
from Taylor expansion:

1Zk = Va ⊕ ua
k − Vb ⊕ ub

k

= (V̄a −1Va)⊕ ua
k − (V̄b −1Vb)⊕ ub

k

≈ (V̄a ⊕ ua
k − V̄b ⊕ ub

k

)
−
((

1 0 ȳa − yk

0 1 −x̄a + xk

)
1Va

−
(

1 0 ȳb − yk

0 1 −x̄b + xk

)
1Vb

)
= (V̄a ⊕ ua

k − V̄b ⊕ ub
k

)
−
(

1 0 −yk

0 1 xk

)
(H̄a1Va − H̄b1Vb)

(30)

where

H̄a=
1 0 ȳa

0 1 −x̄a

0 0 1

, H̄b=
1 0 ȳb

0 1 −x̄b

0 0 1

. (31)

We can rewrite Eq. (30) as

1Zk ≈ Z̄k − Mk D (32)

where

Z̄k = V̄a ⊕ ua
k − V̄b ⊕ ub

k (33)

Mk =
(

1 0 −yk

0 1 xk

)
(34)

D = (H̄a1Va − H̄b1Vb). (35)

Thus we can now regardD in Eq. (35) as the pose
difference measurement equation to replaceD′ = Vaª
Vb. For them correspondence pairs, we can formm
equations as in Eq. (32). If we concatenate theZ̄k’s to
form a 2m× 1 vectorZ, and stack theMk’s to form
a 2m × 3 matrix M , then Fab can be rewritten as a

quadratic function ofD:

Fab(D) =
m∑

k=1

(1Zk)
t (1Zk) (36)

≈ (Z −M D)t (Z −M D). (37)

We can then solve for theD = D̄ which minimizes
Fab as

D̄ = (M tM)−1M tZ. (38)

The criterion of minimizingFab(D) constitutes a least-
squares linear regression. In Eq. (32),Mk is known and
Z̄k is observed with an error1Zk having zero mean
and unknown covarianceCZ

k . If we assume that all
the errors are independent variables having the same
Gaussian distribution, and further assume that the error
covariance matrices have the form:

CZ
k =

(
σ 2 0
0 σ 2

)
, (39)

then the least squares solutionD̄ has the Gaussian dis-
tribution whose mean value is the true underlying value
and whose estimated covariance matrix is given by
CD = s2(M tM)−1, wheres2 is the unbiased estimate
of σ 2:

s2= (Z −M D̄)t (Z −M D̄)/(2m− 3)= Fab(D̄)

2m− 3
.

(40)

Moreover, we notice that Eq. (37) can be rewritten as

Fab(D) ≈ (D̄ − D)t (M tM)(D̄ − D)+ Fab(D̄).

(41)

We can define the energy termWab corresponding to
the pose relation which is equivalent to a Mahalanobis
distance:

Wab = (Fab(D)− Fab(D̄))/s
2 (42)

≈ (D̄ − D)tC−1
D (D̄ − D) (43)

where

CD = s2(M tM)−1 (44)

is the estimated covariance ofD̄. Note thatD (as given
in Eq. (35)) is the linearized pose difference measure-
ment equation.
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In deriving the covariance matrixCD, we made as-
sumptions that the matrix is diagonal and the individ-
ual components of errors are zero mean Gaussian. It
is probably difficult to justify these assumption. How-
ever, we believe that they are reasonable ones in prac-
tice. If any other estimates of the covariance matrices
are available, they can certainly also be incorporated in
our global estimation formulation.

4.3. Pose Relations from Odometry

We also form an energy term in the objective function
for each weak link. Suppose odometry gives a mea-
surementD̄′ of the relative poseD′ as the robot travels
from poseVb to poseVa. The measurement equation is:

D′ = Va ª Vb. (45)

We define the energy term in the objective function as
follows:

Wab = (D̄′ − D′)tC′−1(D̄′ − D′) (46)

whereC′ is the covariance of the odometry error in the
measurement̄D′.

The covariance of measurement error is estimated as
follows. Consider that a cycle of pose change consists
of: (1) the robot platform rotation by an angleα to face
towards the new target position; (2) the robot transla-
tion by a distanceL to arrive at the new position; (3) the
sensor rotation by a total cumulative angleβ (usually
360◦) to take a scan of measurements while the plat-
form is stationary. We model the deviationsσα, σL ,
σβ , of the errors in the variablesα, L, andβ as propor-
tional to their corresponding values, while the constant
ratios are determined empirically. The 3D pose change
D′ = (x, y, θ)t is derived as:

x = L cosα; y = L sinα; θ = α + β (47)

Then the covarianceC′ of the pose changeD′ can be
approximated as:

C′ = J

σ
2
α 0 0

0 σ 2
L 0

0 0 σ 2
β

 Jt (48)

whereJ is the Jacobian matrix consisting of the partial
derivatives of(x, y, θ)t with respect to(α, L , β)t :

J =
−L sinα cosα 0

L cosα sinα 0
1 0 1

 . (49)

We would also like to linearize and transform the mea-
surement equation ofD′ to make the pose difference
representation for odometry measurements consistent
with that for matched sensing data. Consider the ob-
servation error1D′ = D̄′ − D′ of odometry. Let
V̄a = (x̄a, ȳa, θ̄a)

t , V̄b = (x̄b, ȳb, θ̄b)
t be some close

estimates ofVa andVb. Denote1Va = V̄a − Va and
1Vb = V̄b − Vb. Then through Taylor expansion, the
observation error1D′ becomes:

1D′ = D̄′ − D′ = D̄′ − (Va ª Vb) (50)

= D̄′ − ((V̄a−1Va)ª (V̄b−1Vb)) (51)

≈ D̄′ − (V̄aª V̄b)+ K̄−1
b (1Va− H̄ab1Vb) (52)

where

K̄−1
b =

 cosθ̄b sinθ̄b 0

− sinθ̄b cosθ̄b 0

0 0 1

 ;

H̄ab =

1 0 −ȳa + ȳb

0 1 x̄a − x̄b

0 0 1

 .
(53)

Notice thatH̄ab = H̄−1
a H̄b whereH̄a and H̄b are de-

fined in Eq. (31). If we define a new observation error
1D = −H̄aK̄b1D′, then we can rewrite Eq. (52) as

1D = D̄ − (H̄a1Va − H̄b1Vb) = D̄ − D (54)

where we denote

D̄ = H̄aK̄b((V̄a ª V̄b)− D̄′) (55)

D = H̄a1Va − H̄b1Vb. (56)

Notice that now we are dealing with the measure-
ment equation forD which is consistent with that for
matched sensing data.̄D can be considered as an obser-
vation of D. The covarianceC of D̄ can be computed
from the covarianceC′ of D̄′ as:

C = H̄aK̄bC′ K̄ t
bH̄ t

a. (57)

The energy term in the objective function now be-
comes:

Wab ≈ (D̄ − D)tC−1(D̄ − D). (58)
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4.4. Optimal Pose Estimation

Once we have uniformly formulated the two types of
measurements, we can apply the estimate algorithm in
Section 3 to solve for the pose variables. Denote the
robot poses asVi , i = 0, 1, . . . ,n. The total energy
function from all the measurements is:

W =
∑
(i, j )

(D̄i j − Di j )
tC−1

i j (D̄i j − Di j ) (59)

whereDi j is the linearized pose difference betweenVj

andVi :

Di j = H̄i1Vi − H̄ j1Vj (60)

and D̄i j is an observation ofDi j (D̄i j is derived from
the true observations, either range data or odometry
measurements). The covarianceCi j is also known.

By regardingXi = H̄i1Vi as the state vector cor-
responding to a node of the network as in Section 3.2,
we can directly apply the closed-form linear solution
to solve for theXi ’s as well as their covarianceCX

i .
The formulas are in Eqs. (5) to (9). Then the poseVi

and its covarianceCi can be updated as:

Vi = V̄i − H̄−1
i Xi , Ci =

(
H̄−1

i

)
CX

i

(
H̄−1

i

)t
. (61)

Note that the pose estimateVi and the covarianceCi is
given based on the assumption that the reference pose
V0 = 0. If, in fact, V0 = (x0, y0, θ0)

t is non-zero, the
solution should be transformed to

V ′i = V0⊕ Vi ; C′i = K0Ci K
t
0 (62)

where

K0 =
 cosθ0 − sinθ0 0

sinθ0 cosθ0 0
0 0 1

 . (63)

4.5. Sequential Estimation

The estimation algorithm we previously discussed is a
one-step procedure which solves for all the pose vari-
ables at the same time. The algorithm is to be applied
only after collecting all the measurements. Yet it will
be more practically useful if we have a sequential al-
gorithm which continuously provides estimates about
the current or past pose variables after getting each new
measurement. Here we will describe such a sequential
procedure.

Our sequential algorithm maintains the current best
estimate about the poses of previously visited places.

At each step, a new location is visited and measure-
ments about the new location as well as the previous
locations are gathered. By using these new measure-
ments, the current pose can be estimated while the pre-
vious poses can be updated.

Let X1, . . . , Xn−1 be the pose vectors which we have
previously estimated and letXn be the current new
pose which we are about to measure. LetX represent
the concatenation ofX1, . . . , Xn−1, Xn. Assume that
we currently have an estimateX0 of X whose inverse
covariance matrix isC−1

X0
. Because we have no knowl-

edge aboutXn yet, theXn component inX0 contains
an arbitrary value and the matrixC−1

X0
has all zeros in

the lastd rows andd columns, whered = 3. Now
consider the addition of a set of new measurements re-
lating Xn to some of the past pose variables. Let the
measurement equation, in matrix form, beD = HX
(H is a constant matrix). Assume that the set of mea-
surements is̄D which is an unbiased observation of
D whose error has Gaussian distribution with covari-
ance matrixCD. The updated estimate ofX after using
the new measurements is the one which minimizes the
following function, using the maximum likelihood cri-
terion, and assuming independent errors:

W = (X − X0)
tC−1

X0
(X − X0)

+ (D̄− HX)tCD
−1(D̄− HX). (64)

The solution can be derived as

X= (C−1
X0
+HtCD

−1H
)−1(

C−1
X0

X0+HtCD
−1D̄

)
(65)

and the new covariance ofX is

CX =
(
C−1

X0
+ HtCD

−1H
)−1
. (66)

A convenient way of updatingX andCX is to main-
tain a matrixG = ∑

HtCD
−1H and a vectorB =∑

HtCD
−1D̄ (the summation is over different sets of

measurements). Then at each step, the updating algo-
rithm is the following: First increase the dimensions of
G andB to include the new poseXn. UpdateG andB as

G← G+ HtCD
−1H (67)

B← B+ HtCD
−1D̄. (68)

Then the newX andCX are given by

X = G−1B; CX = G−1. (69)

One potential problem with the above sequential up-
dating procedure is that the state variableX keeps ex-
panding as it is augmented by a new state at each step.
In case the robot path is very long, the variable size
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may become too large, causing storage or performance
problems. A possible solution is to delete some of the
old variables while adding the new ones.

We propose a strategy of reducing the number of
state variables as follows. In order to choose a pose
to be deleted, we check all pairs of poses and find a
pair (Xi , X j ) where the correlation between the two
poses is the strongest. We then force the relative pose
betweenXi and X j to be fixed as a constant. Then
Xi can be deleted from the state variables as it can be
obtained fromX j . When deleting the nodeXi from
the network, we transform any link(Xi , Xk) into a link
from X j to Xk. Note that the covariance matrixCX

contains all the pairwise covariance between any two
poses. A correlation ratio between two poses can be
computed from the covariance and variance.

By only fixing some relative poses, the basic struc-
ture in the network is still maintained. Thus we are still
able to consistently update all the pose variables once
given new measurements. This strategy is more flexi-
ble than the simple strategy of fixing selected absolute
poses as constants.

Another approach to reducing the size of the sys-
tem is to decompose the large network into smaller
components. The estimation algorithm is to be ap-
plied to each sub-network. The relative pose between
two nodes in different sub-networks can be obtained
through pose compounding. If there is a single link
connecting two parts of a network, the poses in two
parts can be estimated separately and then combined
with compounding, without loss of information. If,
however, the network is strongly connected that there
are two or more links between any two nodes, then a
decomposition could give a sub-optimal estimation.

5. Implementation and Experiments

5.1. Implementation of Estimation Procedure

The implementation of the estimation algorithm is as
follows. After building the network, we obtain the ini-
tial pose estimates̄V1, . . . , V̄n by compounding the
odometry measurements. Then for each link, we com-
pute a measurement vectorD̄i j and a covariance ma-
trix Ci j according to Eqs. (38), (44) or Eqs. (55), (57).
Finally, we form a large linear systemGX = B as
explained in Section 3.2 and solve for the pose vari-
ablesX.

The components needed to buildG andB areC−1
i j

andC−1
i j D̄i j . In the case of a strong link (from match-

ing a pair of scans), these components can be readily

computed asC−1
i j = (M tM)/s2; C−1

i j D̄i j = (M tZ)/s2

which can be expanded into simple summations by not-
ing the regularity in the matrixM . In the case of a weak
link (from odometry), these components can be com-
puted by multiplications of small matrices (3×3). The
most expensive operation in the estimation process is
to compute the inverse of a 3n × 3n matrix G which
gives the covariance ofX.

The network is stored as a list of links and a list of
nodes. Each link contains the following information:
type of link, labels of the two nodes, the computed
measurement (relative pose), and the covariance matrix
of the measurement. Each node contains a range scan.

Note that we made linear approximations in the mea-
surement equations in formulating the optimization
criterion. The first order approximation error is propor-
tional to the error in the initial pose estimate. Clearly,
if we employ the newly derived pose estimate to for-
mulate the linear algorithm again, a even more accurate
pose estimate can be obtained.

The iterative strategy based on this observation con-
verges very fast. Typically, the first iteration corrects
over 90% of the total pose error correctable by iterating
the process. It usually takes four or five iterations to
converge to the limit of machine accuracy.

5.2. Experiments with Simulated
and Real Scan Data

We now present experiments of applying our algorithm
to register simulated and real range scan data. We first
show an example using a simulated environment and
measurements. This is useful because ground truth is
known. Then an example using real data is presented.

In the first example, we simulate a rectangular
environment with a width of 10 units. The robot trav-
els around a central object and forms a loop in the
path. There are 13 poses along the path at which sim-
ulated range scans are generated (with random mea-
surement errors). We also simulate a random odometry
error (which is the difference between a pose change the
robot thinks it made and the actual pose change) at each
leg of the trajectory. The magnitude of the accumulated
odometry error is typically in the range of 0.5 units.

We apply our iterative global pose estimation algo-
rithm to correct the pose errors. In Fig. 6(a), we show
all the scans recorded in the initial coordinate system
where the pose of each scan is obtained by compound-
ing odometry measurements. Due to the accumulation
of odometry error the scan data are aligned poorly. In
Fig. 6(b), we show the result of correcting the pose
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Figure 6. Global registration of multiple scans using simulated scan data: (a) scans recorded in a global coordinate system where the pose of
each scan is obtained from compounding odometry measurements. The scans align poorly because of accumulation of odometry error; (b) the
result of correcting pose errors. Both the dashed lines and solid lines show the constraints from matching scan pairs. The solid lines also give
the robot path and odometry constraints.

Figure 7. Pose errors along the path, before correction, after local correction, and after global correction: (a) orientational errors; (b) posi-
tional errors.

errors and realigning the scan data. Each line segment
(either dashed or solid) in the figure represents a strong
link obtained from matching two scans. In addition,
the solid lines show the robot path which corresponds
to the weak links. A plot of orientational and positional
errors of the poses along the path, both before and after
the correction, is given in Fig. 7. Pose errors are accu-
mulated along the path while the corrected pose errors
are bounded. For comparison, we also apply a local
registration procedure which matches one scan only
to the previous scan. The pose errors along the path
after this local correction are also shown in Fig. 7. Al-
though pose errors are also significantly reduced after

local corrections, they can still potentially grow without
bound. In this example, global registration produces
more accurate results than local correction.

Then we present the experiment using real range
scans and odometry data. The testing environment
is the cafeteria and nearby corridor in FAW, Ulm,
Germany. The robot travels through the environment
following a given path. A sequence of 30 scans which
were taken by the robot with an interval of about 2 me-
ters between scan poses were obtained. The laser sen-
sor is a Ladar 2D IBEO Lasertechnik which is mounted
on the AMOS robot. This laser sensor has a maximum
viewing angle of 220 degrees. Thus having only the
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Figure 8. Consistent global registration of 30 real range scans which are collected by a robot at FAW, Ulm, Germany: (a) unregistered scans
whose poses are subject to large odometry errors; (b) registered scans after correcting the pose errors. The robot path estimated from odometry
is shown in dashed lines. The corrected path is shown in solid lines.

2D positions of two poses close together does not nec-
essarily ensure a sufficient overlap between the scans
taken at the two poses; we also need the sensor head-
ing directions to be similar. Among the 30 scans, 84
links from matching overlapping scan pairs are con-
structed. Some of these pairwise scan matching results

Figure 9. Mapping of a Hallway using the RWI Pioneer platform and a SICK laser range scanner: (a) raw laser range scans; (b) aligned laser
range scans.

have been shown in (Lu, 1995). In Fig. 8, we show (a)
the unregistered scans and (b) the globally registered
scans in part (b).

Further experimental results with a variant of our
algorithm are reported in (Gutmann and Schlegel,
1996). Figure 9 contains experimental results which
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are obtained using our global registration procedure to-
gether with a modified version of Cox’s pairwise scan
matching algorithm2. The laser data are collected on
the RWI Pioneer platform using the SICK laser ranging
device (http://www.sick.de). The Pioneer is a low-cost
platform with odometry error significantly higher than
the much more expensive platforms used in our other
experiments. The hallway environment shown in Fig. 9
is poor in features that allow localization of the robot
along the hallway. The data was collected by a robot
that went up and down the hallway several times. A
large rotation error was introduced by the large turns
at the ends of the hallway.

6. Discussion

In this paper, we formulated the problem of consis-
tent range data registration as one of optimal pose es-
timation from a network of relations. The main ideas
are as follows. We associate a robot pose to a range
scan to define an unambiguous object frame. By con-
sistently maintaining the history of robot poses, we
effectively allow all object frames to be consistently
registered in the global reference frame. We use a
combination of relation-based and location-based ap-
proach to represent the world model. It can be viewed
as a two-step procedure. First, spatial relations be-
tween object frames are directly derived from odometry
measurements and matching pairwise frames. These
relations, along with their uncertainties, constitute all
the information in the model. In the second step, the
relations are converted to object frame locations based
on an optimization criterion. This formulation avoids
the use of complex constrained optimization. Further-
more, it does not require the assumption of knowna
priori covariance between object frames.

We also derived measurement equations compatible
with the formulation. It allows practical implementa-
tion of the algorithm. We have experimentally demon-
strated the effectiveness of our estimation procedure in
maintaining consistency among multiple range scans.
The most expensive operation, besides pairwise scan
matching, is to compute the inverse of an 3n× 3n ma-
trix. Although the number of posesn may be large for
a long robot path, there are ways to limit this size to
speed up the computation. The sequential procedure
enables the robot to continuously maintain the optimal
registration result.

Our approach assumes that the robot stops to col-
lect a complete range scan at its current position. An

alternative would be to perform continuous scanning
as the robot moves. Continuous scanning would gen-
erate large amounts of data that would have to be
sampled. In addition, the problem of associating mea-
surements with the correct robot position arises, as dif-
ferent parts of a scan will have been obtained from
different robot positions. Solving this problem would
require an accurate model of the robots motion. A
possible solution to the problem of excessive amounts
of data is to partition the continuous scan data and
transform each part to one pose on the path, based
on the odometry model. These are both worthwhile
problems, which we consider outside the scope of this
paper.

Although we develop our method for mapping a 2D
environment using 2D range scans, our formulation is
general and it can be applied to the 3D case as well, by
generalizing pose composition and linearization (Lu,
1995).
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