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Abstract. Arobotexploring an unknown environment may need to build a world model from sensor measurement
In order to integrate all the frames of sensor data, it is essential to align the data properly. An incremental appro:
has been typically used in the past, in which each local frame of data is aligned to a cumulative global model, a
then merged to the model. Because different parts of the model are updated independently while there are erro
the registration, such an approach may result in an inconsistent model.

In this paper, we study the problem of consistent registration of multiple frames of measurements (range scal
together with the related issues of representation and manipulation of spatial uncertainties. Our approach i
maintain all the local frames of data as well as the relative spatial relationships between local frames. These sps¢
relationships are modeled as random variables and are derived from matching pairwise scans or from odome
Then we formulate a procedure based on the maximum likelihood criterion to optimally combine all the spati
relations. Consistency is achieved by using all the spatial relations as constraints to solve for the data frame pc
simultaneously. Experiments with both simulated and real data will be presented.

Keywords: sensor-based mobile robotics, laser range scanning, mapping, range scan registration, range ¢
alignment

1. Introduction (sonar or laser) for modeling an unknown environment
has also been studied in the past (Leonard et al., 1990;
1.1. Problem Definition Crowley, 1989; Gonzalez et al., 1994). A range scan

represents a partial view of the world. By merging
The general problem we want to solve is to let a mobile many such scans taken at different locations, a more
robot explore an unknown environment using range complete description of the world can be obtained.
sensing and build a map of the environment from sensor Figure 1 gives an example of a single range scan and a
data. In this paper, we address the issue of consistentworld model consisting of many scans.
alignment of data frames so that they can be integrated The essential issue here is to align the scans properly
to form aworld model. However, theissue of buildinga so that they can be merged. But the difficulty is that
high-level model from registered sensor data is beyond odometry information alone is usually inadequate for
the scope of this paper. determining the relative scan poses (because of odom-

A horizontal range scan is a collection of range etry errors that accumulate). On the other hand, we are

measurements taken from a single robot position. In unable to use pre-mapped external landmarks to cor-
previous robot navigation systems, range scans haverect pose errors because the environment is unknown.
often been used for robot self-localization in known A generally employed approach of building a world
environments (Cox, 1991). Using range measurementsmodel is to incrementally integrate new data to the

model. When each frame of sensor data is obtained, it
*Currently with PCI Enterprises Inc., Richmond Hill, Ontario, is aligned to a previous frame or to a cumulative global
Canada. A major part of this work was carried out when the au- Model. Thenthe new frame of data s integrated into the
thor was at University of Toronto. global model by averaging the data or using a Kalman
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Figure L Building world model from range scans: (a) one range scan in a simulated world; (b) model consisting of many scans. The sm
circles show the poses at which the scans are taken.
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Figure 2 An example of consistently aligning a set of simulated scans: (a) original scans badly misaligned due to accumulated pose errc
(b) the result of aligning these scans based on a network of relative pose constraints. The constraints are indicated by line segments conne
pairs of poses. Two types of constraints are used: those derived from aligning a pair of scans (marked by both solid and dotted lines), and tl
from odometry measurements (marked by solid lines).

filter (Ayache and Faugeras, 1989; Kriegman et al., visiting P,, ..., P,_; along the way. By registering the
1989; Leonard et al., 1990; Crowley, 1989; Gonzalez scan taken aP, against scar,_1, the pose oP, can

et al., 1994). A major problem with this approach is be estimated. However sin&g is close toPy, itis also

that the resulting world model may eventually become possible to derive posE, based onP; by matching
inconsistent as different parts of the model are updated these two scans. Because of errors, the two estimates
independently. Moreover, it may be difficult to resolve of P, could be conflicting. If a weighted average of
suchinconsistency if the data frames have already beenthe two is used as the estimateRy, the pose of,_;
permanently integrated. should also be updated as otherwise the reldion P,

To be ableto resolve inconsistency once itis detected will be inconsistent with its previous estimate. This
at a later stage, we need to maintain the local frames inconsistency could be significant if the looped path is
of data together with their estimated poses. In addi- long. Similarly, other poses along the path should also
tion, we need a systematic method to propagate posebe updated. In general, the result of matching pairwise
corrections to all related frames. scans is a complex, and possibly conflicting, network

Consider an example as shownin Fig. 2(a). The robot of pose relations. We need a uniform framework to
starts atP; and returns to a nearby locatid®, after integrate all these relations and resolve the conflicts.
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In this paper, we present such a framework for con- and therefore the local frames may not be defined or
sistently registering multiple range scans. The idea of maintained consistently. When a previously recorded
our approach is to maintain all the local frames of data object is detected again, the system only attempts to
as well as a network of spatial relations among the lo- update the poses (and the associated frames) along the
cal frames. Here each local frame is defined as the path between the two instances of detecting this object,
collection of sensor data measured from a single robot while the global consistency among all frames in the
pose. The robot pose, in some global reference frame,model may not be maintained. HILARE uses a scalar
is also used to define the local coordinate system of the random variable to represent the uncertainty of a three-
data frame. Spatial relations between local frames are degree-of-freedom pose, therefore it can not model the
derived from matching pairs of scans or from odometry confidences in the individual pose components.
measurements. We treat the history of robot poses in  Moutarlier and Chatila presented a theoretical
a global coordinate system (which define all the local framework for fusing uncertain measurements for en-
frame positions) as variables. Our goal is to estimate all vironment modeling (Moutarlier and Chatila, 1989).
these pose variables using the network of constraints, They first discussed two types of representations:
and register the scans based on the solved poses. Conrelation-based and location-based. In relation-based
sistency among the local frames is ensured as all therepresentation, an object is related to another by the
spatial relations are taken into account simultaneously. uncertain transform between their reference frames. A

Figure 2 shows an example of consistently aligning network of relationships is maintained as the world
a set of simulated scans. Part (a) shows the original model. When new observations are made, all the rela-
scans badly misaligned due to accumulated pose errorstionships need to be updated to preserve consistency.
Part (b) shows the result of aligning these scans basedin location-based representation, the global references
on a network of relative pose constraints (with edges of individual object frames are maintained together
indicated by line segments). with their uncertainties. When objects are re-observed,

these object frames and other related frames are up-

dated with respect to the global reference frame. Af-
1.2. Related Work ter comparing these two approaches, Moutarlier and

Chatila choose to use the location-based approach.
The first project that systematically studied the consis- They treat the object and robot locations as state vari-
tency issue in dynamic world modeling is the HILARE ables and maintain all the object variance/covariance
project (Chatila and Laumond, 1985). In this system, matrices as state information. A stochastic-based for-
range signals are segmented into objects which are as-mulation for fusing new measurements and updating
sociated with local object frames. Each local frame the state variables is introduced. In addition to a global
is referenced in an absolute global frame along with updating approach, they also introduced a relocation-
the uncertainty on the robot’s pose at which the object fusion approach which first updates the robot position
frame is constructed. New sensor data are matched tobased on the new observations and then updates the
the current model of individual object frames. If some object frames. The relocation-fusion approach reduces
object which has been discovered earlier is observed the influence of sensor bias in the estimation, although
again, its object frame pose is updated (by averaging). the algorithm is suboptimal.
In circumstances that the uncertainty of some object In a series of work by Durrant-Whyte (1987, 1988a,
frame is less than the uncertainty of the current robot 1988b), the problem of maintaining consistency in a
pose, asithappens whenthe objectframeis created earnetwork of spatial relations was studied thoroughly.
lier, and later the robot sees the object again, the robot’s In their formulation, the environment model is repre-
pose may be corrected with respectto that object frame. sented by a set of spatial relations between objects. A
After correcting the current robot pose, the correctionis probabilistic fusion algorithm similar to the Kalman
propagated backwards with a “fading” effect to correct filter is employed to integrate new measurements to
the previous poses. Although the HILARE system ad- thea priori model. When some relations are updated
dressed the issue of resolving model inconsistency, its as a result of new observations, the consistency among
solution has the following potential problems. First of all relations are enforced by using explicit constraints
all, the system associates local frames with “objects”. on the loops of the network. The updating procedure
But if the results of segmenting sensor data or match- is formulated as constrained optimization and it allows
ing the data with model are imperfect, the “objects” new observationsto be propagated through the network
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while consistency between prior constraints and ob-
served information is maintained. In another similar

approach, Tang and Lee (1992) formulated a geometric
feature relation graph for consistent sensor data fusion.
They proposed a two-step procedure for resolving in- 3.
consistency in a network of measurements of relations.

In the first step, a compromise between the conflicting

measurements of relations is achieved by the fusion of
these measurements. Then in the second step, correc-

tions are propagated to other relations in the network.
The difficulty in maintaining model consistency in

a relation-based representation is that the relations are

not independent variables. Therefore additional con-
straints are needed in formulating an updating pro-

cedure. The constrained optimization approach seems

very complicated and difficult to apply in practice.

In view of the previous methods, we present a new
approach which has the following distinctive charac-
teristics:

matrices between the object frames as known. Our
state information is the entire set of raw relations.
We derive the covariance matrices at the same time
as we solve for the position variables.

We obtain direct spatial relations between object
frames. Because our object frames are tied to robot
poses, odometry measurements directly provide
spatial relations between the frames. More impor-
tantly, we may align two overlapping frames of data
(in our case range scans) to derive more accurate re-
lations between frames. In previous approaches, the
robot typically relies on odometry to first determine
its new pose. Then the detection of objects allows
the robot pose as well as the object locations to be
updated. Since the relations between object frames
are updated rather indirectly through the robot pose,
biases in odometry measurements may lead to di-
vergence in the estimation of object positions, as re-
ported in Moutarlier and Chatila (1989). Moutarlier

and Chatila propose an algorithm that is supposed to
address the divergence problem at the expense of a
sub-optimal solution. Our formulation does nothave
this problem, as we obtain direct spatial relations be-
tween object frames by aligning the data, and there-
fore we are less sensitive to odometry biases.

1. We use an unambiguous definition of an object
frame as the collection of sensor measurements ob-
served from a single robot position. Thus we avoid
the difficult task of segmenting and recognizing ob-
jects (which the previous methods rely on in order
to create and update object frames). It is also im-
portant to note that we use a robot pose to define 2. Overview of Approach
the reference for an object frame. In a local frame,

the relative ObjeCt pOSitionS with reSpeCt to the robot We formulate our approach to mu|t|p|e scan registra_
pose are fixed (whose uncertainty is no more than tion as one of estimating the global poses of the scans,
bounded sensing errors). During the estimation pro- py using all the pose relations as constraints. Here the
cess, when the robot position in the global reference scan poses are considered as variables. A pose relation
frame is updated, effectively the global coordinates s an estimated spatial relation between the two poses
of all objects in the current frame are updated ac- which can be derived from matching two range scans.
cordingly. Therefore by maintaining the history of e also obtain pose relations from odometry measure-
robot poses, we also maintain the spatial relation- ments. Finally, we estimate all the poses by solving
ships among the object frames. an optimization problem. The issues involved in this

. Our approach uses a combination of relation- approach are discussed in the following subsections.
based and location-based representations. We treat

relations as primitives, but treat locations as free
variables. This is different from the pure relation- 2.1.
based approach in that we do not directly update the
existing relations in the network when new observa- Since we use a robot pose to define the local coordinate
tions are made. We simply add new relations to the system of a scan, pose relations between scans can
network. All the relations are used as constraints to be directly obtained from odometry which measures
solve for the location variables which, in turn, de- the relative movement of the robot. In Section 4.2,
fine a set of updated and consistent relations. On we will discuss the representation of odometry pose
the other hand, our approach is different from the constraint and its uncertainty.

location-base approach by Moutarlier and Chatila  More accurate relations between scan poses are de-
(1989) in that we do not assume the covariance rived from aligning pairwise scans of points. Here any

Deriving Pose Relations
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pairwise scan matching algorithm can be used. One consisting of a 2D robot position and the home orien-
possible choice is the extension to Cox’s algorithm tation of the rotating range sensor. We then define two
(Cox, 1991) where line segments are first fit to one types of links between a pair of nodes. First, if two
scan and then points in another scan are matched to theposes are adjacent along the robot path, we say that
derived line segments. In our previous studies, we pro- there is aveak linkbetween the two nodes which is the
posed another scan matching algorithm which is based odometry measurement of the relative pose. Second,
on direct point to point matching (Lu, 1995; Lu and if the range scans taken at two poses have a sufficient
Milios, 1997). In either case, the scan matching al- overlap, we say that there iss&rong linkbetween the
gorithm takes two scans and a rough initial estimate twonodes. To decide whether there is sufficient overlap
of their relative pose (for example from odometry in- between scans, we use an empirical measure. The spa-
formation) as input. The output is a much improved tial extent in the overlapping part of two scans should
estimate of the relative pose. be larger than a fixed percentage of the spatial extent
After aligning two scans, we can record a set of covered by both scans.
corresponding points on the two scans. This corre-  For each strong link, a constraint on the relative pose
spondence set will form a constraint between the two is determined by the set of corresponding points on the
poses. In Section 4.3, we will formulate this type of two scans given by the matching algorithm. Itis possi-
constraint and its uncertainty as used in the estimation ble to have multiple links between two nodes. Figure 3
algorithm. shows an environment and the constructed network of
When we match two scans, we first project one scan pose relations.
to the local coordinate of the other scan, and discard the
points which are likely notvisible from the second pose.
The amount of overlap between two scans is estimate
empirically from the spatial extent of the matching parts
between the two scans. A pose relation is only derived
when the overlap is significant enough (larger than a
given threshold).

d2.3. Combining Pose Relations in a Network

The pose relations in a network can be potentially in-
consistent because they are not independent variables
(the number of relations may be more than the degrees
of freedom in the network), while the individually es-
timated relations are prone to errors. Our task is to
2.2. Constructing a Network of Pose Relations combine all the pose relations and resolve any inconsis-

tency. This problem is formulated as one of optimally
Given the pairwise pose relations, we can form a net- estimating the global poses of nodes in the network.
work. Formally, the network of constraints is defined We do not deal with the relations directly. Rather, we
as a set of nodes and a set of links between pairs offirst solve for the nodes which constitute a set of free
nodes. A node of the network is a pose of the robot variables. Then a consistent set of relations which rep-
on its trajectory at which a range scan is taken. Here a resents a compromise of alpriori relations is defined

pose is defined as a three dimensional vectoy, 6)! by the poses on the nodes.
O
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Figure 3 Example of constructing a network of pose relations from matching pairwise scans: (a) a simulated environment where the sc
poses are labeled by circles; (b) the network of pose relations constructed from matching overlapping scans.
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An optimization problem is defined as follows. We
construct an objective function from the network with

3. Optimal Estimation from a Network
of Relations

all the pose coordinates as variables (except one pose
which defines our reference coordinate system). Ev- In this section, we formulate a generic optimal esti-

ery link in the network is translated into a term in the
objective function which can be conceived as a spring
connecting two nodes. The spring achieves minimum

mation algorithm which combines a set of relations
in a network. This algorithm will later be applied in
Section 4 in the context of robot pose estimation and

energy when the relative pose between the two nodesscan data registration.

equals the measured value (either from matching two

scans or from odometry). Then the objective function
represents the total energy in the network. We finally
solve for all the pose variables at once by minimizing
this total energy function.

2.4. The Three-Node Example

Using the 3-node example, we illustrate the difference
of our formulation from previous approaches.

Assume that the network consists of three nodes:

P1, P,, P3, and three relation$; = P, P,, T, = P, P;,

T; = P;P.. When there is new measuremdntfor
relation Ty, the algorithm by Durrant-Whyte (1988a)
updates the three relations ¢, T,, T; based on an
optimization criterion which is subject to the constraint
TTT=1.

In our approach, we pool together all the rela-
tions Ty, T, Ts, as well T, to form an optimiza-
tion problem and solve for a new estimate for the
nodes: P;, P;, P;. These node positions define a
consistent set of relationsT; = P[P, T, = P;P;,

T; = P;P;. Note that the node positions are free vari-

3.1. Definition of the Estimation Problem

We consider the following generic optimal estimation
problem. Assume thatwe are given a network of uncer-
tain measurements abaut- 1 nodesXp, X, ..., Xn.
Here each nod¥; represents d-dimensional position
vector. A link D;; between two nodeX; and X; rep-
resents a measurable difference of the two positions.
Generally, Dj; is a (possibly nonlinear) function of
X;i and X; and we refer to this function as the mea-
surement equation. Especially interesting to us is the
simple linear case where the measurement equation is
Dij = Xi — Xj. _

We model an observation dd;; as Dj; = Dj; +
ADjj where AD;; is a random Gaussian error with
zero mean and known covariance mat. Given a
set of measuremenéij between pairs of nodes and
the covarianceC;j, our goal is to derive the optimal
estimate of the positioX;’s by combining all the mea-
surements. Moreover, we want to derive the covariance
matrices of the estimateX;’s based on the covariance
matrices of the measurements.

ables so we do not need to solve a complex constrained Our criterion of optimal estimation is based on the

system.
Moutarlier and Chatila (1989) also treat the node
positions as variables when updating the network with

maximum likelihoodor minimum varianceconcept.
The node positiorX;’s (and hence the position differ-
enceD;; 's) are determined in such a way that the condi-

new measurements. But they assume the knowledgetional joint probability of the derive®;; 's, given their

of covariance matrices among tag@riori estimates of
P1, P,, P;. However, we only require the variances
of individual measurement errors on the relatidhs
To, T3, T1, which are directly available from sensor
models.

The rest of the paper is organized as follows. In
Section 3, we present the optimization criterion by con-
sidering a generic optimal estimation problem. We de-
rive a closed-form solution in a linear special case. In

observation®;; s, is maximized. If we assume thatall
the observation errors are Gaussian and mutually inde-
pendent, the criterion is equivalent to minimizing the
following Mahalanobis distance (where the summation
is over all the given measurements):

W =Y (Dj — Dip)'C;*(Dyj — D). (1)
()]

Section 4, we formulate the pose relations as well as the Even if the observation errors are not independent, a

objective function in the context of range scan regis-
tration. The closed-form solution derived in Section 3

similar distance function can still be formed. However,
it will involve the correlation matrices of the measure-

is applied to solve for the scan poses. In Section 5, we ments. The assumption of independence is actually not

present experimental results.

necessary in our formulation. The assumption makes
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practical sense as the covariances of errors are difficult Mahalanobis distance:

to estimate.

A typical application of the optimal estimation prob- W = Z Xi — X} — [‘)ij)tcijfl(xi - Xj - [')ij)'
lem is in mobile robot navigation, where we want to O<i<j<n
estimate the robot pose and its uncertainty in three de- 2)

grees of freedonix, y, #). The observations are the

relative robot poses from odometry, and also possible Note thatW is a function of all the positionX;'s.

from matching sensor measurements. We want to uti- Since we can only solve for relative positions given
lize allthe available measurements to derive the optimal the relative measurements, we choose one n¥gle
estimate of the robot poses. Note that in this applica- as a reference and consider its coordinate as constant.
tion, the measurement equation is non-linear becauseWithout loss of generality, we leXo = 0 and then

of the® component in the robot pose. X1, X2, ..., Xy will represent the relative positions
Our approach above differs from the one typically from Xo.
used within a Kalman filter formulation, in which only We can express the measurement equations in a ma-

the current pose is estimated, while the history of pre- trix form as

vious poses and associated measurements is collapsed

into the current state of the Kalman filter. Our objec- D =HX 3)
tive, however, is not simply getting fro to B safely

and accurately, but also building a map of the environ- \yhereX is thend-dimensional vector which is the con-
ment. Itis, therefore, meaningful to use all the mea- catenation oKy, Xa, ..., Xn; Disthe concatenation of
surements obtained so far in the mgpping process. Theg|| the position differences of the fordy; = X — Xj;

old poses themselves are not particularly useful. But andH is the incidence matrix with all entries being

we are using the poses to define local object frames. 1 _1, or 0. Then the functiokV can be represented
Thus maintaining the history of robot poses is equiv- in matrix form as:

alent to maintaining the structure of the environment

model. The advantage of using a pose to define a data W = (D — HX)!'C~1(D — HX) (4)
frame is that it is unambiguous and it avoids the dif-
ficult segmentatlon and object identification problem whereD is the concatenation of all the observations
present in other work.

Next we studv th whenthem rement D;; for the corresponding;; andC is the covariance
_next, westudythe casewhen e measurement equa-oe 5 yhich is a square matrix consists@f; 's as sub-
tion is linear and we derive closed-form solutions for matrices
the optimal est|matgs of the nodes gnd ki Then the solution foX which minimizesW is given
ances. Later, we will solve the non-linear robot pose b
estimation problem by approximately forming linear
measurement equations.

X = (H'C*H)~*H'C™'D. (5)
3.2.  Solution of Optimal Linear Estimation The covariance oX is
We consider the special case where the measurement Cx = (H'CH)™L. (6)
equation has the simple linear forr;; = X; — X;.
HereX;,i = 0,1,...,nare the nodes in the network  |f the measurement errors are independénwill be

which ared-dimensional vectors and thig;'s are the  p|ock-diagonal and the solution can be simplified. De-

links of the network. Without loss of generality, we  note thend x nd matrixH!C~2H by G and expand the
assume that there is a lirl;; between every pair of  matrix multiplications.

nodesX;, Xj. For eachD;;, we have an observation We can obtain the x d sub-matrices ofs as
Di; which is assumed to have Gaussian distribution
with mean valueD;; and known covarianc€;;. In n
inkD;; is missi - Gi =) C;*
case the actual linkD;; is missing, we can simply = ij
let the corresponding‘:ijTl be 0. Then the criterion for 1=0
the optimal estimation is to minimize the following G = —Ci]l (i#]) @)
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Denote thend-dimensional vectoH!C~1D by B. Its
d-dimensional sub-vectors are the following (& =
—Dji):

n

Z CﬁlDij .

j=0; j#i

Bi

(8)

Then the position estimates and covariance can be writ-
ten as

X=G1B; Cx=G1L (9)
The above algorithm required = H'C'H to be in-
vertible. If the network is fully connected and the in-
dividual error covariances are normally behaved, we
believe it is possible to prove th@tis invertible. Note
the dimension 06 (number of free nodes) is less than
or equal to the dimension & (number of edges) in a
fully connected graph.

3.3. Special Networks

We will apply the formula in Eqg. (9) to two interesting
special cases as in Fig. 4. First, if the network con-
sists of two serially connected linkBy; and D15, the
derived estimate oK, and its covariance matrix are

X2 = Do1+ D12
Co=Cp1+Cop2

(10)
(11)
Another case to consider is the network which consists
of two parallel linksD” andD” between two nodeXg

andXj. If the covariance of the two links 8"’ andC”,
the estimate oK; and its covariance are given by

Xl — (C/—l + C//—l)—l(C/—l D/ + C//—lD//) (12)
C=cC*t+cHt (13)

The solution is equivalent to the Kalman filter formu-
lation. The above two cases correspond to the com-
pounding and merging operations given by Smith and

(a)

Figure 4 (a) Serial connection; (b) parallel connection.

Figure 5 A wheatstone bridge network.

Cheeseman (1986), which are used to reduce a complex
network to a single relation. Smith and Cheeseman’s
algorithm has a limitation that it only applies to net-
works formed by serial and parallel connections.

Consider the network in the form of a Wheatstone
bridge (Fig. 5). The estimate of; can not be obtained
through compounding and merging operations. There-
fore, the method by Smith and Cheeseman can not be
directly applied to simplify this network,while in our
method, the variableX;, X,, X3 can be solved from
the linear systen&X = B where

Coi +Ci3 +Cif —Ciy —Ciy
G= —C Cop +Cio +Co —Cof
-Cy —Cy Cis +Cox
(14)
CoilDo1 + C;iD1o+ C7iD
o1 Po1+C5 D12+ Ci3Da3
1R 1R/ 1R
B=] Co3 Doz — C15 D12+ C53 D23 (15)

—Ci3 D13 — C3;5'Das

The covariance matrix for the estimated positiorhas
a nice symmetric form (derived by expandi6g?):

Gt =(C Cx)

-1
y Cot +Ci5 +Co5 -C
—C# Clr+cCcit+ct
12 02 12 23
Cfl
(&) (16)
C23
DI
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If Dapis the relative pos¥, © V,, the reversed relative
poseDps = Vp © V, can be obtained fronD,p by a
unary operation:

4. Derivation of Pose Relations

In this section, we will apply the optimal estimation
algorithm, as derived in Section 3, to the robot pose .
estimation and scan data registration problem. To do Dba = ©Dap = (0,0,0)" © Dap. (25)
this, we need to derive linearized measurement equa-\ve can verify thateD) @ V = V & D.

tions for the pose relations. In the following subsec- We also want to define a compounding operation
tions, we study a constraint on pose difference given by between a full 3D pos#, = (X, Y, f) and a 2D
matched scans or odometry measurements. For eacrbosition vectom = (x, y)t. The résu’lt is another 2D
constraint, we formulate a term in the form of Maha- vectory’ = (x', y)'. V\}e still denote the operation as
lanobis distance. For convenience in discussions of ’
pose measurements, we will first define a pose com-
pounding operation.

U=V, @u. (26)

The coordinates fon’ are given by the first two equa-

4.1. Pose Compounding Operation

Assume that the robot starts at a p¥se= (Xp, Yo, 6p)"
and it then changes its pose By= (x, y, 9)' relative
to Vi, ending up at anew po3& = (Xa, Ya, 62). Then
we say that pos¥, is the compounding 0¥, andD.

tions of the full 3D pose compounding (Egs. (18, 19)).
This 2D compounding operation is useful for trans-
forming an non-oriented point (typically from a range
sensor) from its local sensor coordinate system to the
global coordinate system.

4.2. Pose Relations from Matched Scans

We denote it as:

Va=WV, ® D. a7 Let V; andV, be two nodes in the network and assume
there is a strong link connecting the two poses. From
the pairwise scan matching algorithm, we get a set of

pairs of corresponding pointsi?, uE, k=1 ...,m,

The coordinates of the poses are related by:

Xa = Xp + X COSO, — Yy Sing 18 . .

2 =X _ b~ ¥Sinth (18) where the 2D non-oriented pointd, up are from scan
Ya = Yb + X SIN6p +y COSy (19) S andS,, respectively. Each paiu, ud) corresponds
0 = Op + 6. (20) to the same physical point in the robot’s environment

while they are represented in different local coordinate

This is the same compounding operation as defined by systems. If we ignore any sensing or matching errors,
Smith and Cheeseman (1986) If we consider that an two corresponding points are related by:
absolute pose defines a coordinate systenx¥teor-
dinates of the origin and the direction of one axis), and
a relative pose defines a change of coordinate system
(a translation followed by a rotation), then the com-
pounding operation gives the pose which defines the
new coordinate system after the transformation. The
compounding operation is hot commutative, but it is
associative. We can thus define the compounding of a
series of poses.

Itis also useful to define the inverse of compounding
which takes two poses and gives the relative pose:

AZy=Va® U —Vp®uw =0. (27)

If we take the random observation errors into account,
we canregard Z as arandom variable with zero mean
and some unknown covarian@¢. From the corre-
spondence pairs, we can form a constraint on the pose
difference by minimizing the following distance func-
tion:
m
Fao(Vas Vo) = 3 [(Va @ U3) — (Vo @ WD), (28)
k=1
D=Va6W. (21) If we notice that a pose change is a rigid transformation
under which the squared Euclidean distajc§? is in-
variant, we can rewrite the function in an equivalent

X = (Xa — Xp) COSAp + (Ya — Vo) SiN6,  (22) form:
m

Y = —(Xa — Xp) SiN6p + (Ya — Yb) COSHp  (23)
o TR A T TR Fan(Va. Vo) = 3 [[((Va © Vi) @ ug) — up
0 = 02 — Op. (24) s

The coordinates are related by the following equations:

I?. (29
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ThusF,p is a function ofD’ = V, © V,,. The solution
of D’ which minimizesF,, can be derived in closed-
form (see Lu, 1995). The relatidd’ = V, © VW is the
measurement equation.

In order to reduceF,, into the Mahalanobis dis-
tance form, we linearize each termzy. LetV, =
(Xa» Va, 02)', Vo = (%o, Vb, Op)! be some close esti-
mates ofV, andV,. DenoteAV, = V, — V, and
AVp = \7b — V. Letuy = (X, yk)‘ =Va® UE %
Vb ® uE (the global coordinates of a pair of matching
points). Then for smalAV, and AV, we can derive
from Taylor expansion:

AZy=Va® U2 —Vp ® b
= (Va— AVa) @ Uf — (Vb — AVh) ® Wy
~ (Va®ud— Voo up)

1 0 Va— YW
_((0 1 —)_(a—i-Xk)AV

1 0 ¥—W
_(0 1 —)_(b—I-Xk>AVb)

A

(30)

10 — : :
—(0 1 sz)(HaAva—HbAvm

where

B 1 0 vV, B 1 0 W%
Ha=|0 1 —%Xi|, Hb=]0 1 —%|. (31)
00 1 00 1

We can rewrite Eq. (30) as

AZ ~ Z — MD (32)
where
Z=Va® W -Vp® U (33)
1 0 —w
Mg = 4
K (0 1 X ) (34)
D = (HaAVa — HoAWp). (35)

Thus we can now regard in Eq. (35) as the pose
difference measurement equationto repBte- V,©
Vp. For them correspondence pairs, we can form
equations as in Eq. (32). If we concatenate Ziis to
form a 2n x 1 vectorZ, and stack thévii’s to form
a 2m x 3 matrix M, then F5, can be rewritten as a

guadratic function oD:

Fan(D) = ) (AZ)'(AZy) (36)
k=1
~ (Z—-MD)"(Z —MD). (37)

We can then solve for th® = D which minimizes
Fap as

D= M'M)"M'zZ. (38)
The criterion of minimizing=3p(D) constitutes a least-
squares linear regression. In Eq. (32)is known and
Zy is observed with an errofA Zy having zero mean
and unknown covariancg€?. If we assume that all
the errors are independent variables having the same

Gaussian distribution, and further assume that the error
covariance matrices have the form:

2 0
Ckz:(O 02>’

then the least squares solutibrhas the Gaussian dis-
tribution whose mean value is the true underlying value
and whose estimated covariance matrix is given by
Cp = s2(M'M)~1, wheres? is the unbiased estimate
of o2

(39)

2 BNt M E o Fan(D)
s?=(Z -MD)'(Z —MD)/(2m 3)_2m_3.
(40)

Moreover, we notice that Eq. (37) can be rewritten as

Fap(D) ~ (D — D)'(M'M)(D — D) + Fap(D).
(41)

We can define the energy tefi,, corresponding to
the pose relation which is equivalent to a Mahalanobis
distance:

Wap = (Fap(D) — Fan(D))/s? (42)
~ (D — D)'Cy*D - D) (43)

where
Cp = s*(M'M)~ ! (44)

is the estimated covarianceBf Note thatD (as given
in EqQ. (35)) is the linearized pose difference measure-
ment equation.
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In deriving the covariance matri@p, we made as-  We would also like to linearize and transform the mea-
sumptions that the matrix is diagonal and the individ- surement equation dd’ to make the pose difference
ual components of errors are zero mean Gaussian. Itrepresentation for odometry measurements consistent
is probably difficult to justify these assumption. How- with that for matched sensing data. Consider the ob-
ever, we believe that they are reasonable ones in prac-servation errorAD’ = D’ — D’ of odometry. Let
tice. If any other estimates of the covariance matrices Va = (Xa, Va, 6a2)', Vo = (X, Vb, 0p)! be some close
are available, they can certainly also be incorporated in estimates o¥/, andV,. DenoteAV, = Va, — V; and
our global estimation formulation. AVy = Vb — V. Then through Taylor expansion, the

observation erroA D’ becomes:

4.3. Pose Relations from Odometry

AD'=D'—D'=D'—(Va© W) (50)
We also form an energy term in the objective function = 5 5
for each weak link. Suppose odometry gives a mea- =D'=((Va—AVa) © (Vo — AWb) (51)
suremenD’ of the relative pos®’ as the robot travels ~ D' — (Va© Vo) + Ky H(AVa — HapAVy) (52)
from poséeV,, to poseV,. The measurement equationis:
where
D'=V,6 VW (45)

cosd, sing, O

We define the energy term in the objective function as K1 ind % ol
follows: b = | —SINtp COSty ;
_ B 0 0 1
Wy, = (D' — D)'C 4D’ — D) (46) o (53)
L. . . 10 —Vat W
whereC'’ is the covariance of the odometry error in the Hio=|0 1 %i—%
measuremend’. 00 1

The covariance of measurement error is estimated as
follows. Consider that a cycle of pose change consists _ L _ _
of: (1) the robot platform rotation by an angido face ~ Notice thatHa, = H;*Hy whereH, and Hp are de-
towards the new target position; (2) the robot transla- fined in Eg (_31) If we define a new observation error
tion by a distancé to arrive at the new position; (3)the AD = —HaKpAD’, then we can rewrite Eq. (52) as
sensor rotation by a total cumulative angl€usually
360) to take a scan of measurements while the plat- AD =D — (HaAVa— HybAVp) =D — D (54)
form is stationary. We model the deviatiosg, o,

g of the errors inthe variables L, andﬁ as propor- where we denote

tional to their corresponding values, while the constant
ratios are determined empirically. The 3D pose change - - =,
D’ = (x, Y, 6! is derived as: b((Va © V) — D) (55)

D = HaK
D = HaAVa — HpAVp. (56)

X=Lcose; y=Lsine; O=a+p (47)

Then the covarianc€’ of the pose changB’ can be Notice that now we are dealing with the measure-

approximated as: ment equation foD which is consistent with that for
) matched sensing dat& can be considered as an obser-
o 0 0 vation of D. The covarianc€ of D can be computed
C'=J|10 o O] (48)  from the covarianc€’ of D’ as:
0O O 0'/32
C = HaKoC'KLHL. (57)

whereld is the Jacobian matrix consisting of the partial

SIS At .
derivatives of(x, y, )" with respect td, L. f)": The energy term in the objective function now be-

—Lsine cosa O comes:

J=| Lcosa sina O0]. (49) _ .
1 0 1 Wiap ~ (D — D)'C™(D — D). (58)
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4.4. Optimal Pose Estimation At each step, a new location is visited and measure-
ments about the new location as well as the previous
Once we have uniformly formulated the two types of locations are gathered. By using these new measure-
measurements, we can apply the estimate algorithm in ments, the current pose can be estimated while the pre-
Section 3 to solve for the pose variables. Denote the vious poses can be updated.
robot poses a¥;,i = 0,1,...,n. The total energy Let Xy, ..., Xy_1 be the pose vectors which we have
function from all the measurements is: previously estimated and let,, be the current new
- el pose which we are about to measure. Xatepresent
W= Z(Dij - Dij) Cij (Dij — Dij) (59) the concatenation oXy, ..., Xp—1, Xn. Assume that
0. we currently have an estima¥g of X whose inverse
whereD;; is the linearized pose difference betwagn covariance matrix iﬁigg. Because we have no knowl-
andV: edge abouiX, yet, the X, component inXy contains
~ _ an arbitrary value and the matr(SQo1 has all zeros in
Dij = HiAV, — Hj AV, (60) the lastd rows andd columns, wherel = 3. Now
consider the addition of a set of new measurements re-

andD;; is an observation ob;; (Dj; is derived from |04 % 19 some of the past pose variables. Let the
the true observations, either range data or odometry measurement equation, in matrix form, Pe= HX

measurements). The covariar@e is also known.

By regardingX; = H; AV, as the state vector cor-
responding to a node of the network as in Section 3.2
we can directly apply the closed-form linear solution
to solve for theX;'s as well as their covariancﬁix.
The formulas are in Egs. (5) to (9). Then the pdse
and its covarianc€; can be updated as:

(H is a constant matrix). Assume that the set of mea-
surements i which is an unbiased observation of

' D whose error has Gaussian distribution with covari-
ance matrixCp. The updated estimate ¥fafter using
the new measurements is the one which minimizes the
following function, using the maximum likelihood cri-
terion, and assuming independent errors:

\/i = \7| - H_i_]-Xi 5 Ci = (H_i_l)CiX(Hi_l)t- (61) W = (X _ XO)IC;[}(X _ XO)

Note that the pose estimate and the covariancg; is + (D —-HX)'Cp YD —HX).  (64)
given based on the assumption that the reference pose . )
Vo = 0. If, in fact, Vo = (X, Yo, fo)! is non-zero, the The solution can be derived as

solution should be transformed to X — (C;j n HICD‘lH)fl(C;(}XO " H‘CD‘lli) (65)
Vi =Vo®Vi:  Cf =KeCiKg (62) and the new covariance &fis

where Cx = (Cxt + H'CpH) ™. (66)
cosfp —sinfp 0 A convenient way of updatin andCy is to main-
Ko=| sinfp costp 0O]. (63) tain a matrixG = Y} H'Cp 'H and a vectoB =

0 0 1 Y H!Cp'D (the summation is over different sets of

measurements). Then at each step, the updating algo-
4.5. Sequential Estimation rithm is the following: Firstincrease the dimensions of

G andB to include the new pos¥,,. UpdateG andB as

The estimation algorithm we previously discussed is a _
one-step procedure which solves for all the pose vari- G < G+H'Co 1':' (67)
ables at the same time. The algorithm is to be applied B < B+H'Cy 'D. (68)
only after collecting all the measurements. Yet it will
be more practically useful if we have a sequential al-
gorithm which continuously provides estimates about X=G1B: Cyx=0G1 (69)
the current or past pose variables after getting each new
measurement. Here we will describe such a sequentialOne potential problem with the above sequential up-
procedure. dating procedure is that the state variakll&eeps ex-

Our sequential algorithm maintains the current best panding as it is augmented by a new state at each step.
estimate about the poses of previously visited places. In case the robot path is very long, the variable size

Then the newX andCy are given by



may become too large, causing storage or performancecomputed ag;ifl = (M'M)/s?; cﬁlﬁij

problems. A possible solution is to delete some of the
old variables while adding the new ones.
We propose a strategy of reducing the number of
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(MtZ)/s?
which can be expanded into simple summations by not-
ing the regularity in the matrill . In the case of a weak

link (from odometry), these components can be com-

state variables as follows. In c_)rder to choose a pose puted by multiplications of small matrices¥3). The
to be deleted, we check all pairs of poses and find a most expensive operation in the estimation process is

pair (X;, X;j) where the correlation between the two

to compute the inverse of a3x 3n matrix G which

poses is the strongest. We then force the relative posegives the covariance of.

betweenX; and X; to be fixed as a constant. Then

The network is stored as a list of links and a list of

Xi can be deleted from the state variables as it can benodes. Each link contains the following information:

obtained fromX;. When deleting the nod¥; from
the network, we transform any lir;, Xy) into a link
from X; to Xx. Note that the covariance matrx
contains all the pairwise covariance between any two

type of link, labels of the two nodes, the computed

measurement (relative pose), and the covariance matrix

of the measurement. Each node contains a range scan.
Note that we made linear approximations in the mea-

poses. A correlation ratio between two poses can be surement equations in formulating the optimization

computed from the covariance and variance.
By only fixing some relative poses, the basic struc-
ture in the network is still maintained. Thus we are still

criterion. The first order approximation error is propor-
tional to the error in the initial pose estimate. Clearly,
if we employ the newly derived pose estimate to for-

able to consistently update all the pose variables once mulate the linear algorithm again, a even more accurate

given new measurements. This strategy is more flexi-
ble than the simple strategy of fixing selected absolute
poses as constants.

Another approach to reducing the size of the sys-
tem is to decompose the large network into smaller
components. The estimation algorithm is to be ap-

plied to each sub-network. The relative pose between

two nodes in different sub-networks can be obtained
through pose compounding. If there is a single link
connecting two parts of a network, the poses in two

pose estimate can be obtained.

The iterative strategy based on this observation con-
verges very fast. Typically, the first iteration corrects
over 90% of the total pose error correctable by iterating
the process. It usually takes four or five iterations to
converge to the limit of machine accuracy.

5.2. Experiments with Simulated
and Real Scan Data

parts can be estimated separately and then combined

with compounding, without loss of information. If,
however, the network is strongly connected that there
are two or more links between any two nodes, then a
decomposition could give a sub-optimal estimation.

5. Implementation and Experiments

5.1. Implementation of Estimation Procedure
The implementation of the estimation algorithm is as
follows. After building the network, we obtain the ini-
tial pose estimate¥;, ..., V, by compounding the
odometry measurements. Then for each link, we com-
pute a measurement vectdy; and a covariance ma-
trix C;; according to Egs. (38), (44) or Egs. (55), (57).
Finally, we form a large linear syste@X = B as
explained in Section 3.2 and solve for the pose vari-
ablesX.

The components needed to buitdandB areCiJTl
andCiJfl Dij . In the case of a strong link (from match-

We now present experiments of applying our algorithm

to register simulated and real range scan data. We first
show an example using a simulated environment and
measurements. This is useful because ground truth is
known. Then an example using real data is presented.

In the first example, we simulate a rectangular
environment with a width of 10 units. The robot trav-
els around a central object and forms a loop in the
path. There are 13 poses along the path at which sim-
ulated range scans are generated (with random mea-
surement errors). We also simulate a random odometry
error (whichisthe difference between a pose change the
robot thinks it made and the actual pose change) at each
leg of the trajectory. The magnitude of the accumulated
odometry error is typically in the range of 0.5 units.

We apply our iterative global pose estimation algo-
rithm to correct the pose errors. In Fig. 6(a), we show
all the scans recorded in the initial coordinate system
where the pose of each scan is obtained by compound-
ing odometry measurements. Due to the accumulation
of odometry error the scan data are aligned poorly. In

ing a pair of scans), these components can be readilyFig. 6(b), we show the result of correcting the pose
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Figure 6 Global registration of multiple scans using simulated scan data: (a) scans recorded in a global coordinate system where the pos
each scan is obtained from compounding odometry measurements. The scans align poorly because of accumulation of odometry error; (k
result of correcting pose errors. Both the dashed lines and solid lines show the constraints from matching scan pairs. The solid lines also
the robot path and odometry constraints.
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Figure 7. Pose errors along the path, before correction, after local correction, and after global correction: (a) orientational errors; (b) po
tional errors.

errors and realigning the scan data. Each line segmentlocal corrections, they can still potentially grow without
(either dashed or solid) in the figure represents a strongbound. In this example, global registration produces
link obtained from matching two scans. In addition, more accurate results than local correction.

the solid lines show the robot path which corresponds  Then we present the experiment using real range
to the weak links. A plot of orientational and positional scans and odometry data. The testing environment
errors of the poses along the path, both before and afteris the cafeteria and nearby corridor in FAW, Ulm,
the correction, is given in Fig. 7. Pose errors are accu- Germany. The robot travels through the environment
mulated along the path while the corrected pose errors following a given path. A sequence of 30 scans which
are bounded. For comparison, we also apply a local were taken by the robot with an interval of about 2 me-
registration procedure which matches one scan only ters between scan poses were obtained. The laser sen-
to the previous scan. The pose errors along the pathsorisalLadar 2D IBEO Lasertechnik which is mounted
after this local correction are also shown in Fig. 7. Al- onthe AMOS robot. This laser sensor has a maximum
though pose errors are also significantly reduced after viewing angle of 220 degrees. Thus having only the
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Figure 8 Consistent global registration of 30 real range scans which are collected by a robot at FAW, Ulm, Germany: (a) unregistered sc

whose poses are subject to large odometry errors; (b) registered scans after correcting the pose errors. The robot path estimated from odo
is shown in dashed lines. The corrected path is shown in solid lines.

2D positions of two poses close together does not nec- have been shown in (Lu, 1995). In Fig. 8, we show (a)
essarily ensure a sufficient overlap between the scansthe unregistered scans and (b) the globally registered
taken at the two poses; we also need the sensor headscans in part (b).

ing directions to be similar. Among the 30 scans, 84  Further experimental results with a variant of our
links from matching overlapping scan pairs are con- algorithm are reported in (Gutmann and Schlegel,
structed. Some of these pairwise scan matching results1996). Figure 9 contains experimental results which

(b)

Figure 9 Mapping of a Hallway using the RWI Pioneer platform and a SICK laser range scanner: (a) raw laser range scans; (b) aligned la:
range scans.
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are obtained using our global registration procedure to- alternative would be to perform continuous scanning
gether with a modified version of Cox’s pairwise scan as the robot moves. Continuous scanning would gen-
matching algorithrh The laser data are collected on erate large amounts of data that would have to be
the RWI Pioneer platform using the SICK laser ranging sampled. In addition, the problem of associating mea-
device (http://www.sick.de). The Pioneer is alow-cost surements with the correct robot position arises, as dif-
platform with odometry error significantly higher than ferent parts of a scan will have been obtained from
the much more expensive platforms used in our other different robot positions. Solving this problem would
experiments. The hallway environment shownin Fig. 9 require an accurate model of the robots motion. A
is poor in features that allow localization of the robot possible solution to the problem of excessive amounts
along the hallway. The data was collected by a robot of data is to partition the continuous scan data and
that went up and down the hallway several times. A transform each part to one pose on the path, based
large rotation error was introduced by the large turns on the odometry model. These are both worthwhile

at the ends of the hallway. problems, which we consider outside the scope of this
paper.
) ) Although we develop our method for mapping a 2D
6. Discussion environment using 2D range scans, our formulation is

general and it can be applied to the 3D case as well, by

In this paper, we formulated the problem of consis- generalizing pose composition and linearization (Lu,
tent range data registration as one of optimal pose es-1ggs).

timation from a network of relations. The main ideas
are as follows. We associate a robot pose to a range
scan to define an unambiguous object frame. By con- Acknowledgment
sistently maintaining the history of robot poses, we
effectively allow all object frames to be consistently Funding for this work was provided by NSERC Canada
registered in the global reference frame. We use a and by the ARK project which receives its funding
combination of relation-based and location-based ap- from PRECARN Associates Inc., the Department of
proach to represent the world model. It can be viewed Industry, Science and Technology, NRC Canada, the
as a two-step procedure. First, spatial relations be- Ontario Technology Fund, Ontario Hydro, and AECL.
tween object frames are directly derived from odometry ~ The authors would like to thank Steffen Gutmann,
measurements and matching pairwise frames. TheseJoerg lllmann, Thomas Kaempke, Manfred Knick,
relations, along with their uncertainties, constitute all Erwin Prassler, and Christian Schlegel from FAW, Ulm
the information in the model. In the second step, the for collecting range scans and making the data avail-
relations are converted to object frame locations based able for our experiments. We thank Dr. Ingemar Cox,
on an optimization criterion. This formulation avoids and the anonymous reviewers for many constructive
the use of complex constrained optimization. Further- comments.
more, it does not require the assumption of knaavn
priori covariance between object frames. Notes

We also derived measurement equations compatible
with the formulation. It allows practical implementa- 1. tis possible to first convert a triangle in the network to an equiva-
tion of the algorithm. We have experimentally demon-  lent Y-shaped connection and then the network becomes one with
strated the effectiveness of our estimation procedure in serial and parallel links. However, this Delta-to-Y conversion
maintaining consistency among multiple range scans. S;"r'z;fgl‘ :;::églg:]’:ry network into a combination of serial and
The m_OSt _expensive operati_on, besides pairwise scan; E)Ne are grateful to S-teffen Gutmann of the Al Laboratory at the
matching, is to compute the inverse of anx3 3n ma- Albert-Ludwigs-Universitit Freiburg for providing us with these
trix. Although the number of posesmay be large for experimental results.
a long robot path, there are ways to limit this size to
speed up the computation. The sequential procedure
enables the robot to continuously maintain the optimal

registration result. Ayache, N. and Faugeras, O.D. 1989. Maintaining representations of
Our approach assumes that the robot stops to col- " the environment of amobile robdEEE Transactions on Robotics
lect a complete range scan at its current position. An  and Automation5(6):804-819.
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