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Abstract—This paper addresses the problem of a rigid body, with
unknown inertia matrix, tracking a desired angular velocity refer-
ence using adaptive feedback control. The control law, which has
the form of a sixth-order dynamic compensator, does not require
knowledge of the inertia of the rigid body. A Lyapunov argument
is used to guarantee that asymptotic tracking is achieved globally.
Furthermore, an analytical expression for an upper bound on the
magnitude of the required torque is presented for a given refer-
ence signal. Next, sufficient conditions on the reference signal are
given under which asymptotic identification of the inertia matrix
is achieved. Reference signals that satisfy these sufficient condi-
tions are characterized and simulation results that illustrate the
control algorithm are presented for a constant spin about a fixed
axis and for sinusoidal spins about the body axes. The controller
is implemented on an experimental testbed, and experiments are
performed for several commanded reference signals. The experi-
mental results demonstrate the tracking performance of the con-
troller, and parameter convergence is observed.

Index Terms—Adaptive control, angular velocity tracking, con-
trol saturation, estimation, inertia identification, rotating bodies,
space vehicle control.

I. INTRODUCTION

S
TABILIZATION of a single free rigid body in three di-

mensions is a widely studied and a fundamental problem in

spacecraft dynamics. Although the problem is trivial in the pres-

ence of three control torques, significant research has been de-

voted to the cases of two torques [2]–[10] and one torque [3], [4],

[11]. If minimum fuel or miminum time performance is required

in addition to stabilization, then this problem is challenging even

in the case of three torques [12]–[14]. When rotors are used to

provide control torques, the problem involves multiple bodies

and significantly greater complexity [15], [16].

The above discussion is based on the assumption that the

spacecraft mass distribution is known. In practice, however, fuel

usage, moving appendages, and complex geometry limit the

ability to determine the mass distribution with arbitrary accu-

racy. Hence, it is of interest to determine stabilizing controllers

that can operate with minimal inertia information. This moti-
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vates the use of Lyapunov-based techniques to design an adap-

tive controller [17].

In the present paper, we address the inertia uncertainty

problem by deriving an adaptive controller that tracks an an-

gular velocity reference without any information concerning the

mass distribution. In addition, we present sufficient conditions

on the reference signal that guarantee asymptotic identification

of the inertia matrix of the rigid body. The reference signal need

not be periodic. Reference signals that satisfy these sufficient

conditions include a constant spin about a body-fixed axis and

a sinusoidal spin about a body axis. The controller provides

asymptotic tracking of angular velocity reference signals. For

a rotating spacecraft modeled as a rigid body, the adaptive

tracking controller is effectively a PI control law involving six

integrators whose values correspond to estimates of the entries

of the inertia matrix. The case of single degree-of-freedom

(DOF) rotation with an input nonlinearity was considered in [1].

It is important to point out that angular velocity tracking does

not imply attitude tracking. Attitude control of a spacecraft

under inertia matrix uncertainty was studied in [18]. The inclu-

sion of attitude states within an inertia-independent adaptive

controller is given in [19]. The tracking problem, considered

in the present paper, can be viewed as an extension of [19]

to the case in which attitude measurements are not available.

Furthermore, we present sufficient conditions on the reference

signal that guarantee asymptotic identification of the unknown

inertia. Also, the present paper includes experimental results

obtained from implementing the controller on an air-bearing

testbed. These results demonstrate the tracking performance

and parameter identification ability of the controller.

The contents of the paper are as follows. In Section II, we con-

sider the three-dimensional (3-D) case of a rotating rigid body.

We develop the equations of motion for a rotating rigid body,

and we rewrite these equations in a form that isolates the un-

certain inertia parameters. Next, in Section III, we present an

adaptive tracking control law that requires no knowledge of the

inertia matrix. In Sections IV and V, we present methods for

identifying the inertia matrix with aperiodic and periodic refer-

ence signals, respectively. Simulations and numerical examples

are presented in Section VI to illustrate the tracking and identi-

fication algorithms. In Section VII, we discuss implementation

issues for the control algorithm, and we provide details of an

experimental testbed (TACT). In Section VIII, we discuss ex-

perimental results obtained from the implementation of the al-

gorithm. Finally, we close with conclusions in Section IX.

1063-6536/$20.00 © 2006 IEEE
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II. RIGID BODY EQUATIONS OF MOTION

Consider a rigid body, such as a spacecraft, with actuators that

provide body-fixed torques about three mutually perpendicular

axes that define a body-fixed frame located at the center of

mass of the body. For each axis a body-fixed torque can be ob-

tained by employing, for example, a pair of actuators to produce

equal and opposite forces perpendicular to the line joining the

actuators. The lines joining each pair of actuators need not pass

through the center of mass.

For , the angular velocity of with

respect to an inertial frame , and resolved in , satisfies

(1)

where

is the constant positive-definite inertia matrix of the body, also

resolved in , and is the vector of control

torques. The notation for denotes the skew-

symmetric matrix

The inertia matrix is assumed to be unknown.

Let denote the desired angular velocity of

with respect to . We assume that is differentiable. Defining

the angular velocity error

(2)

it follows from (1) that satisfies

(3)

The control objective is to determine such that as

for all initial conditions and without knowledge of

.

III. ADAPTIVE CONTROL LAW

In this section, we present a feedback control law that asymp-

totically tracks the reference angular velocity . We define a

linear operator acting on by

(4)

Letting

it follows that:

Equation (3) can now be rewritten in the form

(5)

where is defined by

(6)

We now present an adaptive controller for angular velocity

tracking based on an estimate of . We denote the inertia

estimate error by . Furthermore, let denote

the Euclidean norm.

Theorem 1: Assume that is differentiable and bounded, and

that is piecewise continuous and bounded. Let and

be positive definite, and consider the closed-loop

system consisting of (5) and the adaptation and control law

(7)

(8)

Then, the zero solution of the closed-loop dynamics of (5), (7),

and (8) given in error coordinates by

(9)

(10)

is Lyapunov stable. Furthermore, for all and

, the solution of the closed-loop system (9),

(10) satisfies , , and

exists.

Proof: Equations (9) and (10), comprise a nine-di-

mensional (9-D) nonlinear, time-varying system, for which

is an equilibrium. Furthermore, since is

bounded and is piecewise continuous and bounded, the

right-hand side of (9) and (10) is piecewise continuous in

time and locally Lipschitz in states, uniformly in time. Thus,

solutions of the closed-loop system (9), (10) exist.

To prove asymptotic tracking, consider the positive-definite

Lyapunov candidate

(11)
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which does not explicitly depend on time and is radially un-

bounded. The total time derivative of , along trajectories of

the closed-loop system, is given by

(12)

which shows that is negative semidefinite and is not an ex-

plicit function of time. Hence, Theorem 8.4 of [20] implies that

for all initial conditions and , the solutions of (9)

and (10) are bounded and approach the set

. Hence, as . Also,

since is positive definite and is negative semidefinite,

it follows that the equilibrium of the system (9) and (10)

is Lyapunov stable.

Since as and and are bounded, it

follows from (10) that as . Furthermore,

and , and, hence, , are bounded. Now, since

and for all

, it follows that exists.

Next, letting in (11) yields

where the right-hand side exists. Hence,

exists.

IV. INERTIA IDENTIFICATION

Note that the control law (7) and (8) does not require

knowledge of the inertia . Although converges to zero

and converges, does not necessarily converge

and, even if converges, it does not necessarily converge to

the actual inertia . We now give sufficient conditions under

which converges to . The following lemmas and notation

are needed. Define by

(13)

Lemma 1: Consider the closed-loop system (9) and (10)

under the assumptions of Theorem 1. Then

(14)

Proof: Theorem 1 implies that as . Then

(15)

Since is continuous and bounded and is piecewise contin-

uous and bounded, (9) implies that is globally piecewise

uniformly continuous (see [1] for definition). Now, applying the

generalized version of Barbalat’s Lemma given in Appendix B

of [1] yields . Therefore, it follows from (9)

that

(16)

Note that

(17)

Since as and and are bounded, (17)

implies that

(18)

Furthermore, since

it follows from (16) and (18) that

For , denote the th largest singular value

of by . Furthermore, and

denote the largest and the smallest

singular values of , respectively.

Lemma 2: Consider the closed-loop system (9), (10), under

the assumptions of Theorem 1. Furthermore, for , define

. Then, for every and every ,

there exists such that, for all and ,

.

Proof: Let and . Since and are

bounded for all , it follows from the definition of and

(13) that is bounded for all and, hence,

is bounded for all . Define and

choose and .

Next, it follows from (14) that there exists such that,

for every , . Similarly, since

as , it follows that there exists a , such that for

every , . Choose . Then, for

every and
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Define by

... (19)

where is defined in Lemma 2.

Lemma 3: Consider the closed-loop system (9) and (10)

under the assumptions of Theorem 1. Then, for every

and , there exists such that, for every and

.

Proof: Let and . Then, Lemma 2 im-

plies that there exist , such that, for every ,

, where . Consider

any and , where .

Then, note that , .

Hence, substituting and , yields

. Thus

The next result provides a sufficient condition for conver-

gence of the inertia estimate to the actual inertia .

Theorem 2: Consider the closed-loop system consisting of

(5) and the adaptive control law (7) and (8), where and are

positive definite. Suppose there exist and such that,

for every , there exist such that

. Then .

Proof: Theorem 1 implies that

exists. If , then,

since is nonsingular, . Now suppose

. Then, for every , there exists such

that, for every . Choose

. Hence, for every , .

Furthermore, .

Hence, for every , .

Next, by assumption, for every , there exist

, such that .

Therefore, it follows that, for every , there exist

such that

However, Lemma 3 implies that there exists such

that, for every and

,

which is a contradiction. Hence, , and thus,

.

Next, we provide an analytical expression for an upper bound

on the maximal magnitude of the torque required to track a given

reference signal. To compute this bound, we require knowledge

of an upper bound on the initial angular velocity error and the

initial inertia estimate error. We denote these bounds by

and , respectively. Thus, let and satisfy

and .

In Theorem 1, it was assumed that and are bounded

in . Let and satisfy , and

for all . Furthermore, let , and

be positive numbers satisfying and

.

Theorem 3: Consider the closed-loop system consisting of

(5) and the adaptive control law (7) and (8), where and are

positive definite. Denote

(20)

where

(21)

(22)

Then, for all , and

.

Proof: Consider the Lyapunov function (11) as in

Theorem 1. It follows from Theorem 1 that

for all and hence

(23)

Next, note that

(24)

and

(25)

Furthermore, since and

(26)

Thus, from (23), (24), (25), and (26), we obtain

for all and hence

(27)
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and

(28)

where and are defined as in (21) and (22). Thus,

and .

Now, the control torque in (8) can be written as

Thus,

. To obtain an upper

bound on , we first find an upper bound on ,

where is given by (4) and and . Given

, express in (4) as ,

where

Furthermore, express as , where

. Then . Therefore,

, where is the induced

2-norm. Note that .

To obtain , let be such that

. Then

Now

Therefore, and hence,

. Since,

, .

Thus

Next, (27), (28), and the upper bounds on and , yields

and .

Therefore, for all

and the result follows.

If the upper bounds , , , , and are known, then

in Theorem 3 can be computed. Thus, Theorem 3 implies

that as long as the actuators can provide a torque of magnitude

, the controller given by (7) and (8) can track any reference

command signal that satisfies and ,

for all . Thus, provides a minimum saturation level for

the applied torques.

Remark 1: The bound computed in Theorem 3 is conser-

vative since the maximum required torque level can be much

lower than . Theorem 3, however, demonstrates that the con-

troller given by (7) and (8) can function even under saturation

effects, and represents an upper bound for the required sat-

uration level.

V. INERTIA IDENTIFICATION USING PERIODIC

REFERENCE SIGNALS

The following corollaries of Lemma 1 consider the special

case in which is constant. The proof is similar to results pre-

sented in [19]. Define

(29)

Corollary 1: Assume that is constant. Under the control

law (7) and (8), as .

In Corollary 1, represents a constant spin about a body-fixed

axis. In the case that this body-fixed axis is the principal axis,

it is equivalent to . For such a case, we expect that

as . The following result shows that the control

law (7) and (8) indeed has this property.

Corollary 2: Assume that is constant and satisfies

. Then, under the control law (7) and (8), it follows that

as .

We now apply Corollary 1 to identify the off-diagonal terms

, , and .

Proposition 1: Let be constant. If , where

, then, under the control law (7) and (8), and

as . Furthermore, if , where

, then, under the control law (7) and (8), and

as .

Theorem 2 provides sufficient conditions on the reference

signal that guarantee asymptotic identification of the inertia

matrix. In particular, the reference signal need not be periodic.

However, in the case of a periodic reference signal, we obtain a

stronger result.

Proposition 2: Let be periodic with period and sup-

pose there exist such that rank

. Then, under the control law (7) and (8),

as .
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Proof: Since rank , there exists

such that . Choose . Next,

we show that for all , there exist

such that .

Define as the remainder obtained when is divided

by , where . Then, can be expressed as

, for some non-negative integer . Choose

, for all . Clearly,

and

Thus, , for all . Finally, since

has a time period , it follows that

. Thus, and hence,

. Thus, for all , there exist

such that .

The result now follows from Theorem 2.

VI. SIMULATION RESULTS

To illustrate Theorem 1, we demonstrate the results in Propo-

sitions 1 and 2, which demonstrate the convergence of the in-

ertia parameters to their true values, as well as, convergence of

the angular velocity to the reference angular velocity. The mo-

ment of inertia chosen for the model is given as

kg/m

For simulations demonstrating Proposition 1, the gains for the

controller are chosen to be and , and the

initial condition for is chosen such that corre-

sponding to the two reference angular velocity signals given in

Proposition 1, where each of and are chosen to be 0.5. The

gains and for the controller, were chosen by trial-and-error

to obtain reasonable convergence rates. Also

kg/m

The first reference angular velocity to be tracked is given by

rad/s. As guaranteed by Proposition 1, the es-

timates and , converge to the true values and ,

respectively, as shown in Fig. 1. However, is not guaran-

teed to converge to , and as shown in Fig. 1, does not. Also,

Theorem 1 implies that the angular velocity converges to the ref-

erence angular velocity . The corresponding numerical results

are shown in Fig. 2.

Next, consider the reference angular velocity

rad/sec. In this case, Proposition 1 implies that the off-diagonal

terms and converge to their true values. Again, note that

the estimate for the off-diagonal entry does not converge to

Fig. 1. Identification of off-diagonal terms in the inertia matrix using � =
[0:5 0 0] .

Fig. 2. Angular velocity tracking for � = [0:5 0 0] .

Fig. 3. Identification of off-diagonal terms in the inertia matrix using � =
[0 0:5 0] .

its true value, and the angular velocity converges to the reference

rad/s as seen in Figs. 3 and 4. Hence, the off-
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Fig. 4. Angular velocity tracking for � = [0 0:5 0] .

Fig. 5. Angular velocity tracking for �(t) = [sin t sin 2t sin 3t] .

diagonal terms , , and can be identified by performing

two constant tracking maneuvers.

We now consider periodic maneuvers for identifying

the entire inertia matrix. To satisfy the conditions of

Proposition 2, consider the periodic reference angular ve-

locity rad/s. Then, with and

, we obtain

The maximum and minimum singular values of are

5.2406 and 0.3512, respectively. Therefore, rank

. Hence, Theorem 1 and Proposition 2 guarantee that, under the

control law (7) and (8), and . We choose

, , and for simulations, and

Fig. 6. Error in angular velocity tracking for �(t) = [sin t sin 2t sin 3t] .

Fig. 7. Error in identification of diagonal terms in the inertia matrix.

Fig. 8. Error in identification of off-diagonal terms in the inertia matrix.

is chosen as before. Figs. 5 and 6 show that

as , while Figs. 7 and 8 indicate that in

accordance with Proposition 2. The control effort is shown in

Fig. 9.
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Fig. 9. Control torques applied to track �(t) = [sin t sin 2t sin 3t] .

VII. EXPERIMENTAL SETUP

In this section, we discuss implementation issues, as well as,

modeling of the actuator moments in the experimental setup.

Our experimental implementation uses the Triaxial Attitude

Control Testbed (TACT) in the Attitude Dynamics and Control

Laboratory of the University of Michigan, Ann Arbor. This

testbed is described in [1], [21], and [22].

The experimental testbed is based on a spherical air bearing

manufactured by Space Electronics, Inc., Berlin, CT. An 11-in

diameter aluminum sphere floats on a thin film of air that exits

from holes located in the surface of the cup. Air at 70 psi is

supplied to the cup by means of a hose that passes through the

center of the vertical support. The spherical air bearing allows

unrestricted motion in yaw (rotation about the vertical axis) and

roll (rotation about the longitudinal shaft axis). The plates and

shafts are designed to allow pitch (rotation about a hori-

zontal axis) at all roll and yaw angles.

Once the main components are mounted, additional masses

can be added to modify the mass distribution. This mass dis-

tribution balances pitch motion. However, when the center of

mass is not located at the rotational center, the body possesses

pendulum dynamics [23]. In the experimental results reported

herein, the center of mass of the supported body is assumed to

be located at the pivot point. This balancing implies that there

are no gravitational moments on the body so that the body is

modeled by the equations of motion given in (1).

Fig. 10 shows a picture of the TACT and Fig. 11 shows a

schematic of the relative positions of the thrusters. The TACT

has four thrusters, each of which has nonlinear input-output

(I/O) characteristics. In [1], an adaptive feedback-linearization-

based controller was designed to handle this nonlinearity. In the

present paper, for simplicity, we identify the nonlinearity and

invert it in the controller. A maximum torque of about 20 N m

can be generated using these thrusters.

Figs. 12 and 13 represent the forces due to the thrusters and

the corresponding torques about the pivot point. Let denote

the voltage applied to the th thruster, and let and denote the

Fig. 10. TACT. This testbed, which is based on a spherical air bearing, allows
low friction, 3-D motion with unrestricted roll and yaw and�45 pitch.

Fig. 11. Orientation of thrusters on the TACT.

Fig. 12. Forces due to thrusters on the TACT.

Fig. 13. Torque applied due to thrusters on the TACT.
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Fig. 14. Data for force versus input voltage for thrusters 1 and 2 (N ).

Fig. 15. Data for force versus input voltage for thrusters 3 and 4 (N ).

force and torque due to the th thruster, where .

It can be seen that the net torque due to the thrusters is given by

(30)

(31)

(32)

where , is the length and is the angle as shown in

Fig. 12.

Experiments were performed on the TACT to determine the

force generated by the thruster as a function of voltage. These

experiments involve balancing the TACT by masses for a given

thruster voltage, and then computing the force of the thruster

from the torque required to balance the masses. Figs. 14 and 15

represent the one-to-one mappings obtained between the input

voltage applied to a thruster and the resulting thrust force, for

thruster pairs (1,2) and (3,4), respectively. The nonlinear maps

in Figs. 14 and 15 were obtained by fitting a third order polyno-

mial using least squares. The approximate expressions,

and for each of the thruster in the thruster pairs (1,2) and

(3,4), respectively, are given by

(33)

(34)

where is in volts and and are in newtons. In

other words, and

.

Now , , where is the length as shown

in Fig. 12. Substituting this in (30)–(32) and expressing ,

in terms of and yields expressions for

torques along the body axes given by

(35)

(36)

(37)

where the lengths m and m.

Note that , , and are computed by the adap-

tive algorithm. Furthermore, (35)–(37) are linear equations with

, and as unknowns, and

that and are known invertible functions. Since there

are four unknowns and three equations, there are an infinite

number of solutions for the corresponding thruster voltages.

These solutions represent alternative actuation schemes that can

be implemented using four thrusters to generate three indepen-

dent torques.

Out of the possible solutions, we select the scheme wherein

the load for the roll moment is shared symmetrically between

the thruster pairs (1,2) and (3,4). This choice results in the con-

straint equation

(38)

Then, solving for the four unknowns in (35)–(37), using (38),

and inverting the nonlinear map yields the thruster voltages

(39)

(40)

(41)

(42)

VIII. EXPERIMENTAL RESULTS

In this section, we implement the controller (7) and (8) on the

TACT testbed. To demonstrate the effectiveness of the control

algorithm, we perform two sets of experiments. In the first set,
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we track a reference angular velocity, starting from an initial

angular velocity provided by giving the TACT an initial push.

The aim of this set of experiments is to demonstrate the angular

velocity tracking capability of the designed controller.

In the next set of experiments, the aim is to demonstrate the

parameter identification capability of the control algorithm.

These experiments are guided by the conditions given in propo-

sitions 1 and 2. Whereas Proposition 1 requires a constant

reference angular velocity about one of the body axes, Propo-

sition 2 requires a periodic angular velocity along all three

body axes. Unfortunately, this requirement from Proposition 2

is stringent for two reasons. First, it is difficult to balance the

TACT so that its center of gravity lies exactly at the pivot point.

Second, the support of the TACT restricts the free motion in

pitch, and hence, limits the class of angular velocity signals

that can be given to the controller to track.

Thus, for the reasons mentioned above, it is difficult to

demonstrate Proposition 2. However, we demonstrate Propo-

sition 1 in the second set of experiments, where a constant

angular velocity reference is given and the off-diagonal inertia

estimates are computed.

Again, due to the presence of an onboard computer, sensors

and the associated electronics and the electrical wiring, the mo-

ment of inertia of the TACT is unknown. This limits our ability

to simulate a configuration that is close to the TACT.

A. Angular Velocity Tracking

As mentioned above, we push the TACT to provide an initial

angular velocity, and command a constant angular velocity ref-

erence to the controller. The chosen reference angular velocity

is /s, and the controller gains are

chosen to be

Furthermore, .

We now compute the bounds , , and given by

Theorem 3. Corresponding to the reference signals we choose

/s rad/s and /s

rad/s . Also, kg m . Since we start from rest,

rad/s, and assuming that our estimates for the

principal moment of inertia are close to about 5 kg m , we

choose kg m .

Now, choose kg m , kg m , and note that

, , and . Then

computing from (21), (22), and (20), we obtain

rad/s /s, kg m , and N m. Note

that this is a conservative estimate, and as we see subsequently,

our controller performs satisfactorily with actuators having a

much lower torque capacity of about 20 N m.

The angular velocity tracking error, plotted in Fig. 16, shows

that the yaw angular velocity error converges to zero quickly,

whereas the error in pitch converges to zero relatively slowly.

This suggests an increase in the feedback gain in corre-

sponding to pitch oscillations. However, attempts at this caused

large transients, in which the amplitude of the pitch oscillation

Fig. 16. Error in angular velocity for �(t) = [30 0 �3 sin(0:25t)]T. The roll
oscillation of amplitude 0.5 is due to imperfect balance of the TACT.

Fig. 17. Angular velocity tracking for �(t) = [30 0 � 3 sin(0:25t)] .

was close to 45 pitch constraint. Nevertheless, it is clear that

the amplitude of the oscillations in the pitch decrease with time

after 75 s.

In roll response, the angular velocity error is modulated by a

high frequency component. A power spectrum analysis of the

signal reveals a harmonic component with a frequency of about

6.5 rad/s and amplitude 0.5 . The only frequency component of

is 0.25 rad/s, and hence, the ratio of the noise frequency to

the reference signal is approximately 25. This oscillation was

not discernible to the human eye. The roll oscillations are be-

lieved to be due to imperfect balancing of the TACT, leading to

pendulum-type behavior due to gravitational moments [23].

Next, the roll data are filtered and the angular velocity error

is shown in Fig. 18. The angular velocities are shown in Fig. 17.

From this plot, it is clear that the angular velocity converges to

the reference angular velocity, even for large initial errors, thus,

demonstrating the global tracking ability of the controller.

B. Inertia Parameter Identification

In this section, we demonstrate the parameter identification

ability of the controller (7) and (8). Specifically, by means of
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Fig. 18. Error in angular velocity for �(t) = [30 0 � 3 sin(0:25t)]

Fig. 19. Angular velocity tracking for � = [25 0 0] .

Fig. 20. Inertia estimates for � = [25 0 0] .

Proposition 1, we use two constant maneuvers to identify the

off-diagonal entries of the inertia matrix. Thus, we command

the constant signals /s and /s.

Figs. 19, 20, 21, and 22 show the response of the TACT to the

reference angular velocities.

Fig. 21. Angular velocity tracking for � = [0 25 0] .

Fig. 22. Inertia estimates for � = [0 25 0] .

Since the TACT is constrained to a pitch angle of magnitude

less than 45 , it is not possible to allow the TACT to follow the

reference command starting from a position as in Fig. 10,

since a pitch rate of 25 /s might result in a collision with the

supporting pillar. Therefore, before commanding , TACT was

rotated by 90 about the -axis (see Fig. 12 for an illustrative

diagram of the body-fixed axes for the TACT). In the new po-

sition, the -axis points vertically and, hence, a pitch maneuver

(i.e., rotation about -axis) involves rotations in the horizontal

plane, thus, avoiding collision with the supporting pillar.

Ideally, the center of mass is balanced to lie at the pivot point

of the TACT, and thus, there are no gravitational moments. Thus,

experiments can be performed starting from an arbitrary initial

attitude since attitude does not play a role in the dynamics of

the system. However, in practice, there is some residual gravita-

tional moment due to unbalanced mass distribution. Hence, the

TACT has to be rebalanced to attain the new initial configura-

tion. Due to this balancing requirement, the reference signals

and were applied to different mass configurations. Thus, the

inertia estimates for the two cases cannot be compared.
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The gains are chosen to be

Figs. 20 and 22 show that the off-diagonal inertia estimates con-

verge. Although the actual inertia values are not known, calcula-

tions on a simple model of the TACT suggest that the estimates

obtained experimentally have the same order of magnitude as

the values computed for the off-diagonal terms of the inertia ma-

trix. To estimate the remaining entries of the inertia matrix, we

need to use reference angular velocities that satisfy the condi-

tions of Theorem 2 or the conditions mentioned in Proposition 2.

IX. CONCLUSION

An adaptive feedback control algorithm is developed that pro-

vides global tracking of reference angular velocity signals. The

control algorithm assumes no knowledge of the inertia of the

body and is, thus, unconditionally robust with respect to this

parametric uncertainty. Using a Lyapunov argument, it is shown

that the angular velocity tracking error converges to zero and

an analytical expression for an upper bound on the magnitude

of the required torque is presented for a given reference signal.

Furthermore, the control algorithm is used to identify the in-

ertia matrix when the reference angular velocity signal satisfies

certain conditions. Numerical simulations demonstrate tracking

and identification of the inertia matrix under such conditions.

Finally, implementation issues using the TACT to test the con-

trol algorithms are discussed. Results obtained from the exper-

iments validate the effectiveness of the adaptive control algo-

rithm in tracking an angular velocity reference and estimating

the moment of inertia.
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