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Abstract—We present two types of globally convergent relaxed
ordered subsets (OS) algorithms for penalized-likelihood image
reconstruction in emission tomography: modified block sequential
regularized expectation-maximization (BSREM) and relaxed OS
separable paraboloidal surrogates (OS-SPS). The global conver-
gence proof of the existing BSREM (De Pierro and Yamagishi,
2001) required a few a posteriori assumptions. By modifying the
scaling functions of BSREM, we are able to prove the convergence
of the modified BSREM under realistic assumptions. Our modifi-
cation also makes stepsize selection more convenient. In addition,
we introduce relaxation into the OS-SPS algorithm (Erdoǧan and
Fessler, 1999) that otherwise would converge to a limit cycle. We
prove the global convergence of diagonally scaled incremental
gradient methods of which the relaxed OS-SPS is a special case;
main results of the proofs are from (Nedić and Bertsekas, 2001)
and (Correa and Lemaréchal, 1993). Simulation results showed
that both new algorithms achieve global convergence yet retain the
fast initial convergence speed of conventional unrelaxed ordered
subsets algorithms.

Index Terms—Image reconstruction, maximum-likelihood
estimation, positron emission tomography, single photon emission
computed tomography.

I. INTRODUCTION

STATISTICAL image reconstruction methods have shown

improved image quality over conventional filtered backpro-

jection (FBP) methods (e.g., [5] for maximum-likelihood (ML)

reconstruction in emission tomography, and [6] for the anal-

ysis of lesion detectability). They use accurate physical models,

take the stochastic nature of noise into account, and easily en-

force object constraints like nonnegativity. However, iterative

algorithms for achieving ML or penalized-likelihood (PL) re-

construction require considerable computation per iteration; so

there has been ongoing efforts to develop fast algorithms.

A class of ordered subsets (OS) algorithms, also known as

block-iterative or incremental gradient methods, has shown sig-

nificantly accelerated “convergence.” The OS idea is to use only
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one subset (or block) of the measurement data for each update

instead of the total data. Usually, cyclic passing through every

subset constitutes one iteration.

The classical “algebraic reconstruction technique” (ART) [7],

[8] can be considered to be a type of “OS” method in which

each subset consists of a single measurement. However, most

ART methods formulate the reconstruction problem as one of

finding the solution to a system of equations that involves the

imaging physics but not the measurement statistics. Some ART

algorithms can be made to converge by introducing relaxation,

but the limiting solution has a geometric interpretation in terms

of distances to hyperplanes, rather than arising from statistical

considerations [9]–[11]. Here, we focus on OS algorithms that

are designed to maximize an objective function that captures the

statistical properties of the measurements.

The OS principle was applied to the classical expecta-

tion-maximization (EM) algorithm [12]–[14] to yield several

OS-EM variants. ML reconstruction algorithms include the

OS-EM algorithm [15], the rescaled block-iterative EMML

(RBI-EMML) algorithm [16], the row-action ML algorithm

(RAMLA) [17], and the complete-data OSEM (C-OSEM) [18].

PL reconstruction algorithms include the block sequential reg-

ularized EM (BSREM) algorithm [1] (BSREM has RAMLA as

a special unregularized case). The paraboloidal surrogates (PS)

methods [19], [20] also adopted the OS idea to construct the

OS separable paraboloidal surrogates (OS-SPS) [2], originally

named the OS transmission (OSTR) algorithm in the context of

transmission tomography.

The OS algorithms, including OS-EM, RBI-EMML, and

OS-SPS, were successful in speeding up “convergence”;

however, they are not globally convergent—not even locally

convergent—in general. (An algorithm is said to be globally

convergent if for any starting point the algorithm is guaranteed

to generate a sequence of points converging to a solution

[21, p. 182].) They usually exhibit limit-cycle like behavior.

For each update, OS algorithms use an “approximate gradient”

computed from only a part of the data. The approximation is

quite reasonable far from a solution if the subset gradients are

reasonably “balanced”; the algorithms show acceleration in the

early iterations. However, OS algorithms, particularly with a

constant stepsize, usually do not converge to a solution, e.g., a

stationary point, since the gradient approximation is not exact.

Fig. 1 illustrates this typical behavior of OS algorithms.

One method for making OS algorithms globally convergent is

relaxation, i.e., using diminishing stepsizes. This modification

comes from the intuition that the size of a limit cycle should be
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Fig. 1. Toy example of OS algorithms. (a) Trajectory of iterates of a (non-OS)
gradient method with a constant stepsize and its OS version with three subsets.
The optimal point is x̂ = (0:5; 0:5) and the initial point is x = (5;5).
(b) Normalized � difference (�(x̂) � �(x ))=(�(x̂) � �(x )) versus
iteration number. For the OS method, each subiterate is denoted.

proportional to the stepsize. BSREM and RAMLA use dimin-

ishing relaxation parameters [1], [17]. De Pierro and Yamag-

ishi [1] provided a global convergence proof for BSREM after

imposing a few a posteriori assumptions: the convergence of

the objective sequence, and the positivity and boundedness of

each iterate. In this paper, we relax these assumptions by making

some modifications to BSREM.

Kudo, Nakazawa, and Saito [22], [23] also used a relaxation

scheme in their block-gradient method applied to penalized

weighted least-squares image reconstruction for emission to-

mography; however, they ignored the nonnegativity constraint.

Their method appears to be a special case of incremental

gradient methods [3], [24], [25]. Nedić and Bertsekas analyzed

the incremental gradient methods and obtained many useful

results about their convergence properties [3], [24]. Observing

that OS-SPS is a special case of diagonally scaled version of

incremental gradient methods with a constant stepsize, in this

paper we prove the global convergence of diagonally scaled

incremental gradient methods with diminishing stepsizes,

thereby establishing global convergence of relaxed OS-SPS.

An alternate method for ensuring convergence would be to

run an OS algorithm for several iterations, then switch to a

non-OS algorithm known to be globally convergent. In the same

spirit, one could decrease the number of subsets over iterations,

or continuously decrease parameterized incrementalism as in

[27]. The incremental EM [28] can also be considered; this

method achieves convergence by applying the incremental

(OS) idea block-coordinatewise in an alternating maximization

scheme [18], [29].

We focus on relaxed algorithms in this paper. We present two

types of relaxed OS algorithms [30]: modified BSREM and re-

laxed OS-SPS, and we prove the global convergence of the al-

gorithms. Both of them use diagonally scaled gradient ascent

for each update to maximize a PL objective function. Although

the main difference between these two methods is the form

of scaling functions, the approaches of the global convergence

proofs are quite different. These algorithms are parallelizable,

i.e., able to update all pixels simultaneously and independently,

so they are computationally convenient.

In Section II, we formulate the problem for emission tomog-

raphy. In particular, we establish object constraints as a closed

and bounded set instead of the usual unbounded nonnegative

orthant. More importantly, we modify the PL objective func-

tion without changing the final solution, so that its gradients are

Lipschitz continuous on the constraint including the boundary.

This plays an essential role in subsequent convergence proofs.

Section III defines our modified BSREM and relaxed OS-SPS

algorithms. Section IV gives simulation results including dis-

cussion of relaxation parameters as related to convergence rate.

II. EMISSION TOMOGRAPHY PROBLEM

A. PL Image Reconstruction

We focus on the linear Poisson statistical model that has been

used extensively for emission computed tomography, including

positron emission tomography (PET) or single photon emission

computed tomography (SPECT), as well as for photon-limited

optical applications like fluorescence confocal microscopy [31].

Assuming usual Poisson distributions, the measurement model1

for emission scans is as follows:

Poisson

where is the number of photons counted in the th bin,

is the activity at the th pixel, is the mean

number of background events such as scatters, random coinci-

dences and background radiation, and is a system

matrix (incorporating scanning time, detector efficiencies, at-

tenuation, scan geometry, etc.) such that . The goal is to

estimate the unknown activity

based on the measurement with and

being known where denotes matrix transpose.

1For randoms-precorrected PET scans, a shifted Poisson model can be used
[32]. An extension to that case is straightforward.
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We assume that the sensitivity factors, , are nonzero

for all , which is reasonable in practice.

The log-likelihood of given can be written, ignoring con-

stants independent of , as follows:

(1)

where and . The

following properties of can be easily shown2

(i) (2)

(ii) is monotone increasing on

and monotone decreasing on (3)

(iii) is concave on (4)

For PL reconstruction, one must find a maximizer of the fol-

lowing objective function over its domain :

(5)

where

or

with

and is a regularization term. The reason for taking the domain

instead of is that the gradient of the log-likelihood is in-

finite on . The use of the feasible domain facilitates

subsequent analyses. Although the methods described here can

be easily generalized, for simplicity, we assume that is the

following type of roughness penalty function:

(6)

where is a regularization parameter that controls

the smoothness of the reconstructed image, denotes the

neighborhood of the th pixel, is a potential function, and

is a weighting factor such that . Viewing

the pixels of an image as nodes of a graph with neighboring

pixels (say, for the th pixel) connected by an edge, we

assume that the graph is connected in the sense that it is always

possible to find some sequence of edges leading from any pixel

to any other pixel [33]. We assume that is nondecreasing

in , convex, continuously differentiable, and symmetric, i.e.,

, and that . Then, is nonnegative and

convex. If , the problem becomes ML reconstruction.

1) Existence and Uniqueness: One can verify that the level

set is compact (bounded and closed)

where is a column vector of ones, using the coerciveness3

of (i.e., ) and the continuity of

on . Then, by the Weierstrass’ Theorem [26, p. 654], there

exists a (possibly nonunique) PL solution such that

.

2For convenience, we adopt the convention that log 0 = �1 and 0 � log 0 =
0.

3This can be easily shown by the assumption of nonzero sensitivity factors.

If the objective function is strictly concave on , then there

exists a unique PL solution [26, p. 685], .

We assume strict concavity for proving convergence of the

modified BSREM algorithms in Section III-A. However,

we will allow a concave objective function (possibly having

multiple solutions) for the relaxed OS-SPS algorithm, or for

more general diagonally scaled incremental gradient methods,

in Section III-B. The following Lemma (c.f. [34, Th. 1] and

[33, Lemma 1]) provides a simple sufficient condition for

the strict concavity of with a strictly convex and twice

differentiable potential function . Such potential functions

include the quadratic function and many others

suggested by Lange [33].

Lemma 1: If , then in (5) [with (6) for ] is

strictly concave on for any that is strictly convex and twice

differentiable.

Proof: The (negative) Hessian of can be computed as

follows:

with

diag (7)

for , where we interpret as 0 if . For any

, using the symmetry of and , we obtain

Since and the neighborhood system is connected by as-

sumption, for , only if or

for some . But

by assumption. So , .

Since and are nonnegative, the assumption is

equivalent to . In other words, the backprojection of the

data must be a nonzero image, which is reasonable in practice.

2) Boundedness: It is clear that a PL solution set

(8)

is bounded by the coerciveness of . In fact, for given data ,

one can compute an upper bound on the

elements of such that

(9)

See Appendix A for a method of determining . Thus, one can

search for a solution over the bounded set instead of over

. This property helps ensure that the (scaled) gradient of the

objective function is bounded on a set of interest, which is one

of essential ingredients of our global convergence proofs. For

example, the gradient of a quadratic penalty with

is not bounded on , whereas it is bounded on .

3) Differentiability: The objective function is not differ-

entiable on the set

for some

where

and (10)
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One can see that for . If a gradient-based

algorithm took a point in , it would collapse. Note that

and, thus, for the case of nonzero backgrounds, ,

. This means that zero backgrounds, , can be problem-

atic for some gradient-based algorithms. The EM algorithm for

ML reconstruction avoids this problem due to its intrinsic posi-

tivity; however, regularization complicates the situation. To cir-

cumvent the problem, we slightly modify the log-likelihood, yet

without changing the final solution set. We replace the log-like-

lihood near the problematic region with well-behaved func-

tions, e.g., quadratic approximations. We consider the following

modified objective function:

where

for and

otherwise

(11)

for some . The modified marginal log-likelihood is a

strictly concave real-valued function defined on for .

Note that for

and that is well defined on . The modified objective

function preserves the (strict) concavity of .4 Remarkably,

one can compute such that

(12)

meaning that this modified objective function has the same max-

imizer(s) as the original. See Appendix B for a method of de-

termining . With such in Appendix B, the modified objec-

tive function is real-valued on the compact set , and it has

a nice property that its gradient is Lipschitz continuous5 on

. We will, henceforth, take as our objective function but re-

vert to the notation for simplicity; likewise, will denote

for . One should be cautioned that the provided by

Appendix B could be too small to be practical in finite preci-

sion computers; nevertheless, at least we can proceed to develop

theory. For the more physically realistic case,6 where ,

we have and we need not modify the objective function.

B. OS Algorithms

Most iterative algorithms for finding a maximizer of a PL ob-

jective function use its gradient . For objective functions of

the form (1), the gradients involve a sum over sinogram indices,

i.e., backprojection. Many “parallelizable” algorithms—able to

4For strict concavity, Lemma 1 still applies to ~�. If ��� 2 nE , then its

corresponding diagonal element of WWW (���) in (7) would change to ��h (�) =
y =� ; which leads to the same conclusion.

5A function f is called Lipschitz continuous onD if there exists some L > 0
such that kf(xxx)�f(yyy)k � Lkxxx�yyyk for allxxx,yyy 2 D. A differentiable function
is Lipschitz continuous if its derivatives are bounded. Conversely, the derivatives
of a Lipschitz continuous function are bounded when they exist. Therefore, Lip-
schitz continuity conditions on the gradients of a function imply that the curva-
tures of the function, if any, are bounded.

6Any PET scan will have nonzero randoms and any real SPECT scan will be
contaminated by a scattered component and by a nonzero (but possibly quite
small) component from background radiation.

update all the pixels simultaneously—can be written in the fol-

lowing form:7

(13)

where is a relaxation parameter (or stepsize), and

is a nonnegative scaling function. We call the nonnegative func-

tion a scaling function to emphasize that it scales the

derivative. Likewise, in vector form

(14)

we call the matrix a scaling matrix or simply a

scaling function. The partial derivative of is given by

(15)

For example, (13) becomes the ML-EM algorithm if we choose

and with .

OS algorithms are obtained by replacing the sum in

(15) with a sum over a subset of .

Let be disjoint subsets of such that

, and let

(16)

be a subobjective function, resulting in

(17)

where the regularization term is included in one or more of the

’s by choosing and . (Typically, we

choose .) Suppose that the following “subset gra-

dient balance” conditions hold:

(18)

for far from the solution set or, equivalently

(19)

Then, an OS version of (13) is obtained by substituting

for , as follows8 :

(20)

for where the factor is absorbed into (or

), and we use the convention that

and

We refer to each update in (20) as the th subiteration of the

th iteration. In the tomography context, the partition

7Although, for some algorithms, we need to enforce nonnegativity each iter-
ation, we ignore this detail in this section to simplify explanation of OS princi-
ples. We do consider this important detail in the convergence proofs, however.

8One could use a relaxation sequence� which depends onm. In this case,
for global convergence, the variations of � over each cycle must be suffi-
ciently small asymptotically (as n goes to1). For example, see [25]. However,
to avoid undue complexity in convergence analysis, we focus on relaxation pa-
rameters that are held constant during each iteration, as is widely used [1], [3],
[17], [22].
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is naturally chosen so that projections within one subset cor-

respond to projections with downsampled projection angles. It

is desirable to order the subsets such that projections corre-

sponding to one subset are as “perpendicular” as possible to

previously used angles at each subiteration [8]. This strategy

has a long history; Hamaker and Solomon [35] analyzed quan-

titatively the relationship between the convergence rate of ART

and ordering in terms of the angles between the null spaces of

each projection.

Fig. 1 illustrates the behavior of an OS algorithm for a toy

example with the following objective function:

where , , ,

, , , and the maximizer is

We compare an ordinary gradient ascent method

where , and its OS version with three subsets

for

where . As can be seen in the figure,

the OS algorithm is about three times faster initially far from the

optimal point, but it converges to a limit cycle.

OS algorithms have been successful in speeding up “conver-

gence.” However, they generally exhibit limit cycle behavior

particularly with a constant stepsize . Although it is

hard to prove the existence of such a limit cycle, one can expect

that a set of limit points of a sequence gen-

erated by (20), if any, would satisfy

These conditions generally differ from the true optimality con-

ditions, e.g., for

unconstrained optimization. One may need to use a diminishing

stepsize such that to suppress the limit cycle.

Even if an algorithm with such relaxation converges to some ,

we must still ensure that the limit is a solution that belongs

to . Section III describes appropriate choices of and

that ensure global convergence.

III. GLOBALLY CONVERGENT OS ALGORITHMS

The preceding section focused on the properties of the PL

objective function for the specific application of emission to-

mography. We now turn to the computational problem of max-

imizing such objective functions. The algorithms described in

this section (and the accompanying convergence proofs in the

appendices) are applicable to a broad family of objective func-

tions that have the same general properties as the emission to-

mography case considered in Section II. Specifically, the prop-

erties that we exploit are the following: 1) is concave (or

strictly concave) and differentiable; 2) its maximizers lie in a

bounded set defined by , where is a computable

upper bound; and 3) has the summation form (17), where each

is concave. In addition, in the convergence proofs we assume

that the gradients of the functions are Lipschitz continuous.

Collectively, these are fairly unrestrictive assumptions so the al-

gorithms should have broad applicability.

To achieve the goal of maximizing over , we present two

types of relaxed OS algorithms that are globally convergent:

modified BSREM methods and diagonally scaled incremental

gradient methods of which relaxed OS-SPS is a special case. For

both of these OS algorithms, we use the subobjective functions

given in (16). The main difference is in the form of in (13).

A. Modified BSREM

De Pierro and Yamagishi [1] presented the BSREM algorithm

and proved its global convergence under the following assump-

tions: the sequence generated by the algorithm is positive

and bounded; and the objective sequence converges.

These conditions are not automatically ensured by the form of

the original BSREM. We eliminate those assumptions in our

convergence analysis by modifying the functions.

The basic idea of the modification is to ensure that all iter-

ates lie in the interior of the constraint set by choosing suit-

able scaling functions and relaxation parameters . For

EM-like algorithms including BSREM, we observe that using

the form some term can help each iterate keep

positivity, i.e., avoid crossing the lower boundary . We

enforce the upper bound similarly. Consider the following al-

gorithm called modified BSREM-I in vector notation:

(21)

for , where and diag

with

for

for
(22)

for some . (The original BSREM used .)

The convergence analysis of this type of algorithm for a

strictly concave objective function is given in Appendix C.

The first part (Lemma 2) of the analysis states that if (i)

the relaxation sequence is bounded by a sufficiently small

value and (ii) the starting point belongs to the interior of

, then the iterates generated by (21) automatically stay in

the interior of . The second part (Lemma 3–5) is about

convergence: the iterates generated by (21) converge to the

solution if (iii) , (iv)

, and (v) Int , , , where Int

denotes the interior of . But the first part says that (v) is

guaranteed if (i) and (ii) hold. So, combining two parts, one

can conclude (Theorem 1 and Corollary 2) that the modified

BSREM-I is globally convergent if (i)–(iv) hold.

A practical and critical issue is how small the relaxation

parameter should be in (i) for ensuring (v). If an iterate hits

the boundary, then all subsequent iterates remain stuck at the

boundary because the scaling function is zero on the boundary.

As shown in Lemma 2, one may compute a bound ensuring

(v) and use relaxation parameters smaller than the bound.
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However, a conservatively small bound will adversely affect

convergence rate. So the convergence theorem for BSREM-I

still leaves users with practical dilemmas. To overcome these

limitations of BSREM-I, we propose to add the following step

after (21) for each update:

for Int

otherwise
(23)

where is the projection9 of onto

for some small . Consider this

modified algorithm (21) with (23), called modified BSREM-II,

and suppose that conditions (iii) and (iv) hold. Then, (v) is al-

ways satisfied by (23) regardless of whether (i) and/or (ii) hold.

Since (iii) implies [36, p. 70] that , there ex-

ists such that satisfies (i) for . Treating

Int as a “new” starting point, one can see that the it-

erates after iterations never hit the boundary by the first part

of the analysis mentioned in the previous paragraph. This im-

plies that the step (23) becomes vacuous and in subsequent iter-

ations the modified BSREM-II becomes equivalent to the mod-

ified BSREM-I. So by the second part of the analysis the modi-

fied BSREM-II is globally convergent. The addition of step (23)

removes the conditions (i) and (ii) while retaining global con-

vergence.

In (22), any can be used for global convergence.

But we want to choose such that stepsize selection becomes

convenient, akin to the appropriateness of a unity stepsize in

Newton’s methods due to the scaling by the Hessian’s inverse.

Motivated by the EM algorithm for emission tomography, a rea-

sonable choice for is

(24)

If (one subset), (unrelaxed), and (unreg-

ularized), then (21) with (24) reduces to ML-EM except the term

in (22). Although (24) ignores the regularization term, it

seems to work well for the regularized case unless the regular-

ization term is too large compared with the log-likelihood part.

This is verified experimentally in Section IV.

If we take larger and larger , then and

. So the modified BSREM should behave quite similarly

to the original BSREM for large in practice except for our

scaling by . The upper bound seems to be more important

for convergence analysis than for practical implementation.

B. Diagonally Scaled Incremental Gradient Method

As an alternative to the BSREM methods, we consider next a

family of OS algorithms with constant scaling functions

as follows:

(25)

9For a Hilbert space H, a projection P (xxx) of xxx 2 H onto a nonempty
closed convex subset K � H is defined by P (xxx) = argmin kxxx� yyyk.
Here, the projection P (���) is easily calculated componentwise as
[P (���)] := t for � < t, [P (���)] := U � t for � > U � t, and
[P (���)] := � otherwise. So (23) can be written componentwise as
� := t for � < 0, � := U�t for � > U , and � := �

otherwise.

for where and diag

with , , and is the projection10 of

onto . We call these algorithms diagonally scaled incremental

gradient methods since if we choose , the algorithm

(25) becomes an incremental gradient method [3]. Appendix D

presents the convergence analysis of this type of algorithm for

a concave objective function (possibly having multiple solu-

tions). The iterates generated by (25) converge to a maximizer

if and as shown in Theorem 2

and Corollary 3. The global convergence holds regardless of

as long as it is diagonal with positive elements.

A practical issue is how to choose for fast convergence rate

and easy stepsize selection. Fortunately, some hints are given by

observing that the OS-SPS method, which showed fairly fast

convergence [2], is a special case of (25). In particular, (25)

becomes quadratically penalized OS-SPS for a likelihood of the

form (1) if and the scaling constants are chosen as

follows:

(26)

where , is the number of subsets and

for

otherwise.

Paraboloidal surrogates (PS) methods from which OS-SPS is

derived are optimization techniques that, for each iteration,

optimize computationally tractable paraboloidal surrogates

instead of original objective functions. Those surrogates are

characterized by their curvatures; one can optimize such

curvatures that ensure monotonicity and fast convergence under

certain conditions [20]. In OS version, OS-SPS, an accelerated

convergence speed is obtained at the expense of convergence;

in this case, the curvatures can be precomputed [2]. The terms

in the parenthesis in (26) come from “precomputed curvatures”

which are the approximated constant curvatures of separable

paraboloidal surrogates [2]. For nonquadratic penalties, the

second term in the parenthesis of (26) could be substituted with

the curvatures of the penalty function at an initial point or at a

uniform image. Although OS-SPS is not globally convergent

in general, by allowing a diminishing stepsize, we obtain a

relaxed OS-SPS that is readily shown to be globally convergent

as a special member of the family (25). Interestingly, whereas

the original PS methods [19] for emission tomography required

for monotonicity and convergence, we eliminate this

requirement here by the modification (11) of the PL.

One of required conditions for the global convergence proofs

of diagonally scaled incremental gradient methods is the bound-

edness of on . If the gradient of the penalty part

is bounded on , then we can take while retaining

10The projection is readily computed componentwise as [P (���)] =
medianf0; � ; Ug.
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global convergence since the gradient of the (modified) log-like-

lihood is bounded on . Such penalties include the Huber

penalty

for

otherwise

for some .

C. Regularization Into OS Algorithms

There are two typical ways of distributing the regularization

term into subobjective functions, i.e., how to choose in (16).

One way is to include regularization in every as in [2]

(27)

where is the number of elements in . ( for

equally sized subsets.) Another way is to take the regularization

term as a separate subobjective function as in [1]

for and (28)

where we have subobjective functions and take

. Both cases satisfy the condition .

However, the convergence rates of the two choices can differ

if the regularization parameter is not so small. Recalling the

motivations of OS algorithms, (18) and (19), one can expect

that (27) will yield faster convergence since (28) may cause

poor “subset gradient balance.” In other words, the amplitude

of a limit cycle that is supposed to be suppressed by relaxation

is larger for (28) due to significant dissimilarities between the

subobjective functions. On the other hand, (27) requires more

computation since the gradient of the regularization part should

be computed every subiteration. This additional computational

cost is proportional to the number of subsets; however, it is

usually relatively small compared with the computation of the

log-likelihood part. In experiments not shown, we have ob-

served that the choice (27) usually makes algorithms faster and

more stable, so we focus on (27) in Section IV. Nevertheless,

our convergence results apply to any choices for the ’s.

D. Subiteration-Independent Scaling Matrices are Essential

Both algorithms, (21) and (25), belong to the class (20), where

the functions are independent of subiteration index .

Classical OS-EM does not belong to this class. As pointed out

by Browne and De Pierro [17], OS-EM in general does not con-

verge to a solution even if relaxed. We generalize their argument.

One could write a more general form of OS algorithms by al-

lowing different scaling matrices over subiterations

(29)

where , and is some nonnegative definite

diagonal matrix (function). When we choose and

diag , the algorithm (29) becomes

OS-EM for . Now consider a relaxed version by as-

suming and11 . Following

[17], one can write the following expression for :

Now suppose that the sequence generated by (29) con-

verges to some . Assuming that is continuous, we

have

If , then diverges since

. So it must be the case that:

(30)

However, if the ’s are different, then (30) is gener-

ally different from the true optimality conditions, e.g.,

for unconstrained optimiza-

tion. So, in general, OS algorithms with subiteration-dependent

scaling matrices, including OS-EM and RBI-EM [16], do not

converge to the desired optimum point even if they become

convergent due to relaxation.

IV. RESULTS

In this paper, we focused on global convergence analysis. The

outline of modified BSREM and relaxed OS-SPS algorithms for

a Poisson PL in emission tomography are summarized in Table I

and II. In addition to those conditions in Table II, for a general

objective function, modified BSREM requires that is strictly

concave, and and are Lipschitz contin-

uous on . Diagonally scaled incremental gradient methods in-

cluding relaxed OS-SPS require that is bounded on and

is concave. Local convergence rate analysis will be future

work. A critical issue in practice will be how to determine re-

laxation parameters to get close to a solution within a few it-

erations. We focus on modified BSREM-II rather than modi-

fied BSREM-I in this section. The sufficient conditions on a

relaxation sequence for global convergence are the following:

and . One may try to optimize a

finite number of relaxation parameters by training [1], [8], [17]

if a reasonable training set is given for a particular task. Such re-

laxation parameters might not seem to satisfy those conditions.

However, it may not be relevant since those conditions are suf-

ficient and, moreover, asymptotic.

One simple choice of relaxation parameters satisfying those

conditions is

(31)

11If we take a diminishing stepsize (lim � = 0), we need the assump-
tion: � =1. Suppose that � <1. Since k��� � ��� k =
O(� ) (by assuming that DDD rf is bounded), we will never get to the op-
timum point if an initial point is sufficiently far from it.
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TABLE I
ALGORITHM OUTLINE FOR THE ALGORITHMS PRESENTED IN THIS PAPER

TABLE II
COMPARISON OF ALGORITHMS

for and . We run simulations using these simple

relaxation parameters. Our goal here is not to try to find the best

relaxation but to get some insight into the effects of relaxation

parameters on convergence rate through some experiments. By

design, our modified BSREM and relaxed OS-SPS are properly

scaled, meaning that even a constant works fairly well.

So we could obtain reasonably good results by setting

and tuning experimentally only .

We performed image reconstruction using two-dimensional

SPECT simulation data generated with the Shepp–Logan digital

phantom. The projection space was 128 radial bins with 3.6 mm

ray spacing and 120 angles over 360 , and the reconstructed

images were 128 128 with 3.6 mm pixel size. The distance

from the center of rotation to the detector plane was 288 mm.

The system matrix was generated by ASPIRE 3.0 [37] and it

assumed a Gaussian shaped point spread function with the fol-

lowing model for the depth-dependent full-width at half-max-

imum (FWHM):

FWHM mm

where is the distance from a pixel’s center to the detector. We

did not consider attenuation in this simulation. The total counts

were 5 10 , and corresponded to a uniform field of 10% of

background events, a very crude approximation of the effects of

scatter. We regularized the log-likelihood using the first-order

quadratic penalty with , and we took a

FBP reconstruction as a starting image for PL reconstruction.

Because the relaxed OS algorithms are additive updates, the

scaling of the initial image can affect the initial convergence

rate, so we implemented the FBP algorithm carefully with re-

spect to the global scale factor. In contrast, the classical ML-EM

and OS-EM methods for emission tomography are multiplica-

tive, so the initial scaling is unimportant.

Fig. 2 compares two non-OS algorithms: SPS with optimum

curvature [20] and De Pierro’s modified EM [38]; and two

unrelaxed OS algorithms: unrelaxed OS-SPS and unrelaxed

modified BSREM with and with 8 subsets and 40

subsets. The OS algorithms initially increase the objective

function much faster than the non-OS ones, but they get stuck

at suboptimal points. The figure shows the normalized

difference versus iteration

number where is the solution estimated by 5000 iterations

of De Pierro’s modified EM, a globally convergent method

[38]. One can see that the scaling factors (22) with (24), and
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Fig. 2. Comparison of normalized � difference (�(�̂��) � �(��� ))=(�(�̂��)�
�(��� )) versus iteration number for non-OS algorithms including SPS and
De Pierro’s modified EM denoted by DPEM; and unrelaxed (i.e., constant
stepsize) OS algorithms including unrelaxed OS-SPS and unrelaxed modified
BSREM (with 8 and 40 subsets).

Fig. 3. Comparison of normalized� difference (�(�̂��)��(��� ))=(�(�̂��)�
�(��� )) versus iteration number for unrelaxed modified BSREM and relaxed
modified BSREM with 8 and 40 subsets. For relaxed modified BSREM-8 (top)
and relaxed modified BSREM-40 (bottom),� = 1=((1=15)n+1) and� =
1=(n+ 1) are used, respectively. This figure shows every subiterate.

(26) for the OS algorithms are reasonable since the stepsize

of unity worked fairly well. For both unrelaxed OS-SPS and

unrelaxed modified BSREM, using more subsets accelerated

“convergence” but made the algorithms reach a limit cycle

earlier. Roughly speaking, in early iterations more subsets

are desirable but in later iterations fewer subsets would be

preferable in the unrelaxed case.

Now, we see how relaxation improves convergence. Fig. 3

compares unrelaxed modified BSREM and relaxed modified

BSREM. As can be seen in the figure, the unrelaxed modified

BSREM algorithms converged to a limit cycle, whereas the re-

laxed ones showed better performance in increasing the objec-

tive function by suppressing the amplitude of the cycle (note

Fig. 4. Comparison of normalized� difference (�(�̂��)��(��� ))=(�(�̂��)�
�(��� )) versus iteration number for unrelaxed OS-SPS and relaxed OS-SPS
with 8 and 40 subsets. For relaxed OS-SPS-8 (top) and relaxed OS-SPS-40
(bottom), � = 1=((1=5)n+ 1) and � = 1=(n+ 1) are used, respectively.
This figure shows every subiterate.

the logarithmic scale). We chose for

relaxed modified BSREM-8 and for relaxed

modified BSREM-40. In this experiment, the second part of the

scaling function in (22) was never invoked due to the very large

bound used; the scaling matrix we used was effectively the

same as that of original BSREM except for . Fig. 4 shows re-

sults for relaxed OS-SPS that are similar to those for modified

BSREM. We chose for relaxed OS-SPS-8,

and for relaxed OS-SPS-40. Fig. 5 summa-

rizes Fig. 3 and Fig. 4. We also plotted distance to the solution

versus iteration number; although not shown in this

paper, the plots showed similar results. The reconstructed im-

ages are shown in Fig. 6.

We observed, from experiments with relaxation parameters,

that applying relaxation (less than unity) before an algorithm

reaches a limit cycle far from the optimum point does not im-

prove convergence rate because it slows down the algorithm’s

progress toward the optimum point. Apparently, relaxation is

most helpful when an algorithm is nearing a limit cycle. Gen-

erally speaking, rapidly diminishing stepsizes are preferable for

an algorithm using many subsets since such algorithms tend to

reach a limit cycle quickly. But relaxation should be applied

gradually in cases where it takes many iterations for an algo-

rithm to reach a limit cycle, e.g., unregularized ML reconstruc-

tion or when few subsets are used.

V. CONCLUSION

We presented two types of globally convergent relaxed OS

algorithms: modified BSREM and relaxed OS-SPS which differ

in their scaling functions . We proved global convergence

of both algorithms without a posteriori assumptions. A natural

subsequent question is about convergence rate. This is related

to how to determine the relaxation parameters. For relaxation

parameters, we showed through experiments that relaxation
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Fig. 5. Comparison of normalized � difference (�(�̂��) � �(��� ))=(�(�̂��)�
�(��� )) versus iteration number for unrelaxed OS algorithms and relaxed ones.
(a) Unrelaxed modified BSREM and relaxed modified BSREM. This figure is
the same as Fig. 3 except that it shows only each iterate. (b) Unrelaxed OS-SPS
and relaxed OS-SPS. This figure is the same as Fig. 4 except that it shows only
each iterate.

improves the OS algorithms convergence rates when the algo-

rithms are approaching a limit cycle. Hopefully, future work

on quantitative convergence rate analysis will provide more

useful rules for determining relaxation parameters, perhaps

adaptively.

The practical question of whether it is preferable to achieve

convergence by using relaxation or by reducing the number of

subsets with iteration remains open, and may simply be a matter

of preference. When iterative algorithms become implemented

in special purpose hardware, the consistent data flow provided

by the relaxation approach may be beneficial.

In this paper, we have not tried to evaluate the relative merits

of modified BSREM and relaxed OS-SPS. Both algorithms are

globally convergent, and simulation results showed that appro-

priate relaxation accelerates convergence similarly for both of

Fig. 6. (a) Shepp-Logan digital phantom (true image). (b) FBP reconstruction
(starting image). (c) PL reconstruction using 20 iterations of relaxed modified
BSREM with eight subsets. (d) PL reconstruction using 20 iterations of relaxed
OS-SPS with eight subsets.

them. Finding better scaling functions in terms of convergence

speed and computational efficiency could also be interesting fu-

ture work.

The algorithms presented in this paper are easily adapted to

transmission tomography for zero backgrounds . How-

ever, for a nonzero background case, the PL objective function

can become nonconcave [20]. It will also be interesting future

work to investigate whether the relaxed OS algorithms can be

proved to converge to local maxima in nonconcave cases.

APPENDIX A

In this Appendix, we construct an upper bound that makes

(9) hold. Define

(32)

Suppose is a vector in for which the set of “too large” el-

ements is nonempty. Define

by clipping as . It suffices to show that

. First, note that, for each , if there

exists such that , then

(33)

(34)

where in (33) we used the fact that , and that

, and (34) is due to our construction (32)

of . So by (3). Second, if such
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does not exist for some , then

since . Third, one can verify that there ex-

ists some for which such exists by the assumption

of nonzero sensitivity factors. Combining these, we have

. One

can also show that “clipping” all elements of greater

than will always decrease the roughness penalty in

(6) due to our assumption that the potential function

is nondecreasing in . Now, we have established that

.

One can also construct an upper bound for a broader family of

penalty functions more general than those based on differences

of neighboring pixels with a nondecreasing potential function,

although not shown in this paper.

APPENDIX B

In this Appendix, we determine such that (12) holds.

Pick any , e.g., . Define

(35)

where was defined in (10). For , the condition

implies that the modified marginal log-likelihood defined

by (11) satisfies (2)–(4). The second inequality implied by (35)

ensures that for , which

is used below.

First, we show that , ,

where was defined in (8). Suppose that (a nontrivial

case) and that , i.e., for some . Then,

one can obtain

(36)

(37)

(38)

(39)

where (36) is a consequence of (2) and the assumption that is

nonnegative; in (37) we used (3) with the fact that

; (38) is from the definition, ; and (39) is

a consequence of (35). This implies that for ;

that is, .

Similarly, one can verify that

. But since for , we

have . Now since by Appendix A, we have

, where was defined in (12).

APPENDIX C

In this Appendix, we prove that the modified BSREM-I (21)

with (22) is globally convergent. The required assumptions on

the objective function are the following: is strictly concave

on ; and and are Lipschitz continuous

(and, thus, bounded) on . They are satisfied by our (modified)

Poisson PL.

Lemma 2: Suppose that is a sequence generated by

(21) with Int . Then, there exists such that if

, then Int .

Proof: Since is bounded over for all

and , one can choose such that

and

Suppose that , and Int . If

one can show that , using the

following expression for :

If , one can also show that ,

using the following expression for :

This implies that Int .

Lemma 3: Suppose that is a sequence generated

by (21) with such that and

. If , , then converges

in and there exists a limit point of such that

Proof: Using the definition of the sequence , we have

(40)

where the last equality is obtained as follows by Lipschitz con-

tinuity and boundedness of on . In particular,

for some positive , we have
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Now consider the objective sequence . Since

is Lipschitz continuous on , we have [39, p. 6]

(41)

Using (40) and (41), for large , we establish

(42)

Now, in view of (i) ; (ii) the boundedness of

on ; and (iii) the nonnegative definiteness of ,

using (42), one can show that

for some and some large . This implies that

Given any ,

suppose that there exists such that

. Then, since , we have

, which is a con-

tradiction. So it must be the case that there exists a subsequence

of such that with

, i.e, since

is a nonnegative definite diagonal matrix.

On the other hand, from (42), one can show that

is a Cauchy sequence in in view of and

. This implies that

converges [36, p. 46].

Lemma 4: Suppose that is a sequence generated by

(21) with such that . If

, then .

Proof: Since is bounded on , using

, we have

as .

Corollary: .

Lemma 5: The limit point in Lemma 3 such that

is a maximizer of over if

Int .

Proof: We extend the proof of [17, Prop. 3]. It is clear that

if . Considering the optimality

conditions [39, p. 203], we need to prove that implies

, and implies .

Define where and

and and

. We show that .

Since is continuous on , there exists

such that if , then and

, where

.

Suppose that where is sufficiently large. Then,

using Lemma 4, we have since is large. For

, since , one can show

Then, using the boundedness and Lipschitz continuity of ,

we have

Now, we have , i.e., since

. Similarly, one can show that

for .

Let be a subsequence of such that

. Let .

If for some , set . Then,

is a monotone increasing sequence of nonnegative integers

such that for for large .

Suppose that , i.e., stays in

for large . Then, and

for some large . This is

a contradiction since we have assumed that has a limit

point such that and .

So it must be the case that . Now we have

and

for large . Since and

, we have

and . By Corollary

1, and .

Now one can construct a subsequence of , which

is also a subsequence of , such that

with and but

(since and, thus, ). Then,

by Lemma 3. We have two different maximizers and of

over and .

This is a contradiction since is strictly concave. So it must be

the case that .

Theorem 1: A sequence generated by (21), with suffi-

ciently small such that and

, converges to .

Proof: By Lemmas 2, 3, and 5, the maximizer is a limit

point of . Suppose that is a limit point of . Then,

by Lemma 3. This implies that is also a

maximizer. By the uniqueness of the maximizer, . So

has a unique limit point . This implies that the bounded

sequence converges to by [26, Prop. A.5, p. 652].

Corollary 2: , .

Proof: Use Lemma 4 and Theorem 1.

APPENDIX D

In this Appendix, we prove the global convergence of the

diagonally scaled incremental gradient method (25). The re-

quired assumptions on the objective function are the following:

is bounded on and is concave. They are satisfied

by our (modified) Poisson PL. Define a norm on



AHN AND FESSLER: GLOBALLY CONVERGENT IMAGE RECONSTRUCTION FOR EMISSION TOMOGRAPHY USING RELAXED OS ALGORITHMS 625

by for . Suppose that

.

Lemma 6: Let be a sequence generated by (25). Then,

for any , one can show

for all and some .

Proof: One can verify that the algorithm (25) is equivalent

to the following:

for , where ,

, and . Then,

use [3, Lemma 2.1].

Lemma 7: Suppose that is a sequence generated by

(25) with such that and

. Then, .

Proof: The proof is due to [4, Prop. 1.2]. Assume for con-

tradiction that there are , , and such that

for all . Since , one

can assume that is so large that where is a

constant from Lemma 6. Using Lemma 6, one obtains

for all . Summing up, this gives

for all . This is a contradiction since .

Theorem 2: Let be the sequence generated by (25) with

such that and . Then,

converges to some ,

.

Proof: Using Lemma 6 with some , we have

(43)

for all . Since , we have

for all and some where is a constant from Lemma 6.

This implies that since

, . Therefore, (43) implies that is bounded.

By Lemma 7, there exists a subsequence of such

that . Since is bounded, there

exists a subsequence of such that con-

verges to some [26, p. 652]. By the continuity of ,

we have , that is, We have obtained

a limit point of . Now, we follow the line of

the proof of [4, Prop. 1.3]. For any , take such

that and

. Using Lemma 6, one obtains

for all .

Corollary 3: , .

Proof: Use with the assumption that

is bounded on .
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