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� Introduction

This paper is devoted to seeking a minimum of a convex continuous function f �
RN � R� We assume that for each y � RN we can compute the value fy� and
an arbitrary subgradient gy�� i�e� one element of the subdi	erential �fy� called
generalized gradient in Clarke ������ Since f is assumed to be convex� then for all y
except in a set of zero Lebesgue� measure� f is di	erentiable at y�

The most sophisticated globally convergent methods for nonsmooth convex opti

mization are various modi�cations of bundle methods see e�g� Kiwiel ����� M�akel�a
and Neittaanm�aki ����� Schramm and Zowe ����� Lemar�echal and Sagastiz�abal �����
Luk�san and Vl�cek ������ Instead of the singleton fk � fxk�� gk � �fxk�� the bundle
ffkj � gj�jj � Jkg is used in the k
th iteration� k � �� where fkj � fyj� � xk � yj�T gj�
gj � �fyj�� Jk � f�� � � � kg� x�� � � � � xk are iterates and y�� � � � � yk are trial points� The
piecewise linear function

�fkx� � max
j�Jk

ffyj� � x� yj�Tgjg � max
j�Jk

ffxk� � x� xk�
Tgj � �kj g� ����

where
�kj � fxk�� fkj � fxk�� fyj� � yj � xk�

T gkj � j � Jk� ����

are non
negative since f is convex� linearization errors� is constructed and the direction
vector

dk � arg min
d�RN

n
�fkxk � d� � �

�
dTBkd

o
����

is determined the additional quadratic term in ���� has a similar signi�cance as in
the trust region approach�� Minimization subproblem ���� can be replaced by the
quadratic programming subproblem

dk� �k� � arg min
�d����RN��

n
�
�d

TBkd � �
o

subject to � �kj � dT gj � �� j � Jk� ����

The most popular proximal bundle methods are based on the choice Bk � �kI where
�k� k � � are weighting coe�cients� These methods require only ON� operations for
solving a system with the matrix Bk so that they are very e�cient measured by the
computational time� Another possibility is to use aggregate Hessian matrices� The
resulting bundle
Newton method� see Luk�san and Vl�cek ����� reduces signi�cantly
the number of iterations and function evaluations� but it requires ON�� operations
for solving a system with the matrix Bk� A natural idea is to generate matrices Bk�
k � �� by using variable metric VM� updates� but it leads to methods� which does not
overcome e�ciency of proximal bundle methods see e�g� Lemar�echal ������ The most
promising results are presented in Lemar�echal and Sagastiz�abal ����� where reversal
quasi
Newton updates together with a special curvilinear search procedure are used�
The resulting algorithm requires ON�� operations for solving a system with the matrix
Bk� Nevertheless� time consuming quadratic programming subproblems have to be
solved�

The development of our VM method was motivated by an observation that standard
VM methods are relatively robust and e�cient even in the nonsmooth case see e�g�
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Lemar�echal ���� and also our experiments in Table ��� Their advantage consists in
a fact that the time consuming quadratic programming subproblem ���� need not be
solved� Although standard VM methods require more function evaluations than bundle
methods� the total computational time is frequently less�

On the other hand� no global convergence is proved for standard VM methods� ap

plied to nonsmooth problems� and possible failures or inaccurate results can sometimes
appear in practical computations� Our main purpose was to obtain a VM method
that does not require solution to the quadratic programming subproblem ����� but is
globally convergent applied to a convex nonsmooth function� For this purpose� ideas
which are essential for bundle methods were used� The basic di	erence compared with
standard VM methods consists in the utilization of null steps that serve for obtaining
a su�cient information about a convex nondi	erentiable function� In this connection�
a line search� typical for standard VM methods� has been replaced by a simple step
selection� which is either accepted descent step� or not null step�� The VM update
is carried out in both cases� whenever conditions for positive de�niteness are satis�ed�
To prove global convergence� additional features of bundle methods� namely simple
aggregation of subgradients and application of linearization errors have to be utilized�
These principles guarantee convergence of aggregate subgradients to zero and allow us
to use a suitable termination criterion� To improve robustness and e�ciency of the
method� the stepsize selection based on the polyhedral approximation of the objective
function and a suitable matrix scaling are �nally added�

The paper is organized as follows� Section � is devoted to a description of a new VM
method for convex nonsmooth minimization� Section � contains the global convergence
theory� In Section �� we give more details concerning implementation of the method and
in Section � we describe numerical experiments con�rming its computational e�ciency�

� Derivation of the method

The algorithm given below generates a sequence fxkg�k�� � RN of iterates that should
converge to a global minimizer of the convex function f � RN � R� Besides these
basic points� the algorithm also calculates trial points yk� � xk� ykj�� � xk � tkjd

k
j �

j � � in the k
th iteration� where tkj � �tmin� tmax� is an appropriately chosen stepsize�
dkj � �Hk

j �gkj is a direction vector� �gkj is an aggregate subgradient and Hk
j represents a

VM approximation of the aggregate inverse Hessian matrix� If the descent condition
fykj��� � fxk��c�tkjwk

j is satis�ed� where c� � �� ���� is �xed and �wk
j 	 � represents

the desirable amount of descent� then xk�� � ykj�� descent step�� Otherwise� null steps
are utilized� which do not have in�uence on the sequence of basic points� but accumulate
an information about the minimized function� The aggregation is very simple� having
the basic subgradient gk � �fxk�� the trial subgradient gkj�� � �fykj��� and the
current aggregate subgradient �gkj � we set

�gkj�� � 
kj��gk � 
kj��g
k
j�� � 
kj���g

k
j � ����

where 
kj�i � �� i � f�� �� �g are appropriately chosen scalars� These scalars can be
easily determined by minimization of a simple quadratic function� which depends on
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a convex combination of this three subgradients and two modi�ed linearization errors
see below and Step � of Algorithm ��� This approach retains global convergence�
but eliminates solution of the rather complicated quadratic programming subproblem
����� which appears in standard bundle methods� Note that the global convergence
is assured also in the simpler case when 
kj�� � �� i�e� �gkj�� is a convex combination of
only two subgradients gkj�� and �gkj � However� this simpli�cation slightly deteriorates
robustness of the method� e�g� increases sensitivity to the stepsize determination after
the null steps see Section ��� Moreover� the situation when gTk d

k
j�� � � occurred in

numerical experiments� was much more frequent in the simpli�ed case�
Note furthermore that the problem to minimize the function ���� in the Step � of

Algorithm � is the dual to the following primal problem

minimize
d�RN

n
�
�
dT Hk

j ���d � max�dT gk���kj�� � dT gkj������kj � dT �gkj �
o
� ����

In analogy with bundle methods� the value �kj�� should be the linearization error
fxk��fykj����t

k
j d

k
j �
Tgkj�� see ������ Unfortunately� it leads to theoretical di�culties

when the stepsize tkj is greater than �� Therefore we divide the linearization error by
tkj see ������

The matrices Hk
j are generated using usual VM updates� After null steps� the sym


metric rank one SR�� update see Fletcher ����� is used� since it preserves bound

edness of generated matrices as required in the global convergence theory� Because
this boundedness is not necessary after descent steps� the standard BFGS update see
Fletcher ����� appears to be more suitable�

Even if the stepsize selection is not relevant for proving global convergence� e�ciency
of the algorithm is very sensitive on its realization� In fact� a bundle containing trial
points and corresponding function values and subgradients is required for e�cient
stepsize selection� Nevertheless� the stepsize selection does not require time consuming
operations� We discuss details in Section �� To test whether the computed stepsize
is too small� the bundle parameter skj see Section �� and the scaling parameter � is
determined and if � is too large after descent steps� the inverse Hessian matrix is scaled
and the BFGS update is not performed� which does not have an in�uence on the global
convergence but improves e�ciency of the method�

Because the proof of global convergence requires boundedness of the matrices
Hk

j ���� the correction kI� k � �� is added to Hk
j if needed� In descent steps� if

subgradients are identical in consecutive iterations� we extrapolate doubling the step

size if possible to quicker exit such region�

Now we are in a position to describe the method in detail� We shall state the
following basic algorithm�

Algorithm ��

Data� A lower and upper bound for descent steps tmin � �� �� and tmax � �� respectively�
a descent parameter c� � �� ����� a �nal accuracy tolerance � � �� correction
parameters  � �� �� and L � � and a matrix scaling bound � � ��
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Step �� Initiation� Choose the starting point x� � RN � compute fx��� g� � �fx���
choose positive de�nite matrix H� e�g� H� � I� and set the scaling parameter
value � � � and the correction value � � � Initialize the extrapolation and
matrix scaling indicators iE � iS � �� the function evaluations counter for matrix
scaling nS � � and the iteration counter k � ��

Step �� Start of iteration loop� Set �gk� � gk� � gk� ��k� � �k� � �� yk� � xk and �Hk
� � Hk�

For this iteration� initialize the corrections and updating indicators iC � iU � ��
the corrections counter nC � � and the index variable for null steps j � ��

Step �� Corrections� Set �wk
j � �gkj �T �Hk

j �gkj � ���kj � If �wk
j 	 kj�gkj j� or iC � iU � �� then set

wk
j � �wk

j � kj�gkj j�� Hk
j � �Hk

j � kI ����

and nC �nC � �� otherwise set wk
j � �wk

j and Hk
j � �Hk

j � If nC � L then set iC ���

Step �� Stopping criterion� If wk
j � �� then stop xk is an approximate minimizer��

Step �� Trial point determination� If iE � �� then set dkj � �Hk
j �gkj and determine

tkj � �tmin� tmax� and the bundle parameter for matrix scaling skj � �� otherwise
set tkj � �tkj and iE � �� Set ykj�� � xk � tkjd

k
j � nS � nS � � and compute fykj����

gkj�� � �fykj���� If skj 	 � then set � � �� � min���max��� skj ������

Step �� Descent step� If
fykj���� fxk� � �c�tkjwk

j � ����

then set xk�� � ykj��� gk�� � gkj��� tk � tkj � dk � dkj � ��k � ��kj � �gk � �gkj � wk � wk
j �

Hk � Hk
j � k�� � min���j�gkj� j�gkj��k � ��� otherwise go to Step �� If gk�� � gk

and tkj 	 tmax��� then set iE � �� k � k � � and go to Step �� otherwise go to
Step ��

Step 	� Null step� Set
�kj�� � fxk�� fykj�����t

k
j � dkj �

T gkj�� ����

and determine multipliers 
kj�i � �� i � f�� �� �g� 
kj�� � 
kj�� � 
kj�� � �� which
minimize the function

�
�� 
�� 
�� � j
�W k
j gk � 
�W

k
j g

k
j�� � 
�W

k
j �gkj j� � ��
��

k
j�� � 
���kj �� ����

where W k
j � Hk

j ����� Set

�gkj�� � 
kj��gk � 
kj��g
k
j�� � 
kj���g

k
j � ��kj�� � 
kj���

k
j�� � 
kj����kj � ����

Step 
� SR� update� Let ukj � gkj�� � gk and vkj � Hk
j u

k
j � tkjd

k
j � If

�gkj �Tvkj 	 � ����

and� in case of iC � �� furthermore

kj�gkj��j� � ��gkj���
Tvkj �

��ukj �
Tvkj and Nk � jvkj j��ukj �Tvkj � ����
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then set iU � � and
�Hk
j�� � Hk

j � vkj vkj �T�ukj �
Tvkj � �����

otherwise set iU � � and �Hk
j�� � Hk

j � Set j � j � � and go to Step ��

Step �� Matrix scaling� If � � � then set iS � iS � �� If � �
p
� and nS � � and iS � ��

then set nS � �� iS � �� Hk�� � �Hk� � �
p
�� k � k � � and go to Step ��

Step �� BFGS update� If gk�� � gk and tkj 	 tmax��� then set iE � �� k � k � � and go to
Step �� otherwise set uk � gk�� � gk� If dTk uk � jdkj����� then set

Hk�� � Hk �

�
tk �

uTkHkuk
uTk dk

�
dkd

T
k

uTk dk
� Hkukd

T
k � dkHkuk�T

uTk dk
� �����

otherwise set Hk�� � Hk� k � k � � and go to Step ��

A few comments on the algorithm are in order�
The condition ���� or dkj �

Tukj � tkj d
k
j �
T Hk

j ���dkj �� which implies that ukj �
Tvkj � �

by Lemma �� assures positive de�niteness of the matrix obtained by the SR� update
see e�g� Fletcher ������ Similarly� the condition dTk uk � � assures positive de�niteness
of the matrix obtained by the BFGS update dTk uk � � holds whenever f is convex��
Therefore� all matrices Hk� �Hk

j � Hk
j generated by Algorithm � are positive de�nite�

Correction parameters k�� are chosen in such a way to be small for both small
and large values of �gk� The corrections ���� are used automatically� after every SR�
update� only if the condition �wk

j 	 kj�gkj j� has been satis�ed at least L times� In this
way we have a possibility to eliminate the use of conditions ���� which restrict the
use of the SR� update� at the beginning of the iterative process� where the SR� update
may have a signi�cant in�uence on the rate of convergence�

The minimization of the quadratic function ���� and the determination of the
stepsize tkj and the bundle parameter for matrix scaling skj in Step � will be discussed
in Section ��

The conditions for matrix scaling in Step � and corresponding relations were estab

lished empirically�

� Global convergence of the method

In this section� we prove global convergence of Algorithm � under the assumption that
the function f � RN � R is convex and the level set fx � RN jfx� � fx��g is
bounded� For this purpose� we will assume that the �nal accuracy tolerance � is set to
zero�

Lemma � Let the function f � RN � R be convex Assume that at least j � � null
steps are generated in the k�th iteration of Algorithm � Then

� �kj�� � dkj �
T gkj�� � �c�wk

j � �kj�� � �� ��kj � �� ����

If in addition the condition ���� holds� then ukj �
Tvkj � �

�



Proof� Since f is convex and gkj�� � �fykj���� we can write fxk� � fykj��� �
tkj d

k
j �
Tgkj�� � �� thus �kj�� � � by ����� The inequality ��kj � � follows from ���� by

induction� Using ���� and the fact that inequality ���� does not hold in a null step�
we obtain

��kj�� � dkj �
Tgkj�� � fykj���� fxk���t

k
j � �c�wk

j �

If �gkj �Tvkj 	 � then �gkj �� � and dkj �
Tukj � dkj �

Tukj � �gkj �Tvkj � �tkj dkj �T �gkj �
tkj �gkj �THk

j �gkj � � by positive de�niteness of Hk
j � The last inequality implies that

ukj �� �� which yields ukj �
THk

j u
k
j � �� Using the Cauchy inequality� we obtain

tkj �d
k
j �
Tukj �

� � tkj ��g
k
j �THk

j u
k
j �
� � tkj �gkj �THk

j �gkj ukj �
THk

j u
k
j �

� ukj �
THk

j u
k
j ��tkj dkj �T �gkj � 	 ukj �

THk
j u

k
j �d

k
j �
Tukj ��

which gives ukj �
Tvkj � ukj �H

k
j u

k
j � tkj d

k
j �
Tukj � �� �

Lemma � Let at least j � � � � null steps be generated in the k�th iteration of
Algorithm � Then the numbers 
k�ji � �� i � �� � � � � j� exist satisfying

�gkj � ��kj � �
jX
i��


k�ji gki � �
k
i ��

jX
i��


k�ji � �� ����

Proof� The proof will proceed by induction� If j � � then we set 
k��� � �� Let
n � f�� � � � � j��g and let ���� hold for j replaced by n� De�ne 
k�n��� � 
kn���
kn��


k�n
� �


k�n��i � 
kn��

k�n
i for � � i � n� 
k�n��n�� � 
kn��� It is clear that 
k�n��i � � for all i � n��

and
n��X
i��


k�n��i � 
kn�� � 
kn��

�

k�n� �

nX
i��


k�ni

�
� 
kn�� � ��

Using the relations ����� we obtain in view of �k� � �� gk� � gk

�gkn��� ��kn��� � 
kn��g
k
� � �

k
�� � 
kn��g

k
n��� �

k
n��� �

nX
i��


kn��

k�n
i gki � �

k
i � �

n��X
i��


k�n��i gki � �
k
i ��

�

Lemma � Let the function f be convex and the quantities �gkj � ��kj � j � � be generated
in the k�th iteration of Algorithm � Then

fz� � fxk� � z � xk�
T �gkj � tmax��kj ����

for all z � RN 

Proof� Lemma � implies that the numbers 
k�ji � �� i � �� � � � � j� exist such that
���� holds� Since gki � �fyki �� we can write

fz� � fyki � � gki �T z � yki � � fxk� � z � xk�
T gki � tki���

k
i

�



for an arbitrary z � RN and all i � �� � � � � j tk	 can be chosen arbitrarily� since �k� � ���
Using Lemma �� we obtain

fz� �
jX
i��


k�ji fz� �
jX
i��


k�ji fxk� � z � xk�
T

jX
i��


k�ji gki � tmax

jX
i��


k�ji �ki �

� fxk� � z � xk�
T �gkj � tmax��kj � �

Lemma � Let the function f be convex If Algorithm � terminates due to wk
j � ��

then the point xk is a global minimizer of f 

Proof� It follows from wk
j � � that �gkj � �� ��kj � � and Lemma � implies that

fz� � fxk� for all z � RN � �

From now on we assume that Algorithm � does not terminate� i�e� that wk
j � � for

all generated indices k and j�

Lemma � Let vectors p� q and numbers w � �� � � �� � � �� M � �� c � �� ����
satisfy the conditions w � jpj� � ��� � � pT q � cw and max�jpj� jqj�p�� � M  Let
Q
� � j
q � � � 
�pj� � ��
� � �� 
���� b � � � �c���M� Then

minfQ
�j
 � ��� ��g � w � w�b��

Proof� We obtain after straightforward manipulations

Q
� � jpj� � �� � �
�pT q � jpj� � � � �� � 
�jp� qj� �
� w � �
�cw � � � jpj��� � � � �� � 
�jpj� jqj�� �
� w � �
c � ����w � �
�M� � w � 
� � �c�w � �
�M��

The last expression reaches its minimumfor �
 � w���c���M�� � jpj�������M�� �
M� � �M����M�� � ��� 	 �� thus we have

minfQ
�j
 � ��� ��g � Q�
� � w � �w�b� � w�b� � w �w�b�� �

Lemma � Let the number of null steps be in�nite in the k�th iteration of Algorithm �
Then an index j	 � � exists such that

wk
j�� � �gkj���

THk
j �gkj�� � ���kj��� T rHk

j��� � TrHk
j � ����

for all j � j	

Proof� If nC 	 L for all j � �� then we can take the index of the null step in which
nC changed last as j	 or j	 � � if nC � � for all j � ��� To see this� let j � j	� Then
wk
j�� � �wk

j�� and Hk
j�� � �Hk

j��� If the SR� update is not used then ���� holds with
equalities� otherwise Lemma � implies that ukj �

Tvkj � �� which together with �����
gives �����

�



If nC 	 L does not hold for all j � � then we set j	 equal to the index of the null
step in which iC � � occurred �rst� Then the matrix Hk

j�
� kI is positive de�nite�

since �Hk
j�

is positive de�nite and Hk
j�

� �Hj� � kI by the de�nition of j	 � �� We can
easily prove by induction that all matrices Hk

j � kI� j � j	 are positive de�nite� If

the SR� update is used then iC � iU � � and therefore Hk
j�� � �Hk

j�� � kI� otherwise

the matrix �Hk
j�� � kI � Hk

j � kI is positive de�nite and the more so is the matrix
Hk
j�� � kI��

Assume that j � j	� If the SR� update is not used then iU � � and �Hk
j�� � Hk

j � thus
�wk
j�� � kj�gkj��j�� since the matrix Hk

j �kI is positive de�nite� Therefore wk
j�� � �wk

j���

Hk
j�� � �Hk

j�� � Hk
j and ���� holds with equalities� If the SR� update is used� then

all conditions ����
���� are satis�ed and iC � iU � �� therefore the corrections ����
with j replaced by j � �� are realized� Using ������ we can write

wk
j�� � �gkj���

THk
j �gkj�� � ���kj�� � kj�gkj��j� � ��gkj���

Tvkj �
��ukj �

Tvkj

and the �rst part of ���� follows from the �rst part of ����� Furthermore� �����
implies

TrHk
j��� � TrHk

j � � kN � jvkj j��ukj �Tvkj
and the second part of ���� follows from the second part of ����� �

Lemma � Let the function f be convex and the number of null steps be in�nite in
the k�th iteration of Algorithm � Then the point xk is a global minimizer of f 

Proof� Since

�gkj���
THk

j �gkj�� � ���kj�� � �
kj��� 

k
j��� 


k
j��� � ��� �� �� � wk

j

by ����� the Lemma � implies that wk
j�� � wk

j for j � j	 and therefore the sequences
fwk

j g�j��� fW k
j �gkj g�j��� f��kj g�j�� are bounded� Moreover� Lemma � assures boundedness

of the sequences fHk
j g�j��� fW k

j g�j��� which together with jdkj j � jHk
j �gkj j � kW k

j kjW k
j �gkj j�

j � �� yields boundedness of fdkjg�j��� Since tkj � tmax� j � �� the sequence fykj g�j�� is
also bounded and the local boundedness of �f see Kiwiel ����� implies boundedness
of fgkj g�j�� and fW k

j g
k
j��g�j��� Denote

M � supfjW k
j g

k
j��j� jW k

j �gkj j�
q

��kj jj � j	g� b � � � �c����M� ����

and assume �rst that wk
j � � � � for all j � j	� Since

min

�
�
�� 
�� 
��j
i � �� i � �� �� ��

�X
i��


i � �

�
� minf��� 
� � � 
�j
 � ��� ��g �

we can use ����� Lemma � and Lemma � with p � W k
j �gkj � q � W k

j g
k
j��� w � wk

j �
� � ��kj � � � �kj��� c � c� to obtain

wk
j�� � �gkj���

THk
j �gkj�� � ���kj�� � wk

j � wk
j b�

� 	 wk
j � �b��

�



for j � j	 and thus� for su�ciently large j� we have a contradiction with the assumption
wk
j � �� Therefore wk

j � � as j �	� which together with wk
j � �gkj �THk

j �gkj � ���kj and
positive de�niteness of all matrices Hk

j gives ��kj � � as j �	� Since � � kj�gkj j� � wk
j

see ���� and correction conditions in Step �� and k � �� we can write �gkj � � as
j �	� Using Lemma � and letting j � 	� we obtain fz� � fxk� for all z � RN �
�

Theorem � Let the function f � RN � R be convex and suppose that the sequence
fxkg is bounded �eg when the level set fx � RN jfx� � fx��g is bounded� If
Algorithm � terminates in the k�th iteration� then the point xk is a global minimizer of
f  Otherwise� ie when the number of iterations is in�nite� then every cluster point
of fxkg is a global minimizer of f 

Proof� The �rst assertion follows immediately from Lemma � and Lemma �� Thus
we can restrict to the case when the number of iterations is in�nite� Let �x be a cluster
point of fxkg and K � f�� �� � � �g be an in�nite set such that xk

K� �x� Continuity of

f implies that fxk�
K� f�x� and therefore fxk� 
 f�x� by monotonicity of ffxk�g�

which follows from the descent condition ����� Using positive de�niteness of Hk
j and

the condition ����� we obtain

� � �c���k � c�wk � fxk�� fxk�����tmin � �� k � �� ����

thus ��k � �� Furthermore� correction conditions in Step � and relations ����� ����
imply that � � c�tminkj�gkj� � c�tminwk � fxk�� fxk���� k � � and therefore

c�tmin
�X
k��

kj�gkj� � fx��� f�x� 	 �	� ����

Assume �rst that j�gkj � � � � for all k � �� Then it follows from Step � of Algorithm �
that k � min����� ���k� k � �� Using ����� we have

�	 � �min��� ���
�X
k��

�

k
�

�X
k��

kj�gkj� 	 �	�

which is the contradiction� Therefore� in�nite set �K � f�� �� � � �g such that j�gkj 
K� �
exists� Since

fz� � fxk� � z � xk�
T �gk � tmax��k

for all z � RN and k � � by Lemma � and the sequence fxkg is bounded� we obtain

fz� � f�x� for all z � RN by letting k

K�	� �

� Implementation

In this section we discuss some details concerning our implementation of the algorithm�
Assume that we have the current iteration xk� fk � fxk�� gk � �fxk�� k � � and a
bundle yj� fyj�� gj � �fyj�� j � Jk � f�� � � � � kg� where yj �� xk� j � Jk are some of

�



trial points� Furthermore� we denote here the current aggregate subgradient by �gk� the
stepsize by tk and the bundle parameter for scaling by sk�

After the descent step we have �gk � gk� the positive de�nite VM approximation of
the inverse Hessian matrix is Hk and the search direction is dk � �Hkgk� We search
for the suitable stepsize tk� The signi�cant descent in the last step encourages us to
construct the following quadratic approximation of fxk � tdk�

�k
Qt� � fk � tdTk gk � �

�t
�dTk Hk���dk � fk � t� �

�t
��dTk gk�

The bundle represents the polyhedral function ���� with the linearization errors �kj � �
given by ����� For x � xk � tdk we have the following piecewise linear approximation
of fxk � tdk�

�k
P t� � �fkxk � tdk� � max

j�Jk
ffk � �kj � tdTk g

jg�

To calculate tk we will minimize the convex function �kt� � max��k
Qt�� �k

P t�� within
��� ��� since obviously �k�� � fk and �kt� � �k

Qt� � fk for t �� ��� �� and gk �� ��
Thus we set

tk � arg minf�kt�jt � �tmin�min �tmax� ��D�jdkj��g �

where D is a given upper bound for distance from the point xk in one step� Note
that the possibility of stepsizes greater than � is useful here� because an information
about the function f � included in the matrix Hk� is not su�cient for the proper stepsize
determination in the nonsmooth case�

After the null step� the unit stepsize is mostly satisfactory� as we have found from
numerical experiments� To utilize the bundle and improve robustness and e�ciency of
the method� we use the aggregate subgradient �gk to construct the linear approximation
�k
Lt� � fk � tdTk �gk of fxk � tdk� and set

tk � arg min
n

max��k
Lt�� �k

P t��jt � �tmin�min���D�jdkj��
o
�

The function �k
P t� has sometimes no in�uence on the stepsize determination then

obviously tk � ��� It can mean that the stepsize is too small� Thus we have intro

duced the bundle parameter for scaling sk we de�ne it as a minimum abscissa of an
intersection of the lines� which create �k

P t� and have dTk g
j � �� with �k

Lt� and set

sk � min
n
�� �kj �d

T
k gj � �gk�jdTk gj � �� j � Jk

o
�

From now on we let the notation the same as in Algorithm �� The minimization
of the quadratic function ���� in Step �� or ��
�� 
�� � �
�� 
�� � � 
� � 
��� is
not complicated� If it is not possible to compute an intersection of straight lines
� ����
� � �� � ����
� � �� convexity of �� implies that we can restrict to the lines

� � �� 
� � � and 
� � 
� � �� As an example we give a formula for minimization
within the line 
� � �� which we regularly apply in the �rst null step after any descent
step due to �gk� � gk� If gkj�� �� �gkj � then set

��




kj�� � min

�
��max

�
��

dkj �
T gkj�� � �gkj � � ��kj � �kj��

gkj�� � �gkj �THk
j gkj�� � �gkj �

��
�

otherwise set 
kj�� � � for ��kj 	 �kj�� or 
kj�� � � for ��kj � �kj���
Further we mention the stopping criterion� We de�ne a descent tolerance �f � �

and a maximum number mf � � of consecutive too small function value variations
and add to Step � an initialization of auxiliary variables nf � � and !� � jf�j� �� To
prevent an accidental termination� we modify Step � in the following way

Step ��� If wk
j � � and either !k�max��� fxk�� 	 ��f for j � �� or wk

j�� � � for j � ��
then stop�

To cut o	 useless iterations and update !k� we modify Step � in the following way

Step ��� If jfykj��� � fxk�j � ����!k� then set ! � jfykj��� � fxk�j� otherwise set
! � !k� If !�max��� fykj���� � �f or fykj��� � fxk�� then set nf � nf � ��
otherwise set nf � �� If nf � mf � then stop� If ���� holds� then set xk�� � ykj���
gk�� � gkj��� tk � tkj � dk � dkj � ��k � ��kj � �gk � �gkj � wk � wk

j � Hk � Hk
j �

k�� � min���j�gkj� j�gkj��k � �� and !k�� � !� otherwise set !k�� � !k and
go to Step �� If gk�� � gk and tkj 	 tmax��� then set iE � �� k � k � � and go to
Step �� otherwise go to Step ��

Finally� if we use the algorithm for function f � which is not convex� it can happen
that �kj�� 	 � and cause so many di�culties� Thus we de�ne �kj�� as absolute value of
the quantity in ����� Note that a nonconvex version of the method is being prepared�

� Numerical examples

The above concept was implemented in FORTRAN �� as VMC� In this section we
compare our results for �� standard test problems from literature with those obtained
by a standard VM method with the update U�� controlled scaling and backward Taylor
stabilization see Luk�san ����� and by the proximal bundle method PBL mentioned
in Luk�san and Vl�cek ����� Problems �
�� are described in M�akel�a and Neittaanm�aki
����� problems ��
�� in Zowe ����� problems ��
�� in Kiwiel ����� problem �� in
Bihain ����� problem �� in Facchinei and Lucidi ����� problems ��
�� in Luk�san ����
and problem �� also in Bandler� Srinivasan and Charalambous �����

In Table � we give optimal values of tested functions�
The parameters of the algorithm had the values tmin � ����	� tmax � ���� c� � �����

� � � � ����� �f � �����  � � � ���� L � �� � � ���� Jk � fmax��� k �N � ��� � � � � kg�
k � � and mf � � for problems �
�� and ��
��� mf � � for problem �� and mf � �
for problem ���

��



Nr� N Problem Minimum Nr� N Problem Minimum
� � Rosenbrock � �� �� TR�� 
��������
� � Crescent � �� �� Go�n �
� � CB� ��������� �� � El Attar ���������
� � CB� ��� �� � Wolfe 
���
� � DEM 
��� �� �� MXHILB �
� � QL ���� �� �� L�HILB �
� � LQ 
��������� �� � Colville� 
���������
� � Mi"in� 
��� �� �� Gill ���������
� � Mi"in� 
��� �� �� Steiner� ���������

�� � Rosen 
���� �� � EXP ���������
�� � Shor ��������� �� � TRANSF ���������
�� �� Maxquad� 
��������� �� � Wong� ���������
�� �� Maxq � �� �� Wong� ���������
�� �� Maxl � �� �� Wong� ���������

Table �� Test problems

Our results are summarized in Table �� in which the following notation is used� Ni is
the number of iterations� Nf is the number of objective function and also subgradient�
evaluations� F is the objective function value at termination and D is the maximum
allowable distance in one step see Section �� values of D were chosen experimentally�
For better comparison� we give two time data in the last line 
 the �rst time concerns
all �� problems� the second one in parentheses� only �� problems� with problem ��
removed�

As a conclusion from our limited numerical experiments we may state that

� the standard VM method is able to �nd a solution to almost all problems here
it failed only once� and the computational time can be essentially less than for
proximal bundle methods 

� our method is comparable with proximal bundle methods in the number of func

tion and subgradient evaluations� but the computational time can be signi�cantly
less 

� although our method is designed for convex functions� it can be applied also to
some nonconvex problems�

��



Standard VM VMC PBL
Nr� Ni Nf F Ni Nf F D Ni Nf F

� �� �� �����E
�� �� �� �����E
�� � �� �� �����E
��
� �� �� �����E
�� �� �� �����E
�� � �� �� �����E
��
� �� �� ��������� �� �� ��������� � �� �� ���������
� �� �� ��������� �� �� ��������� ��� �� �� ���������
� �� �� 
��������� �� �� 
��������� ��� �� �� 
���������
� �� �� ��������� �� �� ��������� ��� �� �� ���������
� �� �� 
��������� � � 
��������� ��� �� �� 
���������
� � �� 
��������� ��� ��� 
��������� �� �� �� 
���������
� �� �� 
��������� �� �� 
��������� � �� �� 
���������

�� �� �� 
��������� �� �� 
��������� � �� �� 
���������
�� �� ��� ��������� �� �� ��������� ��� �� �� ���������
�� ��� ��� 
��������� �� �� 
��������� � �� �� 
���������
�� �� ��� �����E
�� ��� ��� �����E
�� �� ��� ��� �����E
��
�� ��� ��� �����E
�� �� �� � ��� �� �� �����E
��
�� ��� ��� 
��������� ��� ��� 
��������� ��� ��� ��� 
���������
�� ��� ��� �����E
�� ��� ��� �����E
�� ��� �� �� �����E
��
�� �� ��� ��������� ��� ��� ��������� � �� �� ���������
�� �� �� 
��������� �� �� 
��������� � �� �� 
���������
�� �� ��� �����E
�� �� �� �����E
�� ��� �� �� �����E
��
�� �� ��� �����E
�� �� �� �����E
�� �� �� �� �����E
��
�� �� ��� 
��������� �� �� 
��������� ��� �� �� 
���������
�� ��� ���� ��������� ��� ��� ��������� �� ��� ��� ���������
�� �� ��� ��������� �� �� ��������� � ��� ��� ���������
�� �� ��� ��������� �� �� ��������� ��� �� ��� ���������
�� �� ��� ��������� �� �� ��������� ���� ��� ��� ���������
�� ��� ��� ��������� �� �� ��������� � ��� ��� ���������
�� �� ��� ��������� �� �� ��������� �� ��� ��� ���������
�� ��� ��� ��������� ��� ��� ��������� �� ��� ��� ���������P

���� ���� ���� ���� ���� ����
Time � ����� ����� sec Time � ���� ����� sec Time � ���� ����� sec

Table �� Our test results
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