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Mining is among the human activities with widest environmental impacts, and mining-impacted environments are characterized by
high levels of metals that can co-select for antibiotic resistance genes (ARGs) in microorganisms. However, ARGs in mining-
impacted environments are still poorly understood. Here, we conducted a comprehensive study of ARGs in such environments
worldwide, taking advantage of 272 metagenomes generated from a global-scale data collection and two national sampling efforts
in China. The average total abundance of the ARGs in globally distributed studied mine sites was 1572 times per gigabase, being
rivaling that of urban sewage but much higher than that of freshwater sediments. Multidrug resistance genes accounted for 40% of
the total ARG abundance, tended to co-occur with multimetal resistance genes, and were highly mobile (e.g. on average 16%
occurring on plasmids). Among the 1848 high-quality metagenome-assembled genomes (MAGs), 85% carried at least one
multidrug resistance gene plus one multimetal resistance gene. These high-quality ARG-carrying MAGs considerably expanded the
phylogenetic diversity of ARG hosts, providing the first representatives of ARG-carrying MAGs for the Archaea domain and three
bacterial phyla. Moreover, 54 high-quality ARG-carrying MAGs were identified as potential pathogens. Our findings suggest that
mining-impacted environments worldwide are underexplored hotspots of multidrug resistance genes.
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INTRODUCTION
Antibiotic resistance is one of the biggest global public health
threats facing humanity [1]. Antibiotic-resistant infections cur-
rently kill approximately 700,000 people per year around the
world and are predicted to cause 10,000,000 deaths per year by
2050 [2, 3]. The emergence of antibiotic resistance genes (ARGs) in
microorganisms predates human use of antibiotics [4, 5]. However,
it cannot be disputed that human activities dramatically accelerate
the proliferation and transmission of ARGs [4]. Apart from
antibiotics, many other environmental pollutants (particularly
metals) are increasingly recognized as important selective agents
to promote the dissemination of ARGs in the environment [6, 7].
Among the reported selective agents for ARGs, metals differ

greatly from their organic counterparts due to their persistent
nature and higher potential to accumulate to selecting levels [6].
As such, metals can be an even more important risk factor for the
proliferation and transmission of ARGs in the environment than
other selective agents [6, 7]. In the past years, the potential
correlations between metal level and ARG abundance or diversity
in a variety of environments impacted by agriculture [8], animal
husbandry, aquaculture [9, 10], urbanization [11, 12] and oil spill
[13] have been studied extensively. However, these focal
environments are not exempt from the influences of other
selective agents, which has heavily hampered a comprehensive

assessment of the direct roles of metals in ARGs proliferation and
dissemination in the environment [6, 7].
Mining is one of the major human activities with widest

environmental impacts [14], and mining-impacted environments
characterized by high levels of metals are ideal settings to study
the direct effects of metals on environmental ARGs [6]. However,
very little is currently known about the ARGs in mining-impacted
environments, especially their linkages with metals or metal
resistance genes (MRGs), and their mobility, biogeography as well
as hosts [15]. Unlike other human activities such as agriculture and
animal husbandry, there is no demand for the use of antibiotics in
mining practices [14]. In this context, mining-impacted environ-
ments generally are unlikely to be polluted by anthropogenic
antibiotics. Typical hazardous metal-rich wastes generated by
mining activities consist mainly of mine tailings and acid mine
drainage (AMD) [16, 17]. Open dumping is a main disposal route
for mine tailings around the world and it has been estimated that
over 700,000 tons of metals in mine tailings are disposed on land
per year globally [17]. When exposed to air and water, sulfur-
bearing mine tailings (and other solid mine wastes) in disposal
sites are readily acidified by iron- and sulfur-oxidizing micro-
organisms to generate a huge quantity of AMD [16]. Under acidic
conditions, even though some antibiotics can be produced
naturally by microorganisms in mining-impacted environments,
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they will degrade rapidly [18]. Therefore, we hypothesize that
metal pollution is the main cause of ARG dissemination in mining-
impacted environments (i.e. hypothesis 1) and that the profiles of
ARGs in such environments likely differ from those in environ-
ments polluted by antibiotics (hypothesis 2). Given that many
reported metal-induced ARGs are commonly located together
with MRGs on the same plasmid or mobile genetic element (i.e. a
co-selection mechanism termed as “co-resistance”) [6], we also
hypothesize that the ARGs in mining-impacted environments are
closely related to MRGs and highly mobile (hypothesis 3). Because
the profiles of metal-induced ARGs in the environment may differ
considerably across study sites with different soil types [19], our
fourth hypothesis predicts that at large spatial scales the ARG
profiles of mining-impacted environments exhibit apparent
geographical distribution patterns. Finally, we hypothesize that,
due to the distinct differences in microbial community composi-
tion between mining-impacted and antibiotic-polluted environ-
ments [20, 21], some previously unrecognized ARG hosts exist in
mining-impacted environments (hypothesis 5).
To test our hypotheses, we first conducted a scoping review, and

then employed 272 metagenomes obtained from a global-scale
data collection and two national sampling efforts in China to
characterize ARGs in 75 mine sites distributed globally. We focused
our analyses not only on the abundance, diversity, composition,
and potential causes of ARGs in the studied mine sites but also on
their relationship with MRGs, and their mobility, biogeography as
well as hosts. Additionally, a direct comparison of mine sites and
antibiotic-polluted environments in ARG profile was made with
30 mine waste metagenomes generated from our national
sampling efforts and 60 public metagenomes downloaded from
the Sequence Read Archive (SRA) database (including 30 untreated
urban sewage metagenomes as well as 30 freshwater sediment
metagenomes). As a whole, the results presented here significantly
improve our understanding of ARGs in globally distributed mine
sites, indicating that the potential risks associated with the ARGs in
mining-impacted environments worldwide deserve more attention
than they have received in the global ARGs research to date.

MATERIALS AND METHODS
A comprehensive literature search and analysis
Exploring ARGs in mining-impacted environments is an emerging area of
interest in the ARGs research field. In order to evaluate the current state of
knowledge in this emerging area, we conducted a scoping review
according to the PRISMA extension for scoping reviews [22]. On 21
September 2021, we searched ISI Web of Science Core Collection for
studies aimed to address ARGs in mining-impacted environments, using
“antibiotic resistance genes” AND “mining environment” as the topic fields.
The database coverage was 1985 to present. We retrieved 67 records
published from 1991 to 2021. To be included in our review, we required
that the study explicitly addressed microbial ARGs or antibiotic resistances
(ARs) in mining-impacted environments. Each of the retrieved records was
screened by two authors of this study (i.e. XZY, JTL) independently. If
disagreement occurred between them, consensus on whether a study
should be included was reached by discussion. In total, 20 papers (studies)
written in English met our criteria. From each paper, the following
information was extracted by the two above-mentioned authors of this
study through full text screening independently: study site, sample type,
sample size, methods used to characterize ARGs or ARs, and the main
results or findings. When certain samples from non-mining-impacted
environments (generally selected as controls) were also investigated by the
targeted paper, these samples were excluded from our review. Again, in
case of disagreement, consensus was reached by discussion between the
two authors. We grouped the 20 targeted papers in Table S1 by the types
of methods used to characterize ARGs or ARs, and summarized the broad
findings of papers within each group (Fig. S1).

A global-scale data collection
We performed a global-scale data collection on 15 July 2019. Specifically,
the words of “acid mine drainage metagenome” or “mine water

metagenome” or “mine tailings metagenome” were searched in the SRA
database for raw reads and in the GenBank database for assemblies from
NCBI (http://www.ncbi.nlm.nih.gov/). The SRA database coverage was 2007
to present, and the GenBank database coverage was 1982 to present. The
retrieved 795 metagenomes were screened by two authors of this study
(i.e. XZY, J-LL) independently as described above. Records with “whole-
genome sequencing” as sequencing strategy were downloaded, and those
with “Amplicon” or “RNA-seq” were filtered. As such, we obtained 50
metagenomes generated from HiSeq/MiSeq platforms (Illumina), 14 from
454 pyrosequencing, and two from ABI PRISM 3730 sequencer (Table S2).
The metagenomic data from Illumina platforms were downloaded as raw
reads, while those from 454 and ABI were downloaded as assemblies. The
geographic information (location, latitude, and longitude) on each study
site (generally containing several metagenomes) and sample description
(sample size, sample type, and mine type) were retrieved from the sample
information provided by the NCBI BioSample database. In total, 16 mine
sites distributed globally (Fig. S2A) were represented by the 66 public
metagenomes derived from our data collection. Although the ores in these
mine sites are non-ferrous metal minerals, the major metals being mined
differ considerably from site to site (Table S2). The latitude and longitude
of these mine sites varied greatly from 6° 26′ 24″ S to 65°3′ 36″ N and from
122° 31′ 48″ W to 113°42′ 36″ E, respectively (Table S2). We also tried to
retrieve the information on climate conditions of these mine sites and
physicochemical properties of the samples, but such information was
generally not available in the NCBI database.

Two national sampling efforts
One nation-wide sampling effort was made during July and August 2018,
in which a total of 39 mine sites distributed across China (Fig. S2B) were
sampled. These mine sites covered a wide range of latitude and longitude
(22° 8′ 19″ N–48°15′ 54″ N, 86° 19′ 47″ E–29° 17′ 29″ E; Table S3). The
climatic conditions of them also varied considerably, with mean annual
precipitation (MAP) of 25–1917mm and mean annual temperature (MAT)
of −0.09 to 22.8 °C (www.worldclim.org). At each mine site, three mine
tailings samples were taken from a drained tailings pond (i.e. an
abandoned tailings disposal site) at a depth of 0–20 cm using a stainless
steel trowel. Specifically, three plots (1 × 1m, separated from each other by
at least 10 m) were set in each pond and one tailings sample was collected
from each plot.
The other national sampling effort was made during July and August

2017, wherein 20 mine sites located across South China (Fig. S2C) were
sampled. The latitude and longitude of these mine sites ranged from 22°
57′ 52″ N to 31° 40′ 39″ N and from 105° 43′ 43″ E to 118° 37′ 40″ E,
respectively (Table S4). The MAP and MAT of them varied from 1110 to
1849mm and from 10.1 to 20.0 °C, respectively. At each mine site, three to
ten AMD sediment samples were collected from an AMD pond using a
sediment collector at a depth of 0–10 cm. The sample size for a given pond
was roughly proportional to its area and the sampling points for each pond
were separated from each other by at least 10 m.

Physicochemical analysis
All collected samples were transported back to the laboratory in an ice box
within 24 h, homogenized for three minutes in a blender, and then divided
into two parts. One part was air-dried for physicochemical analysis, and the
other part was placed in a refrigerator at −20 °C for DNA extraction. Air-
dried tailings and AMD sediment samples were analyzed by standard
methods described previously for pH, electrical conductivity (EC), ferrous
and ferric iron (Fe2+ and Fe3+), total carbon (TC), total nitrogen (TN), total
phosphorus (TP) and sulfate (SO4

2−) [23]. Total concentrations of metals
(cadmium, copper, iron, lead, manganese, and zinc) in the samples were
determined by an atomic absorption spectroscopy (AAS: AA-7000,
Shimadzu, Japan) after being digested by a mixture of concentered
HNO3/HCl (1:3). Bioavailable fraction of metals was analyzed by an AAS as
well after extraction with diethylenetriaminepentaacetic acid. Total
mercury was quantified by a cold vapor atomic fluorescence spectrometry
(CVAFS: Tekran 2500, Tekran Inc., Canada) after digestion with a mixture of
concentered HNO3/HCl (3:1). Methylmercury was measured by a gas
chromatography (GC)-CVAFS (Tekran 2700, Tekran Inc., Canada) after
preparation using CuSO4-methanol/solvent extraction [24].

DNA extraction and shotgun metagenomic sequencing
For each tailings sample, 10–30 g of tailings were extracted for total
genomic DNA using FastDNA Spin kit (MP Biomedicals, Santa Ana, CA,
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USA). For each sediment sample, 1–5 g of sediments were used for total
genomic DNA extraction with PowerSoil DNA isolation kit (Mobio
Laboratories Inc., Carlsbad, CA, USA) according to the manufacturer’s
protocol. The extracted DNA yield and purity were evaluated by a
NanoDrop 2000 spectrophotometer (Thermo Scientific, Waltham, MA,
USA). The purified DNA from each sample was subsequently used to
construct a sequencing library (~300 bp average insert size) with NEBNext
Ultra II DNA PCR-free Library Prep Kit (New England Biolabs, Ipswich, MA,
USA), and was shotgun-sequenced with MiSeq Reagent Kit v3 on the
MiSeq platform with PE150 mode (Illumina, San Diego, CA, USA).

Metagenomic assembly, binning and open reading frame
(ORF) prediction
The metagenomic sequencing data were processed by our in-house
pipelines to generate high-quality reads, including removal of duplication
sequences, low-quality sequences (Q30), and sequences containing five
excess Ns [25]. For the global public AMD-related metagenome dataset
(hereafter referred to as “the Global-A dataset”) and the South China AMD
sediment metagenome dataset (“the SChina-S dataset”), high-quality reads
from each sample were individually assembled into contigs using SPAdes
(version 3.9.0) with the parameters “-k 21, 33, 55, 77, 99, 127 –meta” [26].
For the China mine tailings metagenome dataset (“the China-T dataset”),
high-quality reads of samples from the same mine site were co-assembled
into contigs using MEGAHIT (version 1.2.9) with the parameters “k-min 35,
k-max 95, k-step 20” [27]. For the SChina-S dataset, binning was performed
with scaffolds longer than 2000 base pair (bp) using DAS Tool v.1.00 [28]
with four binning methods: ABAWACA v.1.07 (https://github.com/CK7/
abawaca), CONCOCT v.0.4.0 [29], MaxBin v.2.2.2 [30] and MetaBAT v.2.12.1
-[28, 31]. For the China-T dataset, scaffolds with length ≥ 2000 bp were
retained and binning was carried out using MetaWRAP v.1.2.1 with three
binning methods (CONCOCT v.0.4.0, MaxBin v.2.2.2, and MetaBAT v.2.12.1)
[32]. The resulting MAGs were improved by RefineM v.0.0.25 [33] and
further examined manually. The completeness and contamination of the
refined MAGs were assessed using CheckM v1.0.12 [34]. Binning was not
performed for the Global-A dataset, given that it contained a limited
number of contigs/scaffolds with length ≥2000 bp.
Assemblies (i.e. scaffolds or contigs) downloaded from public sources

and self-assembled scaffolds were processed together for ORF prediction.
All the assemblies longer than 500 bp were used to predict ORFs with
MetaProdigal (v2.6.3, set as -p meta) [35]. The predicted ORFs longer than
100 bp were clustered to generate a non-redundant (NR) gene catalog
separately for each dataset. Clustering was conducted using CD-HIT (v4.6.8)
under a criterion of 95% identity over 90% of the shorter ORF length (set as
-c 0.95, -aS 0.9, -g 1, -d 0) [36], producing a total of 7.90, 59.6 and 37.0
million NR genes from the Global-A dataset, the China-T dataset and the
SChina-S dataset respectively.

Annotation and quantification of ARG, MRG, MGE, and
plasmid
ARG annotation was performed on gene sequences using the recently
published DeepARG software (v1.0.1, set as –align –type nucl –genes) [37].
DeepARG uses a deep learning algorithm for ARG annotation, which
improves the annotation accuracy (especially for genes with low sequence
similarity to the reference ARGs). Genes were aligned against the MEGARes
2.0 reference dataset to identify MRGs [38]. MEGARes 2.0 integrated
BacMet database [39] to a well-organized hierarchical classification
ontology. Using the UBLAST algorithm, genes were screened with
minimum query coverage of 40%, identity of 70% and e value below
1 × 10−5 and top hits were classified according to the MRG hierarchy [40].
Reference sequences from ISfinder (accessed on 18 September 2019)

[41], INTEGRALL (20 September 2019) [42] and the Transposon Registry (11
October 2019) [43] were integrated and de-replicated using CD-HIT at a
criterion of 95% identity over 90% of the shorter gene length to construct
a database of mobile genetic elements (MGEs, Table S5), which included
10,829 transposases, 2615 integrases containing 88 class 1 integron
integrase (intI1) sequences, 848 resolvases, and 526 recombinases. Genes
were aligned against the self-constructed MGEs database using blastx
implemented in DIAMOND v. 2.0.9 [44] at a criterion of minimum query
coverage of 40%, minimal identity of 25%, and e-value below 1 × 10−5, and
top hits were annotated as corresponding MGEs [40, 45]. The PlasFlow
software [46] with default setting was used to predict plasmid sequences
for all ARG-carrying contigs.
Gene catalogs from the three datasets were combined for the purpose

of cross-mapping in quantification. In order to reduce computational time,

genes annotated as ARG, MRG and MGE were extracted from the
combined gene catalog and de-replicated (using CD-HIT set as -c 0.95,
-aS 0.9, -g 1, -d 0) to create an NR gene subset with totally 1.70 million
genes. Clean reads of each metagenome were mapped back to the NR
gene subset using Bbmap (v38.44, set as k= 14, minid= 0.95) to calculate
the coverage [47]. The abundance of a given gene type/subtype was
calculated using the following equation [48]:

Abundance coverage; t=Gb ¼
Xn

1

Nmapped reads ´ Lreads=LNRgene
S

 !

where n is the number of NR genes annotated to that gene type/subtype,
Nmapped reads is the number of reads mapped to the NR gene, Lreads is the
sequence length of the reads, LNR gene is the length of the NR gene, and S is
the size of the metagenomic data (Gb).

Quantification of crAssphage and phage ɸB124-14
The genomes of crAssphage (accession NC_024711.1) and phage ɸB124-
14 (HE608841.1) were downloaded from NCBI. Clean reads of each
metagenome were mapped against the two genomes using BBmap (set as
minid= 0.97), respectively. The abundances of the two phages in each
metagenome were calculated as described above.

ARG-MRG and ARG-MGE co-occurrence analysis
To explore the co-occurrence patterns of ARGs and MRGs, we first
determined the proportion of contigs carrying both ARG and MRG, which
was expressed as the percentage of contigs carrying at least one ARG plus
one MRG in the total ARG-carrying contigs. Moreover, the following two
parameters introduced by Li et al. [49] were calculated on contig and MAG
basis, respectively: (1) the average minimum distance (MetAmin (kb)), which
was obtained through dividing the sum of distances of each ARG to its
closest MRG by the number of corresponding ARG-MRG pairs; and (2) the
nearest MRG composition (%), which was measured based on the
composition of closest MRG (with distance <100 kb) types for each ARG
in corresponding ARG-MRG pairs. Contig-based and MAG-based co-
occurrence analyses were performed using ARG-MRG-carrying contigs
longer than 1000 bp and high-quality (completeness ≥95% and contam-
ination ≤5%) MAGs, respectively. The co-occurrence patterns of ARGs and
MGEs were analyzed in a similar way to those of ARGs and MRGs.

Phylogenetic tree construction, taxonomic assignment, and
virulence factor analysis of MAGs
Selected ARG-carrying MAGs from the China-T dataset and the SChina-S
dataset were used to construct phylogenetic trees by PhyloPhlAn [50],
respectively. The Newick files with the best tree topology were uploaded
to the Interactive Tree of Life online interface [51] for visualization and
formatting. We preferred to use a simplified cladogram for better
illustration, given that our aim was to show the taxonomic assignments
of selected ARG-carrying MAGs and the ARG dispersal characteristics rather
than the phylogenetic distances between these MAGs. Taxonomic
assignment of the ARG-carrying MAGs was inferred from the phylogenetic
trees constructed with the reference genomes using GTDB-Tk [52].
A comprehensive list of human pathogens which contained 1005 species

names (Table S6) were compiled from the literature [53–61]. MAGs
annotated to species level were used for the identification of their
potential pathogenicity by matching their species names to the self-
compiled human pathogen list (Table S6). MAGs matched to the pathogen
list were referred to as potential pathogens (Table S7). The identified
potential pathogens and 30 non-pathogens MAGs (Table S7) selected from
the MAGs retrieved in this study by use of a random number table were
further predicted for virulence factor (VF) genes using the “Vir” and “Tox”
workflow of the PathoFact software [62].

Quantifying the relative abundances of ARG-carrying MAGs
The relative abundances of selected ARG-carrying MAGs were calculated as
previously described [25]. Briefly, the high-quality reads from each
metagenome were mapped to all dereplicated MAGs using BBMap with
the parameters k= 14, minid= 0.97 and build= 1. The coverage of each
MAG was calculated as the average scaffold coverage, and each scaffold
was weighed by its length in base pairs. Subsequently, the coverage of a
given ARG-carrying MAG in each metagenome divided by the total
coverage of all MAGs with completeness >50% and contamination <5%
(irrespective of whether they carried ARGs or not) in the corresponding
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metagenome was considered as its relative abundance in that
metagenome.

Comparison of mine wastes, untreated sewage, and
freshwater sediments
In order to make a direct comparison of mine sites and antibiotic-polluted
environments in ARG profile, we collected public untreated urban sewage
and freshwater sediment metagenomes. Untreated urban sewage was
selected because it is a well-known ARG hotspot polluted by antibiotics
[63] and can be considered as a “positive” control. A recent study by
Hendriksen et al. [63] contained a total of 79 metagenomes of untreated
urban sewage collected from 60 countries with the same method,
providing us an excellent dataset for comparison. We thus selected 30
our metagenomes (Table S8) and 30 their metagenomes (Table S9) by use
of a random number table for comparison. Freshwater sediment was
chosen as a “negative” control. To that end, we performed another public
data collection by searching “river sediment metagenomes” or “lake
sediment metagenomes” against the SRA database on 27 October 2021.
The search was then refined by choosing Source of “DNA”, Library layout of
“paired”, Platform of “Illumina”, Strategy of “Genome” and File Type of
“fastq”. Subsequently, metagenomes of “sediment enrichment” and
“estuarine sediment” were further excluded. Finally, a total of 1305 records
were obtained, from which 30 metagenomes were selected in a random
manner as described above to download (Table S10). The relevant sample
information available in NCBI showed that the corresponding sediments
spanned a vast geographic area and that the majority of them were
polluted by various anthropogenic activities (Table S10).
Raw reads of the 60 selected public metagenomes were downloaded

and low-quality reads were filtered out as described above. The clean reads
of these public 60 metagenomes, together with those of the 30 mine
waste metagenomes selected for comparison, were first used for
assessment of their microbial taxonomic diversity using Nonpareil software
[64]. Give that the overall taxonomic coverage was higher in mine wastes
than in the other two sample types at current sequencing depths (Fig. S3),
clean reads of the 30 mine waste metagenomes were sub-sampled
(Table S8) in order to obtain a data size equivalent to that of the other two
sample types (Tables S9 and S10). Clean reads from each sample were
individually assembled into contigs using SPAdes (version 3.9.0) and
contigs were processed as described above. In order to achieve a fair
comparison, we created an NR gene catalog containing ARGs only from the
60 selected public metagenomes and the 30 subsampled mine waste
metagenomes for cross mapping to mitigate bias caused by data size.
All read-based taxonomic annotation was performed using Kraken2 [65].

Taxonomic diversity was calculated using R software 3.6.3 and the Vegan
package [66]. To calculate taxonomic distribution of ARGs (or MRGs), reads
mapped to ARGs (or MRGs) in the NR gene catalog was first extracted
using BBmap [47] and further went through taxonomic annotation. The
percentage of species carrying ARGs (or MRGs) in a given community
(metagenome) was calculated by dividing the total number of species
inferred from the ARG-like (or MRG-like) reads by the total number of
species inferred from all reads of that metagenome.

Statistical analysis
R software 3.6.3 (R Foundation for Statistical Computing) was used for the
statistics analysis and plotting. Linear regressions between genes were
based on log-transformed gene abundance using function log1p, while
Pearson and Spearman correlation analyses were performed with function
cor.test. Smoothing curves using a linear model were drawn with function
geom_smooth in ggplot2. Multiple-group comparisons were performed
using Kruskal-Wallis test and two-group comparisons were analyzed with
two-sided Wilcoxon signed-rank test.
Variation partitioning analysis (VPA) based on partial redundancy

analysis (RDA) was conducted using the vegan package [66] to evaluate
the effects of environmental factors, including metal-related parameters,
other physico-chemical parameters, and climatic as well as geographic
factors (details presented in Tables S3 and S4), on the total abundance or
composition of ARGs observed in the two national sampling efforts in
China. Metal-related parameters included total and bioavailable fraction of
cadmium, copper, iron, lead, manganese and zinc. Concentrations of total
mercury and methylmercury were additionally tested in the SChina-S
dataset. Besides, several metal contamination indexes were also con-
sidered as metal-related parameters. Other physicochemical parameters
included pH, EC, TC, TN and TP. Climatic and geographic factors were
considered as geographic location-related parameters.

Principal coordinate analysis (PCoA) was performed to evaluate the
differences in ARG composition among samples based on the Bray–Curtis
distance of ARG abundance. Anosim test and Adonis test were conducted
to determine significance differences in ARG composition caused by
geographic location. The distance decay of ARG composition similarity
(defined as 1 - Bray–Curtis distance by ARG subtypes) was also analyzed by
considering individual mine sites as sampling units. Geographic distance
between sites was calculated with the R package geosphere v1.5.10 [67].
Bar, box, dot, heatmap and histogram graphs were plotted with ggplot2

package v.3.3.2 [68]. R package eulerr v.6.1.0 [69] was applied to plot Venn
diagram. Maps were created with the aid of R packages including maps
v.3.3.0, rgdal v.1.5.18 [70], mapproj v.1.2.7 [71] and maptools v.0.9.9 [72].

RESULTS
The current state of knowledge about ARGs in mining-
impacted environments
According to the types of methods used to explore ARGs or ARs,
the 20 currently available studies explicitly addressing ARGs or ARs
in mining-impacted environments can be divided into the
following three groups: (1) culture-based, (2) qPCR-based, and
(3) metagenomics-based (Table S1). The first group included
13 studies and investigated the ARs of a total of approximately
930 bacterial strains. Among these strains, 35.1% remained to be
classified taxonomically and all the rest were affiliated to
Actinobacteria, Firmicutes or Proteobacteria (Table S1 and Fig. S1A).
Note that the three phyla have been reported frequently to be
hosts of ARGs in various environments polluted by antibiotics [73].
The second group contained six studies and examined a limited
number of ARGs (ranging from 14 to 65) in six mine sites. The six
most abundant ARGs of these mine sites belonged to three
different ARG types (i.e. macrolide, sulfonamide, and tetracycline;
Table S1 and Fig. S1B). The third group with only one study
analyzed ARGs in two mine sites and identified bacitracin
resistance genes as the most dominant ARG type (Table S1 and
Fig. S1C). Taken together, these findings of our scoping review
indicate that the current knowledge on ARGs in mining-impacted
environments is far from sufficient to allow a comprehensive
understanding of the ARGs in such environments. This thus
highlights the need for more research efforts to test our
abovementioned hypotheses, which are critical to understand
main features of the ARGs in mining-impacted environments but
have not yet been addressed in the literature.

Abundance, diversity, and composition of ARGs in mining-
impacted environments
The Global-A dataset contained 66 public AMD-related (i.e. AMD,
AMD sediment, and AMD biofilm) metagenomes from 16 mine
sites in a total of seven countries, including Brazil, Canada, China,
France, Spain, Sweden, and USA (Figs. 1A, S2A, and Table S2). Due
to the difficulty in extraction of DNA from metal-rich environ-
mental samples, the DNA extracted from two mine tailings and
four AMD sediment samples collected in the two national
sampling efforts did not meet the criterion for metagenomic
sequencing, but these samples accounted for only 2.8% of the
total samples. As such, the China-T dataset included 115 tailings
metagenomes from 39 mine sites in 21 provinces across China
(Figs. 1B, S2B, and Table S3) and the SChina-S dataset contained
91 AMD sediment metagenomes from 20 mine sites in seven
provinces across South China (Figs. 1C, S2C, and Table S4). We did
not merge the three datasets, given that they had some
differences in sampling design and experimental methods.
The average data size of the Global-A dataset, the China-T

dataset and the SChina-S dataset was 13.6 ± 12.3, 69.6 ± 14.0, and
75.2 ± 11.1 Gb clean reads per metagenome, respectively. Exam-
ination of a subset of 30 metagenomes from our national sampling
efforts using Nonpareil indicated that the sequencing depth of our
samples are largely sufficient to cover most taxonomic diversity
(>80% coverage in all 30 samples and > 95% in 22 samples) in the
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mine wastes (Fig. S3A). A total of 25,575, 192,929, and 338,451
ORFs were annotated as ARG-like sequences in the three datasets,
respectively. These ORFs were carried by 21,948, 175,175, and
302,841 ARG-carrying contigs (ACCs), correspondingly. Thirty-eight
regulatory ARGs were identified and excluded from the following
analyses in this study (unless explicitly stated).
The total abundances of ARGs (coverage, ×/Gb) in the three

datasets were in the range of 814–2836 (with an average of 1444),
219–2632 (1516) and 806–2607 (1795), respectively (Fig. 1A-C).
More specifically, the total abundances of ARGs in 76.9, 82.1, and
95.0% of mine sites in the three datasets were greater than 1000,
respectively.
Twenty-eight ARG types were detected in the mine sites,

consisting of 668, 723, and 660 ARG subtypes in the three
datasets, respectively (Fig. 1A–C). Except for three European mine
sites with no reads data where the numbers of detected ARG
subtypes were < 28, the number of ARG subtypes in individual
mine sites ranged from 85 to 468 (Fig. 1A-1C). Moreover, most of
the studied mine sites (61.5% in the Global-A dataset, 89.7% in the
China-T dataset and 100% in the SChina-S dataset) harbored more
than 200 ARG subtypes.
The composition of ARG types was fairly consistent across all

studied mine sites (Fig. 1D–F). Multidrug, bacitracin, beta-lactam,
tetracycline, and glycopeptide were the top five most dominant
ARG types. Among them, multidrug was the most dominant ARG
type across all samples, accounting for an average of 39.7, 41.6, and
38.7% of the total ARG abundance in the three datasets respectively.
In several extreme cases (i.e. nine mine sites in the China-T dataset),
the relative abundances of multidrug resistance genes were beyond
50%, with a maximum of 76.3%. Similarly, multidrug was shown to
be the most dominant plasmid-carrying ARG type (Fig. S4).
Antibiotic efflux and antibiotic target alteration were the most
dominant resistance mechanisms across all the mine sites (Fig. S5).
When abundant ARG subtypes were defined as those with an

average relative abundance > 1% in all samples in a given dataset,

24, 19, and 20 abundant ARG subtypes were observed in the three
datasets, respectively (Fig. S6A–C). After de-duplication, a total of
33 abundant ARG subtypes were found. Among them, 15 and two
belonged to multidrug and bacitracin resistance genes, respec-
tively. When ubiquitous ARG subtypes were defined as those
occurred in all samples in a given dataset, 15, 33, and 81
ubiquitous ARG subtypes (Fig. S6D–F; detailed information listed
in Table S11) were found in the three datasets respectively, which
had high overlaps with the corresponding abundant ARG
subtypes. Among the ubiquitous ARG subtypes in the three
datasets, 5 (33.3%), 14 (42.4%), and 31 (38.3%) were multidrug
resistance genes (Fig. S6D–F).
The analysis based on a subset of our metagenomes and public

metagenomes showed that the average total abundance of ARGs
in mine wastes rivaled that of untreated urban sewage but was 3.7
times higher than that of freshwater sediments (p < 0.001, Fig. 2A).
The number of ARG subtypes was higher in untreated urban
sewage than those in mine wastes and freshwater sediments (p <
0.001, Fig. 2B). The percentage of ARGs classified as multidrug
resistance genes in mine wastes was comparable to that of
untreated urban sewage, being significantly greater than that of
freshwater sediments (p < 0.05, Fig. 2C). Despite this, the relative
abundances of other five abundant ARG types (e.g. bacitracin,
MLS) differed significantly (p < 0.01, Fig. 2C) between mine wastes
and untreated urban sewage, thus supporting our second
hypothesis.
ARG diversity (subtype number) was positively correlated with

microbial taxonomic diversity in all three sample types (p < 0.05;
Fig. 2D), being comparable to those findings reported previously
for various sample types [74–76]. No significant correlations were
seen between microbial taxonomic diversity (i.e., richness) and the
total abundance of ARGs in all three sample types (Fig. 2E). This
result was inconsistent with the negative microbial diversity–ARG
abundance relationship observed in a microcosm experiment [77],
suggesting that environmental factors may have a more important
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role than microbial diversity in determining ARG abundance in
real environmental samples. On average, the abundance of ARGs
per microbial species was much higher in mine wastes and
untreated sewage than in freshwater sediments (p < 0.001, Fig. 2F),
which was likely attributed to the higher selective pressures
associated with the former two sample types [6, 76]. Similar results
were recorded for MRGs (Fig. S7).
On average, 55.0% of the microbial species in mine wastes

carried ARGs, and the corresponding figures were 59.2% in
untreated sewage and 49.1% in freshwater sediments (Fig. S8A).
Multidrug resistance genes were more widely spread in the
microbial community than other ARG types for all three sample
types, especially untreated sewage and mine wastes (46.6 and
43.1% respectively; Fig. S8B–L). Similar taxonomic distributions
were observed for MRGs, wherein Cu and multimetal resistance
genes were among the most widely spread MRG types (Fig. S9).

Factors determining the total abundance of ARGs in mining-
impacted environments
Due to the hazards of mine wastes to human and environmental
health, their disposal sites generally are located in mountain
valleys that are far away from human settlements [14]. In this
context, there is a low probability that the enrichment of ARGs in
such sites is associated with fecal or other contamination sources
(e.g. agricultural runoff). To be on the safe side, however, two fecal
markers (phage ɸB124-14 and crAssPhage) were quantified. Both
markers were detected at low frequency and low abundance
(Fig. 3A–C). For instance, none of the mine sites in the China-T
dataset contained phage ɸB124-14 and only 13.9% of the studied
mine sites contained crAssPhage with a total abundance below
3.4 × 10−4 (coverage, ×/Gb). Nonetheless, no significant correla-
tions were found between the total abundance of either ɸB124-14

or crAssPhage and that of ARGs in all the three datasets. The total
ARG abundance was either not correlated with or weakly
correlated with that of intI1 genes (Fig. S10).
MRGs were abundant in most of the mine sites (Fig. S11). More

specifically, 30.2, 71.8 and 54.2% of the mine sites in the three
datasets contained MRGs with a total abundance beyond 500
(coverage, ×/Gb). Moreover, the total abundances of MRGs in
mine sites in all three datasets were highly correlated to those of
ARGs (p ≤ 8.0 × 10−7, Fig. 3D–F).
A total of 44 and 74% of the variations of total ARG abundance

in the China-T dataset and the SChina-S dataset were explained by
the three groups of environmental factors (Fig. 3G, H). Among
them, the metal-related parameters were the most important, as
they alone explained 23 and 47% of the total variations in the two
datasets respectively (p < 0.001). Note that another 10 and 4% of
the total variations in the two datasets were explained by the
metal-related parameters due to their collinearity with geographic
factors, respectively. Geographic factors alone explained only 8
and 19% of the total variations in the two datasets respectively (p
< 0.05), and other physico-chemical parameters alone explained
only 1 and 2% correspondingly. Pearson correlation analysis
showed that zinc and available manganese concentrations
exhibited the highest correlation with the total ARG abundance
among the metal-related parameters in the two datasets,
respectively (p < 0.05, Fig. S12).

Co-occurrence patterns of ARGs and MRGs in mining-
impacted environments
On average, the proportions of ACCs which also carried at least
one MRG to all ACCs in the three datasets were 9.5, 9.1 and 9.0%,
respectively (Fig. S13). Multidrug, glycopeptide and sulfonamide,
with average MetAmin to MRGs of 12.7, 9.5 and 13.1 kb,
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respectively, were among the closest ARG types toward MRGs (p <
0.001, Fig. 4A–C; contig-based results). On the contrary, phenicol
and mupirocin resistance genes were the farthest to its closest
MRGs (Fig. 4A–C). Similar results were obtained from the MAG-
based analysis (Fig. S14).
For all ARG types in the three datasets, their nearest MRG

compositions were considerably consistent: on average 33.7%
(with a range of 7.7–57.6%), 27.1% (3.9–74.0%) and 23.6%
(8.3–41.0%) of their closest MRGs were multimetal, arsenic and
copper resistance genes, respectively (Fig. 4D–F). Taking multi-
drug resistance genes as an example, 34.9% of their closest MRGs
in the Global-A dataset were multimetal resistance genes, while
those figures for the other two datasets were 44.6 and 41.6%
respectively. This preferred connection between multidrug
resistance genes and multimetal resistance genes was also seen
in similar analyses based on MAGs (Fig. S14) and plasmids
(Fig. S15).

Mobility of ARGs in mining-impacted environments
An average of 13.2, 18.1, and 16.2% of ACCs in the three datasets
were annotated as plasmids, respectively (Fig. 5A–C). When
multidrug resistance genes were taken into account, 13.8 to

18.5% (on average 16.0%) of these dominant ARGs in the three
datasets were located on plasmids respectively. Although the
majority of ARGs were located on chromosomes, plasmids were
still enriched ARG carriers in terms of ARG-carrying density.
Specifically, an average of 16 ARGs were found within every 100
kb plasmid sequences, while that figure for chromosome
sequences was five (Fig. S16). Note that on average 24.5, 15.1,
and 24.0% of the total ARG-carrying plasmids in the three datasets
were found to harbor at least one MGE (Fig. S17).
The total abundances of transposases (coverage, ×/Gb; with an

average of 4311) were much higher than those of integrases,
recombinases and resolvases (Fig. 5D–F, S18). More importantly,
significant positive correlations between the total abundance of
transposases and that of ARGs were found in all three datasets (p
< 0.001, Fig. 5D–F). Similar correlations were also observed for the
other three MGE types and ARGs (Fig. S18).
Co-occurrence patterns of ARGs and MGEs were examined in

terms of their nearest distances on the same contigs (Fig. 5G–I).
Multidrug resistance genes were among the ARG types that were
located closest to MGEs, with average MetAmin at 17.2, 9.9, and
13.7 kb in the Global-A dataset, the China-T dataset, and the
SChina-S dataset, respectively (Fig. 5G–I).
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Biogeography of ARGs in mining-impacted environments
Our PCoA showed that ARG composition in the studied mine sites
tended to be clustered by geography (Fig. 6A–C): (1) mine sites in
the Global-A dataset were grouped roughly according to country;
(2) most mine sites in the China-T dataset could be divided into
two groups (i.e. South (S) and North (N) China, respectively); and
(3) those in the SChina-S dataset were generally clustered into
three groups, including south-east (SE), south-central (SC) and
south-west (SW) China. Although the clustering pattern observed
at the global scale could be magnified by different experimental
methods of different studies, our distance-decay analysis also
revealed that geography had a significant influence on ARG
composition similarities in all three datasets (p < 0.001, Fig. 6D–F).
Similar as what were observed in the PCoA and distance decay
analysis, VPA suggested that geographic location alone or in
combination with the metal-related parameters significantly
affected ARG compositions of the China-T dataset and the
SChina-S dataset (p < 0.001, Fig. S19), while such an analysis was
not applicable to the Global-A dataset due to the lack of relevant
data. These results supported our fourth hypothesis.

Hosts of ARGs in mining-impacted environments
A total of 1800 and 5104 good-quality ARG-carrying MAGs
(completeness ≥75% and contamination ≤10%) were recovered

from the China-T dataset and the SChina-S dataset, respectively
(Tables S12 and S13). They were affiliated to 41 phyla and carried
577 ARG subtypes (accounting for 73.5% of the total ARG subtypes
identified in this study). Over 73.7% of them had ≥10 ARGs and
35.2% of them harbored more than 10 ARG types (Table S14).
However, in order to improve the credibility and display quality of
our results, hereafter we focused on 1830 high-quality ARG-
carrying MAGs (representing 31 phyla), of which 565 and 1265
were from the China-T dataset and the SChina-S dataset
respectively (Tables S12 and S13). In both datasets, Proteobacteria
contained the largest number of ARG-carrying MAGs (Fig. 7A, B).
As such, their relative abundances in most studied mine sites were
higher than those of the other dominant phyla carrying ARGs
(Fig. S20). Apart from Proteobacteria, Acidobacteriota, Actinobacter-
iota, Bacteroidota, Firmicutes, Nitrospirota, Planctomycetota and
Thermoplasmatota were among the top 10 dominant ARG-
carrying phyla in both datasets (Fig. 7A, B).
Each of the ARG-carrying MAGs in Proteobacteria, on average,

harbored 12.1 ARG types (including 24.2 subtypes) and 4.7 MRG
types (12.6 subtypes), being higher than those of the other dominant
phyla (Fig. 7A, B). Despite this, ARG compositions of the top 10
dominant ARG-host phyla were highly consistent (Fig. 7C, D), with
multidrug being the most dominant ARG type for nine phyla. Indeed,
multidrug resistance genes were found to have a broad taxonomic
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distribution in both datasets. For example, they were detected in 23
phyla, 155 families and 176 genera in the China-T dataset (Fig. S21).
Compared to other dominant phyla, the archaeal phylum Thermo-
plasmatota possessed a distinct ARG composition, with tetracycline
and bacitracin being the top two dominant ARG types (Fig. 7C, D).
Similar analyses at both family and genus levels also revealed certain
taxa with a distinct ARG composition. For instance, bacitracin was a
predominant ARG type for the archaeal genus Acidiplasma (Fig. S22).

In the two national datasets, 75 and 121 ARG-carrying MAGs
could be annotated at species level (Fig. S23). Among them, 31
and 23 were identified to be potential pathogens, including
Pseudomonas putida, Stenotrophomonas maltophilia, Klebsiella
pneumonia, and so on (Figs. 7A, B, S23). These potential pathogens
contained a significantly higher number of multidrug resistance,
multimetal resistance and VF genes than the non-pathogens (p <
0.001, Figs. 7A, B and S24, S25).
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DISCUSSION
ARGs are abundant and overrepresented by multidrug type
As traditional abiotic pollutants, metals in mining-impacted
environments have caused worldwide concern during the past
decades [14, 16, 17]. However, their effects on the emergence,
proliferation, and transmission of the new biotic pollutants ARGs
in mine sites remain poorly understood. This study provides
robust evidence for the first time that the proliferation and spread
of ARGs in mining-impacted environments is an alarming issue on
a global scale. On the one hand, the total abundances of ARGs in
the mine wastes were not only much higher than those in the
freshwater sediments with different extents of pollution but also
comparable to those in the untreated urban sewage (Fig. 2A), a
well-recognized ARG hotspot [63].
On the other hand, multidrug was found to be a predominant

ARG type across all studied mine sites, on average contributing to
40% of the total ARGs in the mining environments (Fig. 1D–F).
Such a ratio was higher than that of the freshwater sediments
examined in this study and rivaled that of the untreated urban
sewage (Fig. 2C). These findings are different from those of
previous relevant studies (Fig. S1 and Table S1) and deserve much
more attention, especially given that the increasing occurrence of
multidrug-resistant pathogenic bacteria around the world has
been considered as a major challenge in disease control [2].
Although there is evidence that some multidrug ARGs do not
necessarily endow microorganisms the ability to tolerate multiple
antibiotics [78], the dominance, drivers, and fate of multidrug
ARGs in widely distributed environments represent an under-
explored, but important topic.
It should be noted that the ARG subtype number in the mine

wastes was only half of that in the untreated urban sewage
(Fig. 2B). On the one hand, this may be partly due to the lower
microbial taxonomic diversity in the mine wastes, given the strong
correlation between microbial taxonomic diversity and ARG
subtype number observed (Fig. 2D). On the other hand, the lower
ARG subtype number in the mine wastes may as well be due to
the lack of targeted metagenomes for some important mining
countries (such as Australia, Chile, and Mexico) at the time when

we performed our global-scale data collection. In such a context,
we expect that the growing availability of metagenomes from
mining-impacted environments worldwide will allow the identi-
fication of more ARG subtypes in the near future.

Metals cause on-site selection of ARGs
There is emerging evidence that fecal contamination can largely
explain ARG abundances in many anthropogenically impacted
environments (e.g. sewage-polluted environments), without clear
signs of on-site selection of ARGs [79]. However, in this study, we
demonstrate that metals cause on-site selection of ARGs in
mining-impacted environments, supporting our first hypothesis.
First, the strong correlation between the total abundance of ARGs
and that of MRGs (Fig. 3D–F) indicated the importance of co-
selection with MRGs in ARG proliferation in the mine sites. Second,
VPA analysis (Fig. 3G, H) and positive correlations between metal
levels and total ARG abundance (Fig. S12) revealed that metals
played important roles in driving ARG spread in the mine sites.
Third, the low total abundances of fecal marker genes, in
combination with the lack of correlation between their abundance
and that of ARGs (Fig. 3A–C), ruled out the possibility that fecal
contamination was a major source of the ARGs [79].
Metals are thought to co-select for ARGs through three

mechanisms: cross-resistance, co-regulation, and co-resistance
[6]. Our results revealed that all three mechanisms existed in
mining-impacted environments. First, a large portion of ORFs were
annotated as ARGs and MRGs simultaneously (Table S15), implying
the importance of cross-resistance. Specifically, these ‘bifunctional’
ORFs consisted of 24 different ARG subtypes (Table S16),
accounting for approximately 34.0% of the total ARG abundance
(including regulatory ARGs, Table S16). Second, 11 of the 24 “dual-
resistance-genes” were identified as regulatory genes (Table S15),
some of which were detected with relative abundance >1% (e.g.
ArlR, ompR and vanR; Table S16). These regulator genes indicate
that co-regulation may be also an important mechanism. Similar
inference about the importance of co-regulation in ARG co-
selection has been made in an arsenic-spiking study [80]. Third,
strong correlations between the total abundance of MRGs and
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that of ARGs were still observed even after removing the dual-
annotated ARGs (Fig. S26), hinting the importance of co-
resistance.

Multidrug ARGs prefer to co-occur with multimetal MRGs
Although co-selection for ARGs and MRGs by metals has been
observed in various environments [9, 12], a comprehensive
understanding of the phenomenon is still lacking. To our knowl-
edge, there are only two studies explicitly exploring the genetic
relationships between ARGs and MRGs by taking advantage of
public fully-sequenced bacterial genomes [49, 81]. Compared to
the two studies, our study uncovered three distinct features of
genetic linkages between ARGs and MRGs in mining-impacted
environments. First, the ARG-MRG nearest distances in the mine
sites (on average at 26.3 kb, Fig. 4A–C) were much shorter than not
only that of non-pathogen genomes from diverse habitats (380 kb)
but also that of pathogenic ones (103 kb) [49], providing evidence
for our third hypothesis. Second, multidrug was always among the
closest ARG types towards MRGs (Fig. 4A–C). Third, the most
dominant co-occurring ARG-MRG pairs in the mining-impacted
environments were multidrug ARG and multimetal MRG pairs
(Fig. 4D–F). In contrast, based on a similar analysis of 5436
complete genomes of bacteria from diverse habitats, Li et al. [49]
showed that beta-lactam, kasugamycin, bacitracin, aminoglycoside,
polymyxin, and tetracycline were the top six ARG types that were
most likely to co-occur with MRGs. One possible cause for such a
discrepancy is that serious metal pollution in the mine sites exerts
a directional evolutionary force in the co-selection for ARGs and
MRGs [16]. These distinct features raise a possibility that mining-
impacted environments are a pool of potential multi- antibiotic

and metal resistant prokaryotes, given that close physical linkage
of genes on genome can confer great advantage in developing
corresponding phenotypes [82]. This possibility seems to be
supported by an observation that 11 out of 16 microbial strains
isolated from metal-polluted soils exhibited dual resistance to
multiple metals and antibiotics [83].

Multidrug ARGs are highly mobile
The mobility of ARGs is an important aspect of assessment and
management of their environmental risk [76]. In this study, we
observed that a large proportion of the ARGs were located on
chromosomes rather than on plasmids (Fig. 5A–C). Despite this, the
average proportion of plasmid-associated ARGs in the mine sites
(approximately 16.0%) was still much higher than that of three
wastewater treatment plants in Taiwan (ca. 5.0%) [84]. Note also that
the proportion of plasmid-associated ARGs showed small variation
among ARG types (Fig. 5A–C). In contrast, a previous study reported
that plasmid-borne ARGs accounted for 0.0% to more than 90% of
the total ARGs in coastal beach and sewage waters from
Montevideo depending on ARG types [85]. The causes and potential
implications of such a discrepancy deserve further investigation,
although comparison between studies should be interpreted with
caution because different plasmid identification methods were
applied.
Two pioneer studies have consistently revealed a strong positive

correlation between the total abundance of ARGs and that of
transposase genes, thus highlighting the important role of
horizontal gene transfer in the dissemination of ARGs in the
hotspots [86, 87]. In agreement with this, we found that the total
abundance of ARGs in the studied mine sites was positively
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correlated with not only that of transposase genes (Fig. 5D–F) but
also those of genes encoding other three types of MGEs (Fig. S18).
Moreover, the average nearest ARG-MGE distance in the mine sites
was only 17.4 kb (Fig. 5G–I), which falls well within the active ranges
of typical MGE types such as transposon (2.5–60 kb) [88], integrative
and conjugative elements (11.5–155 kb) [89] and integrative and
mobilizable elements (<50 kb) [90]. These findings are consistent
with our third hypothesis. Among all ARG types detected in this
study, multidrug ARGs were often featured with their shortest
distance with MGEs (Fig. 5G–I), indicating that this ARG type had the
highest dissemination potential in mining-impacted environments.

Biogeographic analysis reveals ubiquity of multidrug ARGs
Geographic clustering was observed in both the China-T dataset
and the SChina-S dataset (Fig. 6B, C). However, two previous
studies showed that ARG compositions of urban landfill leachates
and untreated urban sewage across China did not exhibit obvious
geographic clusters [91, 92]. Such a discrepancy may be attributed
partly to a scenario that mine sites are basically natural
ecosystems with a more open environment as compared to
various urban ecosystems and thereby are more susceptible to
geographic factors. Likewise, we found that ARG composition of
the public AMD-related samples varied considerably among
countries (Fig. 6A), whilst a recent study showed that untreated
urban sewage samples from 60 countries around the world were
separated into only two groups in terms of their ARG composition
[63]. Although we cannot exclude the possibility that using the
same methodology is a reason for the weaker geographic
grouping trend in the global sewage study, we showed that
geographic factors had a significant effect on composition of the
ARGs in mine sites even when the effect deriving from the
collinearity between them and metal-related environmental
factors was excluded (Fig. S19).
Irrespective of whether geographic factors significantly affect

ARG composition, for some other well-known ARG hotspots, a
small number of ARG subtypes tend to occur abundantly in almost
all focal sites and thus are often referred to as core ARGs
[12, 63, 84, 87, 91]. These core ARGs were also seen in the mine
sites worldwide (Fig. S6). However, there exists a difference
between the mining-impacted environments and other ARG
hotspots in core ARGs. Specifically, while most core ARGs of
untreated urban sewage in China or around the world endow
resistances to several specific types of antibiotics (especially
aminoglycoside and tetracycline) [63, 84, 87, 91], their counter-
parts of the mine sites belong mainly to multidrug ARGs (Fig. S6).
Moreover, some of these multidrug ARGs (e.g. comD, emrB and
ompR) were carried by potential pathogens (Table S17), being
consistent with the information available in a public comprehen-
sive ARG database wherein many hosts of these multidrug ARGs
are considered as potential pathogens [93].

Novel and potential pathogenic ARG hosts deserve more
attention
Although the identification of ARG hosts is a critical step in
developing strategies for reducing the spread rate of ARGs and
antibiotic resistant pathogens, limited information about ARG
hosts (especially those cannot be readily cultured) in the
environment is available [73]. Our study uncovered immense
diversity of environmental microorganisms that carried ARGs.
Among the top 10 dominant ARG-host phyla in the mine sites
(Fig. 7A, B), Proteobacteria, Firmicutes, Bacteroidota, and Actino-
bacteriota were reported frequently to occur in many other ARG
hotpots [73]. However, to our knowledge, no complete genomes
or MAGs belonging to Thermoplasmatota, Gemmatimonadota,
Desulfobacterota, and Eremiobacterota have been previously found
to carry ARGs [73], providing important support for our fifth
hypothesis. Thermoplasmatota is a phylum affiliated to the

Archaea domain, wherein antibiotic resistance remains poorly
understood. There are only a few previous studies that identified
methanogenic archaea as ARG hosts by network analysis [94, 95].
Thus, archaeal ARGs are of considerable interest, especially given
that some archaea colonizing human microbiota have been
reported to be implicated in diseases [96].
In this study, 97% of high-quality MAGs were found to carry at

least one ARG, which was much higher than the figure reported by
a previous study showing that 48% of the 5436 complete bacterial
genomes downloaded from the NCBI genome database with
diverse sources of habitat (including human, soil, and water) were
ARG carriers [49]. One possible reason for our finding lies in that
horizontal gene transfer across phylogenetic boundaries is more
common in mining-impacted environments than in many others
[97]. However, this does not fully explain the distinct ARG
composition of Thermoplasmatota (Fig. 7C, D). Further research
is warranted to explore the evolutionary relationships between
the archaeal and bacterial ARGs. Nonetheless, our study suggests
that in the mine sites a majority of dominant ARG-hosts prefer to
harbor multidrug ARGs (Fig. 7C, D) and that this type of ARGs has
the broadest host range (Fig. S21), which have not yet been
observed in other environments [73].
Additionally, the 54 MAGs identified as potential pathogens in

this study harbored more VF, multidrug resistance and multimetal
resistance genes than the non-pathogens (Figs. 7A, B, S24, S25).
Given the extremely low abundances of the fecal marker genes in
the mine sites (Fig. 3B, C), we speculate that these potential
pathogenic MAGs are not likely of human origin. Therefore, they
should be referred to as “environmental pathogens” – organisms
that normally spend a substantial part of their lifecycle outside
human hosts, but when introduced to susceptible humans may
cause disease with measurable frequency [98]. Note that, a few
potential pathogens identified here, such as P. putida, S.
maltophilia and Pseudomonas aeruginosa, have been reported to
be soilborne or waterborne [99–102]. Nonetheless, the actual
virulence of these potential pathogens inhabiting mining-
impacted environments deserves further investigation.

CONCLUSIONS
This study provides the first metagenomic evidence for serious
pollution with ARGs in globally distributed mining-impacted
environments, highlighting the distinct ARG characteristics of
such environments as compared to other known ARG hotspots.
While metatranscriptome-, qPCR- and/or culture-based studies are
needed to further confirm our findings, we advocate to take
effective measures to reduce the spread of ARGs from mine sites
worldwide to their neighboring ecosystems. We also propose
long-term monitoring of changes in ARGs and their hosts
(especially those potential pathogens carrying both multidrug
ARGs and multimetal resistance genes) in mine sites.
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