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Abstract. We derive the first exact, rigorous but practical, globally valid remainder terms for4
asymptotic expansions about saddles and contour endpoints of arbitrary order degeneracy derived5
from the method of steepest descent. The exact remainder terms lead naturally to sharper novel6
asymptotic bounds for truncated expansions that are a significant improvement over the previous best7
existing bounds for quadratic saddles derived two decades ago. We also develop a comprehensive8
hyperasymptotic theory, whereby the remainder terms are iteratively re-expanded about adjacent9
saddle points to achieve better-than-exponential accuracy. By necessity of the degeneracy, the form10
of the hyperasymptotic expansions are more complicated than in the case of quadratic endpoints11
and saddles, and require generalisations of the hyperterminants derived in those cases. However we12
provide efficient methods to evaluate them, and we remove all possible ambiguities in their definition.13
We illustrate this approach for three different examples, providing all the necessary information for14
the practical implementation of the method.15
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1. Introduction. From catastrophe theory it is well known that integrals with19

saddle points may be used to compactly encapsulate the local behaviour of linear20

wavefields near the underlying organising caustics, see for example [32, 4]. The saddle21

points correspond to rays of the underpinning ODEs or PDEs. Their coalescence cor-22

responds to tangencies of the rays at the caustics, leading to nearby peaks in the wave23

amplitude. On the caustics, the coalesced saddle points are degenerate. The local24

analytical behaviour on the caustic may be derived from an asymptotic expansion25

about the degenerate saddle. An analytical understanding of the asymptotic expan-26

sions involving degenerate saddles is thus essential to an examination of the wavefield27

behaviour on caustics. A modern approach to this includes the derivation of globally28

exact remainders, sharp error bounds and the exponential improvement of the expan-29

sions to take into account the contributions of terms beyond all orders. Recent work30

in quantum field and string theories, e.g., [16, 12, 1, 2] has led to a major increase in31

interest in such resurgent approaches in the context of integral asymptotics.32

The first globally exact remainders for asymptotic expansions of integrals possess-33

ing simple saddle points were derived by Berry and Howls [7]. The remainder terms34

were expressed in terms of self-similar integrals over doubly infinite contours passing35

through a set of adjacent simple saddles. Boyd [10] provided a rigorous justification36

of the exact remainder terms, together with significantly improved error bounds.37

The remainder terms automatically incorporated and precisely accounted for the38

Stokes phenomenon [33], whereby exponentially subdominant asymptotic contribu-39

tions are switched on as asymptotics or other parametric changes cause the contour40
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of integration to deform to pass through the adjacent saddles. The Stokes phenomenon41

occurs across subsets in parameter space called Stokes lines.42

Re-expansion of the exact remainder term about the adjacent saddles, using their43

own exact remainder terms led to a hyperasymptotic expansion, which delivered44

better-than-exponential numerical accuracy.45

Subsequent work extended globally exact remainder terms and hyperasymptotic46

analysis to integrals with linear endpoints [17] and multiple integrals [18]. Parallel47

approaches to differential equations using Cauchy–Heine and Borel transforms were48

taken by Olde Daalhuis and Olver [29], [26]. This resulted in efficient methods for49

computation of the universal hyperterminants [27]. The efficient computation of hy-50

perterminants not only made hyperasymptotic expansions numerically feasible, but51

more importantly, in the absence of the geometric information present in single dimen-52

sional integral calculations, allowed them to be used to calculate the Stokes constants53

that are required in an exponentially accurate asymptotic calculation involving, for54

example, the solution satisfying given boundary data.55

However, the general case of globally exact remainder terms and hyperasymptotic56

expansions of a single-dimensional integral possessing a set of arbitrary order degen-57

erate saddle points has not yet been considered. The purpose of this paper is to fill58

this surprising gap.59

Hence, in this paper, we provide the first comprehensive globally exact asymptotic60

theory for integrals with analytic integrands involving finite numbers of arbitrarily61

degenerate saddle points. It incorporates the special case of Berry and Howls [7] and62

Howls [17]. However the complexity of the situation uncovers several new features63

that were not present in the simple saddle case.64

First, the nature of the steepest paths emerging from degenerate saddles gives65

multiple choices as to which contours might be integrated over, or which might con-66

tribute to the remainder term. It is necessary to adopt a more stricter convention67

regarding the choice of steepest paths to clarify the precise nature of the contributions68

to the remainder and hyperasymptotic expansions.69

Second, the degenerate nature requires us to explore additional Riemann sheets70

associated to the local mappings about the saddle points. This gives rise to additional71

complex phases, not obviously present in the simple saddle case, that must be taken72

into account depending on the relative geometrical disposition of the contours.73

Third, we provide sharp, rigorous bounds for the remainder terms in the Poincaré74

asymptotic expansions of integrals with arbitrary critical points. In particular, we75

improve the results of Boyd [10] who considered integrals with only simple saddles.76

Our bounds are sharper, and have larger regions of validity.77

Fourth, the hyperasymptotic tree structure that underpins the exponential im-78

provements in accuracy is prime face more complicated. At the first re-expansion of79

a remainder term, for each adjacent degenerate saddle there are two contributions80

arising from the choice of contour over which the remainder may be taken. At the81

second re-expansion, each of these two contributions may give rise to another two,82

and so on. Hence, while the role of the adjacency of saddles remains the same, the83

numbers of terms required at each hyperasymptotic level increases twofold for each84

degenerate saddle at each level. Fortunately these terms may be related, and so the85

propagation of computational complexity is controllable.86

Fifth, the hyperterminants in the expansion are more complicated than those in87

[7], [22], [26] or [27]. However we provide efficient methods to evaluate them.88

Sixth, the results of this integral analysis reveals new insights into the asymptotic89

expansions of higher order differential equations.90
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There have been several near misses at a globally exact remainder term for de-91

generate saddles arising from single dimensional integrals.92

Ideas similar to those employed by Berry and Howls were used earlier by Meijer.93

In a series of papers [19], [20], [21] he derived exact remainder terms and realistic error94

bounds for specific special functions, namely Bessel, Hankel and Anger–Weber-type95

functions. Nevertheless, he missed the extra step that would have led him to more96

general remainder terms of [7].)97

Dingle [14], whose pioneering view of resurgence underpins most of this work,98

considered expansions around cubic saddle points, and gave formal expressions for the99

higher order terms. However, he did not provide exact remainder terms or consequent100

(rigorous) error estimates.101

Berry and Howls, [8], [9], considered the cases of exponentially improved uniform102

expansions of single dimensional integrals as saddle points coalesced. The analysis [8]103

focused on the form of the late terms in the more complicated uniform expansions.104

They [9] provided an approximation to the exact remainder term between a simple105

and an adjacent cluster of saddles illustrating the persistence of the error function106

smoothing of the Stokes phenomenon [6] as the Stokes line was crossed. Neither of107

these works gave globally exact expressions for remainder terms involving coalesced,108

degenerate saddles.109

Olde Daalhuis [28] considered a Borel plane treatment of uniform expansions, but110

did not extend the work to include arbitrary degenerate saddles.111

Breen [11] briefly considered the situation of degenerate saddles. The work re-112

stricted attention to cubic saddles and, like all the above work, did not provide rigorous113

error bounds or develop a hyperasymptotic expansion.114

It should be stressed that the purpose of a hyperasymptotic approach is not per115

se to calculate functions to high degrees of numerical accuracy: there are alternative116

computational methods. Rather, hyperasymptotics is as an analytical tool to incorpo-117

rate exponentially small contributions into asymptotic approximations, so as to widen118

the domain of validity, understand better the underpinning singularity structures and119

to compute invariants of the system such as Stokes constants whose values are often120

assumed or left as unknowns by other methods.121

The idea for this paper emerged from the recent complementary and independent122

thesis work of [3], [24], which gave rise to the current collaboration. This collabora-123

tion has resulted in the present work which incorporates not only a hyperasymptotic124

theory for both expansions arising from non-degenerate and degenerate saddle points,125

but also significantly improved rigorous and sharp error bounds for the progenitor126

asymptotic expansions.127

The structure of the paper is as follows.128

In Section 2, we introduce arbitrary finite integer degenerate saddle points. In129

Section 3, we derive the exact remainder term for an expansion about a semi-infinite130

steepest descent contour emerging from a degenerate saddle and running to a valley131

at infinity. The remainder term is expressed as a sum of terms of contributions from132

other, adjacent saddle points of the integrand. Each of these contributions is formed133

from the difference of two integrals over certain semi-infinite steepest descent contours134

emerging from the adjacent saddles.135

In Section 4, we iterate these exact remainder terms to develop a hyperasymptotic136

expansion. We introduce novel hyperterminants (which simplify to those of Olde137

Daalhuis [27] when the saddles are non-degenerate).138

In Section 5, we provide explicit rigorous error bounds for the zeroth hyperasymp-139

totic level. These novel bounds are sharper than those derived by Boyd [10].140
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In Section 6, we illustrate the degenerate hyperasymptotic method with an ap-141

plication to an integral related to the Pearcey function, evaluated on its cusp caustic.142

The example involves a simple and doubly degenerate saddle. In Section 7, we provide143

an illustration of the extra complexities of a hyperasymptotic treatment of degenera-144

cies with an application to an integral possessing triply and quintuply degenerate145

saddle points. In this example, we also illustrate the increased size of the remainder146

near a Stokes line as predicted in Section 5. In Section 8, we give an example of how it147

is possible to make an algebraic (rather than geometric) determination of the saddles148

that contribute to the exact remainder terms in a swallowtail-type integral through a149

hyperasymptotic examination of the late terms in the saddle point expansion.150

In Section 9, we conclude with a discussion on the application of the results of this151

paper to the (hyper-) asymptotic expansions of higher order differential equations.152

2. Definitions. Let ωj be a positive integer, with j = 1, 2, . . . an integer index.153

Consider a function f(t), analytic in a domain of the complex plane. The point t(j),154

is called a critical point of order ωj − 1 of f(t), if155

f (p)(t(j)) = 0 but f (ωj)(t(j)) 6= 0, for all p = 1, . . . , ωj − 1.156

When ωj = 1, 2, > 2, t(j) is, respectively, a linear endpoint, a simple saddle point,157

a degenerate saddle point. For analytic f(t), the saddle points are then all isolated.158

Henceforth we denote the value of f(t) at t = t(j) by fj .159

We shall derive the steepest descent expansion, together with its exact remainder160

term, of integrals of the type161

(1) I(n)(z;αn) =

∫

P(n)

e−zf(t)g(t)dt, z = |z|eiθ, |z| → ∞,162

where P(n) = P(n)(θ;αn) is one of the ωn paths of steepest descent emanating from163

the (ωn − 1)st-order critical point t(n) of f(t) and passing to infinity in a valley of164

Re
[
−eiθ(f(t)− fn)

]
.165

Suppose we use the notation of (ωn → ωm) to indicate the remainder term166

that rises from an asymptotic expansion about a endpoint/saddle point n of order167

ωn in terms of the adjacent (in a sense to be defined later) set of saddles m =168

{m1,m2,m3, . . . }, of orders corresponding to the values ωm = {ωm1
, ωm2

, . . . }. Thus169

Berry and Howls [7] dealt with (ωn → ωm) = (2 → 2). Howls [17] dealt with (1 → 2)170

and the (2e → 2). Our goal here is to derive the exact remainder terms for arbitrary171

integers (ωn → ωm).172

3. Derivation of exact remainder term. On the steepest path P(n)(θ;αn)173

emerging from t(n), we have174

(2) arg
[
eiθ(f(t)− fn)

]
= 2παn,175

for a suitable integer αn (see Figure 1).176

The local behaviour of f(t) at the critical point t(n) of order ωj − 1 is given by177

(3) f(t)− fn =
f (ωn)(t(n))

ωn!

(
t− t(n)

)ωn

+O
(∣∣∣t− t(n)

∣∣∣
ωn+1

)
.178

From (2) and (3), we hence find that179

(4) αn =
θ + arg(f (ωn)(t(n))) + ωnϕ

2π
,180

This manuscript is for review purposes only.



GLOBALLY EXACT ASYMPTOTICS FOR INTEGRALS 5
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Fig. 1. The ωn paths of steepest descent emanating from the (ωn−1)st-order critical point t(n)

of f(t).

where −π < arg
(
f (ωn)(t(n))

)
≤ π, and ϕ (−π < ϕ ≤ π) is the angle of the slope of181

P(n)(θ;αn) at t
(n), i.e., lim

(
arg(t− t(n))

)
as t → t(n) along P(n)(θ;αn).182

The functions f(t) and g(t) are assumed to be analytic in the closure of a domain183

∆(n). We suppose further that |f(t)| → ∞ as t → ∞ in ∆(n), and f(t) has several184

other saddle points in the complex t-plane at t = t(j) labelled by j ∈ N.185

The domain ∆(n) is defined by considering all the steepest descent paths for186

different values of θ, which emerge from the critical point t(n). In general these paths187

can end either at infinity or at a singularity of f(t). We assume that all of them end188

at infinity. Since there are no branch points of f(t) along these paths, any point in189

the t-plane either cannot be reached by any path of steepest descent issuing from t(n),190

or else by only one. A continuity argument shows that the set of all the points which191

can be reached by a steepest descent path from t(n) forms the closure of a domain in192

the t-plane. It is this domain which we denote by ∆(n), see for example Figure 2.193

Instead of considering the raw integral (1), it will be convenient to consider instead194

its slowly varying part, defined by195

(5) T (n)(z;αn) := ωnz
1/ωnezfnI(n)(z;αn) = ωnz

1/ωn

∫

P(n)

e−z(f(t)−fn)g(t)dt.196

The ωth
n root is defined to be positive on the positive real line and is defined by197

analytic continuation elsewhere.198

The path P(n)(θ;αn) passes through certain other saddle points t(m) when θ =199

θ
[1]
nm, θ

[2]
nm, θ

[3]
nm, . . ., with θ

[j]
nm = θ

[k]
nm mod 2πωn. Such saddle points are defined as200

being “adjacent” to t(n).201

Initially we chose the value of θ so that the steepest descent path P(n)(θ;αn) in202

(1) does not encounter any of the saddle points of f(t) other than t(n). We define203

θ+nm := min
{
θ[j]nm : j ≥ 1, θ < θ[j]nm

}
and θ−nm := max

{
θ[j]nm : j ≥ 1, θ[j]nm < θ

}
.204

Note that θ+nm = θ−nm + 2πωn. Thus, in particular, θ is restricted to an interval205

(6) θ−nm1
< θ < θ+nm2

,206

where θ−nm1
:= maxm θ−nm and θ+nm2

:= minm θ+nm. We shall suppose that f(t) and207
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6 T. BENNETT, C. J. HOWLS, G. NEMES, A. B. OLDE DAALHUIS

g(t) grow sufficiently rapidly at infinity so that the integral (1) converges for all values208

of θ in the interval (6).209

The local behaviour (3) of f(t) at the critical point t(n) suggests the parameteri-210

zation211

(7) sωn = z(f(t)− fn)212

of the integrand in (5) along P(n)(θ;αn). Substitution of (7) in (5) yields213

T (n)(z;αn) = ωnz
1/ωn

∫ ∞e
2πiαn
ωn

0

e−sωn
g(t)

dt

ds
ds

= ωn

∫ ∞e
2πiαn
ωn

0

e−sωn ωns
ωn−1

z1−1/ωn

g(t(s/z1/ωn))

f ′(t(s/z1/ωn))
ds,

(8)214

215

where t = t(s/z1/ωn) is the unique solution of the equation (7) with t(s/z1/ωn) ∈216

P(n)(θ;αn). Since the contour P(n)(θ;αn) does not pass through any of the saddle217

points of f(t) other than t(n), the quantity218

(9)
ωns

ωn−1

z1−1/ωn

g(t(s/z1/ωn))

f ′(t(s/z1/ωn))
=

ωn(f(t(s/z
1/ωn))− f(t(n)))1−1/ωn

f ′(t(s/z1/ωn))
g(t(s/z1/ωn))219

is an analytic function of t in a neighbourhood of P(n)(θ;αn). (We examine the220

analyticity of the factor (f (t)− fn)
1/ωn in ∆(n), after equation (11) below.) Whence,221

according to the residue theorem, the right-hand side of (9) is1222

Res
t=t(s/z1/ωn )

g(t)

(f(t)− fn)1/ωn − s/z1/ωn
=

1

2πi

∮

t(s/z1/ωn )

g(t)

(f(t)− fn)1/ωn − s/z1/ωn
dt.223

Substituting this expression into (8) leads to an alternative representation for the224

integral T (n)(z;αn) of the form225

(10) T (n)(z;αn) =

∫ ∞e
2πiαn
ωn

0

e−sωn ωn

2πi

∮

Γ(n)

g(t)

(f(t)− fn)1/ωn − s/z1/ωn
dtds.226

The infinite contour Γ(n) = Γ(n)(θ) encircles the path P(n)(θ;αn) in the positive direc-227

tion within ∆(n) (see Figure 2(a)). This integral will exist provided that g(t)/f1/ωn(t)228

decays sufficiently rapidly at infinity in ∆(n). Otherwise, we can define Γ(n)(θ) as a229

finite loop contour surrounding t(s/z1/ωn) and consider the limit230

(11) lim
S→∞

∫ Se
2πiαn
ωn

0

e−sωn ωn

2πi

∮

Γ(n)

g(t)

(f(t)− fn)1/ωn − s/z1/ωn
dtds.231

The factor (f(t)− fn)
1/ωn in (10) is carefully defined in the domain ∆(n) as follows.232

First, we observe that f(t) − fn has an ωth
n -order zero at t = t(n) and is non-zero233

elsewhere in ∆(n) (because any point in ∆(n), different from t(n), can be reached from234

t(n) by a path of descent). Second, P(n)(θ;αn) is a periodic function of θ with (least)235

1If P (t) and Q(t) are analytic in a neighbourhood of t0 with P (t0) = 0 and P ′(t0) 6= 0, then
Q(t0)/P ′(t0) = Rest=t0 Q(t)/P (t).
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period 2πωn. Hence, we may define the ωth
n root so that (f(t) − fn)

1/ωn is a single-236

valued analytic function of t in ∆(n). The correct choice of the branch of (f(t)−fn)
1/ωn237

is determined by the requirement that arg s = 2παn/ωn on P(n)(θ;αn), which can be238

fulfilled by setting arg
[
(f(t)− fn)

1/ωn
]
= (2παn − θ)/ωn for t ∈ P(n)(θ;αn). With239

any other definition of (f(t)− fn)
1/ωn , the representation (10) would be invalid.240

Now, we employ the finite expression for non-negative integer N241

1

1− x
=

N−1∑

r=0

xr +
xN

1− x
, x 6= 1,242

to expand the denominator in (10) in powers of s/[z(f(t)− fn)]
1/ωn . We thus obtain243

T (n)(z;αn) =

N−1∑

r=0

1

zr/ωn

∫ ∞e
2πiαn
ωn

0

e−sωn
sr

ωn

2πi

∮

Γ(n)

g(t)

(f(t)− fn)(r+1)/ωn
dtds244

+R
(n)
N (z;αn)245246

with247

R
(n)
N (z;αn) =

ωn

2πizN/ωn

∫ ∞e
2πiαn
ωn

0

e−sωn
sN

×
∮

Γ(n)

g(t)

(f(t)− fn)(N+1)/ωn

dt

1− s
(z(f(t)−fn))

1/ωn

ds.

(12)248

249

Again, a limiting process is used in (12) if necessary. Throughout this work, if not250

stated otherwise, empty sums are taken to be zero.251

For each term in the finite sum, the contour Γ(n)(θ) can be shrunk into a small252

positively-oriented circle with centre t(n) and radius ρ, and we arrive at253

(13) T (n)(z;αn) =

N−1∑

r=0

T
(n)
r (αn)

zr/ωn
+R

(n)
N (z;αn),254

where the coefficients are given by255

T (n)
r (αn) = e

2πiαn(r+1)
ωn

Γ
(

r+1
ωn

)

2πi

∮

t(n)

g(t)

(f(t)− fn)
(r+1)/ωn

dt(14)256

= e
2πiαn(r+1)

ωn

(
ωn!

f (ωn)(t(n))

)(r+1)/ωn Γ
(

r+1
ωn

)

Γ (r + 1)
257

×


 dr

dtr


g(t)

(
f (ωn)(t(n))

ωn!

(
t− t(n)

)ωn

f(t)− fn

)(r+1)/ωn





t=t(n)

.(15)258

259

If we omit the remainder term R
(n)
N (z;αn) in (13) and formally extend the sum to260

infinity, the result becomes the asymptotic expansion of an integral with (ωn − 1)st-261

order endpoint (cf. [30, eq. (1.2.16), p. 12]). A representation equivalent to (14) was262

given, for example, by Copson [13, p. 69]. The expression (15) is a special case of263

Perron’s formula (see, e.g., [23]).264
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V

P(n)(θ;αn)
t
(n)

Γ
(n)(θ)

(a)

t
(n)

t
(m1)

t
(m2)

t
(m3)

∆
(n)

P
(m3)(θ+

nm3
;α+

nm3
)

P
(m2)(θ+

nm2
;α+

nm2
)

P
(m1)(θ+

nm1
;α+

nm1
)

P
(m1)(θ−

nm1
;α−

nm1
)

P
(m2)(θ−

nm2
;α−

nm2
)

P
(m3)(θ−

nm3
;α−

nm3
)

−

(b)

Fig. 2. Contours used in the derivation of the exact remainder terms. (a) The contour Γ(n)(θ)
relative to the integration contour P(n)(θ;αn) as used in (10). (b) A schematic representation of

the saddle points t(mj) that are adjacent to t(n) and the adjacent contours P
(mj) emanating from

them in (18), together with the domain ∆(n).

In the examples below we use (15) to compute conveniently and analytically265

the exact coefficients. However, we remark that (14) may be combined with the266

trapezoidal rule evaluated at periodic points on the loop contour about t(n) (see for267

example [34]) to give an efficient approximation for the coefficients as268

(16) T (n)
r (αn) ≈ e

2πiαn(r+1)
ωn

Γ
(

r+1
ωn

)

2M

2M−1∑

m=0

g (tm)

wr
m

((
tm − t(n)

)ωn

f(tm)− fn

)(r+1)/ωn

,269

in which tm = t(n) +wm and wm = ρeπim/M . Typically this approximation converges270

exponentially fast with M . Note that in hyperasymptotics n can be large and so we271

would need to take at least M > n.272

The contour Γ(n)(θ) in the remainder term (12) is now deformed by expand-273

ing it onto the boundary of ∆(n). We assume that the set of saddle points which274

are adjacent to t(n) is non-empty and finite. Under this assumption, it is shown275

in Appendix C that the boundary of ∆(n) can be written as a union of contours276 ⋃
m P(m)(θ+nm, α+

nm) ∪ −P(m)(θ−nm, α−
nm), where P(m)(θ±nm, α±

nm) are steepest de-277

scent paths emerging from the adjacent saddle t(m) (see Figure 2(b)). These paths278

are called the adjacent contours. The integers α±
nm are computed analogously to αn279

(cf. (4)) as280

(17) α±
nm =

θ±nm + arg(f (ωm)(t(m))) + ωmϕ±

2π
,281

where −π < arg(f (ωm)(t(m))) ≤ π, and ϕ± (−π < ϕ± ≤ π) is the angle of the slope282

of P(m)(θ±nm, α±
nm) at the (ωm− 1)st-order saddle point t(m) to the positive real axis.283

We assume initially that each adjacent contour contains only one saddle point.2 The284

other steepest descent paths from t(m) are always external to the domain ∆(n).285

2This condition may be relaxed by extending the definition of integrals of the form (5) to include
the limiting case when the steepest descents path connects to other saddle points. Also, a limiting
case, such as (28), has to be used for the generalised hyperterminants in the corresponding re-
expansions.
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By expanding Γ(n)(θ) to the boundary of ∆(n), we obtain286

R
(n)
N (z;αn) =

ωn

2πizN/ωn

∑

m(n)

∫ ∞e
2πiαn
ωn

0

e−sωn
sN

×
(∫

P(m)(θ+
nm,α+

nm)

g(t)

(f(t)− fn)(N+1)/ωn

dt

1− s
(z(f(t)−fn))

1/ωn

−
∫

P(m)(θ−
nm,α−

nm)

g(t)

(f(t)− fn)(N+1)/ωn

dt

1− s
(z(f(t)−fn))

1/ωn

)
ds,

(18)287

288

in which m(n) means that we sum over all saddles that are adjacent to n.289

The expansion process is justified provided that (i) f(t) and g(t) are analytic290

in the domain ∆(n), (ii) the quantity g(t)/f (N+1)/ωn(t) decays sufficiently rapidly at291

infinity in ∆(n), and (iii) there are no zeros of the denominator 1−s/[z(f(t)−fn)]
1/ωn292

within the region R through which the loop Γ(n)(θ) is deformed.293

The first condition is already satisfied by prior assumption. The second con-294

dition is met by requiring that g(t)/f (N+1)/ωn(t) = o(1/ |t|) as t → ∞ in ∆(n)295

which we shall assume to be the case. The third condition is satisfied accord-296

ing to the following argument. The zeros of the denominator are those points of297

the t-plane for which arg
[
eiθ(f(t)− fn)

]
= 2παn, in particular the points of the298

path P(n)(θ;αn). Furthermore, no components of the set defined by the equation299

arg
[
eiθ(f(t)− fn)

]
= 2παn other than P(n)(θ;αn) can lie within ∆(n), otherwise f(t)300

would have branch points along those components. By observing that P(n)(θ;αn) is301

different for different values of θ mod 2πωn, we see that the locus of the zeros of the302

denominator 1− s/[z(f(t)− fn)]
1/ωn inside ∆(n) is precisely the contour P(n)(θ;αn),303

which is wholly contained within Γ(n)(θ) and so these zeros are external to R.304

At this point, it is convenient to introduce the so-called singulants F±
nm (originally305

defined by Dingle [14, pp. 147–149]) via306

F±
nm := |fm − fn|ei argF±

nm , argF±
nm = −θ±nm + 2παn.307

We now consider the convergence of the double integrals in (18) further. To do this,308

we change variables from t to v by309

(19) f(t)− fn = ve(−θ±
nm+2παn)i,310

where v ≥ |F±
nm|. Since e(θ

±
nm−2παn)i(f(t) − fn) is a monotonic function of t on311

the contour P(m)(θ±nm, α±
nm), corresponding to each value of v, there is a value312

of t, say t± (v), that satisfies (19). The assumption (6) implies that the factor313 [
1− s/[z(f(t)− fn)]

1/ωn
]−1

in (18) is bounded above by a constant. Hence, the314

convergence of the double integrals in (18) will be assured provided the real double315

integrals316 ∫ ∞

0

∫ ∞

|F±
nm|

e−|s|ωn |s|N
v(N+1)/ωn

∣∣∣∣
g(t±(v))

f ′(t±(v))

∣∣∣∣ dvd|s|317

exist. In turn, these real double integrals will exist if and only if the single integrals318

(20)

∫ ∞

|F±
nm|

1

v(N+1)/ωn

∣∣∣∣
g(t±(v))

f ′(t±(v))

∣∣∣∣ dv319
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exist. Henceforth, we assume that the integrals in (20) exist for each of the adjacent320

contours.321

On each of the contours P(m)(θ±nm, α±
nm) in (18), we perform the change of vari-322

able from s and t to u and t via323

sωn = u(f(t)− fn) = F±
nmu+ u(f(t)− fm)324

to obtain325

R
(n)
N (z;αn) =

∑

m(n)

z(1−N)/ωn

2πi

×



∫ ∞eiθ

+
nm

0

e−F+
nmuu

N+1
ωn

−1

z1/ωn − u1/ωn

∫

P(m)(θ+
nm,α+

nm)

e−u(f(t)−fm)g(t)dtdu

−
∫ ∞eiθ

−
nm

0

e−F−
nmuu

N+1
ωn

−1

z1/ωn − u1/ωn

∫

P(m)(θ−
nm,α−

nm)

e−u(f(t)−fm)g(t)dtdu


 .

(21)326

327

This change of variable is permitted because the infinite double integrals in (18) are328

assumed to be absolutely convergent, which is a consequence of the requirement that329

the integrals (20) exist. Hence the exact remainder of the expansion (13) about the330

critical point t(n) is expressible in terms of similar integrals over infinite contours331

emanating from the adjacent saddles t(m) as332

R
(n)
N (z;αn) =

∑

m(n)

z(1−N)/ωn

2πiωm



∫ ∞eiθ

+
nm

0

e−F+
nmuu

N+1
ωn

− 1
ωm

−1

z1/ωn − u1/ωn
T (m)(u;α+

nm)du

−
∫ ∞eiθ

−
nm

0

e−F−
nmuu

N+1
ωn

− 1
ωm

−1

z1/ωn − u1/ωn
T (m)(u;α−

nm)du


 .

(22)333

334

Since θ+nm = θ−nm + 2πωn, a simple change of integration variable in (21) then yields335

R
(n)
N (z;αn) =

∑

m(n)

z(1−N)/ωn

2πi

×



∫ ∞eiθ

+
nm

0

e−F+
nmuu

N+1
ωn

−1

z1/ωn − u1/ωn

∫

P(m)(θ+
nm,α+

nm)

e−u(f(t)−fm)g(t)dtdu

−
∫ ∞eiθ

+
nm

0

e−F+
nmuu

N+1
ωn

−1

z1/ωn − u1/ωn

∫

P(m)(θ+
nm,βnm)

e−u(f(t)−fm)g(t)dtdu


 .

(23)336

337

The path P(m)(θ+nm, βnm) is geometrically identical to P(m)(θ−nm, α−
nm), and since338

the angle of the slope of P(m)(θ−nm, α−
nm) to the positive real axis at t(m) is 2π/ωm339

higher than the corresponding angle of P(m)(θ+nm, α+
nm), we find (cf. (17))340

βnm =
θ+nm + arg(f (ωm)(t(m))) + ωm(ϕ+ + 2π/ωm)

2π
341

=
θ+nm + arg(f (ωm)(t(m))) + ωmϕ+

2π
+ 1 = α+

nm + 1.342
343
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It is convenient to introduce the following notation for the special double integrals344

and their coefficients in the asymptotic expansions345

T(m)(u;α+
nm) = T (m)(u;α+

nm)− T (m)(u;α+
nm + 1),

T(m)
r (α+

nm) = T (m)
r (α+

nm)− T (m)
r (α+

nm + 1).
(24)346

347

With this notation, (23) can be written as348

(25) R
(n)
N (z;αn) =

∑

m(n)

z(1−N)/ωn

2πiωm

∫ ∞eiθ
+
nm

0

e−F+
nmuu

N+1
ωn

− 1
ωm

−1

z1/ωn − u1/ωn
T(m)(u;α+

nm)du.349

The observation that350

(26)

R
(n)
N (z;αn+1) =

∑

m(n)

z(1−N)/ωn

2πiωm

∫ ∞ei(θ
+
nm+2π)

0

e−F+
nmuu

N+1
ωn

− 1
ωm

−1

z1/ωn − u1/ωn
T(m)(u;α+

nm+1)du,351

will also be useful.352

In previous publications [7, 18] there were issues with the exact sign of the terms353

on the right-hand side of (25). These were referred to as “orientation anomalies”.354

Here we do not encounter these issues because of the careful definitions of the phases355

on the contours (4), (17).356

The results (25) and (26) for the exact remainder term of the asymptotic ex-357

pansion around the degenerate saddle t(n), expressed in terms of the adjacent (other358

degenerate) saddles t(m), is one of the main results of this paper.359

4. Hyperasymptotic iteration of the exact remainder. In this section we360

re-expand the exact remainder terms (25) and (26) to derive a template for hyper-361

asymptotic calculations.362

First, we begin by defining a set of universal, but generalised, hyperterminant363

functions F(j), that form the basis of the template.364

Let us introduce the notation

∫ [η]

0

=

∫ ∞eiη

0

. Then, for k a non-negative integer,365

we define366

F(0)(z) := 1, F(1)


z;

M0

ω0

σ0


 :=

∫ [π−arg σ0]

0

eσ0t0tM0−1
0

z1/ω0 − t
1/ω0

0

dt0,367

F(k+1)


z;

M0,
ω0,
σ0,

. . . ,

. . . ,

. . . ,

Mk

ωk

σk




(27)

368

:=

∫ [π−arg σ0]

0

· · ·
∫ [π−arg σk]

0

eσ0t0+···+σktktM0−1
0 · · · tMk−1

k

(z1/ω0 − t
1/ω0

0 )(t
1/ω1

0 − t
1/ω1

1 ) · · · (t1/ωk

k−1 − t
1/ωk

k )
dtk · · · dt0,369

370

for arbitrary sets of complex numbers M0, . . . ,Mk and σ0, . . . , σk such that Re(Mj) >371

1/ωj and σj 6= 0 for j = 0, . . . , k, and for an arbitrary set of positive integers372

ω0, . . . , ωk. The multiple integrals converge when | arg(σ0z)| < πω0. The F(j) is373

termed a “generalised jth-level hyperterminant”. If ω0 = · · · = ωj−1 = 1, F(j) re-374

duces to the much simpler jth-level hyperterminant F (j) discussed in the paper [27].375
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Note that in the case that two successive σ’s have the same phase the choice of376

integration path over the poles in (27) needs to be defined more carefully. In those377

cases we can define the hyperterminant via a limit. For example378

(28) lim
ε→0+

F(k+1)


z;

M0,
ω0,

σ0e
−kεi,

M1,
ω1,

σ1e
−(k−1)εi,

. . . ,

. . . ,

. . . ,

Mk−1,
ωk−1,

σk−1e
−εi,

Mk

ωk

σk


379

is an option. Other limits are also possible.380

The efficient computation of these generalised hyperterminant functions is out-381

lined in Appendix A.382

4.1. Superasymptotics and optimal number of terms. A necessary step in383

hyperasymptotic re-expansions is to determine the “optimal” number of terms in the384

original Poincaré expansion (13), defined as the index of the least term in magnitude.385

For this section it reasonable to denote the original number of terms in the trun-386

cated asymptotic expansion as N = N
(n)
0 and we denote the associated remainder as387

R
(n)
0 (z;αn). With this notation the integrands in (25) will have a factor uN

(n)
0 /ωn .388

Therefore, when N
(n)
0 is large, the main contribution to the integrals in (25) comes389

from infinity where T(m)(u;α+
nm) = O(1). In the case that z and u are collinear (i.e.,390

on a Stokes line), we slightly rotate the path of integration which introduces an extra391

factor of O
(√

N
(n)
0

)
when estimating R

(n)
0 (z;αn) (cf. the proof of Proposition B.1).392

Thus, we have393

R
(n)
0 (z;αn) =

√
N

(n)
0

Γ

(
N

(n)
0 +1
ωn

)

|z|
N

(n)
0
ωn

∑

m(n)

1

|F+
nm|

N
(n)
0
ωn

(
N

(n)
0

) 1
ωm

O(1),394

for large N
(n)
0 and θ−nm1

≤ θ ≤ θ+nm2
. Let N

(n)
0 = η

(n)
0 ωn |z| + ν

(n)
0 with ν

(n)
0 being395

bounded. Then, with the help of Stirling’s formula,396

(29) R
(n)
0 (z;αn) = e−η

(n)
0 |z|

∑

m(n)

|z|
1

ωn
− 1

ωm

(
η
(n)
0∣∣F+
nm

∣∣

)η
(n)
0 |z|

O(1),397

as |z| → ∞ in the sector θ−nm1
≤ θ ≤ θ+nm2

. For a fixed m the magnitude of the398

right-hand side of (29) is minimal in the case that η
(n)
0 = |F+

nm|. Since we sum over399

all the adjacent saddles we obtain that for the optimal number of terms we have400

η
(n)
0 = r

(n)
0 := minm(n) |F+

nm|, and with that choice we have401

(30) R
(n)
k (z;αn) = e−r

(n)
k |z| |z|

1
ωn

− 1
ω̃ O(1),402

(with k = 0) as |z| → ∞ in the sector θ−nm1
≤ θ ≤ θ+nm2

with ω̃ = maxj ωj .403

In the hyperasymptotic process below, we will re-expand this remainder and each404

of these re-expansions will be truncated and re-expanded and so on. Correspondingly405

we have to determine the number of terms to take in the original expansion N
(n)
0 , in406

the first re-expansions N
(m)
1 , and so on. The criterion for determining the “optimal”407

N
(n)
0 , N

(m)
1 , . . . , is that the overall error obtained by summing all the contributing408
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expansions should be minimised. This may be determined from considering estimates409

such as (29) and (34), (36) below. The procedure for determining these optimal410

numbers of terms is very similar to that of [26], and may be summarised as follows.411

Let G = (V,E) be a graph with for the vertices V all the fj and for the edges412

E =
{
(fm, fn) : t

(m) is adjacent to t(n)
}
. We define r

(n)
k to be the length of the413

shortest path of k + 1 steps in this graph starting at t(n). For a hyperasymptotic414

expansion of Level k the optimal number of terms is415

(31) N
(m0)
0 = η

(m0)
0 ωm0

|z|+ ν
(m0)
0 , . . . , N

(mk)
k = η

(mk)
k ωmk

|z|+ ν
(mk)
k ,416

with m0 = n, in which

η
(m0)
0 := r

(m0)
k , η

(mj)
j := max

(
0, η

(mj−1)
j−1 − |Fmj−1mj

|
)
, j = 1, . . . , k,

and the νj are all bounded as |z| → ∞, with estimate (30) for the remainder as417

|z| → ∞ in the sector θ−nm1
≤ θ ≤ θ+nm2

. The main difference from the results in [26]418

is that here in (31) we have the extra factors ωj .419

4.2. Level 1 hyperasymptotics. We now derive the Level 1 hyperasymptotic420

expansion. In the integral representation (25) for this remainder we substitute (13)421

into the T(m) function. We obtain the re-expansion422

R
(n)
0 (z;αn) =

∑

m(n)

z(1−N
(n)
0 )/ωn

2πiωm

N
(m)
1 −1∑

r=0

T(m)
r (α+

nm)F(1)


z;

N
(n)
0 +1
ωn

− r+1
ωm

ωn

|F+
nm|ei(π−θ+

nm)




+R
(n)
1 (z;αn).

(32)423

424

The remainder R
(n)
1 (z;αn) depends on the number of terms N

(n)
0 and N

(m)
1 and can425

be represented as426

R
(n)
1 (z;αn) =

∑

m(n)

∑

ℓ(m)

z(1−N
(n)
0 )/ωn

(2πi)
2
ωmωℓ

×
(∫ ∞eiθ

+
nm

0

∫ ∞eiθ
+
nmℓ

0

e−F+
nmu−F+

mℓvu
N

(n)
0 +1

ωn
−N

(m)
1
ωm

−1v
N

(m)
1 +1

ωm
− 1

ωℓ
−1

(
z1/ωn − u1/ωn

) (
u1/ωm − v1/ωm

)

×T(ℓ)(v;α+
nmℓ)dvdu

−
∫ ∞eiθ

+
nm

0

∫ ∞eiθ
+
nmℓ

+2πi

0

e−F+
nmu−F+

mℓvu
N

(n)
0 +1

ωn
−N

(m)
1
ωm

−1v
N

(m)
1 +1

ωm
− 1

ωℓ
−1

(
z1/ωn − u1/ωn

) (
u1/ωm − v1/ωm

)

×T(ℓ)(v;α+
nmℓ + 1)dvdu

)
,

(33)427

428

in which θ+nmℓ(θ
+
nm) corresponds to the path P(n)(θ+nm;α+

nm) and is defined similarly429

as θ+nm = θ+nm(θ). The α+
nmℓ is the corresponding α+

nm, which is defined (17). In this430

derivation we have used the observation (26).431

We can estimate the remainder R
(n)
1 (z;αn) in a similar way as we did R

(n)
0 (z;αn),432
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and one finds433

R
(n)
1 (z;αn) =

1

|z|
N

(n)
0
ωn

∑

m(n)

√(
N

(n)
0 −N

(m)
1

)
N

(m)
1434

×
Γ

(
N

(n)
0 +1
ωn

− N
(m)
1 +1
ωm

)
Γ

(
N

(m)
1 +1
ωm

)

|F+
nm|

N
(n)
0
ωn

−N
(m)
1
ωm

∑

ℓ(m)

1

|F+
mℓ|

N
(m)
1
ωm

(
N

(m)
1

) 1
ωℓ

O(1).435

436

Then437

R
(n)
1 (z;αn) = e−η

(n)
0 |z|

∑

m(n)

(
η
(n)
0 − η

(m)
1

|F+
nm|

)(η
(n)
0 −η

(m)
1 )|z|

×
∑

ℓ(m)

|z|
1

ωn
− 1

ωℓ

(
η
(m)
1

|F+
mℓ|

)η
(m)
1 |z|

O(1),

(34)438

439

as |z| → ∞ in the sector θ−nm1
≤ θ ≤ θ+nm2

. For fixed m and ℓ, using a similar440

approach to Subsection 4.1 above, it is easy to show that the optimal number of441

terms is obtained when η
(n)
0 − η

(m)
1 = |F+

nm| and η
(m)
1 =

∣∣F+
mℓ

∣∣.442

Rigorous bounds for Level 1 hyperterminants are derived in Appendix B.443

4.3. Level 2 hyperasymptotics. The Level 2 hyperasymptotic expansion is444

now derived by re-expanding the Level 1 expansion. Again we substitute (13) into445

the T(ℓ) functions on the right-hand side of (33) and obtain the re-expansion446

R
(n)
1 (z;αn) =

∑

m(n)

∑

ℓ(m)

z(1−N
(n)
0 )/ωn

(2πi)
2
ωmωℓ

N
(ℓ)
2 −1∑

r=0



T(ℓ)

r (α+
nmℓ)F

(2)


z;

N
(n)
0 +1
ωn

− N
(m)
1

ωm
,

ωn,

|F+
nm|ei(π−θ+

nm),

N
(m)
1 +1
ωm

− r+1
ωℓ

ωm

|F+
mℓ|ei(π−θ+

nmℓ)




−T(ℓ)
r (α+

nmℓ + 1)F(2)


z;

N
(n)
0 +1
ωn

− N
(m)
1

ωm
,

ωn,

|F+
nm|ei(π−θ+

nm),

N
(m)
1 +1
ωm

− r+1
ωℓ

ωm

|F+
mℓ|ei(−π−θ+

nmℓ)








+R
(n)
2 (z;αn).

(35)447

448

We also obtain an exact integral representation for the remainder, and this can be449

used to obtain the estimate450

R
(n)
2 (z;αn) = e−η

(n)
0 |z|

∑

m(n)

(
η
(n)
0 − η

(m)
1

|F+
nm|

)(η
(n)
0 −η

(m)
1 )|z|∑

ℓ(m)

(
η
(m)
1 − η

(ℓ)
2

|F+
mℓ|

)(η
(m)
1 −η

(ℓ)
2 )|z|

×
∑

k(ℓ)

|z|
1

ωn
− 1

ωk

(
η
(ℓ)
2

|F+
ℓk|

)η
(ℓ)
2 |z|

O(1),

(36)

451

452

as |z| → ∞ in the sector θ−nm1
≤ θ ≤ θ+nm2

.453
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4.4. Level 3 hyperasymptotics. We can continue with this process and will454

obtain at Level 3 the expansion455

R
(n)
2 (z;αn) =

∑

m(n)

∑

ℓ(m)

∑

k(ℓ)

z(1−N
(n)
0 )/ωn

(2πi)
3
ωmωℓωk

N
(k)
3 −1∑

r=0

T(k)

r (α+
nmℓk)F

(3)


z;

N
(n)
0 +1
ωn

− N
(m)
1

ωm
,

ωn,

|F+
nm|ei(π−θ+

nm),

N
(m)
1 +1
ωm

− N
(ℓ)
2

ωℓ
,

ωm,

|F+
mℓ|ei(π−θ+

nmℓ),

N
(ℓ)
2 +1
ωℓ

− r+1
ωk

ωℓ

|F+
ℓk|ei(π−θ+

nmℓk)




−T(k)
r (α+

nmℓk + 1)F(3)


z;

N
(n)
0 +1
ωn

− N
(m)
1

ωm
,

ωn,

|F+
nm|ei(π−θ+

nm),

N
(m)
1 +1
ωm

− N
(ℓ)
2

ωℓ
,

ωm,

|F+
mℓ|ei(π−θ+

nmℓ),

N
(ℓ)
2 +1
ωℓ

− r+1
ωk

ωℓ

|F+
ℓk|ei(−π−θ+

nmℓk)




−T(k)
r (α+

nmℓk + 1)F(3)


z;

N
(n)
0 +1
ωn

− N
(m)
1

ωm
,

ωn,

|F+
nm|ei(π−θ+

nm),

N
(m)
1 +1
ωm

− N
(ℓ)
2

ωℓ
,

ωm,

|F+
mℓ|ei(−π−θ+

nmℓ),

N
(ℓ)
2 +1
ωℓ

− r+1
ωk

ωℓ

|F+
ℓk|ei(−π−θ+

nmℓk)




+T(k)
r (α+

nmℓk + 2)F(3)


z;

N
(n)
0 +1
ωn

− N
(m)
1

ωm
,

ωn,

|F+
nm|ei(π−θ+

nm),

N
(m)
1 +1
ωm

− N
(ℓ)
2

ωℓ
,

ωm,

|F+
mℓ|ei(−π−θ+

nmℓ),

N
(ℓ)
2 +1
ωℓ

− r+1
ωk

ωℓ

|F+
ℓk|ei(−3π−θ+

nmℓk)







+R
(n)
3 (z;αn).

(37)

456

457

An estimate for the remainder R
(n)
3 (z;αn), similar to those of (29), (34) and (36)458

may be obtained, and further iterations to higher hyper-levels derived. We spare the459

reader these details as the pattern should now be clear.460

Initially, this expansion might seem over complicated. However inspection of the461

terms shows that once we have line two of (37) the details of the other lines can be462

easily deduced. It follows from (24) and (15) that the coefficients follow from the463

coefficients in line 2 by just multiplying by a simple exponential. The generalised464

hyperterminants only differ by a change in the phases of two (bottom centre and465

right) arguments.466

4.5. Late coefficients and resurgence. The re-expansion (32) is suitable for

obtaining an asymptotic expansion for the late (large-N) coefficients T
(n)
N (αn). In-

deed, if we combine the identity

T
(n)
N (αn) = zN/ωn

(
R

(n)
N (z;αn)−R

(n)
N+1(z;αn)

)

with (32), we deduce467

T
(n)
N (αn) =

∑

m(n)

1

2πiωm

N
(m)
1 −1∑

r=0

T(m)
r (α+

nm)
eiθ

+
nm(

N+1
ωn

− r+1
ωm

)Γ
(

N+1
ωn

− r+1
ωm

)

|F+
nm|

N+1
ωn

− r+1
ωm

+ R̃
(n)
1 (N ;αn).

(38)468

469

Note that the coefficients in this expansion are the coefficients of the asymptotic470

expansions of integrals over doubly infinite contours passing through the adjacent471
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saddles, a manifestation of “resurgence”. The form (38) is of a generalised sum of472

factorials over powers. Note the careful representation of the phases of the singulants.473

Various special cases of (38) were derived, using non-rigorous methods, by Dingle (see474

[14, Ch. VII], including exercises). See also [7], [17].475

When we eliminate |z| in the definitions (31) we obtain for the optimal numbers
of terms in (38) that

N
(m)
1 =

η
(m)
1 ωm

η
(n)
0 ωn

N +O(1),

as N → ∞.476

In the swallowtail example below we shall illustrate how this result can be used477

to determine the adjacency of the saddles algebraically rather than geometrically.478

5. Error bounds. In this section we derive rigorous, novel and sharp error479

bounds for the exact remainder R
(n)
N (z;αn) of asymptotic expansions of the form (13)480

derived from integrals of the class (1).481

The remainder term (18) can be written as482

R
(n)
N (z;αn)

=
ωn

2πizN/ωn

∑

m(n)

∫

C (m)(θ+
nm)

g(t)

(f(t)− fn)(N+1)/ωn

∫ ∞e
2πiαn
ωn

0

e−sωn
sN

1− s
(z(f(t)−fn))

1/ωn

dsdt

=
e2πi

N+1
ωn

αn

2πizN/ωn

∑

m(n)

∫

C (m)(θ+
nm)

g(t)

(f(t)− fn)(N+1)/ωn

∫ ∞

0

e−uu
N+1
ωn

−1

1 +
(

ueπi(2αn−ωn)

z(f(t)−fn)

)1/ωn
dudt,

(39)

483

484

where C (m)(θ+nm) := P(m)(θ+nm, α+
nm) ∪ −P(m)(θ+nm, α+

nm + 1). We note that485

arg

(
ueπi(2αn−ωn)

z(f(t)− fn)

)
= 2παn − πωn − θ − (−θ+nm + 2παn)486

= −πωn − θ + θ+nm > −πωn,487488

and489

arg

(
ueπi(2αn−ωn)

z(f(t)− fn)

)
= 2παn − πωn − θ − (−θ+nm + 2παn) = −πωn − θ + θ+nm490

= −πωn − θ + θ−nm + 2πωn = πωn − θ + θ−nm < πωn,491492

whenever t ∈ C (m)(θ+nm). Thus,
∣∣∣∣arg

(
ueπi(2αn−ωn)

z(f(t)− fn)

)∣∣∣∣ < πωn.

Consequently, the u-integral may be expressed in terms of the generalised first-level493

hyperterminant as494
495

∫ ∞

0

e−uu
N+1
ωn

−1

1 +
(

ueπi(2αn−ωn)

z(f(t)−fn)

)1/ωn
du496

= e−πN+1
ωn

i
(
eπi(ωn−2αn)z(f(t)− fn)

) 1
ωn

F(1)


eπi(ωn−2αn)z(f(t)− fn);

N+1
ωn

ωn

1


.497

498
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Inserting this expression into (39), we obtain the following alternative representation499

of R
(n)
N (z;αn):500

R
(n)
N (z;αn) =

e(2αn−1)πiN+1
ωn

2πizN/ωn

∑

m(n)

∫

C (m)(θ+
nm)

g(t)

(f(t)− fn)(N+1)/ωn

×
(
eπi(ωn−2αn)z(f(t)− fn)

) 1
ωn

F(1)


eπi(ωn−2αn)z(f(t)− fn);

N+1
ωn

ωn

1


dt.

(40)501

502

This representation is valid when θ−nm1
− π

2 < θ < θ+nm2
+ π

2 (cf. (41) below). We may503

then bound the t integral as follows504

∣∣∣R(n)
N (z;αn)

∣∣∣ ≤
Γ
(

N+1
ωn

)

2π |z|N/ωn

∑

m(n)

∫

C (m)(θ+
nm)

∣∣∣∣
g(t)

(f(t)− fn)(N+1)/ωn
dt

∣∣∣∣505

× sup
r≥1

∣∣∣∣∣∣∣

(
z
∣∣F+

nm

∣∣e(πωn−θ+
nm)ir

) 1
ωn

Γ
(

N+1
ωn

) F(1)


z
∣∣F+

nm

∣∣e(πωn−θ+
nm)ir;

N+1
ωn

ωn

1




∣∣∣∣∣∣∣
.506

507

A further simplification of this bound is possible, by employing the estimates for the508

generalised first-level hyperterminant given in Appendix B. In this way, we obtain509

∣∣∣R(n)
N (z;αn)

∣∣∣ ≤
Γ
(

N+1
ωn

)

2π |z|N/ωn

∑

m(n)

∫

C (m)(θ+
nm)

∣∣∣∣
g(t)

(f(t)− fn)(N+1)/ωn
dt

∣∣∣∣×





1 if |θ − θ+nm + πωn| ≤ π
2ωn,

min

(∣∣∣csc
(

θ−θ+
nm

ωn

)∣∣∣ , ωn

√
e
(

N+1
ωn

+ 1
2

))
if π

2ωn < |θ − θ+nm + πωn| ≤ πωn,
√

2πωn(N+1)

|cos(θ−θ+
nm)|

N+1
ωn

+ ωn

√
e
(

N+1
ωn

+ 1
2

)
if πωn < |θ − θ+nm + πωn| < πωn + π

2 .

(41)

510

511

In the case of linear endpoint (ωn = 1), the quantity
√
e
(
N + 3

2

)
in (41) can be512

replaced by (50) with M = N + 1.513

In (14) we may expand the loop contour of integration around the critical point514

t(n) across the domain ∆(n) to obtain a representation of the asymptotic coefficients515

in terms of integrals over the contours C (m)(θ+nm) as follows,516

(42)

∣∣∣∣∣
T

(n)
N (αn)

zN/ωn

∣∣∣∣∣ =
Γ
(

N+1
ωn

)

2π |z|N/ωn

∣∣∣∣∣∣

∑

m(n)

∫

C (m)(θ+
nm)

g(t)

(f(t)− fn)(N+1)/ωn
dt

∣∣∣∣∣∣
.517

This representation illustrates the close relation between the form of the bound (41)518

and the absolute value of the first neglected term. The modulus bars are inside the519

integral in (41) whereas they are at the outside of the integral in (42). However,520

in (42) we integrate along steepest descent paths C (m)(θ+nm) on which f(t) − fn is521

monotonically decreasing. This means that only when g(t) is highly oscillatory, will522

This manuscript is for review purposes only.



18 T. BENNETT, C. J. HOWLS, G. NEMES, A. B. OLDE DAALHUIS

the integral in (41) be considerably larger than the integral in (42). The larger the523

value of N , the smaller the difference in size of the two integrals.524

Figure 4, for our first example below, clearly demonstrates the asymptotic prop-525

erty that sizes of the exact terms and the corresponding remainders are approximately526

the same. This follows from the factor 1 in the second line of (41). In Figure 6, which527

is for our second example, the remainders are considerably larger than the terms. That528

example illustrates the effect of the additional factor ωn

√
e
(

N+1
ωn

+ 1
2

)
in the third529

line of (41) pertaining to the parameters θ, ωn and θ+nm of that particular calculation.530

5.1. Bounds for simple saddles. If t(n) is a simple saddle, then the integral531

over the double infinite contour through t(n) can be expanded as532

T(n)(z, 0) =
N−1∑

r=0

T
(n)
2r (0)

zr
+R

(n)
N (z, 0),533

with R
(n)
N (z, 0) = R

(n)
2N (z; 0)−R

(n)
2N (z; 1). The estimation of R

(n)
N (z, 0) was considered534

by Boyd [10] in the case that all the adjacent saddles are simple. Employing (40) and535

simplifying the result, we obtain536

R
(n)
N (z, 0) =

(−1)N+1

πzN

∑

m(n)

∫

C (m)(θ+
nm)

g(t)

(f(t)− fn)N+ 1
2

537

× eπiz(f(t)− fn)F
(1)

(
eπiz(f(t)− fn);

N + 1
2

1

)
dt.538

539

This representation is valid when θ−nm1
− π

2 < θ < θ+nm2
+ π

2 . We may then bound the540

t integral as follows541

∣∣∣R(n)
N (z, 0)

∣∣∣ ≤
Γ
(
N + 1

2

)

π |z|N
∑

m(n)

∫

C (m)(θ+
nm)

∣∣∣∣
g(t)

(f(t)− fn)N+ 1
2

dt

∣∣∣∣542

× sup
r≥1

∣∣∣∣∣
z|F+

nm|e(π−θ+
nm)ir

Γ
(
N + 1

2

) F (1)

(
z|F+

nm|e(π−θ+
nm)ir;

N + 1
2

1

)∣∣∣∣∣ .543

544

A further simplification of this bound is possible, by applying the estimates for the545

generalised first-level hyperterminant given in Appendix B. In this way, we deduce546

∣∣∣R(n)
N (z, 0)

∣∣∣ ≤
Γ
(
N + 1

2

)

π |z|N
∑

m(n)

∫

C (m)(θ+
nm)

∣∣∣∣
g(t)

(f(t)− fn)N+ 1
2

dt

∣∣∣∣

(43)

547

548

×





1 if |θ − θ+nm + π| ≤ π
2 ,

min(| csc(θ − θ+nm)|,
√
e(N + 1)) if π

2 < |θ − θ+nm + π| ≤ π,√
2π(N+ 1

2 )

|cos(θ−θ+
nm)|N+1

2
+
√
e(N + 1) if π < |θ − θ+nm + π| < 3π

2 .

549

550

The quantity
√

e(N + 1) in this bound can be replaced by (50) with M = N + 1
2 .551
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The bound (43) improves Boyd’s [10] results in three ways. First, it is more552

general in that the adjacent saddles need not to be simple. Second, (43) extends553

the range of validity of the bound to include π < |θ − θ+nm + π| < 3π
2 . Third, the554

new result sharpens the bound with a factor
√

e(N + 1) in place of Boyd’s larger555

2
√
N factor, and for this larger factor to hold he even requires the extra assumption556

N ≥ cot2
(
1
2

(
θ+nm2

− θ−nm1

))
.557

6. Example 1: Pearcey on the cusp. A rescaled Pearcey function (compare558

[15, §36.2]) is defined by the integral559

(44) Ψ2(x, y; z) =

∫ +∞

−∞
e−zf(t;x,y)dt, f(t;x, y) = −i

(
t4 + yt2 + xt

)
.560

Due to the polynomial nature of the exponent function and the ability to scale t,561

z, with x and y, without loss of generality the modulus of the large parameter z562

may be set to 1. The function represents the wavefield in the neighbourhood of the563

canonically stable cusp catastrophe [5] and occurs commonly in two dimensional linear564

wave problems.565

The integrand possesses three saddle points t(j), j = 1, 2, 3, satisfying566

f ′(t(j);x, y) = 4
(
t(j)
)3

+ 2yt(j) + x = 0.567

In [7] a hyperasymptotic expansion of the Pearcey function was calculated in the case568

of three distinct saddle points. Here we have extended that analysis to cover the case569

where two of the saddles have coalesced.570

Two of the three saddle points coalesce on the cusp-shaped caustic given by571

f ′(t;x, y) = f ′′(t;x, y) = 0 ⇒ 27x2 = −8y3, (x, y) 6= 0,572

see Figure 3(a). (At the origin (x, y) = (0, 0), all three saddles coalesce, where the573

integral reduces to an exact explicit representation [15, §36.2.15].)574

We shall choose x = 2
√
2, y = −3. There is a simple saddle at t(1) = −

√
2 and575

a double saddle denoted by t(2) = 1/
√
2. The asymptotic expansion about t(1) has576

ω1 = 2 and is controlled by the double saddle at t(2) with ω2 = 3, and vice versa.577

We shall calculate a hyperasymptotic expansion about t(1). We take z = eiθ and578

chose θ = −π
4 . The steepest paths are denoted by P(1)(−π

4 , 0) and P(1)(−π
4 , 1), see579

Figure 3(b).580

In the calculations below we will use (17) many times and observe that in this581

case arg(f (ω1)(t(1))) = arg(f (ω2)(t(2))) = −π
2 , and in Figures 3(c,d) for the curve582

P(2)(π2 , 1) we have ϕ = 2
3π and for curve P(1)( 112 π, 1) we have ϕ = −π

2 .583

The normalised integrals that we consider are584

T (1)(z;α1) = 2z1/2
∫

P(1)(−π
4 ,α1)

ezi(t
4−3t2+2

√
2t+6)dt, α1 = 0, 1,585

which posses the asymptotic expansions586

(45) T (1)(z;α1) =

N
(1)
0 −1∑

r=0

T
(1)
r (α1)

zr/2
+R

(1)
1 (z;α1),587
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Fig. 3. (a) Location of the parameter point (x, y) = (2
√
2,−3) at which we evaluate the integral

(44) relative to the caustic of the Pearcey function, satisfying 27x2 = −8y3. (b) The steepest
descent paths P(1)(−π

4
, 0), P(1)(−π

4
, 1) in the complex t-plane emerging from the simple saddle

t(1) (ω1 = 2) and travelling to labelled valleys Vj , j = 2, 3 at infinity. Also shown is the degenerate

saddle t(2) (ω2 = 3). (c) The steepest descent paths P(2)(π
2
, α2), α2 = 0, 1, 2, emerging from

t(2), as a Stokes phenomenon occurs between t(1) and t(2) when θ+12 = π
2
. The bold lines are the

steepest paths that are used in the Level 1 hyperasymptotic expansion about t(1) (32), (24). (d) The
steepest descent paths P(2)( 11

2
π, α2), α2 = 0, 1, 2, emerging from t(2), as a Stokes phenomenon

occurs between t(2) and t(1) when θ+121 = 11
2
π. The bold lines are the steepest paths that are used in

the Level 2 hyperasymptotic expansion about t(1) (35), (24). (Or Level 1 hyperasymptotic expansion
about t(2).)

with coefficients588

T (1)
r (0) = e

π
4 (r+1)i Γ(

r+1
2 )

Γ(r + 1)


 dr

dtr

(
(t+

√
2)2

t4 − 3t2 + 2
√
2t+ 6

)(r+1)/2



t=−
√
2

= e
π
4 (r+1)i Γ(

r+1
2 )

Γ(r + 1)

[
dr

dtr

(
1

t2 − 4
√
2t+ 9

)(r+1)/2
]

t=0

=
e

π
4 (r+1)i

32r+1
Γ
(r + 1

2

)
C

( r+1
2 )

r

(2
√
2

3

)
,

(46)589

590
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T
(1)
r (α1) = e2πiα1(r+1)/2T

(1)
r (0). In deriving the coefficients, in the penultimate line591

of (46) we have recognised the presence of the generating function [15, eq. 18.12.4] for592

the ultraspherical polynomials C
(p)
r (w) .593

We will also need the coefficients of the asymptotics expansions of the integrals594

T (2)(z;α2) = 3z1/3
∫

P(2)(−π
4 ,α2)

ezi(t
4−3t2+2

√
2t− 3

4 )dt, α2 = 0, 1, 2,595

which posses the asymptotic expansions596

T (2)(z;α2) =

N
(1)
0 −1∑

r=0

T
(2)
r (α2)

zr/3
+R

(2)
0 (z;α2),597

with coefficients598

T (2)
r (0) = e

π
6 (r+1)i Γ(

r+1
3 )

Γ(r + 1)


 dr

dtr

(
(t− 1/

√
2)3

t4 − 3t2 + 2
√
2t− 3/4

)(r+1)/3



t=1/
√
2

599

= e
π
6 (r+1)i Γ(

r+1
3 )

Γ(r + 1)

[
dr

dtr

(
1

t+ 2
√
2

)(r+1)/3
]

t=0

600

=
e

π
6 (r+1)i

22r+1/2
Γ
(r + 1

3

)(− r+1
3

r

)
,601

602

and T
(2)
r (α2) = e2πiα2(r+1)/3T

(2)
r (0).603

For the singulant on the caustic we have604

∣∣F+
12

∣∣ =
∣∣∣f(t(2); 2

√
2,−3)− f(t(1); 2

√
2,−3)

∣∣∣ =
27

4
.605

The effective asymptotic parameter in the expansion is thus
∣∣zF+

12

∣∣ = 6.75, and hence,606

the optimal number of terms in (45) is N
(1)
0 =

[∣∣zF+
12

∣∣ω1

]
= 13.607

Since θ = −π
4 it follows that for the integral T (1)(z; 0), the corresponding θ+12 =608

π
2 . The corresponding contour of integration emanating from adjacent saddle t(2) is609

P(2)(π2 , 1), see Figure 3(c), and hence, the Level 1 re-expansion is of the form610

R
(1)
0 (z;αn) =

z(1−N
(1)
0 )/2

6πi

N
(2)
1 −1∑

r=0

T(2)
r (1)F(1)


z;

N
(1)
0 +1
2 − r+1

3
2

27
4 e

π
2 i


+R

(1)
1 (z; 0).611

The optimal numbers of terms at Level 1 are N
(1)
0 =

[
2
∣∣zF+

12

∣∣ω1

]
= 27 and N

(2)
1 =612 [∣∣zF+

12

∣∣ω2

]
= 20.613

With θ+12 = π
2 and contour P(2)(π2 , 1) it follows that θ+121 = θ+12 + 5π = 11

2 π,614

and the corresponding contour of integration emanating from adjacent saddle t(1) is615
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P(1)( 112 π, 2), see Figure 3(d), and hence, the Level 2 re-expansion is of the form616

R
(1)
1 (z; 0) =

N
(1)
2 −1∑

r=0

z(1−N
(1)
0 )/2

(2πi)
2
6

×


T(1)

r (2)F(2)


z;

N
(1)
0 +1
2 − N

(2)
1

3 ,
2,

27
4 e

π
2 i,

N
(2)
1 +1
3 − r+1

2
3

27
4 e−

9
2πi




−T(1)
r (3)F(2)


z;

N
(1)
0 +1
2 − N

(2)
1

3 ,
2,

27
4 e

π
2 i,

N
(2)
1 +1
3 − r+1

2
3

27
4 e−

13
2 πi







+R
(1)
2 (z; 0).

617

618

The optimal numbers of terms at Level 2 are given in Table 1.619

Finally, with θ+121 = 11
2 π and contour P(1)( 112 π, 2) it follows that θ+1212 = θ+121 +620

3π = 17
2 π, α+

1212 = 5, and the optimal numbers in (37) are again given in Table 1.621

Table 1

The numbers of terms in each series of the hyperasymptotic expansion that are required to
minimise overall the absolute error for the (1 → 2) Pearcey example derived from (31). Note that
each row corresponds to a decision to stop the re-expansion at that stage. Hence the table row
corresponding to level “two” corresponds to the truncations required at each level up to two, after
deciding to stop after two re-expansions of the remainder. Note that all the truncations change with
the decision to stop at a particular level.

Level N
(1)
0 N

(2)
1 N

(1)
2 N

(2)
3 error

zero 13 1.9× 10−4

one 27 20 9.5× 10−9

two 40 40 13 3.8× 10−14

three 54 60 27 20 9.0× 10−17

When we compute our integral numerically with high precision for these values
of x, y and z we obtain

T (1)(z, 0) = 0.37277007370182291370 + 0.47493131741141216950i.

The numerics of the hyperasymptotic approximations are given in Table 1, and for622

the Level 3 expansion we display the terms and errors in Figure 4. We observe in623

this figure that the remainders in the original Poincaré expansions are of the same624

size as the first neglected terms, as predicted in Section 5. In fact at all levels are625

the remainders of a similar size than the first neglected terms. Occasionally, the626

remainders are considerably smaller.627

In this section we derived hyperasymptotic approximations for T (1)(z, 0). Note628

that we can repeat the calculation for the integral T (1)(z, 1). The only changes in the629

re-expansions are that all the θ+ are increased by 2π and all the α+ are increased by630

1. The optimal numbers of terms will remain the same.631

7. Example 2: Higher order saddles. In the second main example we take
an integral of the form (1), but now with g(t) ≡ 1 and

f(t) = 15
28 t

7 − 5t6 + 18t5 − 30t4 + 20t3 =⇒ f ′(t) = 15
4 t2 (t− 2)

4
.
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Fig. 4. For example 1: The modulus of the nth term in the Level 3 hyperasymptotic expan-
sion (blue dots), and the modulus of the remainder after taking n terms in the approximation (red
crosses).

The saddle points are t(1) = 0 and t(2) = 2, with ω1 = 3 and ω2 = 5. Hence632

this example is an example of the hyperasymptotic method when both saddles are633

degenerate.634

Once again, due to the scaling properties of the polynomial f(t) we may take
z = eiθ and also choose θ = −π

4 . The steepest descent paths are displayed in Figure
5(a). For the coefficients in the asymptotic expansions we have

T (1)
r (0) =

Γ( r+1
3 )

Γ(r + 1)

[
dr

dtr

(
1

15
28 t

4 − 5t3 + 18t2 − 30t+ 20

)(r+1)/3
]

t=0

,

635

T (2)
r (0) =

Γ( r+1
5 )

Γ(r + 1)

[
dr

dtr

(
(t− 2)5

15
28 t

7 − 5t6 + 18t5 − 30t4 + 20t3 − 32
7

)(r+1)/5
]

t=2

636

=
Γ( r+1

5 )

Γ(r + 1)

[
dr

dtr

(
1

15
28 t

2 + 5
2 t+ 3

)(r+1)/5
]

t=0

637

=
(5/28)

r/2

3(r+1)/5
Γ
(r + 1

5

)
C

( r+1
5 )

r

(
−
√

35

36

)
,638

639

and the other coefficients are defined via T
(m)
r (αm) = e2πiαm(r+1)/ωmT

(m)
r (0).640

For the singulant we have641

∣∣F+
12

∣∣ = |f(2)− f(0)| = 32

7
.642

The effective asymptotic parameter in the expansion is thus
∣∣zF+

12

∣∣ = 32
7 , and hence,643

the optimal number of terms in644

(47) T (1)(z;α1) =

N
(1)
0 −1∑

r=0

T
(1)
r (α1)

zr/3
+R

(1)
1 (z;α1),645

is N
(1)
0 =

[∣∣zF+
12

∣∣ω1

]
= 13.646

This manuscript is for review purposes only.



24 T. BENNETT, C. J. HOWLS, G. NEMES, A. B. OLDE DAALHUIS

-1 0 1 2 3 4

-2

-1

0

1

2

Re(t)

Im(t)

V1

V2V3

V4

V5

V6 V7

t
(1) t

(2)

P
(1)(−π

4 ; 0)

(a)

-1 0 1 2 3 4

-2

-1

0

1

2

Re(t)

Im(t)

t
(1)

t
(2)

P
(2)(0; 2)

P
(2)(0; 3)

P
(1)(0; 0)

(b)

-1 0 1 2 3 4

-2

-1

0

1

2

Re(t)

Im(t)

t
(1)

t
(2)

P
(2)(9π; 2)

P
(1)(9π; 2)

P
(1)(9π; 1)

(c)

Fig. 5. (a) Steepest descent paths in the complex t-plane passing through the third order saddle
t(1) (ω1 = 3) and the fifth order saddle t(2) (ω2 = 5) between labelled valleys Vj , j = 1, 2, . . . , 6

at infinity for θ = −π
4
. The path of integration chosen is P(1)(−π

4
, 0) which runs between t(1)

and V3. (b) The rotated steepest descent path P(1)(0, 0), emerging from t(1) connects with t(2) at
the Stokes phenomenon θ+12 = 0. The bold lines are the steepest paths that are used in the Level

1 hyperasymptotic expansion about t(1) (32), (24). (c) The steepest descent path P(2)(9π, α2),
emerging from t(2) connects with t(1) at the Stokes phenomenon θ+121 = 9π. The bold lines are the

steepest paths that are used in the Level 2 hyperasymptotic expansion about t(1) (35), (24). (Or
Level 1 hyperasymptotic expansion about t(2).)

We will focus again on T (1)(z; 0) and give only the main details, which are,

θ+12 = 0, θ+121 = 9π, θ+1212 = 14π, α+
12 = 2, α+

121 = 4, α+
1212 = 9.

When we compute this integral numerically for this value of z with high precision, we
obtain

T (1)(z, 0) = 1.244081553113296 + 0.145693991003805i.

The numerics of the hyperasymptotic approximations are given in Table 2, and for647

the Level 2 expansion we display the terms and errors in Figure 6. We observe that648

this time the remainders in the original Poincaré expansion are considerably larger649

than the first neglected terms, again, as predicted in Section 5. However, in the higher650

levels the remainders are again of a similar size than the first neglected terms.651

Table 2

The numbers of terms required to minimise the absolute error at each level of the hyperasymp-
totic re-expansions for the (3 → 5) degenerate example.

Level N
(1)
0 N

(2)
1 N

(1)
2 N

(1)
3 error

zero 13 6.9× 10−3

one 27 22 3.7× 10−7

two 41 45 13 2.0× 10−10

three 54 68 27 22 1.1× 10−13

8. Example 3: Swallowtail and the adjacency of the saddles. In this ex-652

ample we apply hyperasymptotic techniques to determine the relative adjacency, and653

hence which saddles would contribute to the exact remainder terms of an expansion,654

using algebraic, rather than geometric means. We choose to illustrate this using the655

swallowtail integral ([15, §36.2]).656
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Fig. 6. For example 2: The modulus of the nth term in the Level 2 hyperasymptotic expan-
sion (blue dots), and the modulus of the remainder after taking n terms in the approximation (red
crosses).

For the swallowtail integral the bifurcation set is given in [15, eq. §36.4.7] and657

with the notation in this reference we take t = 1
2 i − 1

4 and z = 5
6 i − 25

8 . (The choice658

of complex parameters is to force one of the saddles to be non-adjacent, see below.)659

The resulting semi-infinite contour integral that we will study is again integral
(1), but now with g(t) ≡ 1 and

f(t) = t5 + 5
24 (4i− 15) t3 + 45

16 (2i− 1) t2 + 5
256 (101 + 168i) t.

The saddle points are t(1) = 7
4− 1

2 i, t
(2) = − 5

4− 1
2 i, and t(3) = 1

2 i− 1
4 , with ω1 = ω2 = 2

and ω3 = 3. Once again, the polynomial form of f(t) means that we may take z = eiθ

with the choice of θ = −π
4 . To obtain the Level 1 hyperasymptotic approximation we

find that

|F+
12| =

9
√
109

4
, |F+

13| =
125

√
5

12
, θ+12 = 3π − arctan 10

3 , θ+13 = 3π − arctan 278
29 .

It follows that α+
12 = 1 and α+

13 = 0. We write the Level 1 hyperasymptotic approxi-660

mation as661

T (1)(z; 0) =
N−1∑

r=0

T
(n)
r (0)

zr/2
+K12

z(1−N)/2

4πi

N
(2)
1 −1∑

r=0

T(2)
r (1)F(1)


z;

N+1
2 − r+1

2
2

|F+
12|ei(π−θ+

12)




+K13
z(1−N)/2

6πi

N
(3)
1 −1∑

r=0

T(3)
r (0)F(1)


z;

N+1
2 − r+1

3
2

|F+
13|ei(π−θ+

13)


+R

(1)
1 (z; 0).

(48)

662

663

Note that we have here introduced unknown constant prefactors Knm into the ex-664

pression for the Level 1 hyperasymptotic expansion (32). Each constant will be equal665

to 1 if the saddles t(n) and t(m) are adjacent, and zero otherwise. We could determine666

these constants by examining how the steepest descent contours deform as θ is varied.667

However, here we illustrate their algebraic calculation. These constants appear in the668
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late term expansion (38) (which also follows from (48)) as follows:669

T
(1)
N (0) =

K12

4πi

N
(2)
1 −1∑

r=0

T(2)
r (1)

eiθ
+
12(

N+1
2 − r+1

2 )Γ
(
N+1
2 − r+1

2

)

|F+
12|

N+1
2 − r+1

2

+
K13

6πi

N
(3)
1 −1∑

r=0

T(3)
r (0)

eiθ
+
13(

N+1
2 − r+1

3 )Γ
(
N+1
2 − r+1

3

)

|F+
13|

N+1
2 − r+1

3

+ R̃
(1)
1 (N ; 0).

670

671

In this (asymptotic) expression, everything is known except, K12 and K13. Hence

if we take two high orders N = 50 and N = 51 and set R̃
(1)
1 (N ; 0) = 0 we obtain

2 linear algebraic equations with 2 unknowns. The optimal number of terms on the

right-hand side may be calculated from (31) and are N
(2)
1 = 7 and N

(3)
1 = 11. Hence

we can solve this simultaneous set of equations to obtain numerical approximations
for K12 and K13 as

K12 = −0.00123 + 0.00095i, K13 = 1.00076 + 0.00060i.

Given that the Knm are quantised as integers, within the limits of the errors at this672

stage, we may infer that K12 = 0 and K13 = 1.673

Hence we may assert that t(3) is adjacent to t(1), but t(2) is not. This may be674

confirmed geometrically by consideration of the steepest paths.675

9. Discussion. The main results of his paper are the exact remainder terms (25),676

(26), the hyperasymptotic re-expansions (32), (35), (37), with novel hyperterminants677

(27), the asymptotic form for the late coefficients (38) and the improved error bounds678

for the remainder of an asymptotic expansion involving saddle points (41), degenerate679

or otherwise. We have illustrated the application of these results to the better-than-680

exponential asymptotic expansions and calculations of integrals with semi-infinite681

contours and degenerate saddles.682

The results of this paper are more widely applicable, for example to broadening683

the class of differential equations for which a hyperasymptotic expansion may be684

derived using a Borel transform approach. We observe that all the examples in this685

paper are of the form686

w(z) =

∫ ∞

t(1)
e−zf(t)g(t)dt,687

in which f(t) and g(t) are polynomials in t. (In fact g(t) ≡ 1.) Using computer alge-688

bra, it is not difficult to construct the corresponding inhomogeneous linear ordinary689

differential equations for w(z):690

(49)

P∑

p=0

ap(z)w
(p)(z) = h(z),691

in which the ap(z)’s and h(z) are polynomials.692

For our second example with (ω1, ω2) = (3, 5) we find P = 6, the ap(z)’s are693

polynomials of order 9, and h(z) is of order 6. Integrals involving combinations pairs694

of the contours P(n) are solutions of the homogeneous version of (49).695

In that example, for the first saddle point we have ω1 = 3, and hence, there are696

2 independent double infinite integrals through this saddle, and for the second saddle697
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point we have ω2 = 5, and hence, there are 4 independent double infinite integrals698

through the second saddle. Thus, P = 2 + 4.699

The differential equation (49) has an irregular singularity of rank one at infinity,700

but we are dealing with the exceptional cases. That is, the solutions all have initial701

terms proportional to exp(λpz)z
µp but now with coinciding λp’s. For example, in702

our second example we have two distinct solutions with λ1 = λ2 = 0 and four other703

different solutions but each with λ3 = λ4 = λ5 = λ6 = 32
7 .704

Note also, that h(z) in (49) is a polynomial in z. Hence we should expect a
particular integral of (49) to involve only integer powers of z. However, the particular
integral w(z) = z−1/3T (1)(z; 0) has, according to (47), an asymptotic expansion in
inverse powers of z1/3. The resolution of this paradox is that the combination of such
solutions

w(z) =
z−1/3

3

(
T (1)(z; 0) + T (1)(z; 1) + T (1)(z; 2)

)

is itself a particular integral, but contains only integer powers. This solution involves705

a star-shaped contour of integration, typically not studied if the problem is posed in706

terms of integrals alone.707

We also remark that differential equations of the form (49) will give us recurrence708

relations for the coefficients in the asymptotic expansions, and these are, of course,709

much more efficient than our formula (15).710

Appendix A. Computation of the generalised hyperterminants.711

In this appendix we relate the generalised hyperterminants (27) to the simpler712

ones given in [27] and thereby develop an efficient method to calculate them.713

First, the following theorem improves on the main theorem in [27].714

Theorem A.1. For k ≥ 0, | arg z + arg σ0| < π and 0 < arg σj − arg σj−1 < 2π,715

j ≥ 1, Re(M1) > 2 and Re(Mj) > 1, j 6= 1, we have the convergent expansion716

F (k+1)

(
z;

M0,
σ0,

. . . ,

. . . ,
Mk

σk

)
=

∞∑

n=0

A(k+1)

(
n;

M0,
σ0,

. . . ,

. . . ,
Mk

σk

)
U(n+1, 2−M0, zσ0),717

where718

A(1)

(
n;

M0

σ0

)
= δn,0e

M0πiσ1−M0
0 Γ(M0),719

720

A(2)

(
n;

M0,
σ0,

M1

σ1

)
=− eπM0iσ2−M0−M1

0

(
e−πiσ1

σ0

)n−M1+1

Γ(M0 + n)Γ(M1)721

× n!Γ(M0 +M1 − 1)

Γ(M0 +M1 + n)
2F1

(
M0 + n, n+ 1

M0 +M1 + n
; 1 +

σ1

σ0

)
,722

723

and when k ≥ 1,724

A(k+1)

(
n;

M0,
σ0,

. . . ,

. . . ,
Mk

σk

)
= eπM0iσ1−M0

0

(
e−πiσ1

σ0

)n

Γ(M0 + n)Γ(M0 +M1 − 1)725

×
∞∑

m=0

(n+m)! A(k)

(
m;

M1,
σ1,

. . . ,

. . . ,
Mk

σk

)

m!Γ(M0 +M1 + n+m)
2F1

(
M0 + n, n+m+ 1

M0 +M1 + n+m
; 1 +

σ1

σ0

)
.726

727

Here 2F1 stands for the hypergeometric function [15, §15.2].728
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The proof of this theorem is very similar to the one for Theorem 2 in [27]. The729

main difference here is that we must be more careful with the definitions of the phases730

and use the restrictions 0 < arg σj − arg σj−1 < 2π. This removes any phase-related731

ambiguity in the calculation of the hyperterminants.732

With these phase clarifications, the generalised hyperterminants (27) can be ex-733

pressed in terms of the ones above as follows.734

First, by rationalisation, we have735

F(k+1)


z;

M0,
ω0,
σ0,

. . . ,

. . . ,

. . . ,

Mk

ωk

σk


736

=

ω0−1∑

ℓ0=0

z1−(ℓ0+1)/ω0

∫ [π−arg σ0]

0

· · ·
∫ [π−arg σk]

0

k∏

j=1

eσ0t0t
M0+ℓ0/ω0−1
0

z − t0
737

×
ωj−1∑

ℓj=0

eσjtj t
1−(ℓj+1)/ωj

j−1 t
Mj+ℓj/ωj−1
j

tj−1 − tj
dtk · · · dt0738

=

ω0−1∑

ℓ0=0

· · ·
ωk−1∑

ℓk=0

z1−(ℓ0+1)/ω0

∫ [π−arg σ0]

0

· · ·
∫ [π−arg σk]

0

eσ0t0t
M0+ℓ0/ω0−(ℓ1+1)/ω1

0

z − t0
739

×




k−1∏

j=1

eσjtj t
Mj+ℓj/ωj−(ℓj+1+1)/ωj+1

j

tj−1 − tj


 eσktkt

Mk+ℓk/ωk−1
k

tk−1 − tk
dtk · · · dt0.740

741

We make the changes of integration variables from t0 to s0 and from tj to sj (1 ≤ j ≤742

k) via t0 = s0e
2πγ0i and tj = sje

2π(γj−1+γj)i. Here, the integers γ0 and γj are chosen743

so that |arg z + arg σ0 + 2πγ0| < π and 0 < arg σj − arg σj−1 + 2πγj < 2π.744
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Thus, we can finally relate the F(k+1) to the F (k+1) with the result:745

F(k+1)


z;

M0,
ω0,
σ0,

. . . ,

. . . ,

. . . ,

Mk

ωk

σk


746

=

ω0−1∑

ℓ0=0

· · ·
ωk−1∑

ℓk=0

z1−(ℓ0+1)/ω0e
2πi

(
γk−1(Mk−1+Mk+

ℓk−1
ωk−1

− 1
ωk

)+γk(Mk+
ℓk
ωk

)
)

747

×
k−2∏

j=0

e
2πiγj(Mj+Mj+1+

ℓj
ωj

− 1
ωj+1

− ℓj+2+1

ωj+2
)

748

×
∫ [π−arg σ0−2πγ0]

0

· · ·
∫ [π−arg σk−2π(γk−1+γk)]

0

eσ0s0+···+σksks
M0+ℓ0/ω0−(ℓ1+1)/ω1

0

z − s0
749

×




k−1∏

j=1

s
Mj+ℓj/ωj−(ℓj+1+1)/ωj+1

j

sj−1 − sj


 s

Mk+ℓk/ωk−1
k

sk−1 − sk
dsk · · · ds0750

=

ω0−1∑

ℓ0=0

· · ·
ωk−1∑

ℓk=0

z1−(ℓ0+1)/ω0e
2πi

(
γk−1(Mk−1+Mk+

ℓk−1
ωk−1

− 1
ωk

)+γk(Mk+
ℓk
ωk

)
)

751

×
k−2∏

j=0

e
2πiγj(Mj+Mj+1+

ℓj
ωj

− 1
ωj+1

− ℓj+2+1

ωj+2
)

752

× F (k+1)

(
z;

M0 +
ℓ0
ω0

− ℓ1+1
ω1

+ 1,

σ0e2πγ0i,

M1 +
ℓ1
ω1

− ℓ2+1
ω2

+ 1,

σ1e2π(γ0+γ1)i,

. . . ,

. . . ,

Mk + ℓk
ωk

σke2π(γk−1+γk)i

)
.753

754

Appendix B. Bounds for the generalised first-level hyperterminant.755

Proposition B.1. For any positive real M and positive integer ω, we have756

∣∣∣∣∣∣
z1/ω

Γ(M)
F(1)


z;

M
ω
1




∣∣∣∣∣∣
≤





1 if |θ| ≤ π
2ω,

min
(∣∣csc

(
θ
ω

)∣∣ , ω
√

e
(
M + 1

2

))
if π

2ω < |θ| ≤ πω,

ω
√
2πM

|cos θ|M + ω
√
e
(
M + 1

2

)
if πω < |θ| < πω + π

2 .

757

If ω = 1, the quantity
√
e
(
M + 1

2

)
can be replaced by758

(50)
√
π
Γ
(
M
2 + 1

)

Γ
(
M
2 + 1

2

) + 1,759

which is asymptotic to
√

π
2

(
M + 1

2

)
as M → ∞ and hence yields a sharper bound for760

large M .761

Proof. The case ω = 1 was proved in a recent paper by Nemes [25, Propositions762

B.1 and B.3]. For the general case, let M be any positive real number and ω be any763

positive integer. The integral representation of the first generalised hyperterminant764

can be re-written765

(51)
z1/ω

Γ(M)
F(1)


z;

M
ω
1


 =

eπM i

Γ(M)

∫ ∞

0

e−ttM−1

1 + (t/z)1/ω
dt,766
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provided that |θ| < πω. For t ≥ 0, we have767

(52)

∣∣∣∣1 +
t

w

∣∣∣∣ ≥
{
1 if | argw| ≤ π

2 ,

| sin (argw) | if π
2 < | argw| < π,

768

and therefore769
∣∣∣∣∣∣
z1/ω

Γ(M)
F(1)


z;

M
ω
1




∣∣∣∣∣∣
≤ 1

Γ(M)

∫ ∞

0

e−ttM−1

∣∣1 + (t/z)1/ω
∣∣dt770

≤
{
1 if |θ| ≤ π

2ω,∣∣csc
(
θ
ω

)∣∣ if π
2ω < |θ| < πω.

771

772

We continue by showing that the absolute value of the left-hand side of (51) is bounded773

by ω
√
e
(
M + 1

2

)
when π

2ω < θ ≤ πω. (The analogous bound for the range−πω ≤ θ <774

−π
2ω follows by taking complex conjugates.) For this purpose, we deform the contour775

of integration in (51) by rotating it through an acute angle ϕ. Thus, by appealing to776

Cauchy’s theorem and analytic continuation, we have, for arbitrary 0 < ϕ < π
2 , that777

z1/ω

Γ(M)
F(1)


z;

M
ω
1


 =

eπM i

Γ(M)

(
eiϕ

cosϕ

)M ∫ ∞

0

e−
eiϕu
cosϕuM−1

1 +
(

eiϕu
z cosϕ

)1/ω du778

when π
2ω < θ ≤ πω. Employing the inequality (52), we find that779

∣∣∣∣∣∣
z1/ω

Γ(M)
F(1)


z;

M
ω
1




∣∣∣∣∣∣
≤ 1

Γ(M)

1

cosM ϕ

∫ ∞

0

e−uuM−1

∣∣∣∣1 +
(

eiϕu
z cosϕ

)1/ω∣∣∣∣
du780

≤ 1

cosM ϕ
×
{
1 if π

2ω < θ ≤ π
2ω + ϕ,∣∣∣csc

(
θ−ϕ
ω

)∣∣∣ if π
2ω + ϕ < θ ≤ πω.

781

782

We now choose the value of ϕ which approximately minimizes the right-hand side of783

this inequality when θ = πω, namely ϕ = arctan(M−1/2). We may then claim that784

1

cosM (arctan(M−1/2))
=

(
1 +

1

M

)M/2

≤ ω

√
e

(
M +

1

2

)
,785

when π
2ω < θ ≤ π

2ω + arctan(M−1/2), where the last inequality can be obtained by786

means of elementary analysis. In the remaining case π
2ω + arctan(M−1/2) < θ ≤ πω,787

we have788
∣∣∣csc

(
θ−arctan(M−1/2)

ω

)∣∣∣
cosM (arctan(M−1/2))

≤

∣∣∣csc
(
π − arctan(M−1/2)

ω

)∣∣∣
cosM (arctan(M−1/2))

789

=

(
1 +

1

M

)M/2

csc

(
arctan(M−1/2)

ω

)
≤
(
1 +

1

M

)M/2

ω csc(arctan(M−1/2))790

= ω

(
1 +

1

M

)(M+1)/2 √
M ≤ ω

√
e

(
M +

1

2

)
.791

792
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Here we have used the convexity of csc(x) for 0 < x < π
2 , and that the quantity793

(
1 + 1

M

)(M+1)/2
√

M
M+a , as a function of M > 0, increases monotonically if and only794

if a ≥ 1
2 , in which case it has limit

√
e.795

We finish by proving the claimed bound for the range πω < |θ| < πω + π
2 . It is796

sufficient to consider the range πω < θ < πω + π
2 , as the estimates for −πω − π

2 <797

θ < −πω can be derived by taking complex conjugates. The proof is based on the798

functional relation799

z1/ω

Γ(M)
F(1)


z;

M
ω
1


 =

2πiω
(
ze−πi(ω−1)

)
)M

Γ(M)eze−πiω +
(ze−2πiω)1/ω

Γ(M)
F(1)


ze−2πiω;

M
ω
1


800

(see [31, eq. (A.13)]). From this functional relation, we can infer that801

∣∣∣∣∣∣
z1/ω

Γ(M)
F(1)


z;

M
ω
1




∣∣∣∣∣∣
≤ 2πω |z|M

Γ(M)e|z||cos θ|
+

∣∣∣∣∣∣
(ze−2πiω)1/ω

Γ(M)
F(1)


ze−2πiω;

M
ω
1




∣∣∣∣∣∣
802

≤ 2πω |z|M

Γ(M)e|z||cos θ|
+ ω

√
e

(
M +

1

2

)
.803

804

Notice that the quantity rMe−ra, as a function of r > 0, takes its maximum value at805

r = M/a when a > 0 and M > 0. We therefore find that806

∣∣∣∣∣∣
z1/ω

Γ(M)
F(1)


z;

M
ω
1




∣∣∣∣∣∣
≤ ω

√
2πM

|cos θ|M
MM−1/2e−M

√
2π

Γ(M)
+ ω

√
e

(
M +

1

2

)
807

≤ ω
√
2πM

|cos θ|M
+ ω

√
e

(
M +

1

2

)
.808

809

The second inequality can be obtained from the inequality MM−1/2e−M
√
2π ≤ Γ (M)810

for any M > 0 (see, for instance, [15, eq. 5.6.1]).811

Appendix C. The boundary of the domain ∆(n).812

In this subsection, we prove that the boundary of ∆(n) can be written as a union813 ⋃
m P(m)(θ+nm, α+

nm) ∪ −P(m)(θ−nm, α−
nm), where P(m)(θ±nm, α±

nm) are steepest de-814

scent paths emerging from the adjacent saddle t(m) (see Figure 2(b)). For α±
nm, see815

(17).816

First, we show that as we change θ, the steepest descent path P(n)(θ;αn) varies817

smoothly, unless, perhaps, it encounters an adjacent saddle point t(m). To see this,818

consider the map s(t) between the t-plane and the s-surface, defined by819

s = f(t)− fn.820

The steepest descent path P(n)(θ;αn) is mapped into a half-line with phase 2παn−θ821

emerging from the origin as an ωth
n -order branch point on the s-surface. As this822

half-line is rotated on the s-surface, the corresponding steepest descent path varies823

smoothly, unless we encounter a singularity of the inverse map t(s). Since f(t) is824

holomorphic in the closure of ∆(n), and |f(t)| → ∞ as t → ∞ in ∆(n), the only825

singularities of t(s) are branch points located at the images of the saddle points of826

This manuscript is for review purposes only.

http://dlmf.nist.gov/5.6.E1


32 T. BENNETT, C. J. HOWLS, G. NEMES, A. B. OLDE DAALHUIS

f(t) under the map s(t). When the half line hits a branch point of t(s) on the s-surface,827

the corresponding steepest descent path hits a saddle point in the t-plane.828

If we rotate θ in the positive direction, the steepest descent path P(n)(θ;αn)829

runs into a saddle point t(m) when θ = θ+nm. Likewise, if we rotate θ in the negative830

direction, the steepest descent path P(n)(θ;αn) hits a saddle t(m) when θ = θ−nm. By831

definition, the domain ∆(n) is the union
⋃

θ 6=θ±
nm

P(n)(θ;αn), which is precisely the832

image of the points on the s-surface that can be seen from the branch point at the833

origin minus half lines with phases 2παn − θ±nm issuing from the points s(t(m)) under834

the map t(s). The boundary of the domain ∆(n) is therefore consists of the images835

of these half lines under the map t(s). It is easy to see that the image of the half836

line with phase 2παn − θ+nm emerging from s(t(m)) under the map t(s) is precisely837

the steepest descent path P(m)(θ+nm, α+
nm) emanating from the adjacent saddle t(m).838

Similarly, the image of the half line with phase 2παn − θ−nm emerging from s(t(m))839

under the map t(s) is the steepest descent path P(m)(θ−nm, α−
nm) emanating from the840

adjacent saddle t(m). In order to make the orientation of the domain ∆(n) positive,841

the orientation of the steepest path P(m)(θ−nm, α−
nm) has to be reversed.842
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[16] G. V. Dunne and M. Ünsal, Deconstructing zero: resurgence, supersymmetry and complex885
saddles, J. High Energy Phys., (2016), pp. 002, front matter+19.886

[17] C. J. Howls, Hyperasymptotics for integrals with finite endpoints, Proc. Roy. Soc. London Ser.887
A, 439 (1992), pp. 373–396, https://doi.org/10.1098/rspa.1992.0156, http://dx.doi.org/10.888
1098/rspa.1992.0156.889

[18] C. J. Howls, Hyperasymptotics for multidimensional integrals, exact remainder terms and890
the global connection problem, Proc. Roy. Soc. London Ser. A, 453 (1997), pp. 2271–2294,891
https://doi.org/10.1098/rspa.1997.0122, http://dx.doi.org/10.1098/rspa.1997.0122.892

[19] C. S. Meijer, Asymptotische Entwicklungen von Besselschen, Hankelschen und verwandten893
Funktionen I–IV, Proc. Kon. Akad. Wet. Amsterdam, 35 (1932), pp. 656–667, 852–866,894
948–958, 1079–1090.895
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