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GLOBALLY HYPOELLIPTIC AND GLOBALLY SOLVABLE
FIRST ORDER EVOLUTION EQUATIONS

BY

JORGE HOUNIE

Abstract. We consider global hypoellipticity and global solvability of
abstract first order evolution equations defined either on an interval or in
the unit circle, and prove that it is equivalent to certain conditions bearing
on the total symbol. We relate this to known results about hypoelhptic
vector fields on the 2-torus.

0. Introduction. Let A denote a linear selfadjoint operator, densely defined
in a complex Hubert space H, which is unbounded, positive, and has a
bounded inverse A~x. Such an operator defines a scale of Sobolev spaces Hs
(s E R). Their intersection (1SHS is denoted by H°° and their union USHS
by//-"00.

Let 0 be either an open interval of R or the unit circle S1. We will consider
first-order evolution operators of the form

L= 3, + b(t,A)A,       tEil, (0.1)
where 3, means 3/3/ and the coefficient b(t, A) belongs to the ring 2^ of
series in the nonnegative powers of A ~ ' with complex coefficients in C °°(fi),
which converge in t(H, H) as well as each one of their /-derivatives,
uniformly with respect to t in compact subsets of ñ. (For more details on
these definitions see [1], [3].)

We denote by C°°(fl; H°°) (C°°(fi; H~x)) the space of smooth functions
defined in fi and valued in Hx (H~x), and by Cc°°(ß; H ±K>) the compactly
supported functions of C°°(fl; H ±0°).

Remark 0.1. The requirement that A be strictly positive is inessential, since
one can always work with the scale of spaces defined by (/ + A2)x/2. That is,
for instance, the case when A = (l//)(3/3x) in R or Sx.

Definition 0.1. Let t0 be any point of ß. We say that L is locally solvable at
t0 if there is an open neighborhood KcS of t0 such that, to every f E
CCX(V; H™) there is u E C°°(fí; H'00) satisfying

Lu = /   in V. (0.2)
We say that L is locally solvable in ñ í/L is locally solvable for all t0 E ñ.
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234 JORGE HOUNIE

Definition 0.2. We say that L is hypoelliptic in ti if, given any open subset V
oftiandu E C°°(ti; H'00),

L«eCB(F;r)=).aer(r';íf00). (0.3)
Definition 0.3. We say that L is globally hypoelliptic in ti if, given

u E C°°(ß;#-°°),
Lu G C°°(ti; H°°) => h G C°°(fl; Hx). (0.4)

Remark 0.2. There is no gain in generality in Definitions 0.1, 0.2 and 0.3, if
we replace our "space of solutions" Cx(ti; H~x) by the bigger space
öD'flß; H'00) (defined in [3]), since L« E CX(V; ff-00) and ti E
ój)'(!/.#-«=) imply that u E C°°(V; H~°°), whatever V cti. This is a
particular case of Proposition III.2.2 in [4], and may be regarded as a partial
hypoellipticity result in the /-direction.

We will need the following results.

Proposition 0.1. Suppose that L is globally hypoelliptic in ti. Then for every
integer N > 0, there is another integer M > 0 and a constant C > 0 such that,
for all u in C°°(ti, H°°) bounded (with bounded derivatives)

sup    2    ||^>3M|o<c(sup||»||0+     S    M'VHIo)-

The proof is a variation of [5, Theorem 52.2].
We denote by L* the formal adjoint of L, i.e. the operator defined by

J(L*h, v)0 dt = f(u, Lu)o dt,       u,vE Cj°(ti; H°°), (0.5)

where ( , )n indicates the inner product in H = H°. If L is given by (0.1) then
its adjoint will be

L* = - 3, + b(t,A)*A = - 3, + b(t, A)A (0.6)
where the coefficients in the development of b(t, A) are the complex con-
jugates of those of b(t, A).

Proposition 0.1 has the following standard

Corollary 0.1. If L, is globally hypoelliptic in fl, i/s formal adjoint L* is
locally solvable.

I am greatly indebted to Professor F. Trêves who has permitted the
inclusion of interesting unpublished results of his in §3. They add interest to
the hypoellipticity sections, which were the original subject of this paper.

1. The global hypoellipticity when ti is an interval. The local solvability and
hypoellipticity of the first-order evolution operator (0.1) has been thoroughly
studied (see [3]). Here the geometry of ti does not enter the picture, due to the
local nature of these properties. On the other hand, the study of the global
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HYPOELLIPTIC AND SOLVABLE ORDER EQUATIONS 235

hypoellipticity will reveal quite different answers in the cases ti = (a, b) c R
andfi = Sx.

In this section ti will be an open interval of R, which we will take to be
(0, 1). We recall the following theorems:

Theorem 1.1. The differential operator L, given by (0.1), is locally solvable in
ti if and only if the following is true:

(\p) if Re b0(tQ) > Ofor some t0 E ti, then Re b0(t) > Ofor all t E ti, t > /„,
where b0(t) is the leading coefficient in b(t,A).

Theorem 1.2. The differential operator L is hypoelliptic in ti if and only if the
following two conditions are satisfied:

(\P*) if Re bQ(t0) < Ofor some t0 E ti, then Re b0(t) < Ofor all t Eti,t > t0;
(S) Re b0 does not vanish identically in any (nonempty) open subinterval ofti.

Remark 1.1. Condition (\p*) implies that there exists a number c Eti =
[0, 1] such that Re b0 is nonnegative in (0, c] and nonpositive in [c, 1).

We introduce the following open set

5 = int{/ E (0, l)|Re b0(t) = 0}. (1.1)
Remark 1.2. With notation (1.1), condition (a) reads: 9" is empty.
We are going to need also two conditions defined for a component (a, ß)

of 9":
(t,) a > 0 and Re b0(t) > 0 for all / G (0, a);
(t2) ß < 1 and Re b0(t) < 0 for all / G (ß, 1).
Definition 1.1. Condition (t) holds if every component (a, ß) of 5" verifies

either (t,) or (t-j).
We observe that if 9" = 0, (t) is satisfied trivially so (2.) => (t). On the

other hand it is clear that (t) =x> (2.). The main reason for the introduction of
condition (t) is the following.

Theorem 1.3. The differential operator L, given by (0.1), is globally hypoel-
liptic in ti if and only if conditions (\p*) and (t) hold.

Proof. If L is globally hypoelliptic, L*, its formal adjoint, is locally
solvable (Corollary 0.1), so condition (i/*) holds for L* (Theorem 1.1) which
naturally implies that (\j/*) holds for L. Let us suppose that (t) does not hold
and let (a, ß) be a component of 9\ If a = 0 and ß = 1, L — 3, is obviously
not globally hypoelliptic. Say a > 0; we may find /q, 0 < /0 < a, such that
Re b0(t0) < 0 and (t//*) implies readily that ß = 1. Consider an element
h0 E H° \ H°°, and a C°° function «K0 in ti which is zero for / < /„ and
identically one if t > t0 + e. Here e > 0 is chosen so that

f Re b0(s) ds < -p < 0   for all /, /0 < / < t0 + e. (1.2)
*4
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236 JORGE HOUNIE

Let us define

u(t) = <¡>(t) ■ expl f1 b(s, A)A ds\h0. (1.3)

Since u(a) £ H™ it is clear that u G C°°(fi; if00). On the other hand,

hu(t) = <#>'(') expj Çb(s, A)A ds\h0 (1.4)

so Lu G C°°(ß; H°°). Indeed, in a neighborhood V of the set where <p'(t) =
0, the operator exp(J>(s, A)A ds) maps C°°(F; #-°°) into C°°(F; /f°°), as
follows from (1.2). This contradicts the global hypoellipticity of L.

To prove the "if part we will need

Lemma 1.1. Suppose that (\p*) and (t) hold. Then every x E (0, 1) either
verifies

(i) Re b0(t) > Ofor all t E (0, x) and /gRe b0(t) dt > 0, or
(ii) Re b0(t) < Ofor ail t E (x, 1) and }xxRe b0(t) dt > 0.

Proof. Since Re b0 changes sign at most once, and in that case from
positive to negative, it is clear that, if Re b0(x) > 0 (i) holds, and if Re b0(x)
< 0 (ii) holds. Suppose then that Re Z>0(x) = 0 and that neither (i) nor (ii)
holds.

If there is a /0 < x such that Re b0(t0) < 0 then Re b0(t) < 0 for all / > /„.
Since J*Re b0 < 0 we conclude that Re ¿>0(/) = 0 for / > x. Hence, there is a
connected component (a, 1) in ?T with a < x. This contradicts (t2) and also
(t,). So we may assume that Re b0(t) > 0 for / < x. Using /¡JRe b0 < 0 we
find as before a component (0, ß) with x < ß < 1. So (t,) does not hold and
(t2) must. Then J*Re b0 = /f Re b0> 0 and the negation of (ii) implies that
there is a /, > ß with Re b0(tx) > 0. This is incompatible with (rj).

End of the proof of Theorem 1.3. Let u E Cx(ti; H~x) such that
Lu = / G Cœ(ti; H°°) and fix x G (0, 1) = ti. According to Lemma 1.1 we
may suppose that, say, Re b0(t) > 0 for all 0 < / < x and /JRe b0(t) dt > 0.
We choose 0 < 17 < x so that

f Re b0(t') dt' >r\    if 0 < s < t/,   x - r/ < / < x + tj. (1.5)
•'s

Next we pick a function <J> G C°°(fl) such that <i>(0) = 0 and <b(t) = 1 if / > tj.
Finally consider the operator

(Kxg)(t) = jr'exp(-^V^) dt'A^g(s) ds. (1.6)

If c = sup{/|Re b0(t) > 0}, it is clear that Kx maps C°°([0, c]; Hx) (resp.
C°°([0, e}; //"°°)) into itself. Furthermore, if g(0) = 0, we see by integration
by parts that
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HYPOELLIPTIC AND SOLVABLE ORDER EQUATIONS 237

(KxLg)(t) = g(t) - exp(-£b(t',A) dt'A^g(0) = g(t). (1.7)

In particular, when g = <$>u, Lg = </>/ + <p'u, so

<bu = Kx(<bf) + Kx(<b'u). (1.8)
Now/ G C°°(ß; H°°) so <bf G C°°([0, c]; #°°). On the other hand, if |x - t\
< 17 and s G supp </>', we have, using (1.5) that

-  f'Reb0(t')dt' < -t, (1.9)

so it follows easily that Kx(<b'u) belongs to C°°((x - 17, x + tj); /i°°). Since
x < c, we conclude that </>«, hence u, is in C°°((x — n, c]; if00). If x < c this
shows that u(t) is smooth with values in H °° in a neighborhood of x. If x = c,
Re ¿>0(/) < 0 for / > c and similar reasoning with

(K2g)(t)=^exp{-^b(t',A)dt'A^g(s)ds (1.10)

substituted for Kx shows that u E C°°([x, x + e); -if00) for a certain e > 0.
Since x is arbitrary, u E C°°(ti; H°°).   Q.E.D.

We may now obtain Theorem 1.2 as a corollary of the global result.

Corollary 1.1. The differential operator L is hypoelliptic in ti iff (\j/*) and
(2) hold in ti.

Proof. L is hypoelliptic in ti if and only if it is globally hypoelliptic in
every subinterval ti' c ti. Furthermore it is clear that (»//*) holds in ti if and
only if it does in every Q'cS2 and that (t) holds in every ti' c ti if and only
if ?T = 0, i.e., (2) holds in ti.   Q.E.D.

2. The periodic case (ti = Sx). We now consider the evolution operator
given by (0.1) defined in the unit circle Sx, which we will identify with
Tx = R/2ttZ. Thus, L may be thought of as an operator on R with periodic
coefficients, and we look at periodic solutions, when periodic data are
prescribed.

Theorem 1.3 characterizes globally hypoelliptic evolution operators of
order one exclusively in terms of properties of the real part of the leading
coefficient, Re b0(t). In particular, the structure of the spectrum of A, a(A),
does not enter into the picture. On the other hand, when ti = Tx, the
behavior of o(A) in a neighborhood of infinity will play an important role.

According to the hypotheses made on A, a(A) G [p, 00) Q R, for a certain
positive p. We introduce a function

1    r2* ■r(z)=—       zb(t, z)dt = /y + rx + r2z~x + . . . ,       z E C,      (2.1)
¿TTl Jq
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which is analytic on \z\ > p, and either has a pole of order one or a
removable singularity at z = oo. We will also make use of the subset of C
given by

A={z\\z\>p,r(z)EZ) (2.2)
where r(z) takes integral values. It is clear that A is a discrete set when r(z) is
not a constant. We denote by

d(0 = d(i A) - inf || - 4       | G R, (2.3)
:£A

the distance from £ G R to the set A.

Theorem 2.1. The differential operator L, given by (0.1) and defined on Tx, is
globally hypoelliptic in Tl if and only if the following conditions hold:

(9) Re b0 does not change sign in Tx;
(§ ) if Re b0 s 0, there exist a positive constant c and a positive integer N

such that

d(0>crN (2.4)
for all £ G a(A) sufficiently large.

We will refer to an estimate like (2.4) saying that o"(£) decreases slowly at
infinity on o(A).

We recall that if L is a differential operator on a smooth orientable
manifold M, we say that L is globally hypoelliptic if u G ^'(M) (the
distributions on M) and Lu G C°°(A/) imply that u E CX(M).

Theorem 2.2. Let b(t) be a smooth complex function on Tx and consider the
vector field

defined on the 2-torus T2 = Tx X Tx = {e"} X {eix}. Then L is globally
hypoelliptic if and only if the following conditions hold:

(9) Im b(t) does not change sign;
(%) if Im b(t) == 0, y = (2Tr)~xflnRe b(t) dt is an irrational non-Liouville

number.

Proof. Take A to be (a selfadjoint extension of) (l/i)(3/3x) in Hx =
L2({eix}). Then (I + A2)x/2 defines the usual scale of Sobolev spaces /Ç in
T\ in particular CX(TX; Hx°°) = CX(T2), C°°(TJ; H~M) =
C~(T,1; ^'(Tx)) and ^'(Tj; H-™) = ^'(T2). In view of Remarks 0.1 and
0.2, we see that L is globally hypoelliptic in the usual sense iff it is globally
hypoelliptic in the sense of Definition 0.3, so Theorem 2.1 applies. Here
a(A) = Z and A = {z\yz E Z) so it is not difficult to see (§) specializes to
(%).   Q.E.D.
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HYPOELLIPTIC AND SOLVABLE ORDER EQUATIONS 239

When b(t) is constant in (2.5), Theorem 2.2 yields a result due to Green-
field and Wallach (see [2]) namely

Corollary 2.1. The complex vector field L = 3, — bdx, b EC, is globally
hypoelliptic in T2 if and only if Im b ¥" 0 or Re b is an irrational non-Liouville
number.

When o(A) = [p, oo), condition (S) can be simply expressed in terms of the
coefficients of r(z). We have

Theorem 2.3. Let h be as in Theorem 2.1 and assume that o(A) = [p, oo).
Then L is globally hypoelliptic unless

(i) Re b0(t) changes sign, or
(ii) Re b0 = 0 and all coefficients rk, k = 0, 1,2,..., are real. Moreover, if

r0 — 0 and rx is an integer all coefficients rk must vanish for k > 2.

In the proof of Theorem 2.1, we will need a few lemmas.

Lemma 2.1. Let r(z), d(Q be the functions defined in (2.1) and (2.3), respec-
tively, and suppose that there is a coefficient r¡ in the development (2.1) of r(z)
which is not real. Then, there are positive constants c, N, such that

d(i)>crN (2.6)
for all £ G R sufficiently large.

Proof. Set Ä = {z G C| \z\ > p, r(z) E R}, d(Q = d(& A). It will be
enough to prove an estimate like

d(i) >c£~N,       | real and large, (2.7)
since d(Q < d(£)-

Assume first that r0 = 0, so r(z) = rx + [g(l/z)f for a certain k E N and
g analytic in a neighborhood of the origin, g(0) = 0, g'(0) ¥= 0. If Im r, ¥= 0,
¿(£) is bounded away from zero as £ -* oo, £ G R. If Im rx = 0,

M"#r»}-S{H*J-£}-2y-0  <■      z

The y, are analytic curves through the origin distinct from the real line, so
they have finite order contact with the real axis. If (2.7) were false we could
picky, 0 < / < k — 1, and sequences (£„) Q R, (zn) EC, l/zn E y,, so that
i, -», cc and £ - zn\ < £„""• But then

J_     _^
in        zn

€,-■<■€."""'     as *,-»«>.

which contradicts the fact that y, has at the origin finite order contact with
the real axis.
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If r0 ¥= 0, r(z) = z(rQ + rxz~x + . . . ) = zh(l/z), h(0) ^0 so we may
write r(z) = \/f(\/z) with / analytic in a neighborhood of the origin,/(0) =
0, /'(0) ¥= 0. Now r(z) is real iff fil/z) is real and we proceed as before.

Lemma 2.2. Suppose that Re b0 = 0 and (§ ) holds. Then there are positive
constants c and N such that

|l-«--**®l>«S~* (2.8)
for all £ G o(A) sufficiently large.

Proof. Suppose that there is a first coefficient rk in the expansion of r(z),
such that Im rk ¥= 0. If k = 0 or 1 it is clear that |1 - e~2,ririi)\ is bounded
away from zero as £ -» oo. For £ > 2, write rk = a + iß (ß ¥=0) and observe
that

|1 _ í--2»*<©|>|1 _|e-2->«)| |=|i - e2"lmr<-&\>\ß\£x-k + 0(£-*)

as £ -» oo, so (2.8) holds.
Now suppose that /•(£) is real for £ real, so |1 — e~2m^\2 = 2(1 —

cos[2irr(Ç)]). If r0 = 0 cos(2tt/-(£)) -> cos(2ut,) so |1 - e"2"^^ is bounded
away from zero if rx G Z. If r, G Z, there is a first rk ¥= 0, k > 2 (otherwise
A D (p, oo) and ¿(I) = 0 contradicting (<3 )) so for £ large

1 - cos(2,rr(£)) = 1 - cosiXKI) - rx)) = 2^2(r,£'-*)2 + 0(r2k)
and (2.8) holds.

Now assume r0 ¥* 0, and suppose that there is a sequence £n E o(A), such
that in -> oo and rf(|„) ^. 0, and take \, G A such that d(Q = |£„ - \,|. Now
set r(z) = /-qZ + r, + R2(z). For n sufficiently large

Hi.) - r(K)\ > ko(è, - \,)| - \R2(K) - R2(U\ > ' ' d{in),

so

(1 - cos 2Ttr(0)x/2 > [1 - costal d(Q)]x/2

> &L d(Q + o(d(Q)
and (2.4) implies (2.8).   Q.E.D.

Lemma 2.3. The function o"(£) defined in (2.3) decreases slowly at infinity on
a(A) if and only if |1 — e~2mr<-^\ decreases slowly at infinity on a(A).

Proof. In view of the proofs of Lemmas 2.1 and 2.2, we only have to prove
that d(Ç) decreases slowly when r(£) is real and |1 — e~2mr(i)| decreases slowly.
This can be easily checked along the lines of those lemmas.

Proof of Theorem 2.1. Sufficiency of (<$) and (§). Suppose that there is a
point t0E Tx such that Re b0(t0) > 0 so Re b0(t) > 0 in Tl and look at L on
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the interval ß' = (/0, /0 + 2ir) ç R. It is clear that condition (t,) of Definition
1.1 holds for L on ti', so according to Theorem 1.3 L is globally hypoelliptic
in any set of the form Tx — (/0) with Re b0(t0) > 0. Two such sets cover Tx
and we conclude that L is globally hypoelliptic in Tx. A similar reasoning
takes care of the case Re b0(t) < 0, Re b0(t) z£ 0.

Suppose now that Re b0(t) = 0. Condition (§) implies that there exist
M > 0 so that whenever £ G o(A) is larger than Af, the O.D.E.

(¿+ô('.8é)«-/,       0</<2,7,

u(0) = u(2tt) (2.9)
has a unique solution, since all nontrivial solutions of the homogeneous
problem are not 2ff-periodic (indeed, all solutions of the homogeneous O.D.E.
are multiples of t>(/) = exp( — J'0b(s, £)£ ds) and v(2tt) = v(0) = 1 implies that
/•(£)GZ,soa-(£) = 0).

Now let u E CK(TX; H "") be such that Lti = / G CX(TX; Hx) and set

/ - n = rdE(X) (2.10)

where {E(X)} is the spectral resolution of A.
We may write / = /, + f2 = Uf + (I - U)f so /, G CX(TX; U(HX)).

Since the restriction of A to U(H) is bounded and A commutes with n, we
see that ux = Tlu satisfies Lw, = /, and u, G CX(HX; n(if-00)) Ç
CX(TX; H™). Hence we only need to show that u2 = u - ux E C^r1; //")
and there is no restriction if we assume from the start that / is valued in
H°° n (/ — H)H. In particular, u(t) is uniquely determined by the formulas

«(/) = f'kx(s, t, A)f(s) ds + r2*A:2(s, /, A)f(s) ds, (2.11)
•'o ■'/

kx(s,t,A)=[I - e-2™^yx-exp[B(s,A) - B(t,A)],

k2(s,t,A)=[I- e-a""<^)]"I-exp[R(j,i4) - B(t, A) - B(2tt, A)],

(2.12)
where we have used the following notation

B(t, A) = f'b(s, A)Ads= f (     b(s, X)X dE(X) ds,
J0 J0 Ja(A)

2irir(A) = 1m f     r(X) dE(X) = f2''Ab(s, A) ds = B(2tr,A).   (2.13)
Ja(A) J0

In view of (2.11), (2.12) and (2.13) u will belong to Cœ(Tl; H°°) if we
prove that k¡(s, t, X) and its /-derivatives (/ = 1, 2) grow slower than powers
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of À on o(A). Since Re b0 = 0, exp(R(/, X)) is bounded and its derivatives of
order k grow slower than Xk, it is a matter of checking that [1 —
exp( — 2mr(X))]~x grows at infinity slower than a power of X. This is precisely
the content of Lemma 2.2.

Necessity of (9) and (§). If L is globally hypoelliptic, L* is locally solvable,
so Re b0 cannot change sign from minus to plus, say, in the counter-clockwise
direction, and thus cannot change sign at all on Tl and (9) holds. Suppose
that (§ ) does not hold. Hence we may assume Re b0 = 0 and (by Lemma 2.3)
that there is an increasing sequence £„ G a(A), £„ —* oo such that

|1 -exp[-2Wi>(£„)]| <£„"",       « = 1,2,.... (2.14)
Let /?(£) the function defined by /?(£) = n - 1 if £„_,<£<£„, n =
2, 3, ... , and pick a continuous function a: R + —» [0, 1] such that a(£„) = 1
V« G N and

|1 - exp[ -27tiV(£)]|«(£) < rm       V£ G[p, oo). (2.15)

Now we choose positive numbers t\k so that £A_, < t)k < £¿, k =
2, 3, ... , and such that

a(t)>\    if t,, </<£*. (2.16)

We also choose unit vectors («„) G H and positive numbers (an) for every
n E N so that the following properties are satisfied

(i) hn E &(£■(£„) - E(r\n)), so in particular hn ± hm if n ¥= m (this is
possible for £„ G a(A) so £(£„ - 0) * £(£„)),

(ii) 2a„2 < oo,
(iiOS^.a^oo.
We define h0 = 2a„«„ G H. Since

2
1\\a(A)Ahn\\l = fLa(V2X2d\\E(X)hn\\l > W„ [*"d\\E(X)hnt > 4£„2

we see that

f     a2(X)X2d\\E(X)h0\\20 = oo,

so o(A)ha & Hx. Finally, take a function y G C°°(r'; R) which vanishes in a
neighborhood of / = 0 and verifies ¡lwy(t) dt = I, and set

«(/) = «(,4) f'y(s) as/ + /*%(*) dse-^2"-'')
•'o ■'/

e-*(M>«0.     (2.17)

Since Re ¿>0 = 0 and u is periodic, it is easy to verify that u E C^T1; // °°)
but ti g C00^1; 7/°°). Indeed ti(0) = e~B{2"^a(A)h0 and a(/l)/i0 £ if1, so
ti(0) G Hx.
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On the other hand

Lu(t) = y(/)(/ - e-2™^)e-B^a(A)h0

and (2.15) implies right away that Lu E CX(TX, H°°).   Q.E.D.

3. Global solvability in Tx. We study the solvability of the equation

Lti = (3, + b(t, A)A)u = /       / G T\ (3.1)
where u and/ are smooth functions of / valued in H ±0°. Bearing in mind the
notations of §2, suppose that there is an eigenvalue X of A such that X G A. If
(3.1) has a solution, and we call P = E(X) — E(X — ) the orthogonal projec-
tion associated to X, we have

(3, + b(t, A)A)Pu = (3, + b(t, X)X)Pu

= e-iMdfieK'XtPu) = Pf
since eB(0Ji) = eB<2irJi) = 1. In particular

f2'e*'*\E(j\) - E(X -))/(/) dt = 0 (3.2)
•'o

will be a compatibility condition for the existence of solutions to (3.1).
On the other hand, if we assume that r(z) reduces to an integer, we obtain

as in [1], another compatibility condition:

(2"eB«-A)E(X)f(t)dt = 0   a.e.XG o(A). (3.3)
■'o

Definition 3.1. We say that f E C°(TX; H±x) is in BLC°°(TX; H-°°) if
(3.2) holds for every X E o(A) n A and (3.3) holds when r(z) is an integral
constant.

We observe that condition (3.2) is empty if A does not meet the discrete
spectrum of A, and also that B^C°°(TX; H°°) is a Fréchet space in any case.

We introduce the function

B(t, X) = f 5,(/)X'-' = B(t, X) - ir(X)t
; = 0

= fb(s, X)dt-^- [2"b(s, X) ds.

It is clear that the coefficients B¡(t) E C^T1).
For any real number r, we write

tir = {/ G r'|Re B0(t) < r). (3.4)

Theorem 3.1. The following conditions are equivalent:

V/ G RiC^r1; H°°),    aueC^r1;//"")   such that (3.1) holds;

(3.5)
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V/ G B^CX(TX; H°°),    3u E C*(Tl; H">)   such that (3.1) holds;

(3.6)
V/ e SlC^T1; H-00),   aMeC^r1;//-00)   such that (3.1) holds;

(3.7)
(i)     if r(z) does not reduce to an integer a (A) n A

only contains isolated points of a(A);

(ii)     if o (A) n A is unbounded, the sets (3.4) are
connected; (3-8)

(iii)     ifa(A) n CA is unbounded, Re b0(t) does not
change sign; furthermore, if Re bQ = 0, o"(£)

decreases slowly at infinity on o (A) n CA.

The function o"(£) appearing in (3.8)(iii), was defined in §2. A first order
evolution operator verifying any of equivalent conditions
(3.5), (3.6), (3.7), (3.8) will be called globally solvable.

Remark 3.1. When r(z) = 0, b(t, X) dt is exact for a.e. X G a(A) and
Theorem 3.1 reduces to Theorem 1.1 of [1] on the circle. Thus it is a
generalization of this result when the one-form b(t, X) dt generating the
complex is closed, for the special case of Sx. The global solvability of
complexes when the generators are closed remains an open problem for
manifolds of higher dimensions.

Remark 3.2. If the spectrum of A does not contain isolated points, and
r(z) iieZ Theorems 2.1 and 3.1 imply that L is globally solvable if and
only if it is globally hypoelliptic and o(A) n A = 0, but in general there is no
relationship between global solvability and global hypoellipticity.

Let L be the vector field (2.5) of Theorem 2.2 and set

r0 = — f "b(t) dt,       B(t) = ('b(s) ds - irQt.
¿IT J0 Jq

We say that a smooth function / G C°°(T2) belongs to RLC°°(r2) if given
any n E Z such that

nr0 = j^j2\(t)dtEZ (3.9)

we have

J^expi f'b(t') dt'\f(s, n)ds = 0, (3.10)

where fis, n) is the Fourier coefficient of / in the second variable. A straight-
forward application of Theorem (3.1) yields.
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Theorem 3.2. Let L be the vector field (2.5). The following conditions are
equivalent:

V/ G RLC"(T2),    3uEty'(T2) such that Lu = f; (3.11)

V/ G RLC"(T2),    3uECx(T2) such that Lu = /; (3.12)

(i)     ifr0 is an integer, the sets tir = {/ G Tx;

Im B(t) < r} are connected Vr G R;

(ii)     if r0 is rational but not an integer, the
sets tir are connected and Im b(t) does not
change sign;

(iii)     if r0 is real but not rational, Im b(t) does

not change sign and whenever Im b(t) = 0, r0 is
non-Liouville;

(iv)     ifr0 is nonreal, Im b(t) does not change
sign.

This theorem in conjunction with the results of §2 gives

(3.13)

Corollary 3.1. If the vector field (2.5) is globally hypoelliptic, it is globally
solvable. The converse is false.

Proof of (3.8) => (3.7) and (3.6). Assume first that r(z) does not reduce to
an integer. Choose /„ G Tx such that Re B0(t0) = inf Re B^t), and let us
enumerate the set o(A) n A = {X,, X2, . . . }. We shall write Pk = E(Xk) —
E(Xk — ) and shall call x the characteristic function of the set o(A) n CA.
Let us set

«,(') = xOo(jf'*.(', t,A)f(s) + f*k¿s, t, A)f(s) dt),       (3.14)

«2Í0-2   f'eB(s^-B('MPuf(s)ds, (3.15)
k=\Jt0

with kx, k2 given by (2.12), (2.13).
It is easy to check that m,(0) = ux(2tt), u2(0) = u2(2tt), Lux = x(^)/» Lw2 =

(/ - x04))/> so we only need to prove that they are smooth functions valued
in H ± °°, when this is true off, to conclude that u = ux + ti2 will be a solution
of (3.1) in the required space.

If a(A) n A is bounded the sum that defines u2 is finite. If a(A) n A is not
bounded, the sets (3.4) are connected and /0 G tir whenever tir ¥= 0. In
particular, for all / there will be a path y„ which we may take to be an arc of
circumference, joining /0 to /, such that
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Re B0(s) < Re B0(t)       Vs G y,. (3.16)

According to (3.2) we may write

u2{t)-'2fe«'MpkfXs)ds (3.17)
k   Jy,

for the value of the integral will be independent of the path. In view of (3.16),
the definition of B, and the fact that ir(Xk) is purely imaginary, we see that

Re(R(s, X,) - B(t, Xk)) = Re(i(s, Xk) - B(t, Xk)) < M      (3.18)
for every s G y„ Xk E o(A) n A, where Af is a constant independent of
s, /, k. It is now clear that u2E CX(TX; H±x).

Let us now look at ti,(/). Since the points of a(A) n A are isolated,
1 — e-2mrQ^ is bounded away from zero on bounded subsets of a(A) n CA.
Suppose Re b0(t) > 0. Then Re(R0(s) - R0(/)) < 0 when 0 < s < / and
Re(B0(s) — B0(t) — B0(2tt)) < 0 when / < s < 2ir, so the exponentials ap-
pearing in (3.14) are bounded. When Re b0(t) < 0 we reach a similar conclu-
sion by rewriting (3.14) in the following fashion

«i(0 = X(A) f'k3(s, t, A)f(s) + f2Vk4(s, t, A)f(s) ds,

k3(s,t,A) =[e2™W - iyxexp[B(s,A) - B(t,A) + B(2tt, A)],

(3.19)
k4(s, t,A) = [e2m>^> - /]_1exp[5(s, A) - B(t, A)]. (3.20)

Therefore we only need to verify that (1 — e±2'"><x>) grows slowly at infinity
on a(A) n CA to conclude that «,(/) G CX(TX; H±x). This is a con-
sequence of Lemma 2.3 when Re b0 = 0 and a consequence of Im r0 ¥= 0
when Re b0 ̂  0.

When r(z) = k E Z, one defines

«(/) = ('eB^)-B(,,A)j(^ Ä> (321)
J'o

and uses (3.3) and (3.8)(n) to check that u E CX(TX; H±x) and Lti = /.
Q.E.D.

It is plain that any of (3.6), (3.7) implies trivially (3.5) so we only need to
prove that (3.5) implies (3.8). For that we need the following version of a
well-known lemma (Lemma II.2.1, in [4]).

Lemma 3.1. Suppose that (3.5) holds. Then, there are positive constants m and
C such that

[2\f(t),v(t))0dt <C- sup   2 ||3;?IL- sup   2 ||3,a(L*«)||m  (3.22)
tŒT1 a = 0 íG7"1 a = 0
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for every f E B^CX(TX; Hx) and every v E CX(TX; Hx), with L* given by
(0.6).

(3.5) => (3.8)(i). Suppose that there exists Xg G a(A) n A which is a limit
point of o(A), and r(z) does not reduce to an integer. Since A is discrete we
may find a sequence of intervals /„ = (a„, ßn) and \ G a(A) such that

(a) a„ -> Xq,    ß„^>X0,
(b) 7„nA = 0   V«,
(c) \,elHna(A)   V«,
(d) 7„n/m = 0,    n¥=m.

Choose h„ E H such that \\h„\\ = 1, h„ E ^i(E(ß„) - E(an)), and a nonnega-
tive function a E CX(TX; R) which vanishes in a neighborhood of / = 0 and
verifies ¡fj'o(s) ds = 1. Write T(t) = f'0o(s) ds and set

«„(/) =[r(/) + (1 - T(t))eB^]eB^hn,

fn(t) = o(t)e-B^hn,       »-1,2,.... (3.23)
It is easy to check that/„ G B^CX(HX; Hx), vn E CX(TX; H°°) and

L*v„ = eB('-A\l - eB^-A))hn,       n=l,2,.... (3.24)

The reader may verify that for a certain positive constant M, depending on m
but independent of n

m

2 \\Z?(L*vn)\\m < M- sup |1 - e*<2^>|^0   as n -* oo,     (3.25)
<* = 0 Ae/„

m

2 IIWJL < M> (3.26)
a=0

(/„(/), v„(t))0= o(t)[T(t) + (1 - r(/))(Än, e^'^>/,B)0]

-> r(/)a(/)    as n -» oo. (3.27)

Therefore

¡2\fn(t), v„(t)) dt -* f2,rr(/)a(/) dt = k0 > 0. (3.28)

so (3.25), (3.26) and (3.28) contradict (3.22).   Q.E.D.
(3.5) => (3.8)(ii). Here we follow the Unes of Theorem 1.1 of [1], and omit

details. If tir is not connected we may find a real number r0 < r, and smooth
real functions/0, v0onTx such that

(a) fl%(t)dt = 0,
(b) supp 3,u0 C tiro,
(c) supp/0 n n,o = 0,
(d) (Uo(t)v0(t) dt > 0.
If r(z) reduces to a constant and a(A) n A is unbounded, the constant
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must be an integer. In this case, we take a sequence \, -» oo in a(A) n A =
o(A) and unit vectors h„ G ^L(E(X„ + 1) - E(X„ - 1)). Then

/„(/) = e-B^f0(t)hn E B^CX(TX; H°°),

t>„(0 = eB<'-A\(t)h„ E CX(TX; Hx), (3.29)

will violate (3.22) as n -» oo.
If r(z) is nonconstant and (3.5) holds, we already know that A can only

meet o(A) at the point spectrum. If there is a sequence \ E a(A) n A that
goes off to infinity, we take unit eigenvectors h„ E tfl(E(\) — E(X„ — )) and
set

/„(/) = e-s^f0(t)h„ =f0(t)e's^A\ G B^CX(TX; Hx),

v„(t) = eB^\(t)hn = v0(t)eB«-A% E CX(TX; Hx). (3.30)

Again (3.22) cannot hold for the pair/,, v„ as n —> oo.   Q.E.D.
(3.5) => (3.8)(iii). Let \, -» oo be a sequence in a(A) n CA, take closed

disjoint intervals /„, such that \, G /„ ç CA, and set

P = [     dE(X);    H = <31P,       A' = A\„,. (3.31)

Then A' is a selfadjoint unbounded operator on the Hubert space H', with
bounded inverse, and defines Sobolev scales H's = PHS, s E R. Multiplying
(3.1) through by P, we see that

V/ G B^CX(TX; Hx),   3w G CX(TX, H'~x)  such that L'n = Pf,    (3.32)

where L' = 3, + b(t, A')A'. Since A does not meet a(A'), PBLCX(TX; H°°)
= CX(TX; H'x), so in particular L' is locally solvable at any point of Tx and
this implies that Re b0 cannot change sign. If Re b0 = 0, a straightforward
combination of the techniques used in the proof of (3.5) => (3.8)(i) and in the
necessity of (§ ) in Theorem 2.1 allows us to conclude that </(£) must decrease
slowly at infinity on o(A) n CA. We leave details to the reader.   Q.E.D.
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