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Abstract. A two-dimensional framework (G, p) is a graph G = (V, E) together with a
map p: V → R2. We view (G, p) as a straight line realization of G inR2. Two realizations of
G are equivalent if the corresponding edges in the two frameworks have the same length. A
pair of vertices {u, v} is globally linked in G if the distance between the points corresponding
to u and v is the same in all pairs of equivalent generic realizations of G. The graph G is
globally rigid if all of its pairs of vertices are globally linked. We extend the characterization
of globally rigid graphs given by the first two authors [13] by characterizing globally linked
pairs in M-connected graphs, an important family of rigid graphs. As a byproduct we
simplify the proof of a result of Connelly [6] which is a key step in the characterization
of globally rigid graphs. We also determine the number of distinct realizations of an M-
connected graph, each of which is equivalent to a given generic realization. Bounds on this
number for minimally rigid graphs were obtained by Borcea and Streinu in [3].

1. Introduction

We consider finite graphs without loops, multiple edges or isolated vertices. A d-
dimensional framework is a pair (G, p), where G = (V, E) is a graph and p is a map
from V to Rd . We consider the framework to be a straight line realization of G in Rd .
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Two frameworks (G, p) and (G, q) are equivalent if ‖p(u)− p(v)‖ = ‖q(u)− q(v)‖
holds for all pairs u, v with uv ∈ E , where ‖ · ‖ denotes the Euclidean norm in Rd .
Frameworks (G, p) and (G, q) are congruent if ‖p(u)− p(v)‖ = ‖q(u)− q(v)‖ holds
for all pairs u, v with u, v ∈ V . This is the same as saying that (G, q) can be obtained
from (G, p) by an isometry of Rd .

We say that (G, p) is globally rigid if every framework which is equivalent to (G, p)
is congruent to (G, p). The framework (G, p) is rigid if there exists an ε > 0 such that
if (G, q) is equivalent to (G, p) and ‖p(u) − q(u)‖ < ε for all v ∈ V then (G, q) is
congruent to (G, p). Intuitively, this means that if we think of a d-dimensional frame-
work (G, p) as a collection of bars and joints where points correspond to joints and
each edge to a rigid bar joining its endpoints, then the framework is rigid if it has no
non-trivial continuous deformations (see [8] and also Section 3.2 of [20]). It seems to
be a hard problem to decide if a given framework is rigid or globally rigid. Indeed,
Saxe [18] has shown that it is NP-hard to decide if even a one-dimensional frame-
work is globally rigid. These problems become more tractable, however, if we assume
that there are no algebraic dependencies between the coordinates of the points of the
framework.

A framework (G, p) is said to be generic if the set containing the coordinates of all
its points is algebraically independent over the rationals. It is known [20] that rigidity of
frameworks in Rd is a generic property, that is, the rigidity of (G, p) depends only on
the graph G and not on the particular realization p, if (G, p) is generic. We say that the
graph G is rigid in Rd if every (or, equivalently, if some) generic realization of G in Rd

is rigid.
The problem of characterizing when a graph is rigid inRd has been solved for d = 1, 2.

A graph is rigid in R if and only if it is connected. The characterization of rigid graphs
in R2 is a result of Lovász and Yemini [15].

A similar situation holds for global rigidity: the problem of characterizing when a
generic framework is globally rigid in Rd has also been solved for d = 1, 2. A one-
dimensional generic framework (G, p) is globally rigid if and only if either G is the
complete graph on two vertices or G is 2-connected. The characterization for d = 2
follows from the following results. We say that G is redundantly rigid in Rd if G − e is
rigid in Rd for all edges e of G.

Theorem 1.1 [11]. Let (G, p) be a generic framework inRd . If (G, p) is globally rigid
then either G is a complete graph with at most d+ 1 vertices, or G is (d+ 1)-connected
and redundantly rigid in Rd .

The Henneberg 1-extension operation [12] (on edge xy and vertexw) deletes an edge
xy from a graph G and adds a new vertex z and new edges zx, zy, zw for some vertex
w ∈ V (G)−{x, y}. A key step in proving that the necessary conditions for global rigidity
in Theorem 1.1 are also sufficient when d = 2, is the following result of Connelly, see
the Proof of Corollary 1.7 of [6].

Theorem 1.2 [6]. Suppose that G can be obtained from K4 by a sequence of 1-
extensions and edge additions. Then every generic realization of G in R2 is globally
rigid.
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Fig. 1. A realization (G, p) of a rigid graph G. The pair {u, v} is globally linked in (G, p).

The following recent result gives an inductive construction for graphs which are
3-connected and redundantly rigid in R2.

Theorem 1.3 [13, Theorem 6.15]. Let G be a 3-connected graph which is redundantly
rigid in R2. Then G can be obtained from K4 by a sequence of 1-extensions and edge
additions.

By observing that complete graphs are globally rigid, we obtain a complete charac-
terization for globally rigid generic frameworks in R2.

Theorem 1.4 [6], [13]. Let (G, p) be a two-dimensional generic framework. Then
(G, p) is globally rigid if and only if either G is a complete graph on two or three
vertices, or G is 3-connected and redundantly rigid in R2.

It follows that global rigidity of frameworks inRd is a generic property when d = 1, 2.
It is not known whether this remains true for any d ≥ 3. Following Connelly [5], we say
that a graph G is globally rigid inRd if every (or equivalently when 1 ≤ d ≤ 2, if some)
generic realization of G in Rd is globally rigid. We refer the reader to [10] and [20] for
a detailed survey of the rigidity of d-dimensional frameworks.

In this paper we consider properties of two-dimensional generic frameworks which
are weaker than global rigidity. We assume henceforth that d = 2, unless specified
otherwise. A pair of vertices {u, v} in a framework (G, p) is globally linked in (G, p) if,
in all equivalent frameworks (G, q), we have ‖p(u)− p(v)‖ = ‖q(u)−q(v)‖. The pair
{u, v} is globally linked in G if it is globally linked in all generic frameworks (G, p).
Thus G is globally rigid if and only if all pairs of vertices of G are globally linked. Unlike
global rigidity, however, “global linkedness” is not a generic property in R2. Figures 1
and 2 give an example of a pair of vertices in a rigid graph G which is globally linked in
one generic realization, but not in another.1

We first show that global linkedness is preserved by the 1-extension operation. More
precisely we show that if {u, v} is globally linked in G = (V, E), w, x, y ∈ V , xy ∈ E ,
and G − xy is rigid, then {u, v} is globally linked in the graph obtained from G by a
1-extension on edge xy and vertex w. By using Theorem 1.1, we deduce that global
rigidity is preserved by the 1-extension operation. This immediately gives Theorem 1.2

1 Note that if d = 1 then global linkedness is a generic property: {u, v} is globally linked in G if and only
if G has two openly disjoint uv-paths.
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Fig. 2. Two equivalent realizations of the rigid graph G of Fig. 1, which show that the pair {u, v} is not
globally linked in G.

and hence simplifies the proof of Theorem 1.4. (Connelly deduces Theorem 1.2 from a
sufficient condition for the global rigidity of a d-dimensional framework in terms of the
rank of its “stress matrix” [6, Theorem 1.5]. His proof of this sufficient condition uses
some previous results from [4] together with other results from differential topology and
the elimination theory of semi-algebraic sets.)

In the remainder of the paper we consider the following problems for a generic
realization (G, p) of a graph G = (V, E):

(a) Given {u, v} ⊂ V , when is {u, v} globally linked in (G, p)?
(b) Given v ∈ V and U ⊂ V , when is v uniquely localizable with respect to U , that

is to say, when is it true that every realization (G, q)which is equivalent to (G, p)
and satisfies p(u) = q(u) for all u ∈ U , must also satisfy p(v) = q(v)?

(c) Given {u, v} ⊂ V , when is {u, v} globally loose in G, that is to say, when is it
true that for all generic realizations (G, p), there exists an equivalent realization
(G, q) which satisfies ‖p(u)− p(v)‖ �= ‖q(u)− q(v)‖?

(d) How many different realizations of G are there which are each equivalent to
(G, p)?

We use our result on 1-extensions to solve each of these problems for M-connected
graphs, an important family of rigid graphs. Our results imply that the answer to each
of the problems described in (a), (b) and (d) is generic when G is M-connected, in the
sense that the answer is the same for all generic realizations of G.

2. The Rigidity Matroid

The rigidity matroid of a graph G is a matroid defined on the set of edges of G which
reflects the rigidity properties of all generic realizations of G. We need basic defini-
tions and results on this matroid to define M-connected graphs and characterize global
linkedness in these graphs.

Let (G, p) be a realization of a graph G = (V, E). The rigidity matrix of the frame-
work (G, p) is the matrix R(G, p) of size |E |× 2|V |, where, for each edge vivj ∈ E , in
the row corresponding to vivj , the entries in the two columns corresponding to vertices i
and j contain the two coordinates of (p(vi )− p(vj )) and (p(vj )− p(vi )), respectively,
and the remaining entries are zeros. See [20] for more details. The rigidity matrix of



Globally Linked Pairs of Vertices in Equivalent Realizations of Graphs 497

(G, p) defines the rigidity matroid of (G, p) on the ground set E by linear independence
of rows of the rigidity matrix. Any two generic frameworks (G, p) and (G, q) have the
same rigidity matroid. We call this the rigidity matroid R(G) = (E, r) of the graph G.
We denote the rank ofR(G) by r(G). Gluck characterized rigid graphs in terms of their
rank.

Theorem 2.1 [8]. Let G = (V, E) be a graph. Then G is rigid if and only if r(G) =
2|V | − 3.

We say that a graph G = (V, E) is M-independent if E is independent in R(G).
Knowing when subgraphs of G are M-independent allows us to determine the rank of
G. This can be accomplished using the following characterization of M-independent
graphs due to Laman. For X ⊆ V , let EG(X) denote the set, and iG(X) the number, of
edges in G[X ], that is, in the subgraph induced by X in G.

Theorem 2.2 [14]. A graph G = (V, E) is M-independent if and only if iG(X) ≤
2|X | − 3 for all X ⊆ V with |X | ≥ 2.

A graph G = (V, E) is minimally rigid if G is rigid, but G − e is not rigid for
all e ∈ E . Theorems 2.1 and 2.2 imply that G is minimally rigid if and only if G is
M-independent and |E | = 2|V | − 3. Note that, if G is rigid, then the edge sets of the
minimally rigid spanning subgraphs of G form the bases in the rigidity matroid of G.

A pair of vertices {u, v} in a framework (G, p) is linked in (G, p) if there exists an
ε > 0 such that, if (G, q) is equivalent to (G, p) and ‖p(w)−q(w)‖ < ε for allw ∈ V ,
then we have ‖p(u) − p(v)‖ = ‖q(u) − q(v)‖. Using Theorems 2.1 and 2.2, it can
be seen that this is a generic property and that {u, v} is linked in a generic framework
(G, p) if and only if G has a rigid subgraph H with {u, v} ⊆ V (H).

A compact characterization of all linked pairs can be deduced as follows. We define
a rigid component of G to be a maximal rigid subgraph of G. It is well known (see,
e.g., Corollary 2.14 of [13]) that any two rigid components of G intersect in at most one
vertex and hence that the edge sets of the rigid components of G partition the edges of
G. Thus {u, v} is linked in a generic framework (G, p) if and only if {u, v} ⊆ V (H)
for some rigid component H of G. Note that the rigid components of a graph can be
determined in polynomial time, see for example [2].

3. Generic Points and Quasi-Generic Frameworks

In this section we prove some preliminary results on generic frameworks which we use
in our proof that 1-extensions preserve global linkedness. A point x ∈ Rn is generic if
its components form an algebraically independent set over Q.

Lemma 3.1. Let f : Rn → Rm by f (x) = ( f1(x), f2(x), . . . , fm(x)), where fi (x) is a
polynomial with integer coefficients for all 1≤ i≤m. Suppose that maxx∈Rn {rank d f |x}=
m. If p is a generic point in Rn , then f (p) is a generic point in Rm .
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Proof. Since p is generic, we have rank d f |p = m. Relabelling if necessary, we
may suppose that the first m columns of d f |p are linearly independent. Let p =
(p1, p2, . . . , pn). Define f ′: Rm → Rm by f ′(x1, x2, . . . , xm) = f (x1, x2, . . . , xm,

pm+1, . . . , pn). Let p′ = (p1, p2, . . . , pm). Then f ′(p′) = f (p) and rank d f ′|p′ = m.
Let f ′(p′) = (β1, β2, . . . , βm). Suppose that g(β1, β2, . . . , βm) = 0 for some poly-

nomial g with integer coefficients. Then g( f1(p), f2(p), . . . , fm(p)) = 0. Since p is
generic, we must have g( f ′(x)) = 0 for all x ∈ Rm . By the inverse function theorem f ′

maps a sufficiently small open neighbourhood U of p′ diffeomorphically onto f ′(U ).
Thus g(y) = g( f ′(x)) = 0 for all y ∈ f ′(U ). Since g is a polynomial map and f ′(U )
is an open subset of Rm , we have g ≡ 0. Hence f ′(p′) = f (p) is generic.

Given a point p ∈ Rn we use Q(p) to denote the field extension of Q by the coor-
dinates of p. Given fields K ⊆ L with L a finitely generated field extension of K , the
transcendence degree of L over K , td[L : K ], is the size of a largest subset of L which is
algebraically independent over K , see Section 18.1 of [19]. (It follows from the Steinitz
exchange axiom, see Lemma 18.4 of [19] and Section 6.7 of [17], that this definition
gives rise to a matroid on L , where the rank of a subset S of L is td[K (S) : K ].) We
use K̃ to denote the algebraic closure of K . Note that each element of K̃ is a loop in the
above mentioned matroid and hence td[K̃ : K ] = 0.

Lemma 3.2. Let f : Rn → Rn by f (x) = ( f1(x), f2(x), . . . , fn(x)), where fi (x) is a
polynomial with integer coefficients for all 1 ≤ i ≤ n. Suppose that f (p) is a generic
point in Rn . Let L = Q(p) and K = Q( f (p)). Then K̃ = L̃ .

Proof. Since fi (x) is a polynomial with integer coefficients, we have fi (p) ∈ L for
all 1 ≤ i ≤ n. Thus K ⊆ L . Since f (p) is generic we have td[K : Q] = n. Since
K ⊆ L and L = Q(p) we have td[L : Q] = n. Thus K̃ ⊆ L̃ and td[K̃ : Q] = n =
td[L̃ : Q]. Suppose K̃ �= L̃ , and choose γ ∈ L̃ − K̃ . Then γ is not algebraic over K so
S = {γ, f1(p), f2(p), . . . , fn(p)} is algebraically independent over Q. This contradicts
the facts that S ⊆ L̃ and td[L̃ : Q] = n.

A configuration C is a set {p1, p2, . . . , pn} of points in R2. We say that C is generic
if the point p = (p1, p2, . . . , pn) ∈ R2n is generic. Two configurations C and C ′ are
congruent if there exists an isometry T of R2 such that T (C) = C ′. We say that C is
quasi-generic if C is congruent to a generic configuration, and that C is in standard
position if p1 = (0, 0) and p2 = (0, y2) for some y2 ∈ R.

Let G=(V, E)be a graph and let (G, p)be a realization of G. Let V ={v1, v2, . . . , vn}
and E = {e1, e2, . . . , em}. We can view p as a point p = (p(v1), p(v2), . . . , p(vn)) in
R2n . We say that (G, p) is quasi-generic or in standard position if p(V ) is, respectively,
quasi-generic or in standard position. The rigidity map fG : R2n → Rm is given by
fG(p) = (‖e1‖2, ‖e2‖2, . . . , ‖em‖2), where ‖ei‖ = ‖p(u)− p(v)‖, when ei = uv. Note
that the evaluation of the Jacobian of the rigidity map at the point p ∈ R2n , d fG |p, is
twice the rigidity matrix of the framework (G, p).
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Lemma 3.3. If (G, p) is a quasi-generic framework and G is M-independent then
fG(p) is generic.

Proof. Choose a generic framework (G, q) conguent to (G, p). Since G is M-indepen-
dent, rank d fG |q = |E |. Hence Lemma 3.1 implies that fG(q) is generic. The lemma
now follows since fG(p) = fG(q).

Lemma 3.4. Suppose that (G, p) is in standard position, G is minimally rigid and
fG(p) is generic. Let p= (0, 0, 0, y2, x3, y3, . . . , xn, yn), L=Q(p) and K =Q( fG(p)).
Then (y2, x3, y3, . . . , xn, yn) is generic and K̃ = L̃ .

Proof. Define f : R2n−3 → R2n−3 by

f (z1, z2, . . . , z2n−3) = fG(0, 0, 0, z1, z2, . . . , z2n−3).

Let p′ = (y2, x3, y3, . . . , xn, yn). Then f (p′) = fG(p) is generic. We have L = Q(p′)
and K = Q( f (p′)). By Lemma 3.2, we have K̃ = L̃ . Furthermore, 2n−3 = td[K̃ ,Q] =
td[L̃,Q]. Thus p′ is a generic point in R2n−3.

Lemma 3.5. Let C = {p1, p2, . . . , pn} be a configuration. Then C is quasi-generic
if and only if there is an isometry T of R2 such that T (p1) = (0, 0), T (p2) = (0, y2),
T (pi ) = (xi , yi ) for 3 ≤ i ≤ n, and {y2, x3, y3, . . . , xn, yn} is algebraically independent
over Q.

Proof. Suppose C is quasi-generic. Let G = (V, E) be a minimally rigid graph,
V = {v1, v2, . . . , vn}, and define p: V → R2 by p(vi ) = pi for 1 ≤ i ≤ n. Con-
sider the quasi-generic framework (G, p). By Lemma 3.3, fG(p) is a generic point
in R2n−3. Choose an isometry T of R2 which maps (G, p) to a framework (G, q)
such that T (p1) = (0, 0), T (p2) = (0, y2) and T (pi ) = (xi , yi ) for 3 ≤ i ≤
n. Then q = (0, 0, 0, y2, x3, y3, . . . , xn, yn) and fG(q) = fG(p). By Lemma 3.4,
{y2, x3, y3, . . . , xn, yn} is algebraically independent over Q.

We next suppose that there is an isometry of R2 which maps C onto C ′ = {(0, 0),
(0, y2), (x3, y3), . . . , (xn, yn)} and {y2, x3, y3, . . . , xn, yn} is algebraically independent
over Q. Choose θ ∈ R such that {sin θ, y2, x3, y3, . . . , xn, yn} is algebraically indepen-
dent overQ. Let T1 be the isometry ofR2 which rotates the plane through θ radians about
the origin. Let T1(C ′) = C1. Then C1 = {(0, 0), (s2, t2), (s3, t3), . . . , (sn, tn)} where
(s2, t2) = (−y2 sin θ, y2 cos θ) and (si , ti ) = (xi cos θ − yi sin θ, xi sin θ + yi cos θ) for
3 ≤ i ≤ n.

Claim 3.6. {s2, t2, s3, t3, . . . , sn, tn} is algebraically independent over Q.

Proof. Let K = Q(sin θ, y2, x3, y3, . . . , xn, yn) and L = Q(s2, t2, s3, t3, . . . , sn, tn).
We show that K̃ ⊆ L̃ . It suffices to show that sin θ, y2, x3, y3, . . . , xn, yn are all algebraic
over L . We have y2

2 = s2
2 + t2

2 ∈ L so y2 ∈ L̃ . Thus sin θ = −s2/y2 ∈ L̃ and cos θ =
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t2/y2 ∈ L̃ . Let �1 = sin θ and �2 = cos θ . For each 3 ≤ i ≤ n, we have si = �1xi − �2 yi

and ti = �2xi + �1 yi . We can solve these equations to express xi , yi as rational functions
of si , ti , �1, �2. Thus xi , yi ∈ L̃ . Hence K̃ ⊆ L̃ and td[L : Q] ≥ td[K : Q] = 2n − 2.
Thus {s2, t2, s3, t3, . . . , sn, tn} is algebraically independent over Q.

Choose β, γ ∈ R such that {β, γ, s2, t2, s3, t3, . . . , sn, tn} is algebraically indepen-
dent over Q. Let T2 be the isometry of R2 which translates the plane by (β, γ ). Let
T2(C1) = C2. Then C2 = {(w1, z1), (w2, z2), . . . , (wn, zn)} where (w1, z1) = (β, γ )

and (wi , zi ) = (si +β, ti +γ ) for 2 ≤ i ≤ n. It can easily be seen thatQ(β, γ, s2, t2, s3,

t3, . . . , sn, tn) = Q(w1, z1, w2, z2, . . . , wn, zn). Hence {w1, z1, w2, z2, . . . , wn, zn} is
algebraically independent overQ. Thus C ′ is congruent to the generic configuration C2.
Since C is congruent to C ′, it follows that C is quasi-generic.

Corollary 3.7. Suppose that (G, p) is a rigid generic framework and that (G, q) is
equivalent to (G, p). Then (G, q) is quasi-generic.

Proof. Let H be a minimally rigid spanning subgraph of G. Choose isometries of
R2 which map (H, p) and (H, q) to two frameworks (H, p′) and (H, q ′) in standard
position. By Lemma 3.3, fH (p) is generic. Thus fH (q ′) = fH (p′) = fH (p) is generic.
By Lemmas 3.4 and 3.5, (H, q ′) is quasi-generic. Hence (H, q) and (G, q) are quasi-
generic.

4. 1-Extensions and Globally Linked Pairs

Let (G, p) be a framework and u, v ∈ V . Recall that {u, v} is globally linked in (G, p)
if, in all equivalent frameworks (G, q), we have ‖p(u)− p(v)‖ = ‖q(u)− q(v)‖. The
pair {u, v} is globally linked in G if it is globally linked in all generic frameworks (G, p).
Note that Corollary 3.7 implies that a pair of vertices {u, v} in a rigid graph G is globally
linked if and only if we have ‖p(u) − p(v)‖ = ‖q(u) − q(v)‖ for all equivalent pairs
of quasi-generic frameworks (G, p) and (G, q). For v ∈ V (G) let NG(v) denote the set
of vertices adjacent to vertex v in graph G.

Lemma 4.1. Let G be a graph, and v ∈ V (G) with NG(v) = {u, w, t}. If G − v is
rigid then {u, w} is globally linked in G.

Proof. Let (G, p∗) and (G, q∗) be equivalent quasi-generic frameworks. By Lemma
3.5, (G, p∗) is congruent to a framework (G, p), where p = (0, 0, 0, p4, p5, . . . , p2n),
p(u) = (0, 0), p(w) = (0, p4), p(t) = (p5, p6), p(v) = (p2n−1, p2n) and
{p4, p5, . . . , p2n} is algebraically independent over Q. Similarly (G, q∗) is congruent
to a framework (G, q), where q(u) = (0, 0), q(w) = (0, q4), q(t) = (q5, q6) and
q(v) = (q2n−1, q2n). Then

‖p∗(u)− p∗(w)‖2−‖q∗(u)−q∗(w)‖2 = ‖p(u)− p(w)‖2−‖q(u)−q(w)‖2 = p2
4−q2

4 .

Hence it will suffice to show that p2
4 − q2

4 = 0. By symmetry we may suppose that
p2

4 − q2
4 ≥ 0.
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Let p′ = p|V−v and q ′ = q|V−v . Consider the equivalent quasi-generic frameworks
(G−v, p′) and (G−v, q ′). Applying Lemmas 3.3 and 3.4 to a minimally rigid spanning
subgraph of G−v, we have K̃ = L̃ where K = Q(p′) and L = Q(q ′). Thus q4, q5, q6 ∈
K̃ . Since (G, q) is equivalent to (G, p), we have the following equations:

q2
2n−1 + q2

2n = p2
2n−1 + p2

2n, (1)

q2
2n−1 + (q2n − q4)

2 = p2
2n−1 + (p2n − p4)

2, (2)

(q2n−1 − q5)
2 + (q2n − q6)

2 = (p2n−1 − p5)
2 + (p2n − p6)

2. (3)

Using (1) and (2) and the fact that q ′ is generic (and hence q4 �= 0) we get that

q2n = q2
4 − p2

4 + 2p2n p4

2q4
. (4)

Similarly, using (1), (3) and (4) we get that

q2n−1 = q2
5+q2

6− p2
5− p2

6+2p2n−1 p5+2p2n p6−q6((q2
4− p2

4+2p2n p4)/q4)

2q5
. (5)

From (1) we know that 4q2
4 q2

5 (q
2
2n−1 + q2

2n − p2
2n−1 − p2

2n) = 0. Using (4) and (5) to
substitute for q2n−1 and q2n , we obtain

a11 p2
2n−1 + a22 p2

2n + a12 p2n−1 p2n + a1 p2n−1 + a2 p2n + a0 = 0,

where a11, a22, a12, a1, a2, a0 ∈ K̃ . This means that there is a polynomial

f = a11z2
1 + a22z2

2 + a12z1z2 + a1z1 + a2z2 + a0 ∈ K̃ [z1, z2]

such that f (p2n−1, p2n) = 0. Since {p4, p5, . . . , p2n} is algebraically independent over
Q, {p2n−1, p2n} is algebraically independent over K̃ . Thus f ≡ 0. In particular,

a22 = 4q2
5 (p

2
4 − q2

4 )+ 4(p4q6 − q4 p6)
2 = 0.

Since p2
4 − q2

4 ≥ 0 we must have p2
4 − q2

4 = 0.

Theorem 4.2. Let G = (V, E) be a graph, x, y, v ∈ V , NG(v) = {u, w, t}, uw �∈ E
and H = G − v + uw. Suppose that H − uw is rigid and that {x, y} is globally linked
in H . Then {x, y} is globally linked in G.

Proof. Suppose (G, p) is a generic framework and that (G, q) is equivalent to (G, p).
Let p′ = p|V−v and q ′ = q|V−v . Since G − v = H − uw is rigid, Lemma 4.1 implies
that {u, w} is globally linked in G. Thus

‖p′(u)− p′(w)‖ = ‖p(u)− p(w)‖ = ‖q(u)− q(w)‖ = ‖q ′(u)− q ′(w)‖.
Hence (H, p′) and (H, q ′) are equivalent. Since {x, y} is globally linked in H , we have

‖p(x)− p(y)‖ = ‖p′(x)− p′(y)‖ = ‖q ′(x)− q ′(y)‖ = ‖q(x)− q(y)‖.
Thus {x, y} is globally linked in G.
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Corollary 4.3. Suppose that H is globally rigid with |V (H)| ≥ 4 and G is obtained
from H by a 1-extension. Then G is globally rigid.

Proof. Let H = G − v + uw. Since H is globally rigid, H − e is rigid for all edges
e of H by Theorem 1.1. Hence H − uw is rigid. Theorem 4.2 and the fact that H is
globally rigid now imply that all pairs {x, y} ⊆ V − v are globally linked in G. Suppose
(G, p) is a generic framework and that (G, q) is equivalent to (G, p). Let p′ = p|V−v
and q ′ = q|V−v . Since all pairs {x, y} ⊆ V − v are globally linked in G, (G − v, p′) is
congruent to (G − v, q ′). Since (G, p) is generic and v has three neighbours in G, this
congruence extends to a congruence between (G, p) and (G, q).

Corollary 4.3 immediately implies Theorem 1.2, which, as mentioned in the Introduction,
is a key step in the characterization of globally rigid graphs.

We close this section with some remarks on the d-dimensional case. Connelly’s results
in [6] imply that Theorem 1.2 can be extended to d-dimensions as follows. Given a graph
G = (V, E) and distinct vertices x1, x2, . . . , xd+1 ∈ V with x1x2 ∈ E , a (1, d)-extension
of G is a graph obtained from G by deleting the edge x1x2 and adding a new vertex z
and new edges zx1, zx2, . . . , zxd+1.

Theorem 4.4 [6]. Let G be a graph and let d be a positive integer. Suppose that G
can be obtained from Kd+2 by a sequence of (1, d)-extensions and edge additions. Then
every generic realization of G in Rd is globally rigid.

We do not know if Lemma 4.1, Theorem 4.2 and Corollary 4.3 can be extended to
d-dimensions.

5. Globally Linked Pairs in M-Connected Graphs

Given a graph G = (V, E), a subgraph H = (W,C) is said to be an M-circuit in G if
C is a circuit (i.e. a minimal dependent set) in R(G). In particular, G is an M-circuit
if E is a circuit in R(G). Using Theorem 2.2 we may deduce that G is an M-circuit if
and only if |E | = 2|V | − 2 and G − e is minimally rigid for all e ∈ E . Recall that a
graph G is redundantly rigid if G − e is rigid for all e ∈ E . Note also that a graph G
is redundantly rigid if and only if G is rigid and each edge of G belongs to a circuit in
R(G), i.e. an M-circuit of G.

Any two maximal redundantly rigid subgraphs of a graph G = (V, E) can have at most
one vertex in common, and hence are edge-disjoint (see [13]). Defining a redundantly
rigid component of G to be either a maximal redundantly rigid subgraph of G, or a
subgraph induced by an edge which belongs to no M-circuit of G, we deduce that the
redundantly rigid components of G partition E . Since each redundantly rigid component
is rigid, this partition is a refinement of the partition of E given by the rigid components
of G. Note that the redundantly rigid components of G are induced subgraphs of G.

Given a matroidM = (E, I), we define a relation on E by saying that e, f ∈ E are
related if e = f or if there is a circuit C inM with e, f ∈ C . It is well known that this
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is an equivalence relation. The equivalence classes are called the components ofM. If
M has at least two elements and only one component thenM is said to be connected.

We say that a graph G = (V, E) is M-connected if R(G) is connected. Thus M-
circuits are special M-connected graphs. Another example is the complete bipartite graph
K3,m , which is M-connected for all m ≥ 4. The M-components of G are the subgraphs of
G induced by the components ofR(G). Note that the M-components of G are induced
subgraphs. For more examples and basic properties of M-circuits and M-connected
graphs see [1] and [13]. In this paper we shall need the following lemmas.

We say that a graph G is nearly 3-connected if G can be made 3-connected by adding
at most one new edge. We need the following result on M-connected graphs. The first
part appears as Lemma 3.1 of [13]. The second part was proved in Theorem 3.2 of [13]
for redundantly rigid graphs. The same proof goes through under the weaker hypothesis
that each edge of G is in an M-circuit.

Theorem 5.1 [13].

(a) If G is M-connected then G is redundantly rigid.
(b) If G is nearly 3-connected and each edge of G is in an M-circuit then G is

M-connected.

Note that Theorems 1.4 and 5.1 imply that a graph with at least four vertices is globally
rigid if and only if it is 3-connected and M-connected.

Given two graphs H1 = (V1, E1) and H2 = (V2, E2) with V1 ∩ V2 = ∅ and two
designated edges u1v1 ∈ E1 and u2v2 ∈ E2, the 2-sum of H1 and H2 (along the edge
pair u1v1, u2v2) is the graph obtained from H1 − u1v1 and H2 − u2v2 by identifying u1

with u2 and v1 with v2, see Fig. 3. We denote a 2-sum of H1 and H2 by H1 ⊕2 H2.

Lemma 5.2. Suppose G1 and G2 are graphs and G = G1 ⊕2 G2.

(a) [1, Lemma 4.1] If G1 and G2 are M-circuits then G is an M-circuit.
(b) [13, Lemma 3.3] If G1 and G2 are M-connected then G is M-connected.

A j-separation of a graph H = (V, E) is a pair (H1, H2) of edge-disjoint subgraphs
of H each with at least j+1 vertices such that H = H1∪H2 and |V (H1)∩V (H2)| = j .
Note that H is 3-connected if and only if H has at least four vertices and has no j-
separation for all 0 ≤ j ≤ 2. If (H1, H2) is a 2-separation of H , then we say that
V (H1) ∩ V (H2) is a 2-separator of H .

Let G = (V, E) be a 2-connected graph and suppose that (H1, H2) is a 2-separation
of G with V (H1) ∩ V (H2) = {u, v}. For 1 ≤ i ≤ 2, let H ′i = Hi + uv if uv �∈ E(Hi )

and otherwise put H ′i = Hi . We say that H ′1, H ′2 are the cleavage graphs obtained by
cleaving G along {u, v}.

Lemma 5.3. Suppose G is a 2-connected graph and G1 and G2 are cleavage graphs
obtained by cleaving G along a 2-separator {u, v}.

(a) [1, Lemmas 2.4(c), 4.2] If G is an M-circuit then uv �∈ E(G), and G1 and G2

are both M-circuits.
(b) [13, Lemma 3.4] If G is M-connected then G1 and G2 are also M-connected.
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y

x
u

v

Fig. 3. An M-circuit G obtained from a ‘wheel’ on six vertices and two copies of K4 by taking 2-sums. The
identified pairs of vertices, {u, v} and {x, y}, are globally linked in G.

We can use Theorem 4.2 to characterize globally linked pairs in M-connected graphs.
First we need some preliminary lemmas, illustrated by Fig. 3.

Lemma 5.4. Let G1,G2 be M-circuits such that G1 is 3-connected. Let G = G1⊕2 G2,
where the pair of identified vertices is {x, y}. Then {x, y} is globally linked in G.

Proof. We use induction on |V (G1)|. Suppose that the 2-sum was obtained along the
edges xi , yi ∈ E(Gi ), 1 ≤ i ≤ 2. If G1 = K4, with V (G1) = {v, t, x1, y1}, then
G − v = G2 − x2 y2 + t + {t x2, t y2}. Since G2 is redundantly rigid by Theorem 5.1(a),
G2 − x2 y2, and hence also G − v, are rigid. By Lemma 4.1, {x, y} is globally linked in
G. Thus we may suppose that |V (G1)| ≥ 5.

By Theorem 5.9 of [1] there is v ∈ V (G1) − {x1, y1}, with N (v) = {u, w, t}, such
that Gv

1 = G − v + uw is a 3-connected M-circuit. Let H = Gv
1 ⊕2 G2 be the 2-sum

along the edge pair x1 y1, x2 y2. Then H is an M-circuit by Lemma 5.2(a), and hence,
by induction, {x, y} is globally linked in H . Since H is an M-circuit, H − uw is rigid.
Hence by Theorem 4.2, {x, y} is globally linked in G.

Corollary 5.5. Let G be an M-circuit and let {u, v} be a 2-separator of G. Then {u, v}
is globally linked in G.

Proof. We use induction on |V (G)|. Since G is an M-circuit and is not 3-connected,
we can choose a 2-separator {x, y} in G and express G as G = G1 ⊕2 G2, where the
pair of identified vertices is {x, y}. Suppose that this 2-sum was obtained along the edges
xi , yi ∈ E(Gi ), 1 ≤ i ≤ 2. By Lemma 5.3(a), xy /∈ E(G) and G1,G2 are M-circuits.
By choosing {x, y} so that G1 is minimal, we may also ensure that G1 is 3-connected. By
Lemma 5.4, {x, y} is globally linked in G. Thus we may suppose that {u, v} �= {x, y}.
Since G1 is 3-connected, {u, v} is a 2-separator of G2. By induction, {u, v} is globally
linked in G2. Since {x, y} is globally linked in G and (G2 − x2 y2) ⊆ G, it follows that
{u, v} is also globally linked in G.

Let H = (V, E) be a graph and x, y ∈ V . We use κH (x, y) to denote the maximum
number of pairwise openly disjoint xy-paths in H . If xy /∈ E then, by Menger’s theorem,
κH (x, y) is equal to the size of a smallest set S ⊆ V (H)− {x, y} for which there is no
xy-path in H − S.

Lemma 5.6. Let (G, p) be a generic framework, x, y ∈ V (G), xy /∈ E(G), and
suppose that κG(x, y) ≤ 2. Then {x, y} is not globally linked in (G, p).
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Proof. Since there do not exist three pairwise openly disjoint xy-paths in G, it follows
from Menger’s theorem that there exists u, v ∈ V (G) such that x and y belong to different
components of G − {u, v}. Let H be the component of G − {u, v} which contains x .
Construct (G, q) from (G, p) by reflecting p(V (H)) in the line through p(u), p(v).
Then (G, p) is equivalent to (G, q). Furthermore, ‖p(x) − p(y)‖ �= ‖q(x) − q(y)‖,
since p(y) = q(y) and, since (G, p) is generic, p(y) does not lie on the line through
p(u), p(v). Thus {x, y} is not globally linked in (G, p).

Theorem 5.7. Let G = (V, E) be an M-connected graph and x, y ∈ V . Then {x, y}
is globally linked in G if and only if κG(x, y) ≥ 3.

Proof. We first prove necessity. Suppose that {x, y} is globally linked. If xy /∈ E then
the existence of three openly disjoint xy-paths follows from Lemma 5.6. If xy ∈ E
then, since G is M-connected, G − xy is rigid by Theorem 5.1(a). Since rigid graphs
are 2-connected, we have two openly disjoint xy-paths in G − xy. Thus we have three
openly disjoint xy-paths in G.

We next prove sufficiency. Suppose that there exist three pairwise openly disjoint
xy-paths in G. We use induction on |V (G)| to show that {x, y} is globally linked in G. If
G is 3-connected then G is globally rigid by Theorems 1.4 and 5.1(a), and hence {x, y}
is globally linked in G. Thus we may suppose that G − {u, v} is disconnected for some
u, v ∈ V . Choose two vertices w, z belonging to different components of G − {u, v}.
Since G is M-connected, there exists an M-circuit H in G with w, x ∈ V (H). Then
{u, v} is a 2-separator of H . By Corollary 5.5, {u, v} is globally linked in H . Thus {u, v}
is globally linked in G.

Let G1,G2 be the cleavage graphs obtained by cleaving G along the 2-separator
{u, v}. The graphs G1,G2 are both M-connected by Lemma 5.3(b). Using the fact that
there are three pairwise openly disjoint xy-paths in G, and relabelling if necessary, we
have x, y ∈ V (G1). It is easy to see that there are three pairwise openly disjoint xy-paths
in G1. By induction {x, y} is globally linked in G1. Since {u, v} is globally linked in G
and (G1 − u1v1) ⊆ G, {x, y} is also globally linked in G.

Theorem 5.7 has the following immediate corollary.

Corollary 5.8. Let G = (V, E) be a graph and x, y ∈ V . If either xy ∈ E , or there is
an M-component H of G with {x, y} ⊆ V (H) and κH (x, y) ≥ 3, then {x, y} is globally
linked in G.

We conjecture that the converse is also true.

Conjecture 5.9. The pair {x, y} is globally linked in a graph G = (V, E) if and
only if either xy ∈ E or there is an M-component H of G with {x, y} ⊆ V (H) and
κH (x, y) ≥ 3.

We shall verify Conjecture 5.9 for minimally rigid graphs that can be obtained from
an edge by iteratively adding vertices of degree 2. The Henneberg 0-extension operation
on vertices x, y in a graph G adds a new vertex z and new edges xz, yz to G.
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Lemma 5.10. If {u, v} is not globally linked in H and G is a 0-extension of H then
{u, v} is not globally linked in G.

Proof. Since {u, v} is not globally linked in H , there exists a generic framework (H, p),
and an equivalent framework (H, q), such that ‖p(u)− p(v)‖ �= ‖q(u)−q(v)‖. Let G be
obtained from H by adding vertex w and edges wx, wy. Let α1, α2 be two real numbers
such that the set containing α1, α2, and the entries in fH (p) is algebraically independent
over Q, and such that α1 + α2 is large enough and α1 − α2 is small enough. (Note that
fH (p) is generic by Lemma 3.3.) Now we may choose a pair of points rp, rq in R2 such
that ‖rp − p(x)‖2 = α1 = ‖rq − q(x)‖2 and ‖rp − p(y)‖2 = α2 = ‖rq − q(y)‖2. Thus
extending (H, p) by p(w) = rp and (H, q) by q(w) = rq gives a pair of equivalent
frameworks on G such that ‖p(u) − p(v)‖ �= ‖q(u) − q(v)‖ holds. Note that (the
extended) p is quasi-generic by Lemmas 3.4 and 3.5.

Henneberg [12] showed that every minimally rigid graph can be obtained from K2

by recursively performing 0-extensions and 1-extensions. We say that G is 2-simple if
G can be obtained from K2 by recursively performing just 0-extensions. For example,
the graph of Fig. 1 is 2-simple. Note that all M-components (and all redundantly rigid
components) in a minimally rigid graph are isomorphic to K2. Thus to prove Conjecture
5.9 for minimally rigid graphs G we have to show that the only globally linked pairs in
G are the pairs of adjacent vertices.

Theorem 5.11. Let G = (V, E) be a 2-simple graph and suppose that uv /∈ E . Then
{u, v} is not globally linked.

Proof. The proof is by induction on |V |. The theorem is trivially true for |V | ≤ 3, so
we may assume that |V | ≥ 4 and that the theorem holds for all 2-simple graphs with at
most |V | − 1 vertices. Since G is 2-simple, it has a vertex w of degree 2. If w ∈ {u, v}
then κG(u, v) = 2 and hence {u, v} is not globally linked by Lemma 5.6. So suppose
w �= u, v and consider H = G − w. H is also 2-simple and uv /∈ E(H). By induction
this implies that {u, v} is not globally linked in H . Since G is a 0-extension of H , the
theorem follows from Lemma 5.10.

In order to extend Theorem 5.11 to all minimally rigid graphs, it would suffice to find
an analogous result to Lemma 5.10 for 1-extensions.

We have attempted to prove Conjecture 5.9 by considering two other conjectures on
globally linked pairs which together are equivalent to Conjecture 5.9.

Conjecture 5.12. Suppose that {x, y} is a globally linked pair in a graph G. Then
there is a redundantly rigid component R of G with {x, y} ⊆ V (R).

Conjecture 5.13. Let G be a graph. Suppose that there is a redundantly rigid com-
ponent R of G with {x, y} ⊆ V (R) and {x, y} is globally linked in G. Then {x, y} is
globally linked in R.



Globally Linked Pairs of Vertices in Equivalent Realizations of Graphs 507

It follows from Theorem 5.1(a) that Conjecture 5.9 implies both Conjectures 5.12
and 5.13.

The “if” direction of Conjecture 5.9 follows from Corollary 5.8. We prove that the
“only if” direction follows from Conjectures 5.12 and 5.13.

Proof (of the “only if” part of Conjecture 5.9 by assuming Conjectures 5.12 and 5.13
are true). Suppose that {x, y} is globally linked in G = (V, E). We use induction on
|V | to show that either xy ∈ E or there is an M-component H of G with {x, y} ⊆ V (H)
and κH (x, y) ≥ 3. Since the statement is trivially true if |V | ≤ 3, we may assume that
|V | ≥ 4 and that xy /∈ E . It follows from the truth of Conjectures 5.12 and 5.13 that there
is a redundantly rigid component R of G with {x, y} ⊆ V (R) and such that {x, y} is
globally linked in R. This implies that κR(x, y) ≥ 3 by Lemma 5.6. If R is 3-connected
then R is M-connected by Theorem 5.1(b), and we are done by choosing H = R.

Now suppose that there is a 2-separator {u, v} of R and let R1, R2 be the cleavage
graphs obtained by cleaving R along {u, v}. Since κR(x, y) ≥ 3, we may assume,
without loss of generality, that x, y ∈ V (R1). We also suppose that the 2-separator has
been chosen so that R2 is inclusionwise minimal. This implies that R2 is 3-connected.
(Note that |V (R2)| ≥ 4, since R is redundantly rigid.)

Claim 5.14. There is an M-circuit C in R2 with uv ∈ E(C).

Proof. Since R is redundantly rigid, every edge e ∈ E(R) belongs to an M-circuit Ce.
Each M-circuit C ′ is a 2-connected subgraph of R. This fact and Lemma 5.3(a) imply
that if Ce �⊆ R2 for some e ∈ E(R2) − uv, then the claim will follow by choosing
C = (Ce ∩ R2)+ uv. Thus we may suppose that Ce ⊂ R2− uv for all e ∈ E(R2)− uv.
Since R2 is 3-connected, Theorem 5.1(b) implies that R2 − uv is M-connected, and
hence rigid. Thus there is an M-circuit C in R2 with uv ∈ E(C).

Since {x, y} is globally linked in R, {u, v} is a 2-separation of R and uv ∈ E(R1),
it follows that {x, y} is globally linked in R1. By induction, there is an M-connected
subgraph H ′ of R1 with x, y ∈ V (H ′) and κH ′(x, y) ≥ 3. If uv /∈ E(H ′) then let
H be an M-component of G containing H ′. Thus we may suppose that uv ∈ E(H ′).
By Lemma 5.2(b), H ′′ = H ′ ⊕2 C is an M-connected subgraph of G containing x, y
with κH ′′(x, y) ≥ 3. The conjecture now follows by choosing an M-component H of G
containing H ′′.

We close this section by noting that the M-components, and hence also the maximal
globally rigid subgraphs, of a graph G = (V, E) can be found in polynomial time, see
[2] for details. Theorem 5.7 implies that one can identify even larger globally linked
sets of vertices in G. A globally rigid cluster of G is a maximal subset of V in which
all pairs of vertices are globally linked in G. By Corollary 5.8, the vertex sets of the
“cleavage units” (see Section 3 of [13]) of the M-components of G are globally linked
sets in G. The truth of Conjecture 5.9 would imply that the vertex sets of these cleavage
units are precisely the globally rigid clusters of G. For example, the maximal globally
rigid subgraphs of the graph G in Fig. 3 are the six copies of K3 and the remaining four
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copies of K2. On the other hand, G has three cleavage units, the copy of the wheel on
six vertices and the two copies of K4. The globally rigid clusters of G are precisely the
vertex sets of these three cleavage units.

6. Uniquely Localizable Vertices

The theory of globally rigid graphs can be applied in localization problems of sensor
networks, see for example [7]. In this section we consider another generalization of
global rigidity, unique localizability, which also has direct applications in sensor network
localization, see [9].

Let (G, p) be a generic framework with a designated set P ⊆ V (G) of vertices.
We say that a vertex v ∈ V (G) is uniquely localizable in (G, p) with respect to P if
whenever (G, q) is equivalent to (G, p) and p(b) = q(b) for all vertices b ∈ P , then
we also have p(v) = q(v). We can think of P as the set of pinned vertices (or anchor
nodes in a sensor network). Vertices in P are clearly uniquely localizable. It is easy to
observe that if v ∈ V − P is uniquely localizable then |P| ≥ 3 and there exist three
openly disjoint paths from v to P (see Lemma 5.6). Note that unique localizablity is
not a generic property. Consider the graph given in Figs. 1 and 2. If we pin the set
P = {u, x, y} in the framework of Fig. 1, then v is uniquely localizable with respect to
P . This is not the case if we pin the same set in Fig. 2. Thus the unique localizablity of
v with respect to P depends on the lengths of the edges incident with w.

We call a vertex v uniquely localizable in graph G, with respect to P ⊆ V (G), if v
is uniquely localizable with respect to P in all generic frameworks (G, p). For a graph
G and a set P ⊆ V (G) let G + K (P) denote the graph obtained from G by adding all
edges bb′ for which bb′ /∈ E and b, b′ ∈ P . The following lemma is easy to prove.

Lemma 6.1. Let G = (V, E) be a graph, P ⊆ V and v ∈ V − P . Then v is uniquely
localizable in G with respect to P if and only if |P| ≥ 3 and {v, b} is globally linked in
G + K (P) for all (or equivalently, for at least three) vertices b ∈ P .

Lemma 6.1 and Theorem 5.7 imply the following characterization of uniquely local-
izable vertices when G + K (P) is M-connected.

Corollary 6.2. Let G = (V, E) be a graph, P ⊆ V and v ∈ V − P . Suppose that
G + K (P) is M-connected. Then v is uniquely localizable in G with respect to P if and
only if |P| ≥ 3 and κ(v, b) ≥ 3 for all b ∈ P .

Similarly, Lemma 6.1 and Conjecture 5.9 would imply the following characterization
of uniquely localizable vertices in an arbitrary graph.

Conjecture 6.3. Let G = (V, E) be a graph, P ⊆ V and v ∈ V − P . Then v is
uniquely localizable in G with respect to P if and only if |P| ≥ 3 and there is an
M-component H of G + K (P) with P + v ⊆ V (H) and κH (v, b) ≥ 3 for all b ∈ P .

As noted in the previous section, the M-components of a graph can be found in poly-
nomial time. More precisely, [2] gives an algorithm which determines the M-components
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of a graph G = (V, E) in O(|V |2) time. We can also determine whether two vertices of
G are joined by three openly disjoint paths in O(|V | + |E |) time, see [16].

7. Globally Loose Pairs

We say that a pair of vertices {u, v} is globally loose in a graph G if for every generic
framework (G, p) there exists an equivalent framework (G, q) such that‖p(u)−p(v)‖ �=
‖q(u) − q(v)‖. It follows from Lemma 5.6 and Theorem 5.7 that if G is M-connected
then each pair {u, v} is either globally linked or globally loose in G, and that {u, v} is
globally loose if and only if κG(u, v) = 2. On the other hand, the pair {u, v} in the rigid
graph given in Fig. 1 is neither globally linked nor globally loose.

We shall obtain a sufficient condition for a pair {u, v} to be globally loose in a graph
G. An edge e of a globally rigid graph H is critical if H − e is not globally rigid.

Theorem 7.1. Let G = (V, E) be a graph and u, v ∈ V . Suppose that uv /∈ E , and
that G has a globally rigid supergraph H in which uv is a critical edge. Then {u, v} is
globally loose in G.

Proof. Let (G, p) be a generic framework and let H be a globally rigid supergraph of
G in which uv is critical. Since uv is critical in H , it follows that (H − uv, p) is not
globally rigid. Thus there is an equivalent, but not congruent realization (H − uv, q).
Clearly, ‖p(u)− p(v)‖ �= ‖q(u)− q(v)‖ must hold. Now G is a subgraph of H − uv,
and hence the framework (G, q) verifies that {u, v} is globally loose in G.

We call a minimally rigid graph G special if every proper rigid subgraph H of G is
complete (and hence is a complete graph on two or three vertices). The graphs K3,3 and the
prism are both special, as well as all graphs which can be obtained from K3,3 by the follow-
ing operation: replace two incident edges ab, bc by six edges aa′, a′b, bc′, c′c, ac′, a′c,
where a′, c′ are new vertices. Thus this family is infinite. It is easy to show that special
graphs are 3-connected. It follows from the definition that if G is special and uv /∈ E(G)
then G+uv is a 3-connected M-circuit. Thus G+uv is globally rigid by Theorems 5.1(a)
and 1.4, and uv is critical in G+uv. Hence Theorem 7.1 implies that each pair of vertices
in a special graph is either globally linked or globally loose:

Theorem 7.2. Let G be special and suppose that u, v ∈ V . Then {u, v} is globally
loose in G if and only if uv /∈ E .

Theorem 7.2 implies that Conjecture 5.9 holds for special graphs.

8. The Number of Equivalent Realizations

The following folklore result is known to hold in Rd . We include a proof for the two-
dimensional case for the sake of completeness.
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Theorem 8.1. Suppose that (G, p) is a rigid generic framework. Then the number of
distinct congruence classes of frameworks which are equivalent to (G, p) is finite.

Proof. Let D = ∑
uv∈E ‖p(u) − p(v)‖ and B = {x ∈ R2n: ‖x‖ ≤ D}, where

n = |V |. We can choose a representative (G, qi ) for each congruence class, such that
(G, qi ) is in standard position. Since G is connected, qi ∈ B.

Suppose that there are infinitely many distinct congruence classes of (G, p). Since
B is compact, we may choose a sequence of representatives (G, qi ) converging to a
limit (G, q). Then (G, q) is equivalent to (G, p) and hence, by Corollary 3.7, (G, q) is
quasi-generic. This contradicts the fact that (G, p), and hence (G, q), is rigid since the
frameworks (G, qi ) are pairwise non-congruent.

Given a rigid generic framework (G, p), let h(G, p) denote the number of distinct
congruence classes of frameworks which are equivalent to (G, p). Given a rigid graph
G, let h(G) = max{h(G, p)}, where the maximum is taken over all generic frameworks
(G, p). The graph of Fig. 1 shows that h(G, p) need not be the same for all generic
realizations (G, p) of a rigid graph G.

Borcea and Streinu [3] investigated the number of realizations of minimally rigid
frameworks (G, p) with generic edge lengths. (Note that, by Lemmas 3.4 and 3.5, the
edge lengths of (G, p) are generic if and only if there is a generic realization (G, q)with
the same edge lengths as (G, p).) They counted the number of realizations up to rigid
motions i.e. combinations of translations and rotations of the plane. This number is twice
as large as h(G, p) since reflections of the plane are not allowed. Their results imply
that h(G) ≤ 4n for all rigid graphs G. They also construct an infinite family of generic
minimally rigid frameworks (G, p) for which h(G, p) has order 12n/3 ∼ (2.28)n .

We shall determine the exact value of h(G, p) for all generic realizations (G, p) of
an M-connected graph G = (V, E). For u, v ∈ V , let b(u, v) denote the number of
components of G − {u, v} and put c(G) =∑

u,v∈V (b(u, v)− 1).

Theorem 8.2. Let G be an M-connected graph. Then h(G, p) = 2c(G) for all generic
realizations (G, p) of G.

Proof. Choose a generic framework (G, p). We use induction on c(G). If c(G) = 0
then G is 3-connected. It follows from Theorems 5.1(a) and 1.4 that G is globally rigid,
and hence h(G, p) = 1 = 2c(G). Hence we may assume that there exists a 2-separation
(G1,G2) in G with V (G1)∩V (G2) = {u, v}. Let G1 and G2 denote the cleavage graphs
obtained by cleaving G along {u, v}. Note that uv ∈ E(Gi ) and, by Lemma 5.3(b), Gi

is M-connected, for 1 ≤ i ≤ 2. Choosing the 2-separation so that G1 is minimal, we
also have that G1 is 3-connected (see Lemma 2.8 of [1]) and, by Lemma 3.6 of [13],
c(G2) = c(G)− 1.

By Theorem 5.7, {u, v} is globally linked in G. Since G1 is globally rigid by Theorem
1.4, each congruence class of (G, p) contains a unique framework (G, q) with p(x) =
q(x) for all x ∈ V (G1). Letting p′ = p|V (G2) and q ′ = q|V (G2), we may deduce that
the number of distinct congruence classes of (G, p) is equal to the number of distinct
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frameworks (G2, q ′) which are equivalent to (G2, p′) and satisfy q ′(u) = p′(u) and
q ′(v) = p′(v). The number of such frameworks is 2h(G2, p′), since each congruence
class of (G2, p′) contains exactly two such frameworks (which can be obtained from each
other by a reflection in the line through p′(u), p′(v)). By induction h(G2, p′) = 2c(G)−1.
Thus h(G, p) = 2c(G).

It follows from the proof of the above theorem that if (G, p) is a generic realization of
an M-connected graph G, then we can obtain a representative of each distinct congruence
class of frameworks which are equivalent to (G, p) by iteratively applying the following
operation to (G, p): choose a 2-separation {u, v} of G and reflect some, but not all, of
the components of G − {u, v} in the line through the points p(u), p(v).

Theorem 8.2 implies that h(G, p) is the same for all generic realizations of an M-
connected graph G. Note that this statement becomes false if we replace the hypothesis
that G is M-connected by the weaker hypothesis that G is redundantly rigid. An example
is the redundantly rigid graph G obtained from the graph in Fig. 1 by replacing each
edge by a copy of K4.

Theorem 8.2 also implies that h(G) ≤ 2(n−2)/2−1 for all M-connected graphs G. A
family of graphs attaining this bound is a collection of K4’s joined along a common
edge.
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