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Abstract—This paper develops an unsupervised discriminant projection (UDP) technique for dimensionality reduction of high-

dimensional data in small sample size cases. UDP can be seen as a linear approximation of a multimanifolds-based learning framework

which takes into account both the local andnonlocal quantities.UDPcharacterizes the local scatter aswell as thenonlocal scatter, seeking

to find a projection that simultaneously maximizes the nonlocal scatter and minimizes the local scatter. This characteristic makes UDP

more intuitive and more powerful than the most up-to-date method, Locality Preserving Projection (LPP), which considers only the local

scatter for clustering or classification tasks. The proposedmethod is applied to face and palm biometrics and is examined using the Yale,

FERET, and AR face image databases and the PolyU palmprint database. The experimental results show that UDP consistently

outperforms LPP and PCA and outperforms LDAwhen the training sample size per class is small. This demonstrates that UDP is a good

choice for real-world biometrics applications.

Index Terms—Dimensionality reduction, feature extraction, subspace learning, Fisher linear discriminant analysis (LDA), manifold

learning, biometrics, face recognition, palmprint recognition.

Ç

1 INTRODUCTION

DIMENSIONALITY reduction is the construction of a mean-
ingful low-dimensional representation of high-dimen-

sionaldata.Since thereare largevolumesofhigh-dimensional
data in numerous real-world applications, dimensionality
reduction is a fundamental problem inmany scientific fields.
From the perspective of pattern recognition, dimensionality
reduction is an effective means of avoiding the “curse of
dimensionality” [1] and improving the computational effi-
ciency of pattern matching.

Researchers have developed many useful dimensionality
reduction techniques. These techniques can be broadly
categorized into two classes: linear and nonlinear. Linear
dimensionality reduction seeks to find a meaningful low-
dimensional subspace in a high-dimensional input space.
This subspace can provide a compact representation of
higher-dimensional data when the structure of data
embedded in the input space is linear. PCA and LDA are
two well-known linear subspace learning methods which
have been extensively used in pattern recognition and

computer vision areas and have become the most popular
techniques for face recognition and other biometrics [2], [3],
[4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [39].

Linearmodels,however,may fail todiscoveressentialdata
structures that are nonlinear. A number of nonlinear
dimensionality reduction techniques have been developed
toaddress thisproblem,with two inparticularattractingwide
attention: kernel-based techniques and manifold learning-
based techniques.Thebasic ideaofkernel-based techniques is
to implicitly map observed patterns into potentially much
higher dimensional feature vectors by using a nonlinear
mapping determined by a kernel. This makes it possible for
thenonlinear structureofdata inobservationspace tobecome
linear in feature space, allowing theuseof linear techniques to
deal with the data. The representative techniques are kernel
principal component analysis (KPCA) [15] and kernel Fisher
discriminant (KFD) [16], [17]. Bothhaveproven tobe effective
in many real-world applications [18], [19], [20].

In contrast with kernel-based techniques, the motivation
of manifold learning is straightforward as it seeks to
directly find the intrinsic low-dimensional nonlinear data
structures hidden in observation space. The past few years
have seen many manifold-based learning algorithms for
discovering intrinsic low-dimensional embedding of data
proposed. Among the most well-known are isometric
feature mapping (ISOMAP) [22], local linear embedding
(LLE) [23], and Laplacian Eigenmap [24]. Some experiments
have shown that these methods can find perceptually
meaningful embeddings for face or digit images. They also
yielded impressive results on other artificial and real-world
data sets. Recently, Yan et al. [33] proposed a general
dimensionality reduction framework called graph embed-
ding. LLE, ISOMAP, and Laplacian Eigenmap can all be
reformulated as a unified model in this framework.
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One problem with current manifold learning techniques
is that they might be unsuitable for pattern recognition
tasks. There are two reasons for this. First, as it is currently
conceived, manifold learning is limited in that it is modeled
based on a characterization of “locality,” a modeling that has
no direct connection to classification. This is unproblematic
for existing manifold learning algorithms as they seek to
model a simple manifold, for example, to recover an
embedding of one person’s face images [21], [22], [23].
However, if face images do exist on a manifold, different
persons’ face images could lie on different manifolds. To
recognize faces, it would be necessary to distinguish
between images from different manifolds. For achieving
an optimal recognition result, the recovered embeddings
corresponding to different face manifolds should be as
separate as possible in the final embedding space. This poses
a problem that we might call “classification-oriented multi-
manifolds learning.” This problem cannot be addressed by
current manifold learning algorithms, including some
supervised versions [25], [26], [27] because they are all
based on the characterization of “locality.” The local
quantity suffices for modeling a single manifold, but does
not suffice for modeling multimanifolds for classification
purposes. To make different embeddings corresponding to
different classes mutually separate, however, it is crucial to
have the “nonlocal” quantity, which embodies the distance
between embeddings. In short, it is necessary to characterize
the “nonlocality” when modeling multimanifolds.

The second reason why most manifold learning algo-
rithms, for example, ISOMAP,LLE, andLaplacianEigenmap,
are unsuitable for pattern recognition tasks is that they can
yield an embedding directly based on the training data set
but, because of the implicitness of the nonlinear map, when
applied to a new sample, they cannot find the sample’s image
in the embedding space. This limits the applications of these
algorithms to pattern recognition problems. Although some
research has shown that it is possible to construct an explicit
map from input space to embedding space [28], [29], [30], the
effectiveness of these kinds of maps on real-world classifica-
tion problems still needs to be demonstrated.

Recently, He et al. [31], [32] proposed Locality Preserving
Projections (LPP), which is a linear subspace learning
method derived from Laplacian Eigenmap. In contrast to
most manifold learning algorithms, LPP possesses the
remarkable advantage that it can generate an explicit map.
This map is linear and easily computable, like that of PCA or
LDA. It is also effective, yielding encouraging results on face
recognition tasks. Yet, as it is modeled on the basis of
“locality,” LPP, like most manifold learning algorithms, has
the weakness of having no direct connection to classification.
The objective function of LPP is to minimize the local
quantity, i.e., the local scatter of the projected data. In some
cases, this criterion cannot be guaranteed to yield a good
projection for classification purposes. Assume, for example,
that there exist two clusters of two-dimensional samples
scattering uniformly in two ellipses C1 and C2, as shown in
Fig. 1. If the locality radius � is set as the length of the
semimajor axis of the larger ellipse, the direction w1 is a nice
projection according to the criterion of LPP since, after all
samples are projected onto w1, the local scatter is minimal.
But, it is obvious thatw1 is not good in terms of classification;
the projected samples overlap in this direction. This example
also shows that the nonlocal quantity, i.e., the intercluster

scatter, may provide crucial information for discrimination.
In this paper, we will address this issue and explore more
effective projections for classification purposes.

Motivated by the idea of classification-oriented multi-
manifolds learning, we consider two quantities, local and
nonlocal, at the same time in the modeling process. It should
be pointed out that we don’t attempt to build a framework
for multimanifolds-based learning in this paper (although it
is very interesting). We are more interested in its linear
approximation, i.e., finding a simple and practical linearmap
for biometrics applications. To this end, we first present the
techniques to characterize the local and nonlocal scatters of
data. Then, based on this characterization, we propose a
criterion which seeks to maximize the ratio of the nonlocal
scatter to the local scatter. This criterion, similar to the
classical Fisher criterion, is a Rayleigh quotient in form. Thus,
it is not hard to find its optimal solutions by solving a
generalized eigen-equation. Since the proposedmethod does
not use the class-label information of samples in the learning
process, this method is called the unsupervised discriminant
projection (UDP), in contrast with the supervised discrimi-
nant projection of LDA.

In contrast with LPP, UDP has direct relations to
classification since it utilizes the information of the
“nonlocality.” Provided that each cluster of samples in the
observation space is exactly within a local neighbor, UDP
can yield an optimal projection for clustering in the projected
space, while LPP cannot. As shown in Fig. 1, w2 is a good
projection direction according the criterion of UDP, which is
more discriminative than w1. In addition, UDP will be
demonstrated to be more effective than LPP in real-world
biometrics applications, based on our experiments with
three face image databases and one palmprint database.

In the literature, besides LPP, there are twomethods most
relevant to ours. One is Marginal Fisher Analysis (MFA)
presented by Yan et al. [33] and the other is Local
Discriminant Embedding (LDE) suggested by Chen et al.
[34]. The twomethods are very similar in formulation. Both of
them combine locality and class label information to represent
the intraclass compactness and interclass separability. So,
MFAandLDEcanbeviewedas supervisedvariants of LPPor
as localized variants of LDA since bothmethods focus on the
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Fig. 1. Illustration of two clusters of samples in two-dimensional space

and the projection directions.



characterization of intraclass locality and interclass locality. In
contrast, the proposed UDP retains the unsupervised char-
acteristic of LPP and seeks to combine locality and globality
information for discriminator design.

The remainder of this paper is organized as follows:
Section 2 outlines PCA and LDA. Section 3 develops the idea
of UDP and the relevant theory and algorithm. Section 4
describes a kernel weighted version of UDP. Section 5
discusses the relations between UDP and LDA/LPP. Sec-
tion 6 describes some biometrics applications and the related
experiments. Section 7 offers our conclusions.

2 OUTLINE OF PCA AND LDA

2.1 PCA

PCA seeks to find a projection axis such that the global scatter
is maximized after the projection of samples. The global
scatter can be characterized by the mean square of the
Euclidean distance between any pair of the projected sample
points. Specifically, given a set of M training samples
(pattern vectors) x1;x2; � � � ;xM in IRn, we get their images
y1; y2; � � � ; yM after the projection onto the projection axis w.
The global scatter is defined by

JT ðwÞ ¼� 1
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X
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ðyi � yjÞ2: ð1Þ
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Let us denote
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Equation (4) indicates that ST is essentially the covariance
matrix of data. So, the projection axis w that maximizes (2)
can be selected as the eigenvector of ST corresponding to
the largest eigenvalue. Similarly, we can obtain a set of
projection axes of PCA by selecting the d eigenvectors of ST

corresponding to the d largest eigenvalues.

2.2 LDA

LDA seeks to find a projection axis such that the Fisher
criterion (i.e., the ratio of the between-class scatter to the
within-class scatter) is maximized after the projection of
samples. The between-class and within-class scatter ma-
trices SB and Sw are defined by

SB ¼ 1

M

X

c

i¼1

li mi �m0ð Þ mi �m0ð ÞT; ð5Þ

SW ¼
X

c

i¼1

li
M

S
ðiÞ
W ¼ 1

M

X

c

i¼1

X

li

j¼1

xij �mi

� �

xij �mi

� �T
; ð6Þ

where xij denotes the jth training sample in class i, c is the
number of classes, li is the number of training samples in
class i, mi is the mean of the training samples in class i, and
S
ðiÞ
W denotes the covariance matrix of samples in class i.
It is easy to show that SB and SW are both nonnegative

definite matrix and satisfy ST ¼ SB þ SW .
The Fisher criterion is defined by

JF ðwÞ ¼ wTSBw

wTSWw
: ð7Þ

The stationary points of JF ðwÞ are the generalized eigen-
vectors w1;w2; � � � ;wd of SBw ¼ �SWw corresponding to
the d largest eigenvalues. These stationary points form the
coordinate system of LDA.

3 UNSUPERVISED DISCRIMINANT PROJECTION

(UDP)

3.1 Basic Idea of UDP

As discussed in Section 1, the locality characterization-
based model does not guarantee a good projection for
classification purposes. To address this, we will introduce
the concept of nonlocality and give the characterizations of
the nonlocal scatter and the local scatter. This will allow us
to obtain a concise criterion for feature extraction by
maximizing the ratio of nonlocal scatter to local scatter.

3.1.1 Characterize the Local Scatter

Recall that, in PCA, in order to preserve the global geometric
structure of data in a transformed low-dimensional space,
account is taken of the global scatter of samples. Correspond-
ingly, if we aim to discover the local structure of data, we
should take account of the local scatter (or intralocality scatter)
of samples. The local scatter can be characterized by themean
square of the Euclidean distance between any pair of
the projected sample points that are within any local
�-neighborhood (� > 0). Specifically, two samples xi and xj

are viewed within a local �-neighborhood provided that
jjxi � xjjj2 < �. Let us denote the set U� ¼ fði; jÞ

�

�jjxi � xjjj2
< �g. After the projection of xi and xj onto a direction w, we
get their images yi and yj. The local scatter is then defined by

JLðwÞ ¼� 1

2

1

ML

X

ði;jÞ2U�

ðyi � yjÞ2 /
1

2

1

MM

X

ði;jÞ2U�

ðyi � yjÞ2;

ð8Þ
where ML is the number of sample pairs satisfying
jjxi � xjjj2 < �.

Let us define the adjacency matrix H, whose elements
are given below:

Hij ¼ 1; jjxi � xjjj2 < �
0 otherwise:

�

ð9Þ
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It is obvious that the adjacency matrix H is a symmetric
matrix. By virtue of the adjacency matrix H, (8) can be
rewritten by1

JLðwÞ ¼ 1
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where
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SL is called the local scatter (covariance) matrix.
Due to the symmetry of H, we have

SL ¼ 1
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whereX ¼ ðx1;x2; � � � ;xMÞ andD is a diagonalmatrixwhose
elements on diagonal are column (or row since H is a
symmetric matrix) sum ofH, i.e.,Dii ¼

PM
j¼1 Hij.L ¼ D�H

is called the local scatter kernel (LSK)matrix in thispaper (this
matrix is called the Laplacian matrix in [24]).

It is obvious that L and SL are both real symmetric
matrices. From (11) and (13), we know that wTSLw � 0 for
any nonzero vector w. So, the local scatter matrix SL must
be nonnegative definite.

In the above discussion, we use �-neighborhoods to
characterize the “locality” and the local scatter. This way is
geometrically intuitive but unpopular because, in practice, it
is hard to choose a proper neighborhood radius �. To avoid
this difficulty, the method of K-nearest neighbors is always
used instead in real-world applications. The K-nearest
neighbors method can determine the following adjacency
matrixH, with elements given by:

Hij ¼
1; if xj is among K nearest nieghbors of xi

and xi is among K nearest nieghbors of xj

0 otherwise:

8

<

:

ð14Þ

The local scatter can be characterized similarly by aK-nearest
neighbor adjacency matrix if (9) is replaced by (14).

3.1.2 Characterize the Nonlocal Scatter

The nonlocal scatter (i.e., the interlocality scatter) can be
characterized by the mean square of the Euclidean distance
between any pair of the projected sample points that are
outside any local �-neighborhoods (� > 0). The nonlocal
scatter is defined by

JNðwÞ ¼� 1
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1
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ðyi � yjÞ2;

ð15Þ
where MN is the number of sample pairs satisfying
jjxi � xjjj2 � �.

By virtue of the adjacency matrix H in (9) or (14), the
nonlocal scatter can be rewritten by

JNðwÞ ¼ 1
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It follows from (16) that
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where
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SN is called the nonlocal scatter (covariance) matrix. It is
easy to show SN is also a nonnegative definite matrix. And,
it follows that

SN ¼ 1
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¼ ST � SL:

That is, ST ¼SLþ SN . Thus, we have JT ðwÞ¼JLðwÞþJNðwÞ.

3.1.3 Determine a Criterion: Maximizing the Ratio of

Nonlocal Scatter to Local Scatter

The technique of Locality Preserving Projection (LPP) [31]
seeks to find a linear subspace which can preserve the local
structure of data. The objective of LPP is actually tominimize
the local scatter JLðwÞ. Obviously, the projection direction
determined by LPP can ensure that, if samples xi and xj are
close, their projections yi and yj are close as well. But, LPP
cannot guarantee that, if samples xi and xj are not close, their
projections yi and yj are not either. This means that it may
happen that two mutually distant samples belonging to
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1. In (8), the only difference between expressions in the middle and on
the right is a coefficient. This difference is meaningless for the characteriza-
tion of the scatter. For convenience, we use the expression on the right. The
same operation is used in (15).



different classes may result in close images after the
projection of LPP. Therefore, LPP does not necessarily yield
a good projection suitable for classification.

For the purpose of classification, we try is to find a
projection which will draw the close samples closer
together while simultaneously making the mutually distant
samples even more distant from each other. From this point
of view, a desirable projection should be the one that, at the
same time, minimizes the local scatter JLðwÞ and maximizes
the nonlocal scatter JNðwÞ. As it happens, we can obtain just
such a projection by maximizing the following criterion:

JðwÞ ¼ JNðwÞ
JLðwÞ ¼

wTSNw

wTSLw
: ð19Þ

Since JT ðwÞ ¼ JLðwÞ þ JNðwÞ and ST ¼ SL þ SN , the above
criterion is equivalent to

JeðwÞ ¼ JT ðwÞ
JLðwÞ ¼

wTSTw

wTSLw
: ð20Þ

The criterion in (20) indicates that we can find the projection
by at the same time globally maximizing (maximizing the
global scatter) and locally minimizing (minimizing the local
scatter).

The criterion in (19) or (20) is formally similar to the
Fisher criterion in (7) since they are both Rayleigh quotients.
Differently, the matrices SL and SN in (19) can be
constructed without knowing the class-label of samples,
while SB and SW in (7) cannot be so constructed. This
means Fisher discriminant projection is supervised, while
the projection determined by JðwÞ can be obtained in an
unsupervised manner. In this paper, then, this projection is
called an Unsupervised Discriminant Projection (UDP).

3.2 Algorithmic Derivations of UDP in Small Sample
Size Cases

If the local scatter matrix SL is nonsingular, the criterion in
(19) can bemaximized directly by calculating the generalized
eigenvectors of the following generalized eigen-equation:

SNw ¼ �SLw: ð21Þ
The projection axes of UDP can be selected as the generalized
eigenvectors w1;w2; � � � ;wd of SNw ¼ �SLw corresponding
to d largest positive eigenvalues �1 � �2 � � � � � �d.

Inreal-worldbiometricsapplicationsofsuchfaceandpalm
recognition, however,SL is always singulardue to the limited
number of training samples. In such cases, the classical
algorithm cannot be used directly to solve the generalized
eigen-equation. In addition, from (12) and (18), we know SL

and SN are both n� nmatrices (where n is the dimension of
the image vector space). It is computationally very expensive
to construct these large-sized matrices in the high-dimen-
sional inputspace.Fortunately,wecanavoid thesedifficulties
by virtue of the theory we built for LDA (or KFD) in small
sample size cases [9], [20]. Based on this theory, the local and
nonlocal scatter matrices can be constructed using the PCA-
transformed low-dimensional data and the singularity
difficulty can be avoided. The relevant theory is given below.

Suppose �1; �2; � � � ; �n are n orthonormal eigenvectors of
ST and the first m (m ¼ rankðST Þ) eigenvectors correspond
to positive eigenvalues �1 � �2 � � � � � �m. Define the

subspace �T ¼ spanf�1; � � � ; �mg and denote its orthogonal
complement �?

T ¼ spanf�mþ1; � � � ; �ng. Obviously, �T is the
range space of ST and �?

T is the corresponding null space.

Lemma 1 [4], [36]. Suppose that A is an n� n nonnegative
definite matrix and ’ is an n-dimensional vector, then
’TA’ ¼ 0 if and only if A’ ¼ 0.

Since SL, SN , and ST are all nonnegative definite and
ST ¼ SL þ SN , it’s easy to get:

Lemma 2. If ST is singular, ’TST’ ¼ 0 if and only if ’TSL’ ¼
0 and ’TSN’ ¼ 0.

Since IRn ¼ spanf�1; �2; � � � ; �ng, for an arbitrary ’ 2 IRn,
’ can be denoted by

’ ¼ k1�1 þ � � � þ km�m þ kmþ1�mþ1 þ � � � þ kn�n: ð22Þ
Let w ¼ k1�1 þ � � � þ km�m and u ¼ kmþ1�mþ1 þ � � � þ kn�n,
then, from the definition of �T and �?

T , ’ can be denoted by
’ ¼ wþ u, where w 2 �T and u 2 �?

T .

Definition 1. For an arbitrary ’ 2 IRn, ’ can be denoted by
’ ¼ wþ u, where w 2 �T and u 2 �?

T . The compression
mapping L : IR ! �T is defined by ’ ¼ wþ u ! w.

It is easy to verify that L is a linear transformation from
IRn to its subspace �T .

Theorem 1. Under the compression mapping L : IRn ! �T

determined by ’ ¼ wþ u ! w, the UDP criterion satisfies
Jð’Þ ¼ JðwÞ.

Proof. Since�?
T is thenullspaceofST , foranyu 2 �?

T ,wehave
uTSTu ¼ 0.

From Lemma 2, it follows that uTSLu ¼ 0. Since SL is
a nonnegative definite matrix, we have SLu ¼ 0 by
Lemma 1. Hence,

’TSL’ ¼ wTSLwþ 2wTSLuþ uTSLu ¼ wTSLw:

Similarly, it can be derived that

’TSN’ ¼ wTSNwþ 2wTSNuþ uTSNu ¼ wTSNw:

Therefore, Jð’Þ ¼ JðwÞ. tu
According to Theorem 1, we can conclude that the

optimal projection axes can be derived from �T without any
loss of effective discriminatory information with respect to
the UDP criterion. From linear algebra theory, �T is
isomorphic to an m-dimensional Euclidean space IRm and
the corresponding isomorphic mapping is

w ¼ Pv;where P ¼ ð�1; �2; � � � ; �mÞ;v 2 IRm; ð23Þ
which is a one-to-one mapping from IRm onto �T .

From the isomorphic mapping w ¼ Pv, the UDP criter-
ion function J wð Þ becomes

J wð Þ ¼ vTðPTSNPÞv
vTðPTSLPÞv

¼ vT~SNv

vT~SLv
¼� ~JðvÞ; ð24Þ

where ~SN ¼ PTSNP and ~SL ¼ PTSLP. It is easy to prove that
~SN and ~SL are both m�m semipositive definite matrices.
This means ~JðvÞ is a function of a generalized Rayleigh
quotient like J wð Þ.

By the property of isomorphic mapping and (24), the
following theorem holds:

Theorem 2. Let w ¼ Pv be an isomorphic mapping from IRm

onto �T . Then, w
� ¼ Pv� is the stationary point of the UDP
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criterion function J wð Þ if and only if v� is the stationary point
of the function ~JðvÞ.
From Theorem 2, it is easy to draw the following

conclusion:

Proposition 1. If v1; � � � ;vd are the generalized eigenvectors
of ~SNv ¼ �~SLv corresponding to the d largest eigenvalues
�1 � � � � � �d > 0, then, w1 ¼ Pv1; � � � ;wd ¼ Pvd are the
optimal projection axes of UDP.

Now, our work is to find the generalized eigenvectors of
~SNv ¼ �~SLv. First of all, let us consider the construction of
~SL and ~SN . From (13), we know SL ¼ 1

MM XLXT . Thus,

~SL ¼ PTSLP ¼ 1

MM
ðPTXÞLðPTXÞT ¼ 1

MM
~XL ~XT; ð25Þ

where ~X ¼ PTX. Since P ¼ ð�1; � � � ; �mÞ and �1; � � � ; �m are
principal eigenvectors of ST , ~X ¼ PTX is the PCA trans-
form of the data matrix X.

After constructing ~SL, we can determine ~SN by

~SN ¼ PTSNP ¼ PTðST � SLÞP
¼ PTSTP� ~SL ¼ diagð�1; � � � ; �mÞ � ~SL;

ð26Þ

where �1; � � � ; �m are m largest nonzero eigenvalues of ST

corresponding to �1; � � � ; �m.
It should be noted that the above derivation is based on

the whole range space of ST (i.e., all nonzero eigenvectors of
ST are used to form this subspace). In practice, however, we
always choose the number of principal eigenvectors, m,
smaller than the real rank of ST such that most of the
spectrum energy is retained and ~SL is well-conditioned (at
least nonsingular) in the transformed space. In this case, the
developed theory can be viewed as an approximate one and
the generalized eigenvectors of ~SNv ¼ �~SLv can be calcu-
lated directly using the classical algorithm.

3.3 UDP Algorithm

In summary of the preceding description, the following
provides the UDP algorithm:

Step 1. Construct the adjacency matrix: For the given training
data set fxiji ¼ 1; � � � ;Mg, findKnearest neighbors of each
data point and construct the adjacency matrix H ¼
ðHijÞM�M using (14).

Step 2. Construct the local scatter kernel (LSK) matrix: Form
an M �M diagonal matrix D, whose elements on the
diagonal are given by Dii ¼

PM
j¼1 Hij, i ¼ 1; � � � ;M. Then,

the LSK matrix is L ¼ D�H.

Step 3. Perform PCA transform of data: Calculate ST ’s
m largest positive eigenvalues �1; � � � ; �m and the asso-
ciated m orthonormal eigenvectors �1; � � � ; �m using the
technique presented in [2], [3]. Let ~ST ¼ diagð�1; � � � ; �mÞ
and P ¼ ð�1; � � � ; �mÞ. Then, we get ~X ¼ PTX, where
X ¼ ðx1;x2; � � � ;xMÞ.

Step 4. Construct the two matrices ~SL ¼ ~XL ~XT=M2 and
~SN ¼ ~ST � ~SL. Calculate the generalized eigenvectors
v1;v2; � � � ;vd of ~SNv ¼ �~SLv corresponding to thed largest
positive eigenvalues �1 � �2 � � � � � �d. Then, the d pro-
jection axes of UDP arewj ¼ Pvj, j ¼ 1; � � � ; d.
After obtaining the projection axes, we can form the

following linear transform for a given sampleX:

y ¼ WTx;where W ¼ ðw1;w2; � � � ;wdÞ: ð27Þ

The feature vector y is used to represent the sample x for

recognition purposes.
Concerning the UDP Algorithm, a remark should be

made on the choice of m in Step 3. Liu and Wechsler [10]
suggested a criterion for choosing the number of principal
components in the PCA phase of their enhanced Fisher
discriminant models. That is, a proper balance should be
preserved between the data energy and the eigenvalue
magnitude of the within-class scatter matrix [10]. This
criterion can be borrowed here for the choice of m. First,
to make ~SL nonsingular, an m should be chosen that is less
than the rank of LSK matrix L. Second, to avoid overfitting,
the trailing eigenvalues of ~SL should not be too small.

4 EXTENSION: UDP WITH KERNEL WEIGHTING

In this section, we will build a kernel-weighted version of
UDP. We know that Laplacian Eigenmap [24] and LPP [31],
[32] use kernel coefficients to weight the edges of the
adjacency graph, where a heat kernel (Gaussian kernel) is
defined by

kðxi;xjÞ ¼ exp
�

� jjxi � xjjj2=t
�

: ð28Þ

Obviously, for any xi, xj, and parameter t, 0 < kðxi;xjÞ � 1

always holds. Further, the kernel function is a strictly
monotone decreasing function with respect to the distance
between two variables xi and xj.

The purpose of the kernel weighting is to indicate the
degree of xi and xj belonging to a local �-neighborhood. If
jjxi � xjjj2 < �, the smaller the distance is, the larger the
degree would be. Otherwise, the degree is zero. The kernel
weighting, like other similar weightings, may be helpful in
alleviating the effect of the outliers on the projection
directions of the linear models and, thus, makes these
models more robust to outliers [35].

4.1 Fundamentals

Let Kij ¼ kðxi;xjÞ. The kernel weighted global scatter can
be characterized by

JT ðwÞ ¼ 1

2

1

MM

X

M

i¼1

X

M

j¼1

Kijðyi � yjÞ2

¼ wT 1

2

1

MM

X

M

i¼1

X

M

j¼1

Kijðxi � xjÞðxi � xjÞT
" #

w:

ð29Þ

Here, we can view that all training samples are within a
�-neighborhood (it is possible as long as � is large enough).
Kij indicates the degree of xi and xj belonging to such a
neighborhood.

Let us denote

ST ¼ 1

2

1

MM

X

M

i¼1

X

M

j¼1

Kijðxi � xjÞðxi � xjÞT : ð30Þ

Similarly to the derivation of (13), we have

ST ¼ 1

MM
ðXDTX

T �XKXTÞ ¼ 1

MM
XLTX

T; ð31Þ
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where K ¼ ðKijÞM�M and DT is a diagonal matrix whose

elements on the diagonal are the column (or row) sum of K,

i.e., ðDT Þii ¼
PM

j¼1 Kij. LT ¼ DT �K is called the global

scatter kernel (GSK) matrix.
If the matrix ST defined in (31) is used as the generation

matrix and its principal eigenvectors are selected as projec-

tion axes, the kernel weighted version of PCA can be obtained.
If we redefine the adjacency matrix as

Hij ¼ Kij; jjxi � xjjj2 < �
0 otherwise

�

ð32Þ

or

Hij ¼
Kij; if xj is among K nearest nieghbors of xi

and xi is among K nearest nieghbors of xj

0 otherwise;

8

<

:

ð33Þ
the kernel-weighted local scatter can still be characterized

by (10) or (11) and the kernel-weighted local scatter matrix

can be expressed by (13).
The kernel-weighted nonlocal scatter is characterized by

JNðwÞ ¼ 1

2

1

MM

X

M

i¼1

X

M

j¼1

ðKij �HijÞðyi � yjÞ2

¼ wT 1

2

1

MM

X

M

i¼1

X

M

j¼1

ðKij �HijÞðxi � xjÞðxi � xjÞT
" #

w

ð34Þ

and the corresponding nonlocal scatter matrix is

SN ¼1

2

1

MM

X

M

i¼1

X

M

j¼1

ðKij �HijÞðxi � xjÞðxi � xjÞT ¼ ST � SL:

ð35Þ

4.2 Algorithm of UDP with Kernel Weighting

TheUDPalgorithm inSection 3.3 canbemodified to obtain its

kernel weighted version. In Step 1, the adjacencymatrixH ¼
ðHijÞM�M is constructed instead using (33) and, in Step 3, the

PCA transform is replaced by its kernel-weighted version.

For computational efficiency, the eigenvectors of ST defined

in (31) can be calculated in the following way.
Since LT is a real symmetric matrix, its eigenvalues are all

real. Calculate all of its eigenvalues and the corresponding

eigenvectors. Suppose � is the diagonalmatrix of eigenvalues

of LT and Q is the full matrix whose columns are the

corresponding eigenvectors, LT can be decomposed by

LT ¼ Q�QT ¼ QLQ
T
L;where QL ¼ Q�

1
2: ð36Þ

From (36), it follows that ST ¼ 1
MM ðXQLÞðXQLÞT . Let us

define R ¼ 1
MM ðXQLÞT ðXQLÞ, which is an M �M non-

negative definite matrix. Calculate R’s orthonormal eigen-

vectors �1; �2; � � � ; �d which correspond to the d largest

nonzero eigenvlaues �1 � �2 � � � � � �d. Then, from the

theorem of singular value decomposition (SVD) [36], the

orthonormal eigenvectors �1; �2; � � � ; �d of ST corresponding

to the d largest nonzero eigenvlaues �1 � �2 � � � � � �d are

�j ¼
1

M
ffiffiffiffiffi

�j
p XQL�j; j ¼ 1; � � � ; d: ð37Þ

We should make the claim that the UDP algorithm given in

Section3.3 isaspecial caseof itskernelweightedversionsince,

when the kernel parameter t ¼ þ1, the weight Kij ¼ 1 for

any i and j. For convenience, in this paper,we also refer to the

kernel weighted UDP version simply as UDP and the UDP

algorithm in Section 3.3 is denoted by UDP (t ¼ þ1).

5 LINKS TO OTHER LINEAR PROJECTION

TECHNIQUES: LDA AND LPP

5.1 Comparisons with LPP

UDP and LPP are both unsupervised subspace learning

techniques. Their criteria, however, are quite different. UDP

maximizes the ratio of the nonlocal scatter (or the global

scatter) to the local scatter whereas LPP minimizes the local

scatter.

The local scatter criterion can be minimized in different

ways subject to different constraints. One way is to assume

that the projection axes are mutually orthogonal (PCA is

actually based on this constraint so as to maximize the

global scatter criterion). This constraint-based optimization

model is

argmin
wTw¼1

fðwÞ ¼ wTSLw: ð38Þ

By solving this optimizationmodel,we get a set of orthogonal

projection axesw1;w2; � � � ;wd.

The other way to minimize the local scatter criterion is to

assume that the projection axes are conjugately orthogonal.

LPP is, in fact, based on these constraints. Let us define the

matrix SD ¼ XDXT. Then, the optimization model of LPP

(based on the SD-orthogonality constraints) is given by

argmin
wTSDw¼1

fðwÞ ¼ wTSLw; ð39Þ

which is equivalent to

argmin JP ðwÞ ¼ wTSLw

wTSDw
, argmax JP ðwÞ ¼ wTSDw

wTSLw
: ð40Þ

Therefore, LPP essentially maximizes the ratio of wTSDw to

the local scatter. But, this criterion has no direct link to

classification. Since the purpose of the constraint wTSDw ¼
wTXDXTw ¼ yTSDy ¼ 1 is just to remove an arbitrary

scaling factor in the embedding and that of the matrix D is

to provide a natural measure of the vertices of the adjacency

graph [24], maximizing (or normalizing) wTSDw does not

make sense with respect to discrimination. In contrast, the

criterion of UDP has a more transparent link to classification

or clustering. Its physical meaning is very clear: If samples

belong to the same cluster, they become closer after the

projection; otherwise, they become as far apart as possible.

5.2 Connections to LDA

Compared with LPP, UDP has a more straightforward

connection to LDA. Actually, LDA can be regarded as a

special case of UDP if we assume that each class has the same
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number of training samples (i.e., the class priori probabilities

are same). When the data has an ideal clustering, i.e., each

local neighborhood contains exactly the same number of

training samples belonging to the same class, UDP is LDA. In

this case, the adjacency matrix is

Hij ¼ 1; if xi and xj belong to the same class

0 otherwise:

�

ð41Þ

And, in this case, there exist c local neighborhoods, each of
which corresponds to a cluster of samples in one pattern
class. Suppose that the kth neighborhood is formed by all
l samples of Class k. Then, the local scatter matrix of the
samples in the kth neighborhood is

S
ðkÞ
L ¼ 1

2

1

l2

X

i;j

x
ðkÞ
i � x

ðkÞ
j

� �

x
ðkÞ
i � x

ðkÞ
j

� �T

: ð42Þ

Following the derivation of ST in (4), we have

S
ðkÞ
L ¼ 1

l

X

l

j¼1

x
ðkÞ
j �mk

� �

x
ðkÞ
j �mk

� �T

: ð43Þ

So, S
ðkÞ
L ¼ S

ðkÞ
W , where S

ðkÞ
W is the covariance matrix of

samples in Class k.
From the above derivation and (12), thewhole local scatter

matrix is

SL ¼ 1

2

1

M2

X

c

k¼1

X

i;j

�

x
ðkÞ
i � x

ðkÞ
j

��

x
ðkÞ
i � x

ðkÞ
j

�T

¼ 1

2

1

M2

X

c

k¼1

2l2S
ðkÞ
L ¼ l

M

X

c

k¼1

l

M
S
ðkÞ
W ¼ l

M
SW :

ð44Þ

Then, the nonlocal scatter matrix is

SN ¼ ST � SL ¼ ST � l

M
SW : ð45Þ

Further, it can be shown that the following equivalent
relationships hold:

JðwÞ ¼ wTSNw

wTSLw
, wT ðST � l

M SW Þw
wT ð l

M SW Þw , wTSTw

wT ð l
M SW Þw

, wTSTw

wTSWw
, wTSBw

wTSWw
¼ JF ðwÞ:

ð46Þ

Therefore, UDP is LDA in the case where each local

neighborhood contains exactly the same number of training

samples belonging to the same class.

The connection between LPP and LDA was disclosed in

[32] provided that a (41)-like adjacency relationship is

given. In addition, LPP needs another assumption, i.e., the

sample mean of the data set is zero, to connect itself to LDA,

while UDP does not. So, the connection between UDP and

LDA is more straightforward.

6 BIOMETRICS APPLICATIONS: EXPERIMENTS AND

ANALYSIS

In this section, the performance of UDP is evaluated on the

Yale, FERET, and AR face image databases and PolyU

Palmprint database and compared with the performances of

PCA, LDA, and Laplacianface (LPP).

6.1 Experiment Using the Yale Database

The Yale face database contains 165 images of 15 individuals

(each person providing 11 different images) under various

facial expressions and lighting conditions. In our experi-

ments, each image was manually cropped and resized to

100� 80 pixels. Fig. 2 shows sample images of one person.

The first experiment was performed using the first six

images (i.e., center-light, with glasses, happy, left-light,

without glasses, and normal) per class for training, and the

remaining five images (i.e., right-light, sad, sleepy, surprised,

and winking) for testing. For feature extraction, we used,

respectively, PCA (eigenface), LDA (Fisherface), LPP (Lapla-

cianface), and the proposed UDP. Note that Fisherface,

Laplacianface, and UDP all involve a PCA phase. In this

phase, we keep nearly 98 percent image energy and select the

number of principal components, m, as 60 for each method.

The K-nearest neighborhood parameter K in UDP and

Laplacianface canbe chosenasK ¼ l� 1 ¼ 5,where ldenotes

the number of training samples per class. The justification for

this choice is that each sample should connect with the

remaining l� 1 samples of the same class provided that

within-class samples are well clustered in the observation
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Fig. 2. Sample images of one person in the Yale database.



space. There are generally two ways to select the Gaussian

kernel parameter t. One way is to choose t ¼ þ1, which

represents a special case of LPP (or UDP). The other way is to

determine a proper parameter t� within the interval ð0;þ1Þ
using the global-to-local strategy [20] tomake the recognition

result optimal. Finally, the nearest neighbor (NN) classifiers

withEuclideandistance and cosinedistance are, respectively,

employed for classification. The maximal recognition rate of

each method and the corresponding dimension are given in

Table 1. The recognition rates versus the variation of

dimensions are illustrated in Fig. 3. The recognition rates of

Laplacianface and UDP versus the variation of the kernel

parameter t and those versus the K-nearest neighborhood

parameter K are, respectively, illustrated in Figs. 4a and 4b.
From Table 1, we can see three main points. First, UDP

outperforms Laplacianface under each distance measure,

whether the kernel parameter t is infinity or optimally chosen

(t* = 800). Second, UDP and Laplacianface with cosine

distances both perform better than LDA and PCA with

cosine or Euclidean distances. Third, the cosine distance

metric can significantly improve the performance of LDA,

Laplacianface, andUDP, but it has no substantial effect on the

performance of PCA. Fig. 3 shows that UDP (t* = 800)
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TABLE 1
The Maximal Recognition Rates (Percent) of PCA, LDA, Laplacianface, and UDP on the Yale Database and

the Corresponding Dimensions (Shown in Parentheses) When the First Six Samples Per Class Are Used for Training

Fig. 3. The recognition rates of PCA, LDA, Laplacianface, and UDP versus the dimensions when (a) Euclidean distance is used and (b) cosine
distance is used.

Fig. 4. (a) The maximal recognition rates of Laplacianface and UDP versus the variation of kernel parameter t. (b) The maximal recognition rates of

Laplacianface and UDP versus the variation of K-nearest neighborhood parameter K.



outperformsLaplacianface (t* = 800), LDAandPCAwhen the
dimension is over 16, nomatter what distancemetric is used.
Further, the recognition rate of UDP with cosine distance
retains 100 percent as the dimension varies from 18 to 32.
Fig. 4a indicates that theperformances ofUDPandLaplacian-
face (with cosine distance) become robust when the para-
meter t is over 200 and UDP consistently outperforms
Laplacianface when t is larger than 400. The recognition rate
of UDP retains 100 percent as t varies from 600 to 10,000.
Fig. 4b shows that the performances of UDP and Laplacian-
face vary with the variation of the K-nearest neighborhood
parameter K. When K is chosen as l� 1 ¼ 5, both methods
achieve their top recognition rates. So, we will choose K ¼
l� 1 for our experiments.

Why can the unsupervised method UDP (or Laplacian-
face) outperform the supervised method LDA? In our
opinion, the possible reason is that UDP (or Laplacianface)
is more robust than LDA to outliers. In the training set of this
experiment, the “left-light” image of each class can be viewed
as an outlier. The outlier images may cause errors in the
estimate of within-class scatter and, thus, make LDA
projection inaccurate. In contrast, UDP builds the adjacency
relationship of data points using k-nearest neighbors and
groups the data in a natural way. Most outlier images of
different persons are grouped into new different clusters. By
thismeans, the number of clusters increases, but the negative
influence of outliers onto within-class scatter is eliminated.
So, the resulting projection of UDP is more accurate and
discriminative. Since the number of clusters increases, UDP
generally needs more features than LDA to achieve its best
performance. This also gives the reason why LDA can
outperform UDP using a few features, as shown in Fig. 3.

In the secondexperiment, 20-fold cross-validation tests are

performed to reevaluate the performance of PCA, LDA,

Laplacianface, and UDP. In each test, six images of each
subject are randomly chosen for training,while the remaining

five images are used for testing. The parameters involved in

each method are set as the same as those used in the first

experiment. Table 2 shows the maximal average recognition

rates across 20 runs of each method under nearest neighbor

classifiers with two distancemetrics and their corresponding

standarddeviations (std) anddimensions. FromTable 2, it can

be seen that UDP outperforms other methods and the cosine

distance metric is still helpful in improving the performance

of LDA, Laplacianface, and UDP. These conclusions are, on

the whole, consistent with those drawn from the first

experiment.
Since the cosine distance is more effective than the

Euclidean distance for LDA, Laplacianface, and UDP, in the
following experiments we use only this distance metric.

6.2 Experiment Using the FERET Database

The FERET face image database has become a standard

database for testing and evaluating state-of-the-art face

recognition algorithms [37], [38], [39]. The proposed method

was tested on a subset of the FERET database. This subset

includes 1,000 images of 200 individuals (each one has five

images). It is composed of the images whose names are

markedwith two-character strings: “ba,” “bj,” “bk,” “be,” “bf.”

This subset involves variations in facial expression, illumina-

tion, and pose. In our experiment, the facial portion of each

original image was automatically cropped based on the

location of eyes and mouth, and the cropped image was

resized to 80� 80 pixels and further preprocessed by

histogram equalization. Some sample images of one person

are shown in Fig. 5.
In our test, we use the first two images (i.e., “ba” and “bj”)

per class for training and the remaining three images (i.e.,
“bk,” “be,” and “bf”) for testing. PCA, LDA, Laplacianface,
and UDP are used for feature extraction. In the PCA phase of
LDA, Laplacianface, and UDP, the number of principal
components, m, is set as 120. The K-nearest neighborhood
parameter K in Laplacianface and UDP is chosen as
K ¼ l� 1 ¼ 1. After feature extraction, a nearest neighbor
classifier with cosine distance is employed for classification.
The maximal recognition rate of each method and the
corresponding dimension are given in Table 3. The recogni-
tion rate curve versus the variation of dimensions is shown
in Fig. 6.
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TABLE 2
The Maximal Average Recognition Rates (Percent) of PCA, LDA, Laplacianface, and UDP across 20 Runs on
the Yale Database and the Corresponding Standard Deviations (Std) and Dimensions (Shown in Parentheses)

Fig. 5. Samples of the cropped images in a subset of the FERET database.



Table 3 demonstrates again that UDP outperforms PCA,
LDA, and Laplacianface, whether the kernel parameter t is
infinity or optimally chosen (t* = 7,000 for UDP and t* = 300
for Laplacianface). Fig. 6 indicates that UDP consistently
performs better than other methods when the dimension is
over 45.

6.3 Experiment Using the AR Database

The AR face [40], [41] contains over 4,000 color face images of
126people (70menand56women), including frontal viewsof
faces with different facial expressions, lighting conditions,
and occlusions. The pictures of 120 individuals (65 men and
55 women) were taken in two sessions (separated by two
weeks) and each section contains 13 color images. Twenty
face images (each session containing 10) of these 120 indivi-
duals are selected and used in our experiment. The face
portion of each image is manually cropped and then
normalized to 50� 40 pixels. The sample images of one
person are shown in Fig. 7. These images vary as follows:

1. neutral expression,
2. smiling,
3. angry,
4. screaming,
5. left light on,
6. right light on,
7. all sides light on,
8. wearing sun glasses,
9. wearing sun glasses and left light on, and
10. wearing sun glasses and right light on.

In our experiments, l images (l varies from 2 to 6) are
randomly selected from the image gallery of each individual
to form the training sample set. The remaining 20� 1 images
are used for testing. For each l, we perform cross-validation
tests and run the system 20 times. PCA, LDA, Laplacianface,
andUDPare, respectively, used for face representation. In the
PCA phase of LDA, Laplacianface, and UDP, the number of
principal components, m, is set as 50, 120, 180, 240, and 300,
respectively, corresponding to l ¼ 2, 3, 4, 5, and 6. The
K-nearest neighborhood parameter K in Laplacianface and
UDP is chosen as K ¼ l� 1. Finally, a nearest-neighbor
classifier with cosine distance is employed for classification.
The maximal average recognition rate and the std across
20 runs of tests of each method are shown in Table 4. The
recognition rate curve versus the variation of training sample
sizes is shown in Fig. 8.

From Table 4 and Fig. 8, we can see first that UDP overall
outperforms Laplacianface, whether the kernel parameter is
infinity or optimally chosen and second that as unsupervised
methods, UDP and Laplacianface both significantly outper-
form PCA, irrespective of the variation in training sample
size. These two points are consistent with the experimental
results in Sections 6.1 and 6.2. In addition, we can see some
inconsistent results. First, with reference to the impact of the
kernel weighting on the performance of UDP and Laplacian-
face, in this experiment,UDPandLaplacianfacebothperform
well without kernel weighting (i.e., t ¼ þ1). The heat-kernel
(i.e., Gaussian kernel) weighting by optimally choosing t* =
300 for Laplacianface and t* = 500 for UDP from the interval
ð0;þ1Þ, however, does little to improve the recognition
accuracy.

Another inconsistent point that is worth remarking upon
concerns the performance comparison of UDP and LDA.
UDP outperforms LDA when l is less than 5, while LDA
outperforms UDP when l is over 5. This means that, once
the given training sample size per class becomes large, LDA
may achieve better results than UDP. It is not hard to
interpret this phenomenon from a statistical point of view.
While there are more and more samples per class provided
for training, the within-class scatter matrix can be evaluated
more accurately and becomes better-conditioned, so LDA
will become more robust. However, with the increase of the
training sample size, more boundary points might exist
between arbitrary two data clusters in input space. This
makes it more difficult for UDP (or LPP) to choose a proper
locality radius or the K-nearest neighborhood parameter K
to characterize the “locality.”

Nevertheless, UDP does have an advantage over LDA
with respect to a specific biometrics problem like face
recognition. Fig. 8 indicates that, the smaller the training
sample size is, the more significant the performance
difference between UDP and LDA becomes. This advantage
of UDP in small sample size cases is really helpful in practice.
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Fig. 6. The recognition rates of PCA, LDA, Laplacianface, and UDP

versus the dimensions when cosine distance is used on a subset of

FERET database.

TABLE 3
The Maximal Recognition Rates (Percent) of PCA, LDA, Laplacianface, and UDP on a

Subset of the FERET Database and the Corresponding Dimensions



This is because face recognition is typically a small sample
size problem. There are generally a few images of one person
provided for training in many real-world applications.

6.4 Experiment Using the PolyU Palmprint
Database

The PolyU palmprint database contains 600 gray-scale
images of 100 different palmswith six samples for each palm
(http://www4.comp.polyu.edu.hk/~biometrics/). Six sam-
ples from each of these palms were collected in two sessions,
where the first threewere captured in the first session and the
other three in the second session. The average interval
between the first and the second sessions is two months. In
our experiments, the central part of each original image was
automatically croppedusing thealgorithmmentioned in [42].
The cropped images were resized to 128� 128 pixels and
preprocessed using histogram equalization. Fig. 9 shows
some sample images of two palms.

According to the protocol of this database, the images
captured in the first session are used for training and the
images captured in the second session for testing. Thus, for
each palm class, there are three training samples and three
testing samples. PCA, LDA, Laplacianface, and UDP are
used for palm feature extraction. In the PCA phase of LDA,
Laplacianface, and UDP, the number of principal compo-
nents, m, is set as 150. The K-nearest neighborhood
parameter K in Laplacianface and UDP is chosen as
K ¼ l� 1 ¼ 2. After feature extraction, a nearest neighbor
classifier with cosine distance is employed for classification.
The maximal recognition rate of each method and the
corresponding dimension are listed in Table 5. The recogni-
tion rate curve versus the variation of dimensions is shown in
Fig. 10.

From Table 3, we can see that UDP outperforms PCA,
LDA, and Laplacianface. The recognition rate of UDP (when
t* = 200) is up to 99.7 percent, i.e., only one sample was
missed. Fig. 6 shows that UDP consistently performs better
than other methods, irrespective of the dimensional varia-
tion. These results demonstrate that UDP is also a good tool
for palm recognition.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we develop an unsupervised discriminant
projection (UDP) technique for dimensionality reduction of
high-dimensional data in small sample size cases. The
projection of UDP can be viewed as a linear approximation
of the nonlinear map that uncovers and separates embed-
dings corresponding to different manifolds in the final
embedding space. UDP considers the local and nonlocal
scatters at the same time and seeks to find a projection
maximizing the ratio of the nonlocal scatter to the local
scatter. The consideration of the nonlocal quantity makes
UDP more intuitive and more powerful than LPP for
classification or clustering tasks. Our experimental results
on three popular face image databases and one palmprint
database demonstrate that UDP is more effective than LPP
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Fig. 8. The maximal average recognition rates of PCA, LDA, Laplacian-

face, and UDP versus the variation of the training sample size.

TABLE 4
The Maximal Average Recognition Rates (Percent) and Standard Deviations (Std) of PCA, LDA, Laplacianface,

and UDP with Different Training Sample Sizes on the AR Database

Fig. 7. Samples of the cropped images of one person in the AR database.



and PCA. In addition, UDP is more discriminative than LDA
when the training sample size per class is small.

Our experimental results on the AR database, however,
also reveal a drawback of UDP (LPP actually has the same
problem). That is, as the training sample size per class
becomes large, LDA can outperform UDP. This problem is
unnoticeable in most real-world biometrics applications
since the given training sample size is always very small.
But, it may become prominent once UDP is applied to large
sample size problems. To address this, we need a more
precise characterization of the local scatter and the nonlocal
scatter when the given training sample size per class is
relatively large. A possible way is to use the provided class
label information (for example, borrowing Yan et al.’s [33]

and Chen’s [34] ideas) to facilitate this characterization and
then to build a semisupervised hybrid system.

As a generator of weighting coefficients, the Gaussian
kernel (or heat kernel) is examined in this paper. It is
demonstrated to be effective in most cases. But, in some
cases, it fails to improve the performance of UDP or LPP.
Are there more effective kernels for weighting the proposed
method? This is a problem deserving further investigation.
In addition, in this paper, we focus on developing a linear
projection technique and applying it to biometrics but do
not address another interesting problem, i.e., modeling
multimanifolds for classification purposes. When different
classes of data lie on different manifolds, it is of central
importance to uncover the embeddings corresponding to
different manifolds and, at the same time, to make different
embeddings as separable as possible in the final embedding
space. We will address this problem and try to build a
general framework for classification-oriented multimani-
folds learning in the near future. This framework may result
in more effective features for biometrics tasks.
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Fig. 10. The recognition rates of PCA, LDA, Laplacianface, and UDP

versus the dimensions when cosine distance is used on the PolyU

Palmprint database.

TABLE 5
The Maximal Recognition Rates (Percent) of PCA, LDA, Laplacianface, and UDP

on the PolyU Palmprint Database and the Corresponding Dimensions

Fig. 9. Samples of the cropped images in the PolyU Palmprint database.
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