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Abstract Image alignment in the presence of non-rigid dis-

tortions is a challenging task. Typically, this involves es-

timating the parameters of a dense deformation field that

warps a distorted image back to its undistorted template.

Generative approaches based on parameter optimization such

as Lucas-Kanade can get trapped within local minima. On

the other hand, discriminative approaches like nearest-

neighbor require a large number of training samples that

grows exponentially with respect to the dimension of the pa-

rameter space, and polynomially with the desired accuracy

1/ǫ. In this work, we develop a novel data-driven iterative

algorithm that combines the best of both generative and dis-

criminative approaches. For this, we introduce the notion of

a “pull-back” operation that enables us to predict the pa-

rameters of the test image using training samples that are

not in its neighborhood (not ǫ-close) in the parameter space.

We prove that our algorithm converges to the global opti-

mum using a significantly lower number of training samples

that grows only logarithmically with the desired accuracy.

We analyze the behavior of our algorithm extensively using

synthetic data and demonstrate successful results on experi-

ments with complex deformations due to water and clothing.

1 Introduction

Images that capture non-rigid deformations of objects such

as water, clothing and human bodies, exhibit complex dis-

tortions (Fig. 1). Aligning or registering such images de-
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Fig. 1 Typical distortions caused by water fluctuation, non-rigid cloth

deformation and optical scanning of old manuscripts. Recovering from

different types of distortion is important for water surface shape esti-

mation, 3D reconstruction of deforming cloth and digitization of an-

cient documents.

spite the distortions is an important goal in computer vision

that has implications for tracking and motion understanding,

object recognition, OCR and medical image analysis. Typi-

cally, given a distorted image Ip (e.g., of a scene observed

through an undulating water surface) and its template T (the

scene observed when the water is still), the task is to esti-

mate the parameters p of a distortion model that warps the

image back to the template1.

Most techniques for non-rigid image alignment can be

classified into three broad categories, i.e., feature-based, gen-

erative and discriminative approaches. Firstly, feature match-

ing techniques aim to match a set of sparse local features in

the distorted image with those in the template [16,15,20].

Then, the parameters of a distortion model are estimated

from the matchings. These methods work well when the di-

mension d of the parameter space is low (e.g., 6 for affine),

but often fail in the presence of repetitive textures or high di-

mensional non-rigid distortions. Secondly, template match-

ing techniques obtain dense correspondence between a dis-

1 Other works [34,14,6] use a set of distorted images or videos as

the input and compute distortions and/or the template.

http://www.cs.cmu.edu/~ILIM/projects/IM/globalopt/research_globalopt.html
http://www.cs.cmu.edu/~ILIM/projects/IM/globalopt/research_globalopt.html
http://www.cs.cmu.edu/~ILIM/
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torted image and its template by minimizing a non-convex

objective function J(p̃) = ||Ip−Ip̃||2 using numerical meth-

ods [3] that often converge to local minima. Thirdly, dis-

criminative approaches [7,1] learn a mapping M that di-

rectly predicts the distortion parameters p of a distorted im-

age Ip. As a classical example, the nearest-neighbor (NN)

approach finds the neighbor closest to Ip and the neighbor’s

parameters are used as the prediction. Thus, with sufficient

training samples it is possible to obtain the globally optimal

solution. However, an enormous number of training sam-

ples O((1/ǫ)d) are needed to achieve an accuracy of 1/ǫ

(i.e., ||p̃ − p|| ≤ ǫ for prediction p̃ and true p), resulting in

inaccurate prediction for high-dimensional distortions. This

phenomenon, known as the curse of dimensionality, remains

even in more advanced machine learning techniques.

In this work, we develop a novel data-driven algorithm

that combines the best of the generative and discriminative

approaches for distortion estimation. Our algorithm adopts

an iterative strategy that successively warps back the dis-

torted test image towards the template until convergence.

Unlike many previous works, we prove under mild condi-

tions the algorithm always reduces the amount of distortion

of a test image by a constant factor in each iteration, and

thus converges to the global optimum. By the term global

optimum, we mean it returns the global optimum solution

p̃∗ = p of the minimization problem J(p̃) = ||Ip − Ip̃||2,

where || · || could be any norm in the image space. Further-

more, the number of training samples N , if distributed prop-

erly, is O(Cd log 1/ǫ), which grows logarithmically with

respect to the accuracy 1/ǫ (Note C is independent of ǫ.).

More importantly, the dimension d is decoupled from the

accuracy 1/ǫ, breaking the curse of dimensionality.

The intuition behind this result is that two distorted im-

ages with very different distortion parameters still can share

a large portion of the image content (albeit with different

permutations of pixels) and can help each other in predic-

tion. Using such training samples that are far away from the

test sample enables our algorithm to achieve the same ac-

curacy with much fewer samples compared to the nearest-

neighbor case.

Our framework can be applied to a broad class of 2D

image distortions including affine warps, and more complex

spatially nonlinear distortion (e.g. water and cloth deforma-

tion). In particular, our framework does not require the warp-

ing family to form a group, hence has fewer restrictions than

previous works [10,2,18,35] that use a similar “warp-back”

strategy.

We have extensively analyzed the performance of our

algorithm using synthetic experiments. Our theoretical anal-

ysis makes certain assumptions: (a) the form of the distor-

tion model is known a priori, the mapping M from the dis-

torted images to the parameters is one-to-one, and the train-

ing samples can be accurately generated from the template;

(b) the occlusions caused by distortions (e.g. cloth folding)

are negligible, (c) the artifacts of the imaging process such

as aliasing, motion blur and defocus arising due to scene

deformations are negligible. In practice, these restrictions

are not severe — our algorithm is still able to demonstrate

strong results on real experiments with complex deforma-

tions due to water fluctuation and cloth deformation, out-

performing several existing methods [34,23]. In the future,

we will explore broader applications such as face alignment,

3D registration of CT, markerless motion capture and pose

estimation.

2 Related Work

There has been a long and rich history of studying geomet-

ric transformations between two images. To list them all is

beyond the scope of this paper. In the following, we only

discuss the works that are most relevant to our approach.

Generative Approaches. Starting from the classical optical

flow algorithm by Lucas and Kanade [17], these approaches

minimize the function J(p̃) = ||Ip−Ip̃||2 with respect to the

parameter p̃. The intensity difference between the distorted

template Ip̃ under the current parameter estimate p̃ and the

test image Ip, is iteratively minimized until it reaches a local

minimum.

Under the same minimization framework, many succes-

sive works achieve faster convergence by using a constant

Hessian matrix. As a trade-off, restrictions on the type of

warping have to be placed. For example, the forward com-

positional approach [30] requires the warping to be compo-

sitional. The inverse additive method [10] requires the warp-

ing to be separable or spatially linear. Inverse compositional

approaches [2,18,35] require the warping to be both com-

positional and invertible. These conditions restrict the possi-

ble applications of these methods. Other methods, including

Active Appearance Models [5,18], Direct Appearance Mod-

els [12] and Difference Decomposition [9,27] are applicable

to a wider class of distortions and are fast. However, it is

not clear which function is minimized during iterations and

there is no guarantee for convergence.

Free-form medical image registration [23] adopts a mul-

tilevel approach in which distortion parametrized by a B-

spline is optimized to align two images at each level. The

resulting estimated distortion is nonparametric and hence no

predefined types of warping are required. But the algorithm
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may still be trapped within local optima. A Markov Random

Field can also be used to model image deformation [28],

but the underlying combinatorial problem is NP-hard and

approximate inference techniques, such as linear program-

ming relaxation or Tree-reweighted Message Passing, have

to be used to obtain an locally optimal solution. Recently, to

address the problem of local optima, a convex approxima-

tion to the objective function has been learned [19,36], but

whether it remains faithful under large distortions is unclear.

Discriminative Approaches. This research direction starts

from the idea of learning a direct mapping from the distorted

image to the template, based on a training set with known

distortion parameters. The simplest example is the nearest-

neighbor approach, while more advanced approaches include

Relevant Vector Regression [1], Gaussian Processes [38],

Boosting [4], Mixture of Experts [32], or using multiple re-

gressors chosen by the response of a gate classifier on the

distorted images [21]. However, all of them require many

samples to address the curse of dimensionality. Another way

to address this problem is to find a low-dimensional repre-

sentation (called “latent variables”) of the parameter space,

e.g. using PCA or GPLVM[29]. Then the prediction is made

in the low-dimensional space.

Feature-based Approaches. The third research direction

uses highly distinctive local features for sparse matching,

e.g. SIFT [16]. Being rotation and scale invariant, such lo-

cal features can be used to match images with large view-

point changes, under analytic transformations such as affine

or perspective, and with occlusions. Salzmann and Fua [24]

also use such local features to find the point correspondences

in the case of non-rigid deformation, but trustworthy local

matches are sparse and spatial models have to be included

to obtain denser correspondences [37,11].

Combining discriminative and generative approaches.

Since both generative and discriminative approaches have

their advantages and disadvantages, there have been many

attempts to combine both. One popular strategy [31,26] is

to first find a coarse estimation using the discriminative ap-

proach. Then, using this estimation as the initialization, a

generative method is applied in the second stage for refine-

ment. This requires that the first prediction be sufficiently

close to the global optimum. Randomly generated training

samples are also used in the iterative procedure, e.g. Hy-

perplane Approximation [13], which is similar in spirit to

our approach. However, they use a spatially linear distor-

tion model along with a linear estimator (hyperplane) that

does not guarantee global optimality. Also they do not relate

the distribution of random training samples to the conver-

gence of the algorithm. In Rosales and Sclaroff [22], from

candidate predictions made by multiple predictors, a gener-

ative model is used to choose the best one as the final output.

However, none of the above approaches have the theoretical

guarantees as in our work.

3 Distortion Model

We first describe the distortion model used in this work.

Given a template image T and a d-dimensional vector of

parameters p, a distorted image Ip is computed using a gen-

erating function G:

Ip = G(T,p) (1)

In particular, the template is at the origin of the parameter

space, i.e., T = I0 = G(T, 0) . We denote I as the mani-

fold that consists of all possible distorted images that can be

generated from Eqn. (1):

I =
{

Ip = G(T,p)
∣

∣ ∀p ∈ R
d
}

(2)

The function G can be implemented using an image warp

W (x,p) that maps a pixel x to the position W (x,p). Typi-

cally W (x, 0) = x. The warp W (x,p) can be applied to the

template in either forward or backward direction:

GF(T,p) : Ip(W (x,p)) = T (x) (3)

GB(T,p) : Ip(x) = T (W (x,p)) (4)

Intuitively, the forward generating function pushes

every pixel x in the template to the location W (x,p) in

the distorted image, while the backward generating function

pulls the pixel located at W (x,p) of the template back to

the location x of the distorted image. A particular family of

distortions may satisfy either Eqn. (3) or Eqn. (4), but not

necessarily both. For invertible warpings, both representa-

tions are equally valid.

The main task of distortion estimation is to estimate the

distortion parameters p, if Ip, T and G (or warping function

W ) are known. In this paper, we will focus on occlusion-free

warps in the 2D image space and use a particular family of

distortions as follows:

W (x,p) = x+B(x)p (5)

where B(x) = [b1(x), . . . ,bd(x)] is a set of warp bases

that can be obtained a priori using either analytic models or

measured data or complex physical simulations. Such bases

B(x) can capture spatially nonlinear distortions. As a re-

sult, this warping family covers a broad range of distortions,

including affine transform, lens distortion, water distortion

and changes of facial expressions [18]. Note that Eqn. (5)

does not usually form a group. Our framework achieves global

convergence for this broad family of distortions.
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Fig. 2 Algorithm for distortion estimation. (a) The template (origin) T and distorted training images {Itr} with known parameters {ptr} are

shown in the parameter space. (b) Given a distorted test image, its nearest training image (Itr,ptr) is found. (c) The test image is “pulled-back”

using ptr to yield a new test image, which is closer to the template than the original one. (d) Step (b) and (c) are iterated, taking the test image

closer and closer to the template. (e) The final estimate p̃ is the summation of estimations in each iteration.

4 Iterative Algorithm for Distortion Estimation

In this section, we introduce the proposed algorithm for es-

timating parameters of the image distortion model.

4.1 The Intuition

Imagine a spaceship that wishes to return to the Earth. How-

ever, for some reason the navigation system is faulty and

does not know the coordinates of the Earth relative to the

current position. Fortunately, there are satellites around the

Earth. Each satellite broadcasts a signal containing its coor-

dinates, which can be received by the spaceship.

A straightforward way to localize the spaceship is to

find the strongest signal from the closest satellite, and treat

the received coordinates as its own. This is the well-known

nearest-neighbor approach. The accuracy of such approaches

heavily depends on how close the nearest satellite is to the

spaceship, or, the local density of satellites.

However, a fundamentally different and more efficient

way would be to drive the spaceship to another part of the

space by the amount of displacement that sends its nearest

satellite back to the Earth. If satellites are reasonably dense,

then the spaceship should go closer to the earth. The space-

ship can now receive new information at the new location,

find the nearest satellite again and continue to move accord-

ingly. With a proper distribution of satellites, the spaceship

can land on the Earth. The original location of the spaceship

can be estimated as the summation of all the consecutive

readings of the coordinates.

Let us briefly analyze this approach. Obviously, this ap-

proach is beyond nearest-neighbor since it uses satellites

that are far from each other, instead of just a nearby clus-

ter. Hence, it requires only a sparse distribution of satellites

around the original location of the spaceship, but a dense

distribution near the Earth. That is, a coarse estimation suf-

fices to bring the spaceship to the portion of the space with

more satellites, where the estimation can be further refined.

As a result, using fewer satellites can achieve the same ac-

curacy as compared to the nearest-neighbor approach.

4.2 The Algorithm

We can do the same for images, by regarding the Earth as

the template, the satellites as the training images (samples)

and the spaceship as the distorted test image. As illustrated

in Fig. 2, we start with the distorted test image I0 and dis-

torted training images {Itr} with known parameters {ptr}.

In each iteration k the algorithm finds the closest training

image (Iktr,p
k
tr) to the distorted image Ik in terms of image

metric and performs a “pull-back” operation H using pk
tr to

obtain a new image Ik+1, that is less distorted compared to

Ik and is closer to the template image T in the parameter

space. Then, the training sample nearest to Ik+1 is found,

the parameter estimation is updated and the procedure is it-

erated until the desired accuracy 1/ǫ is obtained, i.e., the

estimation is ǫ-close to the template. Finally, the estimate of

the distortion parameter p is given by the cumulative esti-

mation p̃K
tr . This algorithm is listed below.

Algorithm 1 The algorithm for distortion estimation

INPUT The training images {Iktr} with known parameters {pk
tr}.

The test image I0.

for k = 0 : K do

1. Find Ik’s nearest training image Iktr with known parameter pk
tr

i.e., Iktr = argmini ||Ik − Iitr||.

2. Set cumulative estimation p̃k
tr =

∑k
j=0

p
j
tr.

3. Set pulled-back test image Ik+1 = H(I0, p̃k
tr).

(a). For invertible warpings, H is the inverse of the generating

function G.

(b). For non-invertible warpings, H is the one opposite to G.

E.g., H = GF if the generating function is GB , and vice versa.

end for

OUTPUT p̃K
tr is the final estimation.
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To alleviate the possible error accumulation with suc-

cessive resampling (interpolation), we obtain Ik by pulling-

back the original test image I0 using the cumulative estima-

tion p̃k−1
tr ≡∑k−1

j=0 p
k
tr in each iteration.

In the following, we will analyze the three key compo-

nents of Alg. 1:

(1) How nearest-neighbor in the image space is related to

the nearest-neighbor in the parameter space.

(2) The pull-back operation H .

(3) The distribution and the number of training samples re-

quired for the algorithm to converge globally.

We finally give a proof of convergence if the three compo-

nents satisfy mild conditions. The idea of the proof is to

show after each iteration the norm of residue always shrinks

by a constant factor, and thus converges to zero. In other

words, it is a coarse-to-fine strategy in the parameter space.

To keep the intuition clear, we start with the family of

invertible warps. In this case, H is just the inverse operator

of the generating function G. This operator partially cancels

out the distortion in Ip by an amount of q, yielding a new

distorted image Ip−q that remains on the distortion manifold

I (Eqn. (2)). This substantially simplifies our analysis. Then

we generalize the conclusion to non-invertible warps that

take the form of Eqn. (5).

5 Global Optimality for Invertible Warping Case

In this section, we prove under the family of invertible warps,

including specific kinds of warps that form a group, such as

affine and projective transforms [9,35,2], that Alg. 1 con-

verges to the global optimum if the mapping between the

parameter space and the distortion manifold I is one-to-one,

and the training samples are properly distributed. We also

give an upper bound on the number of training samples as a

sufficient condition to instantiate this distribution.

5.1 Nearest-Neighbor in the Image Space

Let us consider the set of distorted images whose distortion

parameters p are within the sphere Sr0 = {Ip, ||p|| ≤ r0}.

The origin of this space corresponds to the undistorted tem-

plate image T . Let M be the unknown one-to-one mapping

function predicting the parameters p given the image Ip:

M(Ip) ≡ p (6)

Note M is only defined on I (Eqn. (2)) and is undefined

on images which cannot be generated from the distortion

model (Eqn. (5)). This is acceptable in the case of invertible

warping, since the partially undistorted images always lie on

I.

Unlike the spaceship metaphor, we can no longer apply

nearest-neighbor in the parameter (coordinate) space since

the parameter of the test image is unknown. Instead, we find

the nearest-neighbor according to an image metric, hoping

that it will also give a close image in the parameter space.

For this, we require the two metrics to be closely corre-

lated, i.e., two images that are far or near in the parameter

space have to be also far or near in the image space. Math-

ematically, this can be represented by the following Lip-

schitz continuity condition: there exist two universal con-

stants 0 < L1 ≤ L2 < +∞ so that for two images I and I ′

within I ∩ Sr0 :

L1||I − I ′|| ≤ ||M(I)−M(I ′)|| ≤ L2||I − I ′|| (7)

Without loss of generality, L1 and L2 are assumed to be the

tightest bounds.

Note that L1 = 0 is the case where two distinct images

I and I ′ share the same parameters, and L2 = +∞ is the

multi-valued mapping case in which a single image is asso-

ciated with multiple parameters. In both cases, the one-to-

one assumption is invalid and an infinite number of samples

would be required to obtain an accurate estimation.

5.2 The distribution of training samples

Consider the distribution of the training images so that they

are dense near the origin (template) and sparse at the pe-

riphery of the parameter space. Mathematically, given a dis-

torted image I ∈ I generated from the distortion model with

||M(I)|| ≤ r, we assume that there always exists a training

image Itr ∈ I so that:

||I − Itr|| ≤ βr/L2 (8)

where β < 1. Eqn. (8) shows the density decays when mov-

ing away from the template to the peripheral of the param-

eter space (increasing r). With this condition, the following

theorem shows Alg. 1 always yields a global optimum esti-

mation for any test distorted images within Sr0 .

Theorem 1 (The global convergence of Alg. 1 in the in-

vertible warping case.) If Eqn. (7) and Eqn. (8) hold with

β < 1, then Alg. 1 computes an estimated mapping function

M ′

K(I) ≡ p̃K
tr =

∑K

k=0 p
k
tr so that for ||M(I)|| ≤ r0:

||M ′

K(I)−M(I)|| ≤ βK+1r0 (9)

where 1− β is the rate of convergence.

In particular, M ′

K(I) → M(I) if K → +∞.
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Fig. 3 The number of samples needed to fill a given sphere ||p|| ≤ r
is independent of r since the allowed prediction uncertainty (shown in

gray solid circle) is proportional to r. As a result, only a small neigh-

borhood of the origin O (the template) requires dense sampling. This is

the key to decouple the accuracy from the dimension of the parameter

space, which is not attainable for the nearest-neighbor and regression-

based approaches.

In contrast, in the nearest-neighbor case, the training images

have to be distributed uniformly in the parameter space to

achieve optimal performance for any test sample distribu-

tions.

Please see Appendix A for the detailed proof. The intu-

ition of the proof is similar to the spaceship metaphor. With

the density condition (Eqn. (8)) and the right-hand side of

the Lipchitz condition (Eqn. (7)), it is guaranteed that in iter-

ation k, the parameter difference between Ik and its nearest-

neighbor is bounded by β||M(Ik)||. As a result, the norm of

such difference goes down exponentially with k and the al-

gorithm converges to the true distortion parameters.

5.3 The number of training samples

An interesting question is how many samples are needed

to satisfy the density condition (Eqn. 8). We now show the

number N of required training images grows only logarith-

mically with respect to the prediction accuracy 1/ǫ.

For this, we define the concept of ball-covering.

Definition 1 (Ball-Covering) A d-dimensional sphere Dr1 =

{||p|| ≤ r1} of radius r1 is said to be covered with a set of

small spheres {Di
r2
} of radius r2 < r1, if for any p ∈ Dr1 ,

there exists at least one small sphere Di0
r2

so that p ∈ Di0
r2

.

Given this definition, we have the following lemma:

Lemma 1 To fill a d-dimensional sphere of radius r1,

O((r1/r2)
d) small spheres of radius r2 suffice.

The proof is trivial. We now present a sufficient condition

for Eqn. (8) to hold:

Lemma 2 For a given radius r, if the sphere ||I − T || ≤
r1 ≡ r/L1 in the image space can be covered by smaller

spheres of radius r2 ≡ βr/L2, then Eqn. (8) holds.

Proof If we could achieve this covering, then given any dis-

torted image I ∈ I such that ||M(I)|| ≤ r, we would have

r ≥ ||M(I)|| = ||M(I)−M(T )|| ≥ L1||I − T || (10)

using the left-hand side of Eqn. (7) and M(T ) = 0. Thus

I satisfies ||I − T || ≤ r/L1 and by the definition of ball-

covering, there exists at least one small sphere in the image

space centered at Itr so that ||I− Itr|| ≤ r2 = βr/L2, which

matches the condition of Eqn. (8). ⊓⊔

Now let us consider how many small spheres (or essen-

tially, the training samples) are required for ball-covering in

Lemma 2. Use Lemma 1, it turns out that the following num-

ber of samples suffices to satisfy the condition of Lemma 2:

O

(

(

r1
r2

)d
)

= O

(

(

L2

βL1

)d
)

(11)

Crucially, this is independent of r (See Fig. 3). Thus, if

Alg. 1 terminates in K iterations, O(K(L2/βL1)
d) samples

would suffice.

On the other hand, using Eqn. (9), we can compute K =

⌈log(r0/ǫ)/ log(1/β)⌉ − 1 for a given accuracy 1/ǫ. As a

result, the total number N(ǫ, β) of training images that is

sufficient to make Alg. 1 converge to the true parameters

(global optimum) is the following:

N(ǫ, β) = O

[

(

L2

βL1

)d
log r0/ǫ

log 1/β

]

(12)

A large β implies fewer training samples in each iteration

but requires more iterations to achieve the same accuracy,

and vice versa. The optimal β∗, which is independent of ǫ,

can be obtained by minimizing Eqn. (12).

Note for any L1 and L2 that satisfy Eqn. (7), follow-

ing the same reasoning, we conclude the number of training

samples is bounded above by Eqn. (12). The tightest bound

is given by largest L1 and smallest L2 satisfying Eqn. (7).

As a result, Eqn. (12) grows logarithmically with re-

spect to the accuracy 1/ǫ. In contrast, with a similar anal-

ysis, nearest-neighbor requires O((L2/ǫL1)
d) samples for

the same accuracy. In Fig. 5(b), we show the significant dif-

ferences in performance between the two methods on syn-

thetic data. Intuitively, the existence of a generating function

G substantially restricts the degree of freedom of its inverse

mapping M . Thanks to this, we can establish M with good

accuracy using significantly fewer samples.
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6 Global Optimality for Non-Invertible Warping

So far, we have discussed the case where the warping W (x,p)
is invertible. Under this assumption, each intermediate undis-

torted image Ik lies on the manifold I. This greatly simpli-

fied our discussion. In the case of non-inverible warping, we

can still arrive at the same global convergence conclusion

with the same order of training samples. To achieve this, we

need to address a central technical problem:

How to characterize the intermediate undistorted im-

ages Ik in Alg. 1 that no longer lie on the manifold I.

Specifically, by “characterization”, we mean the two fol-

lowing sub-problems:

– How to define the parameters of Ik?

– How far could Ik be from the manifold I?

The first problem determines whether in each iteration, the

estimated parameters remain reasonable, and the second de-

termines whether the nearest-neighbor operations remain valid.

In the following, we will show that the first sub-problem

can be addressed by properly extending the domain of the

inverse mapping M , and the second can be addressed by

defining a generalized inverse operator as the pull-back op-

eration H in Alg. 1.

6.1 An Extension of the Inverse Mapping M

We first show that an extension of the inverse mapping M

to the entire image space that satisfies the bi-Lipchitz condi-

tions (Eqn. (7)) is impossible.

Here is a proof by contradiction. Let us assume M is

now defined everywhere satisfying Eqn. 7. Recall that I
contains all the distorted images generated from G. We thus

pick an image I /∈ I but very close to the template image

T (i.e. ||I − T || ≤ η, for some small η > 0). Finding such

image is easy since the dimension d of the manifold is typ-

ically much lower than the dimension of the entire image

space. For example, one could swap two pixels in T to pro-

duce I .

Since M is defined in the entire image space, let q ≡
M(I). If ||q|| ≤ r0, then we have Iq ∈ I ∩ Sr0 and by

Eqn. (7) we have:

L1||I − Iq|| ≤ ||M(I)−M(Iq)|| = ||q− q|| = 0 (13)

which implies L1 = 0 since Iq is on the manifold but I is

not. On the other hand, if ||q|| > r0, then by Eqn. (7) we

have:

r0 < ||q|| = ||M(I)−M(T )|| ≤ L2||I − T || ≤ L2η (14)

Since η could be arbitrarily small, L2 = +∞. Thus, for an

image outside the manifold, both conditions in Eqn. (7) may

not be satisfied simultaneously.

Fortunately, the following (weaker) extension of M is

sufficient for proving a generalized version of the conver-

gence theorem.

(a) The following bi-Lipchitz condition holds on the mani-

fold I ∩ Sr0 . That is, for I, I ′ ∈ I, we have:

L1||I − I ′|| ≤ ||M(I)−M(I ′)|| ≤ L2||I − I ′|| (15)

(b) In the entire image space, the following (single-sided)

Lipchitz condition holds. That is, for I /∈ I or I ′ /∈ I,

we have:

||M(I)−M(I ′)|| ≤ L2||I − I ′|| (16)

So, outside I ∩ Sr0 , only the right-hand side of Eqn. (7)

holds. Constructing this extension is easy. Note the only case

that makes L2 = +∞ is that in the entire image space there

exists M(I) 6= M(I ′) for I = I ′, or M is a multi-valued

mapping. So any (single-valued) function M that is defined

on the image space and satisfies M(Ip) = p on the manifold

I is a legitimate extension with a finite L2.

The intuition behind is that in order to keep the number

of training samples finite in the parameter space, it is re-

quired that the bi-Lipchitz conditions (Eqn. 15) hold on the

manifold. However, outside the manifold what we need is

just a continuity condition that bounds the distance between

parameters using the distance between images.

6.2 The pull-back operator H for non-invertible warping

The warping family in the form of Eqn. (5) generally does

not form a group and is not invertible. Thus it is impossible

to find H that takes q as input and maps Ip to a less distorted

image H(Ip,q) that is on I.

However, if we allow H(Ip,q) to be outside I, then

there exists a simple construction of H so that the differ-

ence between H(Ip,q) and Ip−q is bounded (see Appendix

B for the construction of pull-back functions):

||H(Ip,q)− Ip−q|| ≤ R||p− q|| (17)

where R is dependent on the maximum gradient of both the

template and the bases, and is independent of p and q. As

the estimate q gets closer and closer to the true p, H(Ip,q)
indeed approaches I and concides with the template when

q = p, as indicated in the right-hand side of Eqn. (17). In

particular, H(Ip,p) = T . Thus we call H generalized in-

verse.
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The mild requirement of generalized inverse enables Alg. 1

to deal with broader warping families than many previous

works [35,2,10]. Please see more detailed discussion in Sec-

tion 11.

The pull-back operation H that satisfied Eqn. (17) can

be constructed as follows. For forward distortion (Eqn. (3)),

we use backward warping with the same bases; for backward

distortion (Eqn. (4)), we use forward warping with the same

bases. For details, please see the Appendix B.

6.3 The Generalized Theorem for Convergence

With a proper extension of M (Eqn. (15) and Eqn. (16)) and

the pull-back function H returning a less distorted image

that is close enough to the manifold I, we can prove the

following generalized theorem for non-invertible warping:

Theorem 2 (The global convergence of Alg. 1 in the gen-

eral case.) If Eqn. (15), Eqn. (16), Eqn. (17) and Eqn. (8)

hold and γ ≡ 2RL2 + β < 1 , then Alg. 1 computes an

estimated mapping function M ′

K(I) ≡ p̃K
tr =

∑K

k=0 p
k
tr so

that for ||M(I)|| ≤ r0:

||M ′

K(I)−M(I)|| ≤ γK+1r0 (18)

where 1− γ is the rate of convergence.

In particular, M ′

K(I) → M(I) if K → +∞.

We verify that γ < 1 on synthetic data in Section 8.2.

The required number of training samples can be com-

puted in a similar fashion as in the previous section, us-

ing the same ball-counting arguments. The only difference

is that in the general case, since the rate of convergence is

slower due to the additional factor 2RL2, more training sam-

ples are required:

N(ǫ, R, L1, L2, β) = O

[

(

L2

βL1

)d
log r0/ǫ

log 1/γ

]

(19)

However, compared to Eqn. (12), they are of the same order.

7 Possible Extensions to Algorithm 1

Using features. Instead of the raw image I , one can also use

features φ(I) for nearest-neighbor search. In this situation,

L1 and L2 are defined between the feature space and the

parameter space:

L1||φ(I)− φ(I ′)|| ≤ ||M(I)−M(I ′)|| ≤ L2||φ(I)− φ(I ′)||
(20)

With this definition, Theorem 1 and Theorem 2 still hold. A

good image feature corresponds to a smaller ratio of L2/L1.

This means that the feature metric is more correlated to the

parameter metric. If they are perfectly correlated (L1 = L2),

then fewest training samples are required.

Using generative approaches as the second stage. When

the parameter estimation is very close to the true value, one

could use a generative approach to save samples without be-

ing trapped into local optima. In such a case, Algorithm 1

can be regarded as a discriminative approach that gives a

good initialization.

KNN nearest-neighbors. In practice, due to the constant

factor (L2/βL1)
d, the N given by Eqn. (19) can still be a

large number. In this situation, using KNN nearest-neighbors

with weighted voting (i.e., kernel regression) can further re-

duce the required samples, as shown in Fig. 5(e).

Fast nearest-neighbors. For N training samples and K iter-

ations, the time complexity of a naı̈ve implementation of Al-

gorithm 1 is O(NK). Currently it takes 5 seconds for a rec-

tification of 300 by 300 image with N = 1000 training sam-

ples and K = 20 iterations using our unoptimized Matlab

codes on a Pentium Core 2 machine with a single core. How-

ever, many methods used in retrieving approximate nearest-

neighbors, such as locality sensitive hashing (LSH), can be

applied to reduce the complexity substantially.

Incorporating temporal knowledge. Although Algorithm 1

does not assume temporal relationship between two distorted

images, when dealing with distorted video sequence, tempo-

ral continuity can be easily incorporated as follows: after the

parameter p̃t of the current frame It is estimated, we add a

new synthetic training pair (p̃t, Ip̃t
) to the training set and

proceed with the next frame It+1. If p̃t is an accurate es-

timation, then It+1 is similar to Ip̃t
by temporal continuity

and will be pulled-back directly near the origin (template) in

just one step. If p̃t is not accurate, adding a perfectly labeled

training pair will not hurt the performance of the algorithm

and does not cause drifting that often occurs in frame-to-

frame tracking approaches.

Active training samples. It is possible to include new train-

ing images using the generating function G after the test

image is known. The temporal continuity described above

is an example. More generally, the parameters p̃ estimated

by any regression-based method (e.g., Relevant Vector Re-

gression [1] or Gaussian Processes [38]), associated with the

synthetic image Ip̃ can be used as a training pair. Multiple

regressors may also be used. Then, our algorithm simply se-

lects the one closest to the test in the image metric. Note this

is similar in spirit to [22] in which multiple regressors are
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Fig. 4 Some template images used in synthetic experiments. (See Section 8)
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Fig. 5 The effects of four different factors on the performance of the algorithm in terms of relative squared error ||ptrue−p̃||22/||ptrue||22. (a) Average

convergence behavior computed over all test images. (b) The more training images, the better the performance. Note our method performs much

better than nearest-neighbor given the same number of samples. (c) Estimation is more accurate if the training samples are more concentrated near

the origin (template). (d) Performance drops when the test image is significantly more distorted than all the training images (The black dotted

line shows the average magnitude of distortions ||ptr|| in the training images). (e) Using KNN-nearest-neighbor with weighted voting reduces the

number of training samples further.

used for candidate predictions which are then verified by a

generative approach.

8 Analysis of the algorithm using simulations

8.1 Data synthesis

In order to verify the properties of our algorithm, we per-

form synthetic experiments where the true distortion param-

eters are known. We simulated distortions on 100 randomly

selected images, some of which are shown in Fig. 4. The

warps are of the form given by Eqn. (5), where B(x) are

composed of d = 20 orthonormal bases computed by apply-

ing PCA on randomly generated smooth deformation fields

by Gaussian Processes. For each of the 100 template im-

ages, we synthesize N = 1000 distorted images for the

training set and 10 for the test set. Note that a total of 1000

test samples are involved in the simulation and should be

sufficient to justify our approach. Algorithm 1 is applied to

each test image to obtain the relative (squared) error e =

||ptrue − p̃||22/||ptrue||22.

In the following, we discuss how to generate the warping

bases and training samples.

Generation of PCA bases. The Gaussian Processes used

to generate deformation field has zero mean and covariance

function k(x1,x2) = exp
(

−||x1 − x2||2/2σ2
)

. x1 and x2

are locations of pixels and σ is a hyper-parameter that keeps

the deformation smooth.

From the generated deformation field, we apply PCA

and pick the first 20 eigenvectors as the deformation bases.

The standard deviations of the 1-st and 20-th principle com-

ponents are s1 = 11.63 and s20 = 7.95 respectively. This

shows that the energy is evenly distributed among 20 dimen-

sions, and there is no degenerated dimension. We use the

standard deviation in generation of training samples.

Generation of training samples. We follow Eqn. (8) in

generating training images. Eqn. (8) says once the train-

ing images are distributed, the distance between a randomly

picked image at radius r in the parameter space and its nearby

training image should be proportional to r. Thus the density

m(r) of training samples, as a function of r, is proportional

to 1/rd, where d is the dimension of the parameter space.

m(r) only characterizes the distribution along the radial

axis. The assumption (Eqn. (8)) is in a spherically symmet-

ric form and thus we set the angular distribution of training

samples to be spherically symmetric. Thus, the radial den-

sity ml(r) (the density function after marginalizing out all

the angular components) is:

ml(r) ∝ m(r)
dVold(r)

dr
∝ 1

r
(21)
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where Vold(r) is the volume of d-dimensional sphere ||p|| ≤
r. As a sanity check, if Algorithm 1 returns the parameter

with accuracy 1/ǫ, then along the radial axis, the training

samples must be distributed along the interval [ǫ, r0]. By in-

tegrating ml(r) on this interval, we obtain:

∫ r0

ǫ

ml(r)dr ∝ log r0 − log ǫ = log r0/ǫ (22)

which is of the same order as Eqn. (12) (and Eqn. (19)).

Finally, Fig. 6 shows the distribution ml(r).

From Eqn. (21) we thus obtain an algorithm for sam-

pling training distributions. There are two practical issues.

Firstly, in order to show how the shape of training distri-

bution affects the performance, instead of directly sampling

from the distribution ml(r) (Fig. 6), we first sample r from a

uniform distribution and exponentiate r by the shape param-

eter δ. For δ > 1, this will also yield a distribution peaked

around the origin, and in particular when δ → +∞ it will

give exactly the 1/r fall-off. Secondly, instead of using a

uniform r0 for all PCA coefficients, using the standard de-

viation of each PCA basis will increase the sampling effi-

ciency.

Algorithm 2 Sampling training images

INPUT The required accuracy ǫ, the standard derivations S =
diag(s1, s2, . . . , sd) of each PCA directions, the shape parameter

δ and the number N of training samples.

for n = 1 : N do

Draw sample r from a uniform distribution on [0, 1] and expo-

nentiate r by the shape parameter δ > 1. A large δ yields peaked

distribution around the origin.

Uniformly sampling the angular coordinates by drawing v from

multivariate normal dstribution v ∼ N (0, I) and normalize v so

that ||v|| = 1.

The n-th training sample pn
tr = rSv.

end for

Note that sampling using Algorithm 2 will yield the dis-

tribution that matches the outwards decaying shape as indi-

cated by Eqn. (8). However, a fairly large number of training

samples have to be drawn to achieve the density requirement

of Eqn. (8), i.e. β < 1. The actual number of training sam-

ples depends on the complexity of manifold I, the ratio of

L2/L1 and how effective the nearest-neighbor matching is.

In this experiment, we use N = 1000 if not explicitly men-

tioned and the algorithm works well.

Fig. 5(a) shows the successful convergence of our algo-

rithm averaged over all the test images. Fig. 7 shows ex-

ample images warped with different magnitudes of distor-

tion and the computed rectified images. Particularly, notice

0

D
en
si
ty

Fig. 6 The radial density distribution ml(r) of training samples. Sam-

pling from ml(r) (Algorithm 2) will yield the distribution that has the

same shape as Eqn. (8) (yet β could be larger than 1). On the other

hand, β, or the density of the distribution, is determined by the number

of samples drawn.

Distorted/Rectified, |p| = 20                     Distorted/Rectified, |p| = 30 

 Distorted/Rectified, |p| = 40                    Distorted/Rectified, |p| = 50

| |

| || |

| |

Fig. 7 Sample images distorted to various degrees and the recovered

rectified images. The template is shown in Fig. 4

the significant improvement in the most distorted example.

Fig. 8 illustrates an image distorted by a 60 degree rotation.

Even if a coarse-to-fine strategy is used, gradient-descent

methods like Lucas-Kanade can get stuck in a local mini-

mum due to the seemingly large displacement in the rotation

angle. However, our algorithm converges successfully to the

correct parameters in just 3 to 4 iterations.

8.2 Factors that affect the algorithm

There are four major factors that affect the performance of

the algorithm, including (a) the number N of training sam-

ples, (b) the number KNN of nearest-neighbors involved in

prediction, (c) the shape parameter δ of the distribution of

training images, and (d) the magnitude of distortion ||ptrue||
of the test images.

We set the default values of the four factors to be N =

1000, KNN = 10, δ = 2 and ||ptrue|| = 30. Fig. 5(b)-(e)

shows performance variations when perturbing one factor

and keeping the others constant. Fig. 5(b) shows better per-

formance is obtained with more training images. Although
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 Template            Distorted         Iteration 1(NN)      Iteration 2  

Iteration 3           Iteration 4          Convergence    Gradient-Based

Fig. 8 Successful convergence of our algorithm for affine transformed

image, given there is at least one training sample reaching that area. In

contrast, gradient-descent methods (like Lucas-Kanade [3]) get stuck

in local minima even with a coarse-to-fine strategy.
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Fig. 9 (a) The empirical distribution of relative prediction error γk
on test images in different iterations of the algorithm. 99.2% of the

γk is small than 1, justifying γ < 1 in Theorem 2; others are due

to insufficient samples. (b) The U-turn behavior in large distortion

(||ptrue|| = 50), when the resampling artifacts are severe.

nearest-neighbor behaves similarly, its performance is much

poorer for the same number of samples. Fig. 5(c) shows that

a high accuracy is obtained if training samples are concen-

trated around the origin (larger δ) given the test image is

within their range, as supported by the theoretical analysis.

Conversely, the performance drops gradually if a test image

is far away from the training set (Fig. 5(d)). Finally, Fig. 5(e)

shows that given the same set of training samples, perfor-

mance is better for KNN nearest-neighbor with large KNN.

In other words, for the same performance, the parameter pre-

diction using multiple neighbors requires fewer samples.

Verifying γ < 1 in Theorem 2. Fig. 9(a) shows how the

distribution of relative prediction errors on the test images

changes over iterations. The relative prediction error is de-

fined as γk ≡ ||pk
true − p̃k

tr||/||pk
true||, which corresponds to

γ in our theoretical analysis in Theorem 2. For 99.2% of

the simulated distortions, the number of samples (1000) we

used are sufficient and γk < 1, indicating the algorithm’s

convergence. For the remaining 0.8%, the simulated distor-

tions were too large and without sufficient training samples,

hence γk ≥ 1 . The distributions of γk show that the rate of

Mild distortion (||p|| = 20)

ρP No occ 10% 20% 30% 40% 50%

l2-norm 0.0646 0.0644 0.0668 0.0729 0.0863 0.1196

l1-norm 0.0383 0.0419 0.0476 0.0599 0.0973 0.2440

Moderate distortion (||p|| = 30)

ρP No occ 10% 20% 30% 40% 50%

l2-norm 0.0587 0.0607 0.0651 0.0751 0.0939 0.1427

l1-norm 0.0363 0.0411 0.0481 0.0649 0.1195 0.2987

Large distortion (||p|| = 40)

ρP No occ 10% 20% 30% 40% 50%

l2-norm 0.0595 0.0630 0.0703 0.0853 0.1164 0.1981

l1-norm 0.0469 0.0508 0.0630 0.1009 0.2002 0.4207

Table 1 Relative squared errors of the estimated distortion of test im-

ages with salt & pepper noise. Note ρP is the percentage of contami-

nated pixels in the test image.

Mild distortion (||p|| = 20)

ρR No occ 10% 20% 30% 40% 50%

l2-norm 0.0646 0.0686 0.0796 0.1202 0.2488 0.5146

l1-norm 0.0383 0.0417 0.0486 0.0544 0.0858 0.6513

Moderate distortion (||p|| = 30)

ρR No occ 10% 20% 30% 40% 50%

l2-norm 0.0587 0.0656 0.0825 0.1369 0.2292 0.4659

l1-norm 0.0363 0.0431 0.0510 0.0772 0.1253 0.3055

Large distortion (||p|| = 40)

ρR No occ 10% 20% 30% 40% 50%

l2-norm 0.0595 0.0729 0.1021 0.1624 0.3028 0.5437

l1-norm 0.0469 0.0563 0.0821 0.1606 0.2937 1.2850

Table 2 Relative squared errors of the estimated distortion with rectan-

gle occluded test images. Note ρR is the percentage of occluded pixels

in the test image.

convergence slows down with increasing iterations. This is

because more samples would be required around the origin

to achieve a higher accuracy.

Performance under severe image resampling artifacts.

Recall that resampling artifacts are not considered in our

theoretical analysis. For large distortions where resampling

artifacts can be overwhelming, our algorithm may not have

the desired behavior. Interestingly, for many such cases, the

observed difference between the rectified image and the tem-

plate has the same shape as the actual distance between the

true parameters and the estimated parameters (see Fig. 9(b)).

Hence, we conjecture that the solution that produces mini-

mum error in the image metric among many iterations will

be a reasonable one, which is used as the stopping criterion

in the real experiments.

8.3 Performance in the presence of noise and occlusion

We also check the usability of our method in the presence

of noise and occlusion. In this experiment, we use the same

100 images as in Section 8.1. For each image, 1000 sam-
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(a) Performance under occlusions
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Fig. 10 Distorted test images with noise/occlusion and their rectifica-

tions. (a) Distorted images with rectangle-shaped occlusion. (b) Dis-

torted images with salt & pepper noise. Despite a large portion of the

distorted image is contaminated, our algorithm still obtains a reason-

able estimation of the distortion parameter and rectifies the image cor-

rectly. In all the results, we use the setting ρ = 30% and ||p|| = 30.

Note the algorithm is run on grayscale images and color is used here

merely for illustration. (Best viewed in color)

ples are generated as training and 10 samples as testing.

Each test image is contaminated with salt & pepper noise or

rectangle-shaped occlusion before our algorithm is applied.

To generate the salt & pepper noise, we randomly choose

a portion ρP of pixels in the test image and set their val-

ues randomly (uniformly distributed in [0, 1]). In the case of

rectangle-shaped occlusion, we choose a random position of

a rectangle whose area is a portion ρR of the entire image,

and fill in this rectangle with random noise that is uniformly

distributed in [0, 1]. We use two pixel-wise image metrics, l1
and l2-norm on grayscale images, for nearest-neighbor.

Table 1 and Table 2 show our method is relatively robust

to noise and occlusion in both cases. When the noise level is

10%-30%, our method still gives a reasonable estimation of

distortion, with slightly increased squared prediction errors

in the parameter space. Especially, l1 metric performs bet-

ter than l2 metric in the rectangle-shaped occlusion case for

occlusion rate up to 40%. Our method contrasts with many

gradient-based approaches, in which a robust distance mea-

sure or a reweighting scheme has to be involved, and the

initial parameters have to be carefully chosen.

9 Application I: Imaging through Water

The shapes of many deformable and time-varying interfaces

between two media with different refraction indices, such

as water surface, are very hard to measure directly. By per-

ceiving the distortion of underwater scene, human vision can

sense the fluctuation of the water surface qualitatively. In the

following, we show that using Algorithm 1, we can estimate

quantitatively the shape of the water surface, given both the

camera

scene

water 

surface

h(x, t)

x

x + Wt (x)

normal

Fig. 11 Image formation in the presence of water distortion. The scene

pixel at x+Wt(x) is perceived at location x in the distorted image.

appearance of the underwater scene when the water surface

is still and a distorted image due to water fluctuation. This

approach also works for a distorted video sequence by ap-

plying the same algorithm per frame. As a result, the shape

of the water surface can be estimated over time.

9.1 Distortion Bases

Since the water distortion is caused by the bending normals

of the water surface, its distortion bases can be obtained

by physical simulation of water. According to Snell’s law

(Fig. 11), under first-order approximation, we can relate the

distortion Wt(x) to the height h(x, t) of the water surface at

each time t:

Wt(x) = η∇h(x, t) (23)

where η is a constant related to water height h0 when the

water surface is still, and relative refraction index between

air and water. When the maximum surface fluctuation

max
x,t

|h(x, t)− h0| (24)

is small compared to h0, the water surface is governed by

the following wave equation:

∂2h(x, t)

∂t2
= c2∇2h(x, t) (25)

where c =
√
gh0 is the velocity of wave (g is the gravity).

To simulate the wave equation, we use forward Euler

method with a periodic boundary condition. This strategy is

easy to implement and stable for small time step ∆t:

h(x, t+∆t) = 2h(x, t)−h(x, t−∆t)+c2∇2h(x, t)(∆t)2

(26)

where ∇2h(x, t) is the Laplacian operator on the water height

image at time t. The initial conditions h(x, 0) and h(x, ∆t)
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Fig. 12 Two samples of 2-D Gaussian processes used as the initial

conditions of the wave simulator (Eqn. (25)).

are chosen to be a spatially correlated Gaussian Processes

in a 2-D grid, as illustrated in Fig. 12. More specifically,

h(x, 0) and h(x, ∆t) are sampled from a multivariate Gaus-

sian distribution N(h01, Σ) with each entry of the covari-

ance Σx,x′ inversely proportional to the spatial distance be-

tween x and x′:

Σx,x′ = exp

(

− ||x− x′||2
2σ2

synthesis

)

(27)

Note both the mean and variance of the Gaussian distri-

bution are independent of the absolute coordinates of spa-

tial locations. Thus the resulting initial condition is spatially

stationary. σsynthesis is set by visually comparing the ap-

pearance of a known underwater planar scene at the bottom

of the water tank with that from simulations. Importantly,

σsynthesis is independent of the underlying scene. In the sim-

ulation, we set c = 0.8 pixel/frame and σsynthesis = 10 pix-

els.

The simulator gives the time-evolving shape of the wa-

ter surface. Since the initial condition is spatially stationary,

and the wave equation is a time-invariant partial differen-

tial equation, we conclude that the evolving water surface

is both temporally and spatially stationary. Thus, it suffices

to capture the statistical properties on local patches. Based

on this insight, we randomly sample space-time coordinates

(x, t) and extract spatial patches (57 × 40) from Wt cen-

tered at x. Then PCA is applied to these sampled patches

to obtain the first 20 orthogonal principle modes B(x) =
[b1(x),b2(x), . . . ,b20(x)] of water distortion, which we

call water bases as shown in Fig. 13. The standard devia-

tions of the 1-st and 20-th principle components are 610.08

and 42.82 respectively. By construction, the bases are trans-

lation invariant.

9.2 Experimental Setup

The water experiment consists of video camera observing

vertically downward a 0.5m deep semi-transparent water tank

with a planar scene at the bottom. The tank is illuminated

from the side to avoid any surface reflections that are not

modeled. The water surface is manually disturbed using a

plastic ruler. The planar scene includes fonts of various sizes

X  component

Y  component

Fig. 13 The water bases B(x) = [b1(x),b2(x), . . . ,b20(x)]. For

both x and y components, the bases are sorted by their eigenvalues

in a descending order, from left to right and from top to bottom.

and natural textured underwater scene. The average dimen-

sion of distorted video sequences is around 350 × 250 with

500 frames. The variations of the dimension are due to a

manual preprocessing step to trim the image boundaries cor-

responding to the water tank.

We use the image taken under flat water surface as the

template. Since the water distortion is local, we partition the

image into overlapping patches and apply Algorithm 1 with

the water bases (Fig. 13) on each patch to obtain a local de-

formation field. The image distance is computed using l1
metric in grayscale after normalizing the pixel intensity into

[0, 1]. 10000 training samples are synthesized from the tem-

plate using the water bases, densely distributed around the

original but sparsely elsewhere, as described in Section 8.1.

For each distorted patch in the video sequence, 15 iterations

are performed to obtain the parameter estimation on the wa-

ter bases. Then these local deformation fields are stitched

together, resulting in a global deformation field. At the over-

lapping regions between patches, we average the local de-

formation fields given by neighboring patches to obtain a

smooth transition.

9.3 Results

Rectification of distorted images. We compared our al-

gorithm to several previous representative techniques: free-

form non-rigid image registration using B-splines [23], our

previous work of water tracking [34] and a baseline approach

in which we compute and match HOG (Histogram of Gra-

dient) descriptors and interpolate the sparse correspondence

using thin-plate interpolation to create a dense deformation
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Distorted images    Feature Matching  B-spline registration  Water Tracking      Our approach           Template 

Fig. 14 Rectification of water distortion on text images of different font sizes (from the top row to the bottom row: MiddleFonts, SmallFonts

and TinyFonts). Our approach outperforms HOG (Histogram of Gradient) feature matching, B-spline nonrigid registration [23] and yields slightly

better results with water tracking [34]. However, water tracking relies on the entire video frames, while ours only needs two images.

Fig. 15 Tracking a video sequence using estimated deformation fields. Although the underlying fish images are non-rigidly distorted, our method

can still track it without drifting, using only grayscale images (We show color images for better illustration). Note the contour of the object in the

first frame is manually labeled. See our website for the complete video sequence.

field. We also compare with the classic Lucas-Kanade method

with the same set of water bases plus a coarse-to-fine strat-

egy, as shown quantitatively in Section 9.4.

Fig. 14 shows the rectified images for a scene with text,

and Fig. 25, 26 shows the results for a scene with colored

textures. All the datasets, including three scenes with text

(tinyFont, middleFont and smallFont) and scenes with tex-

tures, can be downloaded in our website. Since only sparse

correspondences between two images are used, feature match-

ing gives an inaccurate interpolated deformation field and

fails to align details well. Nonrigid B-spline image registra-

tion [23] works better but fails occasionally on some image

regions due to local minima. Our previous method, water

tracking [34] produces better results than feature matching

and B-spline registration. Yet it requires a short video se-

quence (61 frames) to rectify a single frame. In contrast, our

method yields the best rectification results given only the

template and one distorted image at a time.

Video tracking. Using the estimated distortion, one can find

the corresponding points of an object’s contour at each video

frame, which gives the tracking result as shown in Fig. 15.

We can see that although the shape of the fish undergoes

large nonrigid distortions, our method still succeeded in track-

ing its contour reliably (note the first contour is manually

labeled).

Water surface reconstruction. According to Eqn. (23), the

deformation fields are proportional to the gradient of the wa-

ter height at any time. Hence, one can recover the height of

the water surface at each time using Frankot-Chellappa inte-

gration [8] on dense deformation fields of x and y directions.

Some sample reconstructions are shown in Fig. 16.

Please check more video results on our website.
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Fig. 16 Reconstructed water surfaces (dataset: SmallFonts) by spa-

tially integrating the water distortion (Best viewed in color).

9.4 Quantitative Evaluation

In addition to visual comparisons, we also do quantitative

comparisons to further verify our approach.

9.4.1 Reprojection error on images

Without groundtruth deformation fields, a convenient eval-

uation is to check whether the rectified frames concide well

with the template, which is the image reprojection error.

We compare our method with B-spline registration [23] and

Lucas-Kanade registration using the same water bases (Fig. 13)

and a coarse-to-fine strategy to avoid possible local minima.

To measure the distance between a rectified image I and the

template T , we compute the root-mean-square reprojection

error RMSintensity as follows:

RMSintensity =

√

1

n

∑

x

(I(x)− T (x))2 (28)

where n is the number of pixels in each image. Note the im-

age intensity is normalized into [0, 1] before different algo-

rithms are formally applied. For a video sequence, we com-

pute RMS for each frame and take the mean value over time.

Table 3 shows the result. We can see even with the same

bases, Lucas-Kanade still gets trapped into the local minima

and fails to give a low reprojection error. B-spline works

better yet our method performs the best.

Dataset Distorted

video

Lucas-

Kanade

B-spline

[23]

Our

method

TinyFonts 0.0720 0.0618 0.0553 0.0444

SmallFonts 0.1029 0.0624 0.0512 0.0461

MiddleFonts 0.1551 0.1092 0.0640 0.0597

Fish 0.0995 0.0831 0.0584 0.0527

Table 3 Comparison of the image reprojection error on different meth-

ods. All the errors are computed using RMS (See Eqn. (28)) and the

mean RMS over the entire video sequence (500 frames) is shown in the

table. Note the pixel intensity is normalized into [0, 1] before different

algorithms are applied. Thus the maximal possible reprojection error is

1 (black versus white images).

Template Frame #10 Frame #20

Fig. 17 Samples of landmark-labeled frames in dataset MiddleFonts.

Note the video frames and the template are 253 by 293. The first 30
frames are manually labeled, each with 232 landmarks.

9.4.2 Reprojection error on landmarks

The image reprojection error is not a perfect performance

measure; a distortion estimation algorithm may result in lower

errors by arbitrarily rearranging the pixels without consid-

ering the spatial smoothness constraints. To further verify

our method, we manually label m = 232 landmarks on the

first 30 frames of one of the underwater dataset, Middle-

Fonts (See Fig. 17 for sample labels), and compute root-

mean-square error RMSspatial between the landmark posi-

tions {xt
i} transformed from the template to the distorted

frame using the estimated deformation field, and the land-

mark positions {xd
i } that are labeled on the distorted frame:

RMSspatial =

√

√

√

√

1

m

m
∑

i=1

||xt
i − xd

i ||22 (29)

Similarly, we compute mean RMS over 30 labeled distorted

frames. Table 4 shows the results. We can see our method

gives the smallest errors (measured in pixel), while other

generative approaches, such as Lucas-Kanade (with the same

set of bases) and B-spline, gives at least 60% higher errors.

Since the landmark correspondence is sparse, we also test

the performance of feature matching using HOG descrip-

tor. To minimize the matching ambiguity and using the prior

knowledge that the landmark positions are fluctuated around
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Distorted

video

Lucas-

Kanade

Feature

matching

B-spline

[23]

Our

method

mean RMS 6.3404 5.2040 3.9282 3.8212 2.5142

Table 4 Comparison of the landmarks reprojection error on different

methods. All the errors are computed using Eqn. (29) and in the table

the mean error over the 30 labeled video frames of the Middle-Font

dataset is shown. See Section 9.4.2 for detailed descriptions of each

listed method.

0 5 10 15
0

200

400

600

800

1000

1200

Displacement Error (pixel)

C
o

u
n

t

 

 

Original Distortion

Lucas−Kanade

Feature Matching

B−spline

Our approach

Fig. 18 Histograms of landmark displacement errors using different

methods over 30 labeled frames, each with 232 landmarks. The dis-

placements in the distorted images (blue solid line) follow a flat and

Gaussian-like distribution. All the methods aim to push the distribu-

tion towards the origin. The Lucas-Kanade method (magenta line with

triangle) produces a error distribution with a heavy tail, indicating that

it often converges to local optima and many landmarks fail to align

well. Local dense feature matching (green line with circle) works bet-

ter, but the local ambiguity of HOG features leads to inaccuracy in the

alignment, as indicated by the sharp peak of the distribution located

at a region of positive errors. B-spline registration [23] (dashed red

line) works even better using a more powerful optimization technique

(BFGS) but still not as good as our method (black line with cross)

whose error distribution is more concentrated near the origin and with

a thinner tail.

their positions in the template, we match each HOG descrip-

tor located at x in the template with all the densely extracted

descriptors located in the vicinity of 11 pixels in the dis-

torted frame, and pick the best one as the matching result.

This approach yields better results than Lucas-Kanade and

comparable to B-spline, yet is still not as good as our ap-

proach. Finally, Fig. 18 gives a more detailed analysis of the

error distribution of different methods.

10 Application II: Cloth Deformation

Another interesting application of Algorithm 1 is to estimate

nonrigid cloth deformation. Given a video sequence with

deforming cloth, the goal is to estimate a dense and time-

varying deformation field between different frames, which

can be used for video tracking and 3D reconstruction.

10.1 Global motion and local deformation

In general, since cloth deformation behaves more globally

than water distortion, we use the following two-stage ap-

proach. In the first stage, we downsample the original video

(720× 480) by a factor of 2, apply local affine bases of size

200 × 200 and estimate its 6 parameters using our method.

This gives a coarsely undistorted video sequence. In the sec-

ond stage, we apply local random bases (100×100) with 40

dimensions to the undistorted sequence, and obtain the final

distortion estimation by distortion composition. We build

our own dataset acquired by manually perturbing a piece of

silk cloth with repetitive heart patterns.

In addition, we apply our method on the dataset offered

by the authors of [33] to obtain the dense deformation field,

which is used to reconstruct the 3D shape of the cloth. For

their datasets, we use a slightly different approach. We be-

gin by first using local trackers (mentioned below) to track

reliable interest points over time and manually pick the cor-

rect trackers to obtain a coarse dense deformation field with

thin-plate interpolation. Then local random bases are again

applied on the coarsely rectified video sequences for refined

estimation.

The local tracker. The local tracker we used is also based

on Algorithm 1. Given an interest point in the template (usu-

ally is the first frame of the deforming cloth sequence), a lo-

cal patch around it is cropped and 200 samples are generated

using affine warps. During tracking, we initialize the posi-

tion of the tracker as its position in the previous frame and

extract the patch around it, on which Algorithm 1 applies

to obtain the local deformation field that gives the position

of the tracker in the current frame. With an illumination-

invariant metric, this local tracker is robust to the shading

effects in the cloth video sequence. As a result, many of

the tracking trajectories are reliable and useful throughout

the video sequence. By manually picking the good ones, a

coarse yet representative deformation field can be built.

10.2 Results

Fig. 20 shows some sample frames of a rectified video se-

quence produced by our method on a piece of cloth with
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X-component

Y-component

Fig. 19 Estimated deformation fields for the cloth sequence with repet-

itive heart patterns. The first row shows the x-component while the sec-

ond row shows the y-component. The linear part in distortion fields is

the affine component, while the nonlinear part is the nonrigid compo-

nent. (Best viewed in color)

Video sequence of deforming cloth

Rectified frames using our approach

Rectified frames using B-spline registration

Fig. 20 Rectification of cloth deformation using different methods.

The first row shows the original video frames, the second row shows

the rectified video frames by our approach, and the last row shows the

rectification by B-spline registration [23]. As a generative approach, B-

spline registration converges to local minima; while our approach gives

good distortion estimation and rectifies the deformation correctly.

repetitive heart patterns. B-spline registration [23], as a gen-

erative approach, goes into local minima in multiple frames,

while our approach does not. Please watch the entire video

sequence on our website for a more thorough comparison.

Fig. 19 shows the estimated deformation fields. The affine

components are shown as the linear part of the deformation

fields, while the nonrigid components are shown as the non-

linear part, as clearly illustrated in this figure.

Fig. 21 shows the established correspondence on the data-

set from [33]. Our method captures the wavy structure on

the cloth in the first dataset and the bending structure in the

second dataset throughout the video sequence. The 3D re-

construction of the dataset can be found in [33].

11 Conceptual comparisons with previous methods

As mentioned before, our method is conceptually different

from many existing methods. In the following, we describe

this difference in a case-by-case study. To make the com-

parison and illustrations clear, we assume one-dimensional

parameter space. In such a case, all distorted images gen-

erated from the distortion model form a one-dimensional

manifold I (Eqn. (2)), shown as a curve in the image space

(Fig. 22(a)). The template (p = 0), the training samples and

the distorted test image Ip are identified as points on the

curve.

Generative/discrimative approaches. Fig. 22 shows the fun-

damental difference between our approach and generative

and discriminative approaches in the image space. Genera-

tive approaches initialized from the template (p̃ = 0) con-

verge to local optimum due to the complicated nonlinear

structure of the manifold I, as shown in Fig. 22(b). On the

other hand, discriminative approaches can get the global op-

timum given the condition that the training samples densely

cover the manifold I, as shown in Fig. 22(c). This may not

be a big deal if the manifold is one-dimensional, but will

require enormous number of training samples in the high-

dimensional case. Our approach achieves the same accuracy

with an iterative strategy and much fewer training samples

distributed in a radially decreasing way. The samples, espe-

cially those close to the origin, are heavily reused. While

the maximum distance of two nearby training samples has

to be O(ǫ)-close in the discriminative case, the maximum

distance between two training samples in our approach is

only required to be smaller than the “gap” of the curve and

independent of the prediction accuracy. The gap is implic-

itly encoded in the two universal constants L1 and L2 in

Eqn. (7).

Combining generative and discriminative approaches.

Fig. 23(c)-(d) shows the difference between our method and

previous methods combining the two approaches. Fig. 23(c)

shows the heuristic that uses the discriminative approach as

the initialization of the generative approach still leads to

local minima, while our approach converges to the global

optimum with the same distribution of training samples, as

shown in Fig. 23(d). Although we do not guarantee global

convergence with too few training samples, our approach

fails only if the nearest-neighbor estimation is globally wrong,

for example, predicting large negative values when the true

parameter is large positive in 1-D case. In contrast, the way

that the previous methods combine both approaches, as a

generative approach by nature, is more sensitive to the local

bumpy structures of the manifold I.
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Fig. 21 Estimated 2D mesh on the video sequence of deforming cloth using our approach. The dataset in the first and the last row come from [33],

while the dataset in the middle row comes from [25]. (Best viewed in color)
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J(p) = Min Ip – Ip

p

Local 
optimum

~

Gen. Approach Dis. Approach

Training Samples

NN

~ ~ Ip

(b) (c) (d)

Template

*

Our Approach

NN

>> ε

Ip

**

Image Space

Template

Ip , p unknown

p curve

*

(a)

Training Samples

Fig. 22 Comparison with generative/discriminative approaches, illustrated in the image space. (a) The image space. The curve parameterized by p

is the set of all the distorted images I generated from the distortion model (Eqn. (2)), assuming one-dimensional parameter space. (b) Generative

approaches initialized at the template (p̃ = 0) converge to the local optimum. (c) Discriminative approaches obtain an ǫ-accurate estimation, if

the training samples densely cover the curve. (d) With much fewer samples than the discriminative approaches, our approach obtains the same

accuracy by iteratively refining the parameter estimation, as illustrated by the dashed red arrows.

Using warp-back strategies. Fig. 23(a)-(b) shows the fun-

damental difference between our approach and previous meth-

ods [35,2,10] with a similar strategy of successively warping-

back. An energy minimization framework is commonly used

in those methods. The standard gradient descent approach

yields a trajectory of less distorted images until it reaches

the template. By the formulation, the following two condi-

tions have to be met: (a) the warp-back operations are in the

warping family; (b) all the images on the trajectory have to

be on the manifold I, which is the set of all distorted images

generated from the distortion model. This is only possible if

the warping family forms a group.

For non-invertible distortion, if one condition is met then

the other is broken. This is the reason why previous methods

cannot handle non-invertible distortion as shown in Fig. 23(a).

However, our method can handle it by properly relaxing the

condition (b) so that (1) the trajectory of less distorted im-

ages is allowed to be off the manifold yet (2) the trajectory

converges to the manifold I when the parameter estima-

tion is close to the true value, and is guaranteed to hit the

template if the parameter estimation is perfect, as shown in

Fig. 23(b).

Sample distribution. The convergence property of our al-

gorithm is independent of the location of the test samples

within the sphere ||p|| ≤ r0, if the training samples are dis-

tributed as explained in Section 5.2. In other words, we at-

tain the guarantee of the worst-case performance. This dif-

fers from many previous methods that only work for a given

prior distribution. Furthermore, if the distribution of the pa-

rameters of real-world deformations of an object is known

a priori, then it can be combined with our sampling strategy

to reduce the number of training samples even further.
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Fig. 23 Left: Comparison with previous works [35,2,10] that also use warp-back strategy, illustrated in the image space. (a) Previous methods

use a restricted formulation that requires both the intermediate distorted images on the curve and the warp-back distortions in the warping family,

which is only possible for warping families that form a group. (b) Our approach allows the undistorted image off the curve during iterations and

still achieves global convergence. Right: Comparison with other methods that combine the generative and discriminative approaches. (c) Using

the discriminative approach to initialize the generative approach [26,31] still leads to local convergence due to the local irregularity of the curve.

(d) Using the same training set, our method converges to the global optimum.
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Fig. 24 Two important failure cases. (a) One-to-many mapping case.

The manifold I is (almost) self-intersecting. As a result, two similar

images have very different parameters, one large positive and the other

large negative. If we pull-back the test using the wrong parameter, then

Algorithm 1 diverges. Note this does not violate Theorem 2 since in

such cases, L2 → +∞ and many more train samples are required

especially near the ambiguous region to ensure each time the nearest-

neighbor procedure picks the correct one. (b) The test distorted image

is not on the curve. In such a case, the pull-back bound does not hold

(Eqn. (17)). As a result, the image sequence of successive warping-

back does not approach the manifold I and Algorithm 1 is not guaran-

teed to converge. This often happens in the case of occlusion, resam-

pling artifacts or an incomplete distortion model. Yet we empirically

show that in such cases, Algorithm 1 still gives decent results.

12 Failure cases

Algorithm 1 works if Eqn. (7) holds universally within the

sphere ||p|| ≤ r0. In the case of large distortions (r0 large),

the two positive constants (L1 and L2) take on their extreme

values (0 and +∞) and an infinite number of samples would

be required. Eqn. (17) can also fail due to resampling arti-

facts in large distortions. Although our analysis ignores oc-

clusions, it is possible to handle small occlusions using a

more robust image distance metric (e.g., l1-norm as shown

in Section 8.3), but for substantial occlusions, an explicit

model would be required. Some of the failure cases are sum-

marized in Fig. 24.

13 Future Work

Although the accuracy (1/ǫ) is decoupled from the dimen-

sion d of the parameter space, in Eqn. (19) there is still a con-

stant term that exponentially varies with d. To further reduce

the required number of samples, a local distortion model

may be used as in the case of our real experiments. How-

ever, better results can be obtained if we consider the cor-

relations of distortions among nearby image regions. Better

performance can also be obtained by using more distinctive

features instead of raw image pixels for the nearest-neighbor

search. In many scenarios, the bases B(x) can be learned

rather than be given beforehand. Finally, as a general frame-

work, our method can potentially be used to avoid local min-

ima in optimization tasks.

The algorithm can be used in many more applications,

such as optical scanning of text, human pose estimation,

marker-less motion capture and air turbulence. Yet in each

case, more works need to be done to handle application-

specific problems, such as self-occlusion, aliasing, cluttered

background and so on.
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Distorted images

Feature Matching

B-spline registration

Our approach

Template

Fig. 25 Rectification of water distortion on 3 different colored texture images. Our method yields the best rectification. Detailed comparison is

shown in Fig. 26 (Best viewed in color).
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Distorted images

Feature Matching

B-spline registration

Our approach

Template

Fig. 26 Detailed comparision between our approach and previous works [23]. (Best viewed in color)
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Appendix A

Proof of convergence of Algorithm 1 to the Global Optimum

Deformation 

manifold
Template

* *
pull-back operation

Fig. 27 Illustruation of Theorem 3.

Theorem 3 (The global convergence of Algorithm 1 in the invertible warping case.) If Eqn. (7) and (8) hold and β < 1,

then Algorithm 1 computes an estimated mapping function M ′

K(I) ≡ p̃K
tr =

∑K

k=0 p
k
tr so that for ||M(I)|| ≤ r0:

||M ′

K(I)−M(I)|| ≤ βK+1r0 (30)

where 1− β is the rate of convergence. In particular, M ′

K(I) → M(I) if K → +∞.

Proof (Proof of Theorem 3) We set p̂k ≡ M(Ik), where p̂0 ≡ M(I0) is what we want to know. The estimation residual is

pk ≡ p̂0 − p̃k−1
tr = p̂0 −

∑k−1

j=0 p
j
tr, and particularly p0 = p̂0.

In the following, we prove by induction that the norm of the residue ||pk|| ≤ rk ≡ βkr0 for any k.

Base case. In the base case, we have ||p0|| = ||p̂0|| ≤ r0 by the condition of this theorem.

Inductive case. Assume those conditions hold for k, in the following we prove they also hold for k + 1. Since Ik =

H(I0, p̃
k−1
tr ) = Ipk lies within the manifold I, by the dense condition Eqn. (8), there exists a training sample Iktr,a ∈ I that

is close to Ik:

||Ik − Iktr,a|| ≤
β||pk||
L2

(31)

That means for rectified image Ik at iteration k, there is at least one training sample that is close to it. Thus, the nearest-

neighbor Iktr of Ik must be even closer:

||Ik − Iktr|| ≤ ||Ik − Iktr,a|| ≤
β

L2

||pk|| (32)

Thus their parameter is also close according to Eqn. (7):

||M(Ik)− pk
tr|| = ||pk − pk

tr|| ≤ β||pk|| (33)

which means the difference of current residue pk and its estimation pk
tr is bounded by β||pk||. Note such difference pk −pk

tr

is precisely the residue pk+1 in the next iteration. By the induction hypothesis, we have:

||pk+1|| ≤ β||pk|| ≤ β2||pk−1|| ≤ . . . ≤ βk+1r0 → 0 (34)

⊓⊔
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Fig. 28 Illustruation of Theorem 4.

Theorem 4 (The global convergence of Algorithm 1 in the general warping case.) If Eqn. (15), Eqn. (16), Eqn. (17) and

Eqn. (8) hold and γ ≡ 2α+β < 1 (where α = RL2 and R is defined in Eqn. (17)), then Algorithm 1 computes an estimated

mapping function M ′

K(I) ≡ p̃K
tr =

∑K

k=0 p
k
tr so that for ||M(I)|| ≤ r0:

||M ′

K(I)−M(I)|| ≤ γK+1r0 (35)

where 1− γ is the rate of convergence. In particular, M ′

K(I) → M(I) if K → +∞.

Proof (Proof of Theorem 4) We set p̂k ≡ M(Ik), where p̂0 ≡ M(I0) is what we want to know. The estimation residual is

pk ≡ p̂0 − p̃k−1
tr = p̂0 −

∑k−1

j=0 p
j
tr, and particularly p0 = p̂0.

In the following, we prove by induction that the norm of the residue ||pk|| ≤ rk ≡ γkr0 for any k.

Base case. In the base case, we have ||p0|| = ||p̂0|| ≤ r0 by the condition of this theorem.

Inductive case. Assume those conditions hold for k, in the following we prove they also hold for k+1. By the pull-back

bound(Eqn. (17)), we have for Ik = H(I0, p̃k−1
tr ):

||Ik − Ipk || ≤ R||pk|| (36)

Applying Eqn. (16) and we have

||M(Ik)− pk|| ≤ RL2||pk|| = α||pk|| (37)

Note that we cannot use the dense condition (Eqn. (8)) directly to show the existence of a training sample that is close to

Ik, since Ik is not necessarily lying on the manifold I. Thus, we focus on the image Ipk instead.

If there happens to be a training sample sitting at Ipk and we happen to pick it at iteration k, then the algorithm returns

the true parameter and terminates immediately with zero error. Without relying on pure luck, by the dense condition Eqn. (8),

there exists a training sample Iktr,a ∈ I that is close to Ipk ∈ I:

||Ipk − Iktr,a|| ≤
β||pk||
L2

(38)

Using triangle inequality in the image space and we have:

||Ik − Iktr,a|| ≤
(

R+
β

L2

)

||pk|| (39)

That means for rectified image Ik at iteration k, there is at least one training sample that is close to it. Thus, the nearest-

neighbor Iktr of Ik must be even closer:

||Ik − Iktr|| ≤ ||Ik − Iktr,a|| ≤
(

R+
β

L2

)

||pk|| (40)
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Thus their parameter is also close according to Eqn. (16):

||M(Ik)− pk
tr|| ≤ (RL2 + β)||pk|| = (α+ β)||pk|| (41)

Finally, applying triangle inequality again on Eqn. (41) and Eqn. (42):

||pk − pk
tr|| ≤ (2α+ β)||pk|| = γ||pk|| (42)

which means the difference of current residue pk and its estimation pk
tr is bounded by γ||pk||. Note such difference

pk − pk
tr is precisely the residue pk+1 in the next iteration. By the induction hypothesis, we have:

||pk+1|| ≤ γ||pk|| ≤ γ2||pk−1|| ≤ . . . ≤ γk+1r0 → 0 (43)

⊓⊔
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Appendix B

The pull-back operation H

The pull-back operation H is a generalized version of inverse operation for non-invertible warping. Similar to the gener-

ating function (Eqn. (3) and Eqn. (4)), the pull-back operation is also an image transform that takes one image Iinput and one

parameter p, and outputs another image Ioutput. The pull-back operation differs from the generating function in the sense

that it is operated in the reverse direction.

For example, in the forward case, while the generating function GF(Iinput,p) of warping pushes every pixel x of Iinput
to the destination located at W (x,p) in Ioutput, the corresponding pull-back function HF(Iinput,p) pulls every pixel from

location W (x,p) at the image Iinput back to x at Ioutput, as shown in Fig. 29(a).

Similarly, in the backward case, while the generating function GB(Iinput,p) of warping pulls every pixel W (x,p) of

image Iinput to the location x of Ioutput, the corrsponding pull-back function HB(Iinput,p) pushes every pixel from location

x of Iinput to the location W (x,p) of Ioutput, as shown in Fig. 29(b).

From these definitions, we can see that HB = GF and HF = GB.

In both cases, an important special case is that for a distorted image Ip = G(T,p), H(Ip,q) = T for p = q, i.e.,

warping a template image T by parameter p, and pulling-back the distorted image using the same parameter, yields exactly

the template image T . This is trivial to prove from the definition of the pull-back operation, since each pixel that is pushed

forward is exactly the same pixel that is pulled back. However, this fact that “H is a point inverse function” is critical in

Algorithm 1 and the convergence analysis in Section 6.

x

W(x, p)

W(x, q)G

H

Forward Generation

x
W(x, p)

W(x, q)

G

H

Backward Generation

Image Image

Fig. 29 The mechanism of the pull-back operation H that transform Iinput to the output Ioutput via a parameter p. In the forward case, a pixel x in Iinput
is pushed to the position W (x,p) of the Ioutput by the generating function GF. The corresponding pull-back operation H do the opposite: it takes the

pixel value at W (x,q) in image Iinput, and stores it at position x in the resulting image Ioutput. In the case of p = q, the pixel pushed by G is the same

pixel pulled by H , yielding H(G(I,p),p) = T . A similar reasoning holds in the backward case.

In the general case when p 6= q, the pull-back operation H behaves not exactly like the inverse function, but is close to

it, as characterized by Eqn. (17). The following theorem shows the proof.

Theorem 5 (The Upper bound of the pull-back operation H) Suppose the (backward) distorted image Ip−q maps the

pixel at location LG in the template image T to the position y ∈ R
2, and the pulled-back image H(Ip,q) = GF(Ip,q)

maps the pixel at location LH in the template image T to the same position y. Then we have the following bound if there

exists an x so that y = x+B(x)q (Or W (x,q) is onto):

||LG − LH ||1 ≤ R′||p− q||1 (44)

where R′ = 2B0 min(B1||q||1, 2), B0 = ||B||∞ and B1 = maxj maxx max(||∇bxj (x)||1, ||∇byj (x)||1) is the gradient bound

of basis B(x) (Note: bj(x) = [bxj (x); b
y
j (x)] is a column vector at each x). Therefore, we have

||H(Ip,q)− Ip−q||∞ ≤ R||p− q||1 (45)

where R = R′Q1 and Q1 = maxx ||∇T (x)||1 is the gradient bound of the template T .
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Proof (Proof of Theorem 5) According to Fig. 29, H(Ip,q) essentially moves the pixel located at LH ≡ x+B(x)p on the

template T to the position x+B(x)q:

H : LH ≡ x+B(x)p −→ x+B(x)q (46)

This is valid for any x ∈ R
2. On the other hand, for the pixel y on the distorted image Ip−q, it comes from the pixel located

at LG ≡ y +B(y)(p− q) in the template T :

G : LG ≡ y +B(y)(p− q) −→ y (47)

Since W (x,q) is onto, there exists x so that y = x+B(x)q, then Eqn. (47) becomes

G : LG ≡ x+B(x)q+B(x+B(x)q)(p− q) −→ x+B(x)q (48)

Note the destination(right) part of Eqn. (46) and Eqn. (48) are the same (y), while the difference between the source(left)

part of Eqn. (46) and Eqn. (48) is:

LG − LH = [B(x+B(x)q)−B(x)] (p− q) (49)

so we directly have the bound ||LG − LH ||1 ≤ 4B0||p − q||1 where B0 = ||B||∞ = maxx maxj max(|bx
j (x)|, |by

j (x)|).
In addition, using intermediate value theorem, from Eqn. (49) there exists {ξx1 , ξx2 , . . . , ξxd} and {ξy1, ξy2, . . . , ξyd} on the 2D

line segment starting from x and ending at x+B(x)q so that:

Bx(x+B(x)q)−Bx(x) = qTB(x)T [∇bx1(ξ
x
1),∇bx2(ξ

x
2), . . . ,∇bxd(ξ

x
d)] (50)

By(x+B(x)q)−By(x) = qTB(x)T [∇by1(ξ
y
1),∇by2(ξ

y
2), . . . ,∇byd(ξ

y
d)] (51)

where Bx(x) = [bx1(x), b
x
2(x), . . . , b

x
d(x)] and By(x) = [by1(x), b

y
2(x), . . . , b

y
d(x)] are the x and y component of B(x).

Then:

|Lx
G − Lx

H | ≤ B1B0||q||1||p− q||1 (52)

|Ly
G − Ly

H | ≤ B1B0||q||1||p− q||1 (53)

where B1 = maxj maxx max(||∇bxj (x)||1, ||∇byj (x)||1). Hence the bound. ⊓⊔


