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Abstract

We analyze the computational problem of multi-object

tracking in video sequences. We formulate the problem us-

ing a cost function that requires estimating the number of

tracks, as well as their birth and death states. We show

that the global solution can be obtained with a greedy al-

gorithm that sequentially instantiates tracks using shortest

path computations on a flow network. Greedy algorithms

allow one to embed pre-processing steps, such as nonmax

suppression, within the tracking algorithm. Furthermore,

we give a near-optimal algorithm based on dynamic pro-

gramming which runs in time linear in the number of ob-

jects and linear in the sequence length. Our algorithms are

fast, simple, and scalable, allowing us to process dense in-

put data. This results in state-of-the-art performance.

1. Introduction

We consider the problem of tracking a variable number

of objects in a video sequence. We approach this task as

a “spatiotemporal grouping” problem, where all image re-

gions must be labeled as background or as a detection be-

longing to a particular object track. From such a grouping

perspective, one must explicitly estimate (a) the number of

unique tracks and (b) the spatiotemporal extent, including

the start/termination times, of each track (Fig.1).

Approaches to accomplishing the above tasks typically

employ heuristics or expensive algorithms that scale expo-

nentially in the number of objects and/or super-linearly in

the length of the video. In this paper, we outline a family of

multi-object tracking algorithms that are:

1. Globally optimal (for common objective functions)

2. Locally greedy (and hence easy to implement)

3. Scale linearly in the number of objects and

(quasi)linearly with video-length
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Figure 1. We treat the problem of multi-target tracking through a

perspective of “spatiotemporal grouping”, where both a large num-

ber of groups and their spatiotemporal extent (e.g., the number of

objects and their track births and deaths) must be estimated. We

show the output of an efficient, linear-time algorithms for solving

this computational problem on the ETHMS dataset [9]. In this

video clip our method returns hundreds of correct tracks, as evi-

dent by the overlaid track number.

Our contribution is grounded in a novel analysis of an

integer linear program (ILP) formulation of multi-object

tracking [14, 25, 3, 17, 2, 18]. Our work most closely fol-

lows the min-cost flow algorithm of [25]. We show that

one can exploit the special structure of the tracking prob-

lem by using a greedy, successive shortest-path algorithm

to reduce the best-previous running time of O(N3 log2 N)
to O(KN logN), where K is the unknown, optimal num-

ber of unique tracks, and N is the length of the video se-

quence. The intuition behind the greedy approach stems

from this surprising fact (Fig.2): the optimal interpretation

of a video with k + 1 tracks can be derived by a local mod-

ification to the solution obtained for k tracks. Guided by

this insight, we also introduce an approximate greedy al-

gorithm whose running time scales linearly with sequence

length (i.e., O(KN)), and is in practice several orders of

magnitude faster with no observable loss in accuracy. Fi-

nally, our greedy algorithms allow for the embedding of

various pre-processing or post-processing heuristics (such

as non-maximum suppression) into the tracking algorithm,

which can boost performance.
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2. Related Work

Classic formulations of multi-object tracking focus on

the data association problem of matching instance labels

with temporal observations [11, 6, 7, 13]. Many approaches

assume manual initialization of tracks and/or a fixed, known

number of objects [14]. However, for many real-world

tracking problems, such information is not available. A

more general spatiotemporal grouping framework is re-

quired in which these quantities are automatically estimated

from video data.

A popular approach to multi-object tracking is to run a

low-level tracker to obtain “tracklets”, and then stitch to-

gether tracklets using various graph-based formalisms or

greedy heuristics [15, 22, 16, 19, 2]. Such graph-based al-

gorithms include flow-networks [25], linear-programming

formulations [14], and matching algorithms [15]. One of

the contributions of this paper is to show that with a partic-

ular choice of low-level tracker, and a particular schedule

of track instantiation, such an algorithm can be globally-

optimal.

We rely on an increasingly common ILP formulation of

tracking [14, 25, 3, 17, 2, 18]. Such approaches restrict the

set of possible object locations to a finite set of candidate

windows on the pixel grid. Because standard linear pro-

gramming (LP) relaxations do not scale well, many algo-

rithms process a small set of candidates, with limited or no

occlusion modeling. This can produce broken tracks, often

requiring a second merging stage. Our scalable algorithm is

able to process much larger problems and directly produces

state-of-the-art tracks.

Our work relies heavily on the min-cost flow network in-

troduced for temporal data association in [25]. We compare

our results with the min-cost solver used in that work [12],

and verified that our O(KN logN) algorithm produces

identical results, and that our approximate O(KN) algo-

rithm produces near-identical results when properly tuned.

In concurrent work, Berclaz et al. describe a O(KN log

N) algorithm for multi-object tracking in [4]. It is similar

in many respects with some differences: Our graph repre-

sentation has a pair of nodes for each detection. This allows

us to explicitly model object dynamics through transition

costs, and allows for a simpler flow-based analysis. In ad-

dition, our algorithm instantiates tracks in a greedy fashion,

allowing for the integration of pre-processing steps (e.g.,

non-max-suppression) that improve accuracy. Finally, we

also describe approximate O(KN) algorithms that perform

near-identical in practice.

3. Model

We define an objective function for multi-object tracking

equivalent to that of [25]. The objective can be derived from

a generative perspective by considering a Hidden Markov

s
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Figure 2. The intuition behind our optimal greedy algorithm. As-

sume that we are tracking the ’x’ location of multiple objects over

time. On the left, we show the optimal estimate of 3 object trajec-

tories. Given the knowledge that an additional object is present,

one may need to adjust the existing tracks. We show that one can

do this with a shortest-path/minflow computation that pushes flow

from a source to a terminal (middle). The solution can reverse

flow along existing tracks to “cut and paste” segments, producing

the optimal 4-track estimate (right). We further speed up this pro-

cess by approximating such edits using fast dynamic programming

algorithms.

Model (HMM) whose state space is the set of true object

locations at each frame, along with a prior that specifies

likely state transitions (including births and deaths) and an

observation likelihood that generates dense image features

for all objects and the background.

3.1. Independent tracks

We write x for a vector-valued random variable that rep-

resents the location of a particular object, as given by a pixel

position, scale, and frame number:

x = (p, σ, t) x ∈ V (1)

where V denotes the set of all spacetime locations in a

video.

Prior: We write a single track as an ordered set of state vec-

tors T = (x1, . . . xN ), ordered by increasing frame number.

We write the collection of tracks as a set X = {T1, . . . TK}.

We assume that tracks behave independently of each other,

and that each follows a variable-length Markov model:

P (X) =
∏

T∈X

P (T )

where P (T ) = Ps(x1)
(

N−1
∏

n=1

P (xn+1|xn)
)

Pt(xN )

The dynamic model P (xn+1|xn) encodes a smoothness

prior for track location. We write Ps(x1) for the probability

of a track starting at location x1, and Pt(xN ) for the

probability of a track transitioning into a termination state

from location xN . If the probability of termination is low,

the above prior will tend to favor longer, but fewer tracks

so as to minimize the total number of terminations. If these

probabilities are dependent on the spatial coordinate of x,

they can model the fact that tracks tend to terminate near

image borders or start near entry points such as doorways.
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Likelihood: We write Y = {yi|i ∈ V } for the set of fea-

ture vectors observed at all space-time locations in a video.

For example, these could be the set of gradient histogram

features that are scored by a sliding-window object detec-

tor. We now describe a likelihood model for generating Y

given the set of tracks X . We make two assumptions: 1)

there exists a one-to-one mapping between a putative object

state x and space-time location index i and 2) tracks do not

overlap (Tk ∩ Tl = ∅ for k 6= l). Together, both imply

that a location can be ‘claimed’ by at most one track. We

write yx for the image features at location x; these features

are generated from a foreground appearance model. Fea-

ture vectors for unclaimed windows are generated from a

background model:

P (Y |X) =
(

∏

T∈X

∏

x∈T

Pfg(yx)
)

∏

i∈V \X

Pbg(yi) (2)

= Z
∏

T∈X

∏

x∈T

l(yx)

where l(yx) =
Pfg(yx)

Pbg(yx)
and Z =

∏

i

Pbg(yi)

The likelihood is, up to a constant, only dependent on

features of the windows which are part of the set of tracks. If

we assume that the foreground and background likelihoods

are Gaussian densities with the same covariance,

Pfg(yx) = N(yx;µfg,Σ) and Pbg(yx) = N(yx;µbg,Σ),

we can write the log-likelihood-ratio as a linear function

(log l(yx) = w · yx), akin to a logistic regression model de-

rived from a class-conditional Gaussian assumption. This

model provides a generative motivation for the linear tem-

plates that we use as local detectors in our experiments.

3.2. Track interdependence

The above model is reasonable when the tracks do

not overlap or occlude each other. However, in practice

we need to deal with both occlusion and non-maxima

suppression.

Occlusion: To model occlusions, we allow tracks to be

composed of state vectors from non-consecutive frames

e.g., we allow tn and tn+1 to differ by up to k frames.

The dynamic model P (xn+1|xn) for such k-frame skips

captures the probability of observing the given k-frame

occlusion.

Non-maxima suppression: When we consider a dense set

of locations V , there will be multiple tracks which score

well but correspond to the same object (e.g., a good track

shifted by one pixel will also have a high probability match

to the appearance model). A complete generative model

could account for this by producing a cluster of image fea-

tures around each true object location. Inference would “ex-

plain away” evidence and enforce exclusion. In practice, the

typical solution is to apply non-max suppression (NMS) as

a pre-process to prune the set of candidate locations V prior

to multi-object tracking [19, 6, 14, 25].

In our experiments, we also utilize NMS to prune the set

V and as a heuristic for explaining away evidence. How-

ever, we show that the NMS procedure can be naturally

embedded within our iterative algorithm (rather than as a

pre-process). By suppressing extra detections around each

track as it is instanced, we allow for the possibility that the

prior can override the observation term and select a win-

dow which is not a local maxima. This allows the NMS

procedure to exploit temporal coherence. The recent work

of [2] make a similar argument and add an explicit non-

overlapping constraint to their ILP, which may sacrifice

tractability. We demonstrate in Sec. 6 that our simple and

fast approach produces state-of-the-art results.

4. MAP Inference

The maximuim a posteriori (MAP) estimate of tracks

given the collection of observed features is:

X∗ = argmax
X

P (X)P (Y |X) (3)

= argmax
X

∏

T∈X

P (T )
∏

x∈T

l(yx) (4)

= argmax
X

∑

T∈X

logP (T ) +
∑

x∈T

log l(yx) (5)

We drop the constant factor Z and take logarithm of the ob-

jective function to simplify the expression while preserving

the MAP solution. The above can be re-written as an Integer

Linear Program:

f∗ = argmin
f

C(f) (6)

with C(f) =
∑

i

csif
s
i +

∑

ij∈E

cijfij +
∑

i

cifi +
∑

i

ctif
t
i

(7)

s.t. fij , fi, f
s
i , f

t
i ∈ {0, 1}

and fs
i +

∑

j

fji = fi = f t
i +

∑

j

fij (8)

where fi is a binary indicator variable that is 1 when space-

time location i is included in some track. The auxiliary vari-

ables fij along with the second constraint (8) ensures that

at most one track claims location i, and that multiple tracks

may not split or merge. With a slight abuse of notation, let

us write xi for the putative state corresponding to location

i:
csi =− logPs(xi), cti = − logPt(xi), (9)

cij =− logP (xj |xi), ci = − log l(yi).
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Figure 3. The network model from [25] for three consecutive

frames of video. Each space-time location i ∈ V is represented

by a pair of nodes connected by a red edge. Possible transitions

between locations are modeled by blue edges. To allow tracks to

start and end at any spatiotemporal point in the video, each loca-

tion i is connected to both a start and termination node. All edges

are directed and unit capacity. The costs are ci for red edges, cij
for blue edges and csi and cti for black edges.

encode the track start, terminate, transition, and observation

likelihoods respectively. We define the edge set E to span

the set of permissible state transitions given by our dynamic

model (Sec.3.1).

4.1. Equivalence to network flow

To solve the above problem, we can relax the integer

constraints in (8) to linear box constraints (e.g., 0 ≤ fi ≤ 1)

This relaxation yields a unit capacity network flow problem

whose constraint matrix is totally unimodular, implying that

optimal solutions to the relaxed problem will still be integral

[1]. In particular, assume that we knew the number of tracks

in a video to be K. Let FK denote the set of flow conserva-

tion and unit capacity constraints along with the additional

constraints

FK =

{

fij , fi, f
s
i , f

t
i ∈ [0, 1],

∑

i f
s
i = K,

fs
i +

∑

j fji = fi = f t
i +

∑

j fij ,
∑

i f
t
i = K

Minimizing C(f) subject to constraints FK is an instance

of a minimum cost flow problem [1, 25]. Such problems are

similar to max-flow problems (commonly used in vision for

solving graph-cut problems [5]), except that edges in the

flow network are labeled with a cost as well as capacity.

The cost of a flow is defined to be the sum, over all edges,

of the cost of each edge multiplied by the flow through that

edge. Finding the MAP estimate of K tracks corresponds

to finding a minimum cost flow that pushes K units of flow

from the source to the sink.

Figure 3 shows an example flow network constructed

from the tracking problem. Each space-time location i, or

equivalently putative object state xi, corresponds to a pair

of nodes (ui, vi) connected by an edge of cost ci. Each

transition between successive windows is represented by an

edge (vi, uj) with cost cij . Finally, nodes s and t are intro-

duced with edges (s, ui) corresponding to track starts and

edges (vi, t) for terminations (with cost csi and cti respec-

tively). All edges have unit capacity. Pushing K units of

flow from s to t yields a set of K disjoint st-paths, each of

which corresponds to one of the optimal tracks T ∈ X .

5. Finding min-cost flows

Zhang et al. [25] describe how to solve the above op-

timization problem in O(mn2 log n) time using a push-

relabel method [12], where n is the number of nodes (e.g.

detection windows) in the network graph and m is the num-

ber of edges. Assuming that n and m scale linearly with

the number of frames N (reasonable given a fixed number

of detections per frame), the algorithm takes O(N3 logN)
to find K tracks. Furthermore, the cost of the optimal solu-

tion, minf∈FK
C(f) is convex in K [25] so one can use a

bisection search over K (upper-bounded by the number of

detections) to find the optimal number of tracks with a total

running time O(N3 log2 N).
In the following, we show that one can solve the multi-

object tracking problem in O(KN logN) by solving K+1
shortest-path problems. This considerable reduction in

complexity is due to two particular properties of the net-

work in Fig.3:

1. All edges are unit capacity.

2. The network is a directed acyclic graph (DAG).

The above conditions allow one to use dynamic program-

ming (DP) algorithms to compute shortest paths. We

describe a novel DP algorithm that is necessary to con-

struct a globally-optimal O(KN logN) algorithm. We

also show that DP produces the optimal solution for K =
1 in O(N) and high-quality approximate solutions for

K > 1 in O(KN). We begin by describing the optimal

O(KN logN) algorithm based on successive shortest paths

(introduced in Fig.2).

5.1. Successive Shortestpaths

We now describe a successive shortest path algorithm

[1] for solving min-cost flow problems for DAG networks

with unit-capacity links. Given a graph G with an integral

flow f , define the residual graph Gr(f) to be the same as

the original graph except that all edges used in the flow f

are reversed in direction and assigned negative their original

cost. We initialize the algorithm by setting the flow f to be

zero and then iterate the following two steps:

1. Find the minimum-cost path γ from s to t in Gr(f)

2. If total cost of the path C(γ) is negative, update f by

pushing unit-flow along γ

until no negative cost path can be found. Since each path has

unit capacity, each iteration increases the total flow by 1 and
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decreases the objective by C(γ). The algorithm terminates

after K + 1 iterations having found a minimum cost flow.

Pushing any further flow from s to t will only increase the

cost.

We refer the reader to [1] for a proof of the correctness

of the algorithm but give a brief outline. We say a flow f is

FK-feasible if it satisfies the constraint set FK . A necessary

and sufficient condition for f to be a minimum cost flow

of size K is that it be FK-feasible and that there does not

exist a negative-cost directed cycle in Gr(f). The succes-

sive shortest-paths algorithm above starts with a F0-feasible

flow and at each iteration i yields a new flow which is Fi-

feasible. Furthermore, each step of the algorithm modifies

edges along a single path and can be shown to not introduce

any negative weight cycles.

Figure 4 shows example iterations of this algorithm and

the resulting sequence of residual graphs. Note that the

shortest path in the residual network may instance a new

track and/or edit previous tracks by removing flow from

them (by pushing flow through the reverse edges).

In each iteration, we need to find a shortest st-path.

We would like to use Dijkstra’s algorithm to compute the

shortest path in O(N logN), making the overall algorithm

O(KN logN) where K is the optimal number of tracks.

Unfortunately, there are negative edge costs in our original

network, precluding the direct application of Dijkstra’s al-

gorithm. Fortunately, one can convert any min-cost flow

network to an equivalent network with non-negative costs

[1]. This conversion requires computing the shortest-path

of every node from s in the original graph G. For gen-

eral graphs with negative weights, this computation takes

O(N2) using the Bellman-Ford algorithm [1]. For DAGs,

one can use a O(N) dynamic programming algorithm,

which we describe below. The successive shortest path al-

gorithm thus runs in O(KN logN) operations and returns

the global minima for our tracking problem (Equation 3).

5.2. Dynamic Programming Solution for K = 1

We now present a O(N) dynamic programming (DP) al-

gorithm for computing the shortest path of every node to s.

We will also show that this algorithm solves the min cost

flow problem for K = 1. Because each edge in the network

is of unit capacity, the minimum cost unit flow must cor-

respond to the shortest path from node s to t. Because the

original network graph is a DAG, one can construct a partial

ordering of nodes and use DP to compute shortest paths by

sweeping from the first to last frame. This is similar to DP

algorithms for tracking but augmented to estimate both the

birth and death time of a track.

Assume that nodes are ordered in time, and let cost(i)
represent the minimum cost of a track passing through node

i. We initialize cost(i) for detections in the first frame to

be cost(i) = ci + csi . We can then recursively compute the

s
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(c) (d)

(e) (f)

Figure 4. Illustration of successive shortest path algorithm. (a)

The tracking problem modeled as a graph as described in Fig.3.

The algorithm should send a given amount of flow from source

node s to the terminal t. (b) One unit of flow f1 is passed through

the shortest path (in red) from source to terminal. (c) The resid-

ual graph Gr(f1) produced by eliminating the shortest path and

adding edges (in green) with unit capacity and negative cost with

the opposite direction. (d) The shortest path found in the residual

graph. In this example, this path uses previously added edges,

pushing flow backwards and “editing” the previously instanced

tracks. (e) Residual graph after passing two units of flow. At this

point, no negative cost paths exist and so the algorithm terminates

and returns the two tracks highlighted in (f). Note that the algo-

rithm ultimately splits the track instanced in the first step in order

to produce the final optimal set of tracks. In this example only one

split happened in an iteration, but it is possible for a shortest path

to use edges from two or more previously instanced tracks, but it is

very rare in practice. Our dynamic programming algorithm cannot

resolve any splitting since the residual graph has cycles, however

the 2-pass dynamic programming algorithm can resolve the situ-

ations when any new shortest path splits at most one previously

instanced track.

cost in successive frames as:

cost(i) = ci +min(π, csi ) where π = min
j∈N(i)

cij + cost(j)

(10)

where N(i) is the set of detections from the previous k

frames that can transition to detection i. The cost of the

optimal ending at node i is then cost(i) + cti, and the over-

all shortest path is computed by taking a min over i. By

caching the argmin values at each node, we can reconstruct

the shortest path to each node in a single backward sweep.

5.3. Approximate DP solution for K > 1

We now propose a simple greedy algorithm to instance a

variable, unknown number of disjoint, low-cost tracks. Start

with the original network-flow graph:
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1. Find the shortest path from s to t using DP.

2. If the cost of the path is negative, remove nodes on the

path and repeat.

The above algorithm performs K +1 iterations of DP to

discover K tracks – the last instanced track is ignored since

it increases the overall cost. Its running time is O(KN). At

each iteration, we have obtained a feasible (but not neces-

sarily minimum cost) k-unit flow. The sub-optimality lies

in the fact that the above algorithm cannot adjust any previ-

ously instanced tracks based on the demand to produce ad-

ditional tracks. In successive stages, it operates on a subset

of the original graph rather than the residual graph used in

the successive shortest paths algorithm. Unfortunately dy-

namic programming can’t be directly applied to the residual

graph Gr(f) since the residual graph is no longer a DAG

(Fig.4-(c)).

5.4. Approximate 2pass DP solution for K > 1

We now describe generalization of our DP-based algo-

rithm from 5.3 that can also instance new tracks while per-

forming “small” edits of previously instanced track. We ob-

serve that most of the time the shortest residual path does

not make large edits on previous tracks. We use the same

algorithm from Section 5.1, but perform an approximate

shortest-path using a 2-pass DP algorithm rather than Di-

jkstra’s algorithm. We perform a forward pass of DP as in

(10), but on Gr(f) rather than G with cost(i) defined as the

best forward-progressing path from the source to node i (ig-

noring reversed edges). We then use the costs as initial val-

ues for a backward pass starting from the last frame, defin-

ing N(i) to be the set of nodes connected through reverse

edges to i. After this pass, cost(i) is the cost of the best

forward and backward progressing path ending at i. One

could add additional passes, but we find experimentally that

two passes are sufficient for good performance while saving

O(logN) operations over Dijkstra’s approach.

5.5. Caching

Our DP algorithms repeatedly perform computations on

a series of reduced or residual graphs. Much of these com-

putations can be cached. Consider the DP computations re-

quired for the algorithm from Section 5.3. Once a track is

instanced, cost(i) values for nodes whose shortest-paths in-

tersect that track are no longer valid, and it is only this small

number of nodes that need to be re-evaluated in the next it-

eration. This set can be marked using the following fact:

any paths that intersect at some node must share the same

birth node. Each node can be labeled with its birth node by

propagating a birth ID during message-passing in DP. We

then only need to recompute cost(i) for nodes that have the

same birth node as a newly instanced track. In our experi-
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Figure 5. We show the results of our algorithm, including esti-

mated track births and deaths, on the Caltech Pedestrian dataset

[8]. We show typical results on the ETHMS dataset in Fig.1.

ments, this decreased computation time by three orders of

magnitude.

6. Experimental Results

Datasets: Most benchmarks for multi-object tracking

(e.g., PETS [24]) are designed for stationary cameras. We

are interested in moving camera applications, and so use the

Caltech Pedestrian dataset [8] and ETHMS dataset [9] to

evaluate our algorithms. The Caltech dataset was captured

by a camera installed on a moving car. It contains 71 videos

of roughly 1800 frames each, captured at 30 frames per sec-

ond. Since the testset contains heldout labels, we evaluate

ourselves using all annotated pedestrians on the training set.

The ETHMS dataset contains footage of a busy sidewalk as

seen by a camera mounted on a child stroller. Although

this dataset contains both left and right views to facilitate

stereo, we use only the left view in our experiments. The

dataset contains four videos of roughly 1000 frames each,

captured at 14 fps. Both datasets include bounding box an-

notations for people, while Caltech also provides track IDs.

We manually annotated IDs on a portion of ETHMS. In or-

der to compare our results with previous work, we use the

same ETHMS video sequence as [25] with 999 frames and

ignore detections smaller than 24 pixels as they did.

Setup: We ran an “out-of-the-box” pre-trained part-

based HOG pedestrian detector [10] with a conservative

NMS threshold, generating around 1000 detections per

frame of each video. We set the log-likelihood ratio (the

local cost ci) of each detection to be the negative score of

the linear detector (the distance from the decision boundary

of an SVM). We use a bounded-velocity dynamic model:

we define the transition cost cij to be 0, but only connect

candidate windows across consecutive frames that spatially

overlap. We set birth and death costs (csi , c
t
i) to be 10. We

experimented with applying an additional NMS step within

our greedy algorithm. We also experimented with occlusion

modeling by adding transitions which skip over k frames,

with k up to 10.
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Figure 6. Cost vs. iteration number for all three algorithms on

Caltech dataset. The inset shows that our 2-pass DP algorithm

produces tracks whose cost is close to optimum while being orders

of magnitude faster.

Scoring criteria: We use detection accuracy (as mea-

sured by detection rate and false positives per frame) as our

primary evaluation criteria, as it allows us to compare with

a wide body of related work on these datasets. To directly

score tracker accuracy, various other criteria (such as track

fragmentation, identity switching, etc.) have been proposed

[21, 20, 25]. We also use track identity to evaluate our al-

gorithms below.

Approximation quality: We have described three dif-

ferent algorithms for solving the minimum cost flow prob-

lem. Figure 6 shows the flow cost, i.e., the objective func-

tion, versus iteration number for all three algorithms on the

Caltech dataset. The DP algorithms follow the successive

shortest path (SSP) algorithm for many iterations but even-

tually it is necessary to “edit” a previously instanced track

(as in Figure 4) and the greedy DP algorithm begins to make

suboptimal choices. However DP and SSP do not deviate

much before reaching the minimum cost and the 2-pass DP

which allows for a single edit follows SSP quite closely.

This figure inset shows a close look at the cost at the mini-

mum. Since the 2-pass algorithm can split at most one track

in each iteration and it is very rare to see two splits at the

same iteration, the cost value for 2-pass DP algorithm is

very close to the optimum one.

Rather than scoring the cost function, we can directly

compare algorithms using track accuracy. Figure 7 shows

detection rate versus FPPI for the baseline detector, DP, and

SSP algorithms. These figures show that DP and SSP are

similar in accuracy, with DP performing even better in some

cases. We suspect the SSP algorithm produces (overly)

short tracks because the 1st order Markov model enforces

a geometric distribution over track length. The approximate

DP algorithm inadvertently produces longer tracks (that bet-

ter match the ground truth distributions of lengths) because

previously instanced tracks are never cut or edited. We

henceforth evaluate our one-pass DP algorithm in the sub-

sequent experiments. We also present additional diagnostic
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Figure 7. Detection rate versus FPPI on Caltech dataset [8] (left)

and ETHMS dataset [9] (right). We compare our approximate 1-

pass DP algorithm with the optimal successive shortest path (SSP)

algorithm and a HOG-detector baseline. The DP performs as well

as or even better than the shortest path algorithm, while being or-

ders of magnitude faster. We also show that by suppressing over-

lapping detections after each track is instanced (DP-NMS), we can

further improve performance.

Length of % of windows

allowable occlusion with ID errors

1 14.69

5 13.32

10 9.39

Table 1. Evaluating track label error as a function of the length of

the allowable occlusion. We show results for our DP algorithm

applied to a portion of the ETHMS dataset given ideal detected

windows. Our DP algorithm scales linearly with the length of al-

lowable occlusions. By allowing for longer occlusions (common

in this dataset), the % of windows with correct track labels signif-

icantly increases.

experiments on the ETHMS data, since it contains on aver-

age more objects than Caltech.

Track identities: We evaluate track identities on the

ETHMS dataset by using our tracker to compute track labels

for ground-truth bounding boxes. This is equivalent to run-

ning our tracker on an ideal object detector with zero missed

detections and false positives. Given a correspondence be-

tween estimated track labels and ground-truth track labels,

the misclassification rate is the fraction of bounding boxes

with incorrect labels. We compute the correspondence that

minimizes this error by bipartite matching [15]. We found

occlusion modeling to be crucial for maintaining track iden-

tities. Our algorithms can report tracks with k-frame occlu-

sions by adding in transitions between space-time windows

spaced k frames apart. Our DP algorithm scales linearly

with k, and so we can readily model long 10-frame oc-

clusions (Table 1). This greatly increases the accuracy of

track labels on this data because such occlusions are com-

mon when nearby people pass the camera, occluding peo-

ple further away. This result implies that, given ideal local

detectors, our tracking algorithm produces track identities

with 90% accuracy.

NMS-within-the-loop: In Figure 7, we use the ETHMS

dataset to examine the effect of adding a NMS step within
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Algorithm Detection rate False positive

per frame

[9]’s stereo algorithm 47 1.5

[25]’s algorithm 1 68.3 0.85

[25]’s algorithm 2

with occlusion handling 70.4 0.97

[23]’s two-stage algorithm

with occlusion handling 75.2 0.939

Our DP 76.6 0.85

Our DP+NMS 79.8 0.85

Table 2. Our algorithm performance compared to the previous

state-of-the-art on the ETHMS dataset. Please see the text for fur-

ther discussion.

our iterative greedy algorithms. When applying [10]’s

pedestrian detector, we use their default NMS algorithm

as a pre-process to suppress detections that overlap other

higher-scoring detection by some threshold. After instanc-

ing a track during the DP algorithm, we suppress remain-

ing windows that overlap the instanced tracks using a lower

threshold. This suppression is more reliable than the ini-

tial one because tracked windows are more likely to be true

positives. Our results outperform all previously published

results on this data (Table 2).

Running time: For the 999-frame ETHMS dataset,

MATLAB’s LP solver does not converge, the commercial

min-cost-flow solver used in [23] takes 95 seconds, while

our MATLAB DP code takes 0.5 seconds.

7. Conclusion

We have described a family of efficient, greedy but glob-

ally optimal algorithms for solving the problem of multi-

object tracking, including estimating the number of ob-

jects and their track births and deaths. Our algorithms are

based on a novel analysis of a min-cost flow framework

for tracking. Our greedy algorithms allow us to embed

pre-processing steps such as NMS within our tracking al-

gorithm. Our scalable algorithms also allow us to process

large input sequences and model long occlusions, producing

state-of-the-art results on benchmark datasets.
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