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Globally Optimal Grouping for Symmetric
Closed Boundaries by Combining Boundary
and Region Information

Joachim S. Stahl, Student Member, IEEE, and Song Wang, Member, IEEE

Abstract—Many natural and man-made structures have a boundary that shows a certain level of bilateral symmetry, a property that plays
an important role in both human and computer vision. In this paper, we present a new grouping method for detecting closed boundaries
with symmetry. We first construct a new type of grouping token in the form of symmetric trapezoids by pairing line segments detected from
the image. A closed boundary can then be achieved by connecting some trapezoids with a sequence of gap-filling quadrilaterals. For such
a closed boundary, we define a unified grouping cost function in a ratio form: the numerator reflects the boundary information of proximity
and symmetry, and the denominator reflects the region information of the enclosed area. The introduction of the region-area information in
the denominator is able to avoid a bias toward shorter boundaries. We then develop a new graph model to represent the grouping tokens.
In this new graph model, the grouping cost function can be encoded by carefully designed edge weights, and the desired optimal boundary
corresponds to a special cycle with a minimum ratio-form cost. We finally show that such a cycle can be found in polynomial time using a
previous graph algorithm. We implement this symmetry-grouping method and test it on a set of synthetic data and real images. The
performance is compared to two previous grouping methods that do not consider symmetry in their grouping cost functions.

Index Terms—Perceptual organization, edge grouping, boundary detection, boundary symmetry, edge detection, graph models.

1 INTRODUCTION

THE boundaries of many structures of interest encountered
in the real world show a certain level of (bilateral)
symmetry [4], [5]. For example, most objects (or their
components) that are machine fabricated have a revolved
surface that is perfectly symmetric over a straight axis. Many
natural objects such as leaves and animals also have a
boundary with a certain level of symmetry, where the
symmetry axes may not be perfectly straight, as shown in
Fig. 1c. In computer vision, symmetry has been shown to be
an important property in both boundary interpretation/
matching, where the goal is to analyze and match given
boundaries, and grouping, where the goal is to extract salient
structural boundaries from real images [10]. As shown in
Fig. 1, the goal of this paper is to develop an effective method
to address the latter problem of grouping for symmetric
boundaries, which, as pointed out in [10], is a particularly
challenging problem.

Several reasons make the grouping for symmetric
boundaries a challenging problem. First, unlike many other
grouping cues, boundary symmetry is not a simple local
measure: two symmetric fragments along the resulting
boundary may be located far away from each other. As a
result, it is usually difficult to encode symmetry into the
simple locally constructed grouping tokens such as image
pixels or boundary fragments, which have been widely

e The authors are with the Department of Computer Science and
Engineering, University of South Carolina, Columbia, SC 29208.
E-mail: {stahlj, songwang J@engr.sc.edu.

Manuscript received 3 June 2006; revised 2 Feb. 2007; accepted 14 May 2007;
published online 30 May 2007.

Recommended for acceptance by R. Basri.

For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number TPAMI-0416-0606.
Digital Object Identifier no. 10.1109/TPAMI.2007.1186.

0162-8828/08/$25.00 © 2008 IEEE

used in previous grouping methods. Second, although
symmetry is an important grouping cue, other cues, such as
the Gestalt laws of proximity and closure are also crucial to
achieve a successful grouping [16]. This calls for a unified
grouping cost (function) that can flexibly integrate different
grouping cues. Third, the grouping cost should be designed
to avoid undesirable explicit or implicit biases such as a bias
toward shorter boundaries, which occurs in many previous
grouping methods [37]. Finally, it is usually a challenging
problem to develop an optimization algorithm for finding a
grouping that minimizes the selected grouping cost.

In this paper, we developed a new grouping method for
detecting 2D closed boundaries with symmetry. Particularly,
we propose a new grouping cost function that takes a ratio
form: the numerator reflects the boundary information of
proximity and symmetry, and the denominator reflects the
region information of the enclosed area. The use of the
enclosed region area makes the resulting grouping biased to
detecting longer and rounder boundaries and therefore
promotes the robustness to image noise and texture. This
grouping cost function can be expanded to include other
boundary information, such asboundary continuity (smooth-
ness), and region information such as region intensity
homogeneity. To quantify and encode this grouping cost,
we construct a new type of grouping token in the form of
trapezoids by pairing line segments detected from the image.
Based on these trapezoids, the problem of grouping for
symmetric boundaries can be formulated as identifying and
connecting a sequence of trapezoids into a closed boundary.
Finally, we construct a new graph model where candidate
boundaries are represented as special cycles in this graph and
apply a known graph algorithm to find the optimal cycle that
corresponds to the boundary with the minimum grouping
cost. Note that the work in this paper is only concerned with

Published by the IEEE Computer Society
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(a) (b)

(c) (d)

Fig. 1. Four samples of structural boundaries that show symmetry. Structural boundaries are shown as solid curves, whereas the symmetry axes are

shown as dashed curves.

the case where the boundary of interest shows bilateral
symmetry on the 2D image plane. We do not consider the case
where the surface of an object shows symmetry over an axis in
3D space, but the resulting 2D boundary does not show
bilateral symmetry on the 2D image plane due to the
perspective-projection transformation, asin [36], [18],[22],[7].
The important role and use of symmetry has been studied
in both human vision and computer vision [35], [41], [30],
[27], [26], [11]. Particularly, prior research has shown that
symmetry isnonaccidental [21], [40] and therefore canbe used
as a grouping cue to distinguish salient structures from noisy
background. Symmetry analysis of a given object boundary is
usually conducted by deriving its symmetry axis. Symmetry-
axis information has been incorporated to facilitate boundary
interpretation, matching, and recognition in many prior
research [5], [6], [19], [42]. Note that different from the
problems of boundary interpretation, matching, and recogni-
tion, the work presented in this paper aims to solve the
grouping problem, where the structural boundaries are not
available, and our goal is to extract them from real images.
The related work includes the long-line research on edge
grouping [2],[3],[8],[9], [12], [14], [15], [23], 28], [29], [33], [371,
[38], [39]. These methods aim to extract perceptually salient
boundaries from a set of line segments, which are usually
detected from an image by edge detectors and line-fitting
operators. In previous edge-grouping methods, the grouping
cost usually combines the well-known Gestalt laws such as:

1. closure, which requires the resulting boundary to be
always closed,

2. proximity, which requires the gap length to be short
in connecting the detected line segments into a
closed boundary,

3. continuity, which requires the resulting boundary to
be as smooth as possible, and

4. convexity, which requires the resulting boundary to
be convex.

However, these edge-grouping methods do not consider the
boundary symmetry in grouping.

Mohan and Nevatia [24] developed a grouping method,
where boundary symmetry is considered along with closure
and proximity. It applies both edge detection and corner
detection to extract a set of line segments and corner points as
the grouping tokens. The grouping cost is defined by a
collinearity measure that actually reflects the proximity and
continuity of the boundary. Symmetry is applied as a cue to
couple the extracted curves by producing a set of ribbons.
These ribbons are then grouped into structures by some
heuristic algorithms. This method does not introduce a

unified grouping cost function, and the developed grouping
algorithm is not globally optimal. The locality of the grouping
algorithm may lead to many small ribbons and may not
handle the boundary occlusion very well. Another work that
is closely related to the proposed work is the grouping
method developed by Liu et al. [20], which identifies the local
symmetry-axis segments and then applies a shortest-path
algorithm to connect some of them into a complete symmetry
axis. The grouping cost function is defined as the sum of a
predefined local cost along the symmetry axis. By manually
selecting a starting pair of points that are symmetric to each
other, this method produces an open boundary. Since this
method does not consider region information or other
normalization in the cost function, it presents a bias toward
shorter boundaries, which may have difficulty in detecting
the symmetry axis shown in Fig. 1d.

In recent years, many methods have also been developed
for detecting structures with symmetric appearance [25],
[13], [31], [32]. For example, Prasad and Yegnanarayana [26]
develop a voting-based method to detect axes of bilateral
symmetry directly from images based on edge-gradient
information. Note that these methods are quite different from
the grouping method proposed in this paper from the
following three perspectives: 1) most of these methods
assume the appearance symmetry, whereas the proposed
method only assumes the boundary-shape symmetry,
2) these methods usually assume the symmetry axes to be
straight, whereas the proposed method quantifies symmetry
as a continuous value, and 3) these methods usually detect
only the symmetry axes but not the final structural
boundaries, whereas the proposed method detects both
symmetry axes and resulting structural boundaries.

The method proposed in this paper is inherited from the
previous ratio-contour method (RC) [37], an edge-grouping
method for detecting smooth closed boundaries. Particularly,
both of them use the same graph algorithm: the minimum-
ratio alternate cycle algorithm for solving the final graph
problems. However, both the research goals, the problem
formulations, and the graph modelings introduced in this
paper are completely different from the ones introduced in
[37]. The research goal in this paper is to develop a grouping
method to detect boundaries with good bilateral symmetry,
which is not considered in the RC. To achieve this goal, in this
paper, we introduce different grouping tokens, define a
different grouping cost with a normalization over the
enclosed region area, construct a different graph model with
“mirror” edges and auxiliary edges, and define different
graph edge weight functions to encode the region-area
information. In Section 5, we also compare the performance
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Fig. 2. An illustration of the process of edge grouping.
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Fig. 3. An illustration of constructing a symmetric trapezoid from a pair of segments: (a), (b), and (c) pairing two detected segments and (d) and

(e) pairing a gap-filling segment P, P, with a detected segment P; P;.

of the proposed method and the RC on both synthetic data
and real images.

The remainder of this paper is organized as follows: In
Section 2, we formulate the problem of grouping with
symmetry by introducing the general edge-grouping
methodology, the new grouping tokens in the form of
symmetric trapezoids, and the new unified grouping cost
function. In Section 3, we introduce the graph modeling of
the formulated problem and apply a graph algorithm to
solve this grouping problem in a globally optimal fashion.
In Section 4, we introduce a more accurate way to measure
the gap length along the boundary. In Section 5, we discuss
implementation details and report experimental results on
both synthetic and real images. In Section 6, we discuss the
possible extensions of the proposed method to incorporate
other boundary or region information. In Section 7, we
discuss the complexity and runtime of the proposed
grouping method. Section 8 presents the conclusions.

2 PROBLEM FORMULATION

The proposed grouping method has its roots in edge grouping,
where grouping tokens are a set of line segments (or more
generally, curve segments), and the output is one or several
perceptually salient boundaries formed by connecting a
subset of the line segments. However, to encode and quantify
the boundary symmetry, we further pair the line segments to
construct a new type of grouping token in the form of
symmetric trapezoids. In this section, we start the problem
formulation by introducing the typical process of edge
grouping. We then elaborate on the trapezoid-type token
construction and the grouping-cost definition.

2.1 Edge Grouping

In edge grouping, a set of line segments is first constructed
from the input image, as shown in Fig. 2a, by edge detection
and line fitting operations, as shown in Fig. 2b. A new set of

line segments, as shown by dashed lines in Fig. 2c, is then
constructed to fill the gap between each pair of initial line
segments. For convenience, we call the initial line segments
resulting from edge detection the detected (line) segments and
the newly constructed ones the gap-filling (line) segments. A
(closed) boundary of interest is then a simple cycle that
traverses a set of detected and gap-filling segments
alternately, as shown in Fig. 2d. Note that we do not show
all the constructed gap-filling segments in Fig. 2c to prevent
the figure from being too crowded. In the ideal case, with n
detected segments, we have 2n segment endpoints, and
therefore, we may need to construct n(2n — 2) gap-filling
segments if we construct a gap-filling segment between any
possible two segment endpoints except for the two end-
points of the same detected segment. Finally, we define a
grouping cost function for the boundaries and develop an
algorithm to find from all boundaries the one with the
minimum grouping cost, as shown in Fig. 2d. As mentioned
above, various grouping cues such as proximity, closure,
continuity, and convexity have been incorporated into edge
grouping trying to extract the perceptually salient structural
boundaries from a noisy background [12], [23], [28], [29],
[33], [37], [38]. In prior edge-grouping methods, the group-
ing cost is usually defined to be a function of some local
weights associated to each individual detected/gap-filling
segment. However, it is difficult to incorporate symmetry
into these edge-grouping methods because of the difficulty
of encoding symmetry into each individual line segment. In
Section 2.2, we construct new trapezoid-type tokens from
these line segments to encode boundary symmetry.

2.2 Symmetric Trapezoids as Grouping Tokens

Although it is difficult to encode symmetry into each
individual line segment, symmetry can be encoded to a pair
of segments. For each pair of line segments P, P, and P3Py, as
shown in Fig. 3, we can identify their symmetric portions by
following these steps:
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Fig. 4. An illustration of the case that needs the construction of
trapezoids by pairing gap-filling segments with detected ones. (a) The
desired symmetric boundary with its detected segments (solid lines),
gap-filling segments (thin dashed lines), and symmetric axis (thick
dashed line). (b) Trapezoids constructed by pairing gap-filing segments
with detected ones.

1. Find the angle-bisector line [ between P, P, and PP,
as shown in Fig. 3a. If P, P;//P;P,, then [ is the line
equidistant to both P, P, and P FP;.

2. Find the projections of both segments P, % and P3Py
to [ and denote them as P} Pj and P; P}, respectively.
The overlap of segments P P, and P, P;, as shown by
P{P; in Fig. 3b, is denoted as the axis segment
between P P, and P;P;. We refer to P| and Pj as the
axis-segment endpoints.

3. Map this axis segment back to segments P, P, and
P3 Py. This results in a (symmetric) trapezoid P, P, P} Py,
as shown in Fig. 3c.

In this paper, we construct such symmetric trapezoids
(with axis segments) by pairing every two detected segments,
as shown in Figs. 3a, 3b, and 3c, and pairing each gap-filling
segment with each detected segment, as shown in Figs. 3d
and 3e. Note that, for some pairs of segments, their
projections to ! have no overlap. In this case, no symmetric
trapezoid will be constructed for them. These trapezoids are
used as new grouping tokens in the proposed method. We
construct a trapezoid by pairing a gap-filling segment with a
detected segment to handle the case shown in Fig. 4, where
the desired symmetric boundary and its symmetric axis are
shown in Fig. 4a. However, the symmetric portion of many
detected segments such as PP, P3Py, and P;P; are not
detected and, therefore, correspond to gap-filling segments.
In this case, we can represent the desired symmetric
boundary only by pairing gap-filling segments with detected
segments, as shown in Fig. 4b. For convenience, in the
remainder of the paper, we usually display trapezoids by

assuming that they are constructed from two detected
segments and, therefore, use solid lines for both nonparallel
opposite sides, as illustrated in Fig. 3c. However, we will
consider both cases shown in Figs. 3c and 3e in developing
the proposed grouping method.

2.3 Trapezoid Grouping and Grouping Cost

Analogous to edge grouping, we formulate the problem of
symmetry grouping as a problem of identifying a subset of
trapezoids and connecting them sequentially into a closed
boundary. The gap between two sequential trapezoids in the
connection is filled by a (gap-filling) quadrilateral. Two
examples are shown in Figs. 5a and 5b, where two gap-filling
quadrilaterals G, = P,PsPyo Py and Gy = P, Ps P3Py are con-
structed to connect three trapezoids 7, = PP2P1 Py,
Ty = P3P PyPyy, and T3 = P; P P; P; into a closed polygonal
boundary P, P, ... Pis. The axis segments of 71, 75, and 7 3
are also connected by the axis segments of the quadrilaterals
Gi and G, to generate the polyline Q1@ . .. Qs, which is the
(boundary) axis of the closed boundary P, P; ... Pjy. We call Q;
and Qg the boundary-axis endpoints. Note that the gap-filling
quadrilaterals are simply constructed by connecting a
parallel side of one trapezoid and a parallel side of another
trapezoid. They may not be symmetric, and its axis segment is
constructed simply by connecting the endpoints of the axis
segments of the two neighboring symmetric trapezoids. Asin
edge grouping, in the ideal case, we may construct
quadrilaterals between each pair of trapezoids. Since the axis
segment of a trapezoid has two endpoints, there are four
different gap-filling quadrilaterals that can be constructed
between a pair of trapezoids. As discussed later, in practice,
we do not need to construct all possible gap-filling quad-
rilaterals because many of them are not likely to be included
in the desired optimal boundary.

Based on the above formulation, we can measure the
symmetry of a closed boundary using the collinearity
(straightness) of its boundary axis, as shown by the thick
dashed polylines in Fig. 5. Specifically, we define the
grouping cost function for a closed boundary B as

_1Bol + A plaxis(B)
area(B) ’

¢(B) (1)
where |Bp| is the total gap length along the boundary B. Note
that not only quadrilaterals but also trapezoids may con-
tribute to |Bp|, because 1) trapezoids may be constructed by
pairing a gap-filling segment with a detected segment, as
shown in Figs. 3d and 3e, and 2) a parallel side of a trapezoid
may contribute to the boundary gap-length |Bp| when this

(a)

(b)

Fig. 5. Two examples of grouping detected trapezoids into a closed boundary.
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Fig. 6. An illustration of the solid/dashed edges. (a) For a trapezoid 7,
we construct a pair of solid edges ef and e;. Each axis-segment
endpoint Q; is then modeled by two vertices uil) and u§2>. (b) For a gap-
filling quadrilateral G, we proceed similarly as in (a), except that the two
constructed edges are dashed.

side contains a boundary-axis endpoint, for example, the
parallel sides P;P;; and PsP; need to be included in
calculating | Bp| in Fig. 5. In Section 4, we will further discuss
a more accurate way to measure |Bp| in practice. The term of
|Bp| reflects the preference of a boundary with good
proximity. The term of p(axis(B)) is a measure related to
the collinearity of B’s axis (for example, the thick dashed
polylines in Fig. 5). This term reflects the preference of a
boundary with good symmetry, and we will elaborate on this
term in Section 3. The term of area(B) is the region area
enclosed by the boundary B. A normalization over this term
sets a preference to produce larger rounder structures, which
improves the robustness against image noise by avoiding a
bias toward shorter boundaries. Note that, in practice, such a
preference may not prevent the detection of small salient
structures if they show good proximity and symmetry, as we
will see in many experiments reported in Section 5. A > Oisa
preset factor that balances the weights of the proximity and
symmetry terms. As discussed later, we simply set a
consistent A = 10inall the experiments reported in this paper.

3 GRAPH MODELING AND ALGORITHM

In this section, we construct a new graph model to describe
the above formulated problem. In this graph model,
trapezoids and gap-filling quadrilaterals are represented
by graph edges. By encoding the grouping cost (1) into the
graph edge weights, we then reduce the grouping problem
to a problem of finding an optimal cycle with minimum
ratio cost in this new graph. We finally apply a known
graph algorithm to address this cycle-finding problem.
Specifically, the graph construction consists of two sequen-
tial steps: 1) constructing solid and dashed edges to
represent trapezoids and gap-filling quadrilaterals, respec-
tively, and 2) further constructing auxiliary edges between
the vertices corresponding to potential axis endpoints. We
elaborate on these two steps as follows.

3.1 Graph Construction I: Solid/Dashed Edges

We construct an undirected graph G = (V, E) with vertex
set V and edge set F to model the trapezoids and gap-filling
quadrilaterals. To encode the enclosed region area area(B3),
we construct a pair of solid edges ef and e for each
trapezoid 7, and a pair of dashed edges ¢, and e, for each
quadrilateral G, as shown in Fig. 6. We call the pair of the

Fig. 7. An illustration of determining the gap-filling quadrilateral between
two trapezoids Tl = P1PZP7P3 and T2 = P;P_;R')P()

edges constructed for the same trapezoid or quadrilateral to
be the mirror edges of each other. For convenience, we can
treat each pair of mirror edges to be an abstraction of the
axis segment of the corresponding trapezoid or quadrilat-
eral. For example, e} and e; model the axis segment Q1Q>
in Fig. 6a. Accordingly, we construct a pair of vertices for
each axis-segment endpoint (or each parallel side of each
trapezoid). For example, vertex pair u;’ and u?) are
constructed for axis-segment endpoint @ in Fig. 6a.

In the proposed grouping, two neighboring trapezoids are
connected by a quadrilateral, as shown in Fig. 5. Therefore, in
constructing the graph G = (V, E), we connect two pairs of
solid edges by a pair of dashed edges, since each trapezoid
and quadrilateral is represented by two mirror edges e* and
e”. We apply the following two steps to determine the edge
connection in constructing the graph G = (V, E). First, we
consider only the quadrilateral that leads to a nonintersected
boundary. Particularly, when connecting two trapezoids by a
quadrilateral, the two sides of the selected quadrilateral that
arenotshared with the two trapezoids must not intersect with
each other. For example, in Fig. 7, we construct the
quadrilateral in the form of P,P;PsP; with two sides PP
and P;P;, instead of the quadrilateral P»Ps;P;P; with two
sides P, P; and P;P; to connect 71 and 7 5.

Second, we distinguish two mirror edges e and e~ by
associating an implicit direction to the corresponding
trapezoid or quadrilateral. Particularly, we set edge e* to
imply that its corresponding trapezoid or quadrilateral has
a counterclockwise direction and edge e~ to imply that its
corresponding trapezoid or quadrilateral has a clockwise
direction. Then, the edge connection will be uniquely
determined by requiring the resulting boundary to be of a
consistent direction, either clockwise or counterclockwise.
Figs. 8a, 8b, 8¢, and 8d illustrate the four possible cases.
When the clockwise 7' is connected to the clockwise 75 by
a gap-filling quadrilateral (this implies that the counter-
clockwise 7 is connected to the counterclockwise 75), we
connect their corresponding edges with same signs, as
shown in Figs. 8a and 8c. When the clockwise 7 is
connected to the counterclockwise 7, by a gap-filling
quadrilateral (this implies that the counterclockwise 7 is
connected to the clockwise 75), we connect their corre-
sponding edges with opposite signs, as shown in Figs. 8b
and 8d. The sign of the edge corresponding to the
quadrilateral can also be uniquely determined by following
the directions of the trapezoids. For example, in Fig. 8a,
the quadrilateral between the clockwise 7 and the
clockwise 75 has a clockwise direction. This indicates that
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Fig. 8. An illustration of the edge connection for modeling the construction of a quadrilateral between two trapezoids.

the dashed edge between ¢, and e7, is ¢, and the dashed

edge between er and e, is eg.

There is a special case where the constructed gap-filling
quadrilateral contains a self intersection, as shown by the
quadrilateral P, P; P P; in Fig. 9. Note that this self intersec-
tion is caused by the two sides P3P and P, P; from the two
neighboring trapezoids and will not be included in the
resulting boundary. Therefore, different from the quadrilat-
eral self intersection mentioned before, this kind of self-
intersected quadrilateral is allowed as it does not lead to self-
intersected boundaries. In this case, the quadrilateral is
divided into two triangles R, and R, with opposite directions,
thatis, if R; is counterclockwise, then R» is clockwise, also as
shown in Fig. 9. We set this quadrilateral’s direction to be the
direction of the triangle with a larger area and set the area of
this quadrilateral as |area(R;) — area(Ry)|.

For each edge ¢ in this graph, we define two weight
functions wy (e) and ws(e). If e is solid, we define wy (e) = 0 if
the corresponding trapezoid was constructed from two
detected segments, for example, the trapezoid shown in
Fig. 3c; otherwise, we set w; (e) to be the length of the gap-
filling segment included in the trapezoid construction, for
example, | P, P,|, the Euclidean distance between P; and P,
in Fig. 3e. If e is dashed, for example, corresponding to axis
segment Q2Q)s in Fig. 7, we define

Fig. 9. An illustration of an allowed self-intersected quadrilateral.

wi(e) = [P Ps3|p + [P Pr|p + A ple),

where |PyPs|, + |PsPr|p is the total gap length (along the
boundary) that results from the quadrilateral corresponding
to e. In this paper, we use an improved gap-length measure
| P, P;j|, instead of the Euclidean distance | P, P;| to handle the
case where a gap-filling quadrilateral may (partially) coincide
with detected segments. We will discuss this improved
gap-length measure in Section 4. p(e) = |sin(/Q1Q2Q4)| +
| sin(/Q1Q3Q4)| measures the collinearity (straightness) of the
polyline Q1Q2Q3Q., giving a lower cost to polylines with
good collinearity, as shown in Fig. 7. We can see that the first
edge weight w; (e) is always nonnegative and for a pair of
mirroredges et and e, wehave w; (") = w;(e™). The second
edge weight, ws(e), is simply the signed area of the
trapezoid or quadrilateral corresponding to e, that is,
wy(et) = —wq(e”) > 0. We introduce the negative area to
handle the nonconvex boundaries, where the inclusion of an
additional trapezoid or quadrilateral may contribute nega-
tively to the resulting enclosed area area(83), as shown by the
trapezoid P, P, P Py, in Fig. 5b.

3.2 Graph Construction II: Auxiliary Edges
In order to include the boundary information around the two
boundary-axis endpoints, for example, the gap length along
PsP; and P, P, in Fig. 5, we further construct a set of new
dashed edges, named auxiliary edges, between the vertices
correspondmg to the two boundary-axis endpoints. Let
( ) and U(1 be the vertex pair corresponding to a boundary-
ax1s endpomt for example, ); in Fig. 5a (or Fig. 5b), and
let u‘( ) and u( be the vertex pair corresponding to the other
boundary-axis endpoint, for example, Qs in Fig. 5a
(or Fig. 5b). We construct four dashed edges (ug ), ué N, i, j =
1,2 as auxiliary edges, as shown by dashed-dotted curves in
Fig. 10a (or Fig. 10b). For these four auxiliary edges, we set
their second edge weights tobe zero and the firstedge weights
to be the total gap length around these two boundary-axis
endpoints. For example, in Fig. 5a (or Fig. 5b), the first
weight wi(e) of the four auxiliary edges that reflects the
connection between @ and Qs is defined by



STAHL AND WANG: GLOBALLY OPTIMAL GROUPING FOR SYMMETRIC CLOSED BOUNDARIES BY COMBINING BOUNDARY AND REGION... 401

-~ H_-fi;T”T;:T_ﬂ"*\_
’ b \

’ /et esel '
/ S Ese sl \ \
f ,/ o) u® '\ h

|
i f €45 e7s! \ i
\ J r udf.ll u4i?'| \ I
'\ | el €34 | ;'

\ 1‘ || u."]’ LI._{[EI I /
5\ \ F2.3 eé.i: I
'\.\‘ u:[” u1[3’ /I",'
A PR 74
ull 1y uir2> 2

-7 _H, Dot g
/‘ (D uﬁczi ‘\
!“ / ‘"'g,ﬁ eg.ﬁ .Y .‘l
I'. / ush us® \ 'I
|
LD es st
'L |I L|4(lj u4(3| 1 r
€1y €3y | ;
Voo /
| g2
\ ' 3\ T r /
\ ~
N ' ‘35‘.‘\/ -~ \-.L'Z_',.'i "' /
'\\. o @ /‘},‘
N feta e
u;l §] u]i2] ?

(a)

(b)

Fig. 10. An illustration of the cycles corresponding to the boundaries shown in Figs. 5a and 5b, respectively. (a) For the boundary in Fig. 5a, the
corresponding cycle C* traverses uSD, i=1,2,...,6sequentiallyandC" traverses u?), i=1,2,...,6sequentially. (b) Forthe boundary shownin Fig. 5b,

the corresponding cycle C* traverses uEQ), u(f), ugl), u,(41), ug

Y and uéD sequentially, and C™ traverses u,

(1,0,

y Uy "y Usg ,U_,(f), U(Z)

5

, and uf) sequentially.

Vertices ufl) and u,(iz) correspond to the axis-segment endpoint Q;, ¢ = 1,2, ..., 6 in Fig. 5. Auxiliary edges are shown by dashed-dotted curves.

wl(e) = ‘P1P12|D + |P6P7|D>

where |P,Pj|), is the gap length between P, and P; to be
detailed in Section 4. Since the optimal closed boundary and
its boundary-axis endpoints are unknown before the group-
ing, we can treat all axis-segment endpoints as potential
boundary-axis endpoints and construct auxiliary edges
between all of them. In practice, however, we do not need
to construct auxiliary edges between all axis-segment end-
points, and we will discuss this in more detail in Section 5.
In the graph G = (V, E), each boundary B is represented
by two “mirror” cycles C* and C~, for example, if an edge is
included in C*, its mirror edge must be included in C~, and
vice versa. In addition, each of them contains an auxiliary
edge, as shown in Fig. 10. These two cycles traverse a
sequence of solid and dashed edges alternately, and there-
fore, we call them alternate cycles. Itis easy to verify that 1) the
total first edge weights along both C* and C~ are always equal
to the numerator of the cost ¢(53) in (1) and 2) the total second
edge weights along C* and C~ have the same absolute value
equal to area(B) but with opposite signs. Without loss of

generality, we assume ) o+ wa(e) == - wa(e) > 0.
This way, we have
¢(B) _ ZEEC‘ wy (6) - _ ZeEC wl(e)
Z€€C+ w2 (6) ZFECH 'LUQ(@)

and locating the optimal boundary B that minimizes the cost
(1) is reduced to finding an alternate cycle C in graph G =
(V, E) such that this cycle C minimizes the cycle ratio

IO _ Sl
O =V~ Scemn(e) )

The correctness of this reduction comes from the following
two facts: First, any alternate cycle C has two mirror versions
C* and C~ with opposite signs on the total second weights.
Clearly, the cycle C that minimize the cost (2) must be of a
C™ version and has a negative W;(C). The mirror of this
optimal cycle C is then of a C* version that maximizes

3?8 and, therefore, minimizes 3;28 subject to W>(C) > 0.

The ratio g;g subject to W5(C) > 0 is exactly the same as
¢(B), where area(B) is always positive. Therefore, we have
o(B) = fﬁ and the alternate cycle C with the minimum
cycle ratio ¢(C) corresponds to the boundary B with the
minimum cost ¢(B).

Second, we prove by contradiction that the resulting
optimal alternate cycle C does not contain more than one
auxiliary edge. Otherwise, the resulting boundary B would
contain multiple separate closed boundaries with unaligned
axes. Assume the resulting cycle C contains k auxiliary
edges with k£ > 1. This means C contains k alternate paths
P1, Pa,..., Py after these k auxiliary edges are removed.
From these k paths, we can construct k new alternate cycles
Ci, Ca,...,C;, by including the auxiliary edges between the
two endpoints of each path. Given the cycle ratio defined in
(2), it is not difficult to see that

WL (C) S Wa(CH)

p(C) = - .
© i) S, wic)
This shows that at least one cycle, say C,, out of C,;,
t=1,2,...,k has a smaller cycle ratio than C, that is,

o(Cpm) = mg; < ¢(C). This contradicts the assumption that
Cis a cycle with minimum cycle ratio.

Finally, we use an available graph algorithm to find an
alternate cycle C that minimizes the cycle ratio (2) [37], [1].
This minimum-ratio alternate cycle algorithm finds the

desired optimal cycle in polynomial time.

4 AN IMPROVED GAP-LENGTH MEASURE | P, P;j|

The main goal of introducing |P,P}|,, is to handle the case
where a gap-filling quadrilateral may coincide with detected
segments. As shown in both Figs. 11a and 11b, a gap-filling
quadrilateral P, P3P P; is constructed to connect two trape-
zoids 71 and 7. The contribution of this quadrilateral to
the term |Bp|, if it is included in the boundary B, is not
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(@)

(d)

Fig. 11. An illustration of measuring the gap length by excluding the projections from coincident detected segments: (a) and (b) two examples where
the side P, P; of the quadrilateral P, P; P; P; is coincident with a detected segment, and (c) and (d) calculating | P, Ps| , for the two examples shown in

(a) and (b), respectively.
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Fig. 12. An illustration of the three strategies implemented to reduce the number of quadrilaterals.

| P, Ps| + | Ps P7|, as a portion of P, P is in fact coincident with
detected segments, for example, P3P, in Fig. 11a and Py Py in
Fig. 11b. To get an accurate estimate of |Bp|, we locate such
coincident portions and deduct them from the calculation of
the gap length.

Specifically, in calculating the gap length between two
points, say, P, and P; in Figs. 11c and 11d, we construct a
rectangular box, shown in Figs. 11c and 11d, around the
segment P P;. All the detected segments, for example, P Py
in Fig. 11d or the portions of the detected segments, for
example, PyP; in Fig. 11c, that are located inside of this
rectangular box are projected onto the segment P, P;. We then
only count the portions along P P; that do not overlap with
any such detected-segment projections to calculate the gap-
length between P, and P;. For example, the gap length
between P, P; will be | P, Ps|,, = | P, Py| for the case shown in
Fig. 11c and | P, Ps|, = |2 P + | P3 P| for the case shown in
Fig. 11d. Using a small rectangular box for searching
coincident detected segments improves the robustness by
not requiring exact coincidence between the considered gap
and the detected segments, as shown in Fig. 11d. The only free
parameter in this processing is the width of the rectangular
box. In all our experiments, we set this width to be 2 pixels.

5 EXPERIMENTS

We implemented the proposed method and tested its
performance on synthetic data and on a set of real images."
For the synthetic data, we synthesize detected segments
directly, and all the detected segments are located within a

1. The software and images used in this section are available at http://
www.cse.sc.edu/~songwang/document/SRC.tgz.

square region of size 96 x 96. All the real images are scaled to
be no larger than 250 x 250 while maintaining their aspect
ratio. For all our experiments, we set A =10 in the cost
function (1). We will discuss the selection of this parameter
later in Section 5.4.

In constructing the trapezoids, we pair 1) every two
detected segments and 2) every gap-filling segment with
every detected segment, when they have overlapped projec-
tions on their angle-bisector line, as shown in Fig. 3. For the
gap-filling segments, we consider no more than K shortest
gap-filling segments incident from each detected-segment
endpoints, where K is a preset constant number, and we set
K =5 in our experiments. This way, we consider only O(n)
gap-filling segments out of all possible O(n?) ones with n
being the number of detected segments. This indicates that
we may construct O(n?) trapezoids. If we construct quad-
rilaterals to fill the gaps between each pair of trapezoids, we
may then have O(n') quadrilaterals, which lead to O(n*)
dashed edges in the constructed graph. To reduce the number
of dashed edges, we develop three practical strategies to
avoid constructing the quadrilaterals that are unlikely to be
included in the desired optimal boundary.

The first strategy is to consider the construction of only
one quadrilateral between each pair of trapezoids. As
discussed above, we can construct four different gap-filling
quadrilaterals to connect two trapezoids because the axis
segment of a trapezoid has two endpoints. For example, to
connect the two trapezoids shown in Fig. 12a, the axis-
segment of the constructed quadrilateral can be QQ3,
Q1Q4, Q2Q3, or ()2Q4. Usually, only one of these four
quadrilaterals is likely to be included in the desired optimal
boundary. Based on the proximity preference, we only
consider the quadrilateral that has the shortest axis segment
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(a) (b)

(d) (e)

Fig. 13. Five boundary pairs used for constructing synthetic data. Desired symmetric boundaries are shown in bold.

out of the four choices. For the example shown in Fig. 12a,
we only consider one quadrilateral with the axis segment
Q2Q3 to connect the trapezoids 7 and 7. Furthermore, if
the considered quadrilateral introduces a total gap length
that is larger than a given threshold value, we simply do
not construct it. In our experiments, we set this threshold
value to D; = 30 pixels. Each quadrilateral introduces two
gaps described by its two sides across the two neighboring
trapezoids, for example, the gap length introduced by
the quadrilateral P,P3FP;P; in Fig. 1la (or Figs. 11b) is
|P2 P3| + [ PoPr .

Our second strategy is to avoid constructing a quad-
rilateral to connect two trapezoids that share a same portion
of a detected segment. For example, the two trapezoids 73
and 7, shown in Fig. 12b share a same portion of the
detected segment P;P,. Therefore, no quadrilateral will be
constructed between them since the resulting closed
boundary should not traverse (a portion of) a line segment
more than once. However, for two trapezoids 7; and 7,
shown in Fig. 12b, although both of them are constructed
from the detected segment PP, we still consider con-
structing a quadrilateral to connect them since they use
different portions of P, P.

Our third strategy is to avoid constructing quadrilaterals
that lead to an axis with low collinearity, because we are only
interested in detecting symmetric boundaries. Specifically,
for the two trapezoids shown in Fig. 12c, we require that
|sin(/Q1Q2Q4)| and |sin(/Q1Q3Q4)| are both less than a
certain threshold for constructing a quadrilateral between
them. These two terms are exactly the ones used in the
grouping cost (1) for measuring the local boundary symme-
try. In our experiments, we set this threshold to D, = 0.5.
Applying these three strategies can substantially reduce the
number of dashed edges in the constructed graph.

Similarly, the number of the auxiliary edges would be
O(n?) if we consider connecting every possible pair of the
axis-segment endpoints. To reduce the number of auxiliary
edges, we only consider the axis-segment endpoints that are
likely to be boundary-axis endpoints for constructing
auxiliary edges. Specifically, we only consider the axis-
segment endpoints around which the gap length is less than
a given threshold. For example, in Fig. 5a, we may consider
Q1 as a potential boundary-axis endpoint for constructing
auxiliary edges because the gap length between P, and P, is
small. However, we may not consider ()5 because the gap
length between P; and P is larger than the given threshold.
In our experiments, we set this threshold to Ds; = 20 pixels.
In addition, if both endpoints of a trapezoid axis segment
satisfy this condition to be potential boundary-axis end-
points, we only consider the one with the smaller gap length.

Note that the gap length is measured by the method
introduced in Section 4.

Note that all these strategies are developed for speeding
up the algorithm in practice. Without these three strategies,
the number of constructed edges in the graph is still a
polynomial function of n. Therefore, the complexity of the
proposed grouping algorithm is still polynomial in terms of n.
The robustness of the method to these thresholds is examined
in Section 5.4.

5.1 Experiments on Synthetic Data

To evaluate the proposed method quantitatively, we con-
struct a set of synthetic data with a known ground truth of the
desired symmetric boundary. Each synthetic data sample is
constructed in the form of a set of detected segments, which
come from two sources: a pair of synthetic boundaries (one
desired symmetric boundary and one nonsymmetric bound-
ary) and random noise. Fig. 13 shows the boundary pairs that
are used for constructing synthetic data. The desired
symmetric boundaries are shown in bold. We can see that
the pair of boundaries in Fig. 13 may or may not overlap each
other since both cases may happen in practice. Particularly,
Fig. 13e simulate the case where a symmetric structure
generates a nonsymmetric shadow. In some cases, such as
the ones shown in Fig. 13d, the desired symmetric boundary
encloses a smaller area than the other nonsymmetric
boundary does. We intentionally design such cases to see
whether the consideration of the boundary symmetry can
help detect the desired symmetric boundary, even if the
grouping cost prefers a boundary with a larger enclosed
region area.

We sample the boundaries shown in Fig. 13 to construct
disjoint detected segments with gaps. Specifically, we
uniformly subdivide each boundary into a set of line
segments of equal length (5 percent of the perimeter) and
then randomly remove a certain number of these line
segments. The remaining ones are then included as detected
segments in constructing a synthetic data sample. We further
add randomly generated detected segments to simulate the
image noise and for simplicity, we call them noise segments.
For these noise segments, their directions conform to a
uniform distribution over all possible directions, their
locations conform to a uniform distribution within a square
region of size 96 x 96, and their lengths are uniformly
distributed within the range of [5.0, 15.0] pixels. Fig. 14a
shows an example of adding 40 noise segments to the
boundary pair shown in Fig. 13a. Fig. 14b shows one synthetic
data sample, which consists of the detected segments
sampled from the boundary pair shown in Fig. 13a and the
noise segments shown in Fig. 14a. Particularly, we remove
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Fig. 14. An illustration of a synthetic data sample. (a) A boundary pair and random noise segments. (b) Synthesized detected segments by

combining the ones from the boundary pairs and the noise segments.

(c) Optimal boundary detected by the proposed grouping method with

symmetry axis shown as a dashed curve. (d) Optimal boundary detected by RC. (e) Optimal boundary detected by EZ.
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Fig. 15. The average performance of the proposed method, RC, and EZ on all 2,100 synthetic data samples in terms of (a) the gap percentage along

the synthetic boundary pairs and (b) the number of noise segments.

30 percent of the subdivided line segments along the
boundary pair shown in Fig. 13a to construct the synthetic
data sample in Fig. 14b. Based on such a synthetic data
sample, we can directly apply the proposed grouping method
to detect an optimal boundary, as shown in Fig. 14c.

For each of the five boundary pairs shown in Fig. 13, we
sample them in seven different ways so that the resulting gaps
along the boundaries account for 0 percent, 5 percent,
10 percent, 20 percent, 30 percent, 40 percent, and 50 percent
of the boundary length, respectively. The number of noise
segments are also chosen to be 0, 10, 20, 30, 40, and 50 in
different settings. By doing all possible combination of the
sampled boundary pairs and the noise segments, we have a
totalnumber of 5 x 6 x 7 = 210 different settings. Under each
setting, we further randomly generate the expected number
of noise segments and the expected gap percentage along the
underlying boundary pair 10 times, which finally results in
210 x 10 = 2,100 synthetic data samples. In the experiments,
we apply the proposed grouping method to all these
2,100 synthetic data samples. For comparison, we also apply
two previous edge-grouping methods: the RC [37] and the
Elder and Zucker method (EZ) [9] to the same 2, 100 synthetic
data. The implementation of both RC and EZ are the same as
in [37]. Note that both RC and EZ consider only boundary
closure, proximity, and continuity (smoothness) but not

boundary symmetry and enclosed region area, in grouping.
Sample grouping results by RC and EZ are shown in Figs. 14d
and 14e, respectively.

As in [37], on each data sample, we define the grouping

. . . . NR'
performance usingaregion coincidence measure il where

Rand R’ are the regions enclosed by the desired g‘f:L}erd-truth
boundary and the detected boundary, respectively, and |R|
indicates the area of region R. The larger this measure, the
better the coincidence between the ground-truth boundary
and the detected boundary. For example, the grouping results
shown in Figs. 14c, 14d, and 14e have a performance of 0.98,
0.68,and 0.19, respectively. Figs. 15aand 15b show the average
performance of the proposed method, RC, and EZ on all
2,100 data samples, in terms of the gap percentage along the
boundary pairs and the number of noise segments, respec-
tively. Note that, for each setting of the gap percentage along
the boundary pair in Fig. 15a, the average is taken over
300 data samples since we have five boundary pairs, six levels
of the number of noise segments, and 10 rounds of noise-
segment and boundary-gap generation. Similarly, for each
setting of thenumber of noise segmentsin Fig. 15b, theaverage
is taken over 350 data samples since we have five boundary
pairs, seven levels of the gap percentage in sampling
the boundary pair, and 10 rounds of noise-segment and
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Fig. 16. Grouping results on 10 real images. Column 1: input real
images. Column 2: Canny edge detection results. Column 3: detected
segments after line fitting. Column 4: optimal boundaries obtained by the
proposed grouping method. Detected boundary axes are shown by
dashed curves. Column 5: optimal boundaries obtained by RC and
Column 6: optimal boundaries obtained by EZ.

boundary-gap generation. From Fig. 15, we can see that, when
the desired boundaries are symmetric, the proposed grouping
method performs better than RC and EZ, where boundary
symmetry is not considered.

5.2 Experiments on Real Images

We also test the proposed grouping method on real images
and compare it to RC and EZ. The test real images are
selected from the Corel image database and Google image
search. On real images, we construct the detected segments
by edge detection and line fitting. For edge detection, we
use the Canny detector provided with Matlab’s Image
Processing Toolbox (R2006a), leaving its parameters at their
default values. For line fitting, we used the Matlab function
developed by Kovesi [17] by setting the minimum length
for an edge to be considered to 30 pixels and the maximum
deviation between an edge and its fitting line to 2 pixels.
Sample edge detection and line-fitting results for 20 real
images are shown in the second and third columns of
Figs. 16 and 17, respectively. Based on these detected
segments, all the other settings for the proposed grouping
method are the same as the ones used in the above
synthetic-data experiments.

The fourth, fifth, and sixth columns in Figs. 16 and 17 show
the optimal boundaries obtained by the proposed grouping

Fig. 17. Grouping results on 10 more real images. The columns depict
the same information, as in Fig. 16.

method, RC and EZ, respectively. In Figs. 16a, 16b, 16c, 16d,
16f, 16i, 16j,17a,17¢,17d, 17f,17h, 17i, and 17j, we can see that
by considering the symmetry cue the proposed method can
detect boundaries with good symmetry. These experiments
onreal images also show that when the whole structure is not
symmetric, the proposed method may only detect a sym-
metric component of the structure, as shown in Figs. 16c, 16e,
17a, 17b, 17e, and 17f. In such cases, the edge-grouping
methods without considering symmetry may detect the
structural boundary more completely, as shown in Fig. 17b.
On several images, such as the ones shown in Figs. 16a, 16e,
17e,and 17g, RC or EZ produce similar symmetric boundaries
as the proposed method does. This indicates that the
symmetric boundaries found in these several images by the
proposed method also minimize the RC or EZ grouping costs,
which consider closure, proximity, and continuity, but not
symmetry.

5.3 Detecting Multiple Boundaries

In the previous sections, the proposed grouping method is
developed and tested to detect the single optimal boundary
that minimizes the grouping cost. In practice, most real
images contain multiple structures of interest, and there is a
strong motivation to extend the proposed grouping method
to detect multiple symmetric boundaries from the same
image. In addition, due to noise, texture, and other undesir-
able structures in real images, the optimal boundary that
minimizes the grouping cost may not be the desired one. A
more reasonable way is to detect a small number of optimal
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Fig. 18. An illustration of detecting the same boundary when repeating the
proposed grouping method. (a) A set of detected segments. (b) A
symmetric boundary consisting of two trapezoids 7; and 7'5. (c) The same
symmetric boundary consisting of two different trapezoids 73 and 7 4.

boundaries with small grouping cost and expect that the
desired ones are among them.

We extend the grouping method to detect multiple
optimal boundaries by repeating the proposed grouping
method on the same image: after detecting the first optimal
boundary, we remove all the trapezoids along the detected
boundary and then repeat the same grouping method on the
remaining trapezoids to detect the second optimal boundary.
This process can be further repeated to detect multiple
symmetric boundaries. The implementation of this strategy is

simple: each trapezoid corresponds to two edges, and we
only need to delete the edges present in the detected optimal
cycle (and its mirror cycle) and rerun the minimum-ratio
alternate cycle algorithm on the remaining graph to detect the
next optimal boundary.

One problem of this multiple-boundary detection is that
the same boundary may be detected in different rounds when
repeating the proposed grouping algorithm. An example is
shown in Fig. 18: the first round of grouping may produce a
boundary consisting of the trapezoids 7, and 7,. After
removing 7 and 7, the second round of grouping may
produce a boundary consisting of the trapezoids 75 and 7 4.
We can see that the boundaries produced in these two rounds
are in fact the same boundary. However, this mainly happens
for a boundary with multiple different symmetry axes, as
shown in Figs. 18b and 18c. In practice, this is not a serious
problem since we can easily check the detected multiple
boundaries and for the boundaries that are detected more
than once, we only keep one of them and discard the
redundant ones.

We conducted experiments on real images by detecting
the first three optimal boundaries, as shown in columns
four, five, and six in Fig. 19. We can see that the optimal

Fig. 19. Experimental results of detecting multiple optimal boundaries from 10 real images. Column 1: input real images. Column 2: Canny edge
detection results. Column 3: detected segments after line fitting. Column 4, 5, and 6: the first three optimal boundaries by repeating the proposed
grouping method. Column 7: optimal boundaries obtained by RC. Column 8: optimal boundaries obtained by EZ.
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;, !

Fig. 20. An illustration of detecting different boundaries or the same boundary in different rounds when repeating the proposed grouping method.
From left to right, Column 1: input real images. Column 2: Canny edge detection results. Column 3: detected segments after line fitting. Columns 4,
5, 6, 7, and 8: the first five optimal boundaries by repeating the proposed grouping method.

ot
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Fig. 21. An illustration of the optimal boundaries detected by the proposed method using different values of A. (a) A =1 or 5, (b) A =10 or 25,

(c) A =50 or 75, (d) A = 100, and (e)

boundaries detected in the second or third rounds may be
more desirable than the one detected in the first round. In
Fig. 20, we further show several examples where the
proposed grouping method may detect different symmetric
boundaries in different rounds. It also shows an example
where the proposed grouping method may detect the same
symmetric boundary in different rounds, as shown in
columns 6, 7, and 8 in Fig. 20a.

Note that we do not remove all the detected/gap-filling
segments along the detected boundary and then repeat the
same grouping method on the remaining line segments to
detect multiple boundaries. The reason is that removing one
segment may correspond to removing many trapezoids,
given that the same segment may be used to construct
different trapezoids, and this may introduce two problems:
1) for an image with two neighboring structures that share a
portion of the their boundaries, the detection of one may
prevent the detection of the other, since the segments
corresponding to the shared boundary may be removed after
the detection of the first boundary and 2) if the boundaries
detected in the previous rounds are not the desired ones but
include some segments along the desired boundaries, the
removal of such segments may prevent the detection of the
desired symmetric boundaries in the later rounds.

5.4 The Selection of )\ and Other Thresholds

The proposed grouping cost function (1) has a free parameter
A, which needs to be selected by the user. This parameter
balances the boundary proximity and the boundary symme-
try in grouping. A larger A may lead to more symmetric
boundaries with poorer proximity, and a smaller A may lead
to less symmetric boundaries with better proximity. In most
of our experiments, we found that the same or similar
grouping results are obtained when A takes a value in a

(d) (e)

A =1,000. The input image and the detected segments are the same as the ones shown in Fig. 16a.

certain range. Fig. 21 shows an example of the proposed
grouping with different values of A. For this image, when A
takes a value in the range [1.0, 50.0], the detected boundaries
are very similar and well aligned with the barrel present in
this image. In general, the selection of A is related to the image
size, since the proximity term |Bp| is related to image size and
the symmetric term p(axis(B)) is not. As mentioned earlier,
we scale the images to be no larger than 250 x 250 while
maintaining their aspect ratio in all our experiments on real
images. We empirically select A = 10 for all our experiments.

At the beginning of Section 5, we also introduce several
thresholds to reduce the constructed graph size. Particu-
larly, we choose D; =30, D; =0.5, and D3 =20 in our
experiments. Using these thresholds, we can avoid con-
structing the gap-filling quadrilaterals and boundary-axis
endpoints that are unlikely to be included in the optimal
boundary with the minimum grouping cost. Fig. 22 shows
the grouping results by varying the value of these thresh-
olds. By choosing larger values for D;, D,, and D3, we
construct more gap-filling quadrilaterals and consider more
potential boundary-axis endpoints. However, the grouping
results largely keep unchanged when we choose them to be
larger than the ones used in our experiments. In fact, by
turning off all three thresholds, that is, setting D; = +o0,
Dy = 1.0, and D3 = 400, we get the same grouping result, as
shown in the first column in Fig. 22. However, when turning
off all of them, the constructed graph has 3,384,762 edges,
and the proposed grouping takes 678.69 seconds, compared
with 87,292 edges and 3.95 seconds when setting D; = 30,
Dy =0.5, and D3 = 20.

5.5 Two Special Cases

In Section 3.2, we proved that the minimum-ratio alternate
cycle contains no more than one auxiliary edge. However, itis
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Fig. 22. An illustration of the optimal boundaries detected by the
proposed method using different values of Dy, D, and Ds. (a) Fixing
D, =0.5, D3 =20 and varying D; = 25, 30,40, 50,100, 150, 200, 250 or
+oo (left), D; =15 or 20 (middle) and D; =5 or 10 (right). (b) Fixing
D, =30, D, =0.5 and varying D; = 10, 20, 30, 40, 50, 100, 150 or +oo
(left), D3 =1,3 or5 (middle), and D3 =0 (right). (c) Fixing D; = 30,
D3 =20 and varying Dy = 0.4,0.5,0.6,0.7,0.8,0.9 or 1.0 (left), Dy = 0.2
or 0.3 (middle) and D, = 0.1 (right). The input image and the detected
segments are the same as the ones shown in Fig. 16i.

possible that the minimum-ratio alternate cycle does not
contain any auxiliary edges. A minimume-ratio alternate cycle
without an auxiliary edge may correspond to two special
kinds of grouping results that are produced occasionally in
practice. The first kind of grouping result consists of two
disjoint closed boundaries that are symmetric to each other
over an axis in between, as shown in Figs. 23a, 23b, and 23c.
Specifically, from the detected segments shown in Fig. 23a,
we construct a set of trapezoids, three of which are shown in
Fig.23b. One possible grouping resultis to connect these three
trapezoids to form two disjoint closed boundaries as shown
by the left and right polygons in Fig. 23c, where the middle
dashed polygon is the resulting symmetry axis (shown a little
misaligned to visualize it better). We can see that the alternate
cycle corresponding to this grouping result contains no
auxiliary edges, that is, no boundary-axis endpoints can be
identified. However, such a grouping result is more likely to
have a relatively smaller area(B) (the total area enclosed by
the two resulting disjoint closed boundaries) and a relatively
larger |Bp| (because of the longer total boundary perimeters).
Therefore, such a grouping usually has a larger grouping cost
and does not happen frequently in the proposed grouping. In
Fig. 24, we show an example of such a special grouping result
on a real image. This is produced in the second round of
repeating the proposed grouping method on this image. In
practice, however, we can achieve more such grouping

MARCH 2008
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Fig. 23. An illustration of two special cases in the proposed grouping.
Top row: The first special case of detecting a symmetric pair of
boundaries. Bottom row: The second special case of detecting two
disjoint boundaries that form a ring.

results by not constructing any auxiliary edges in the graph
G = (V, E). The application of the same graph algorithm will
be forced to detect such symmetric boundary pairs. In
practice, this may extend the proposed method to detect the
objects in pairs such as eyes, eyeglasses, windows, and so on.

The second kind of special grouping result consists of two
disjoint closed boundaries that form a ring, as shown in the
second row in Fig. 23. Based on the detected segments shown
in Fig. 23d, we can construct trapezoids, as shown in Fig. 23e.
One possible grouping result is to connect these four
trapezoids to form two disjoint closed boundaries as shown
by the innermost and outermost polygons in Fig. 23f, where
the polygon between them is the resulting symmetry axis. In
this case, the enclosed region area area(B) is the one bounded
by these two disjoint closed boundaries. This special kind of
grouping result also occurs very rarely in practice since the
enclosed region area is relatively small, and the collinearity of
the resulting symmetry axis is usually poor, which resultsina
large grouping cost. In all our experiments, so far, we did not
encounter any such special grouping results.

6 EXTENSIONS TO INCORPORATE OTHER
BOUNDARY AND REGION INFORMATION
The proposed grouping method can be extended to

incorporate other boundary or region information. For
example, boundary continuity, or smoothness, is widely

=5

=ik

— 17‘_)L f

f\

Fig. 24. An example of the special grouping result on a real image. Column 1: input image. Column 2: Canny edge detection result. Column 3:
detected segments after line fitting. Columns 4 and 5: the first and second optimal boundaries obtained by repeating the proposed grouping method.
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(a) (b)

(c) (d)

Fig. 25. An example of the grouping by using the modified grouping cost (3): (a) optimal boundary obtained by the proposed method based on the
original grouping cost (1), (b), (c), and (d) optimal boundaries obtained by the proposed method based on the modified grouping cost (3) with
A2 = 0.5,1 and 5, respectively. The input image and the detected segments are the same as the ones shown in Fig. 17h.
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Fig. 26. An example of grouping by incorporating intensity homogeneity: (a) input real image, (b) Canny edge detection result, (c) detected segments
after line fitting, (d) the (normalized) magnitude of the image intensity gradient, where darker pixels indicate larger gradient magnitudes, (e) optimal
boundary obtained by the proposed grouping method based on the modified grouping cost (4), and (f) optimal boundary obtained by the proposed

method based on the original grouping cost (1).

used in previous edge grouping methods [9], [39], [37], and
it can be incorporated in the proposed grouping by adding
another term into the numerator of the grouping cost (1) as

IBp| + A paxis(B)) + Xy - [, &%(t)dt 3)
area(B) ’

¢(B) =

where «(t) is the curvature along the boundary B and X, is a
weighting factor for this continuity term. Since all the
considered boundaries are polygons in this paper, cubic
spline interpolations are used to estimate the boundary
curvature [34].

By making a small change on the first edge weight
function, the proposed graph model and algorithm can still
be used to find the optimal boundary that minimizes new
grouping cost [34]. However, we found that although the
boundary continuity is important in previous edge grouping
methods, it is not critical in the proposed grouping for
symmetric boundaries. The reasons are twofold: 1) with a
normalization over the enclosed region area in the grouping
cost, the proposed method has a preference to produce
boundaries that enclose a large round area. This preference
implicitly reflects some level of continuity and 2) as many
symmetric boundaries are not smooth everywhere, an
explicit inclusion of a curvature term in the grouping cost
(3) may affect the detection of such symmetric boundaries.
Fig. 25 shows an example where the inclusion of the
curvature-based continuity term prevents the detection of a
symmetric boundary with high-curvature points.

Other region information can also be incorporated by
modifying the denominator of the grouping cost (1). For
example, we can extend the proposed method to detect a
boundary that encloses a region with good intensity
homogeneity by modifying the grouping cost to

[Bp| + A - p(axis(B))

) = T (1= VI ) dody’

(4)

where R(B) is the region enclosed by the boundary B.
Normalized to the range [0.0, 1.0], |VI(z, y)| is the magnitude
of the intensity gradient at pixel (z,y). To find the optimal
boundary that minimizes this modified grouping cost, we
only need to modify the definition of the second edge weight
in the graph construction from the signed enclosed area
I per) ddy (or I R(g) drdy) to the signed value of I/ re (1
IVI(z,y)|)dzdy (or [ [pq (1~ [VI(z,y)|)dzdy), where R(T)
(or R(G)) is the region enclosed by the trapezoid T (or the
quadrilateral G) corresponding to the considered edge. The
same graph modeling and algorithm can then be used to find
the optimal boundary. Fig. 26e shows an example of the
grouping using the modified grouping cost (4). As a
comparison, Fig. 26f show the grouping result on the same
image using the grouping cost (1). We can see that, with this
extension, the proposed method detects a boundary whose
enclosed region has better intensity homogeneity.

7 COMPLEXITY ANALYSIS AND RUNNING TIME

As discussed in Section 5, given n detected segments, we
may need to construct O(n?) trapezoids in the worst case. If
we construct quadrilaterals to fill the gaps between each
pair of trapezoids, we may then have O(n') quadrilaterals,
which lead to O(n') dashed edges and O(n') auxiliary
edges in the constructed graph. The minimum-ratio alter-
nate cycle algorithm has a time complexity of O(|V| |E|) [37]
in the worst case. The worst-case complexity of the
proposed grouping algorithm is then O(n%). This is a very
high complexity and an algorithm with such a complexity is
not usually useful in practice.

However, two reasons make the proposed grouping
method still practically useful: 1) n, the number of detected
segments, is usually much smaller than the number of pixels
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TABLE 1
Running Time and the Constructed Graph Size for the 20 Images Shown in Figs. 16 and 17

Auxiliary Total | Prop. Method RC

Size Lines | Trapezoids | Quads. Edges Edges | CPU(sec) | CPU(sec)

Fig. 16(a) || 124x150 | 335 10400 | 251154 343620 | 605174 | 416.55 29.77
Fig. 16(b) || 218x 145 580 21620 | 523218 843700 | 1388538 | 1134.85 33.08
Fig. 16(c) || 179x150 | 353 11124 | 256668 292612 | 560404 | 325.22 28.53
Fig. 16(d) || 176x150 | 309 9282 | 229228 286524 | 525034 | 448.60 13.29
Fig. 16(e) || 150x 161 456 17256 | 588778 721200 | 1327234 | 2033.32 37.53
Fig. 16(f) || 220x150 | 460 14270 | 245566 435244 | 695080 | 545.48 27.01
| Fig. 16(g) || 150x225 | 559 25838 | 699136 | 1307344 | 2032318 | 2468.40 68.11
Fig. 16(h) || 150x150 | 290 7672 | 132560 135720 | 275952 73.85 16.85
Fig. 16(i) || 200x133 161 3638 | 48010 35644 87292 3.95 14.04
Fig. 16(j) || 231x150 | 512 25912 | 899050 | 1547040 | 2472002 l 2192.04 57.44
Fig. 17(a) || 210x150 | 314 10210 | 200366 205440 | 416016 | 100.97 16.82
Fig. 17(b) || 230x150 | 422 11574 | 223262 346944 | 581780 | 81.64 24.00
| Fig: 176c) || 200136 | 538 | 1694 | 321902 | SONMO | 847906 | 698,81 i udl
Fig. 17(d) || 212x150 | 397 14102 | 362208 459840 | 836150 | 863.27 25.62
Fig. 17(e) || 150x225 547 19718 | 340776 505012 | 865506 | 787.04 54.69
Fig. 17(f) || 123x 181 334 10274 | 166230 200344 | 376848 | 246.79 30.81
| Fig. 17(g) || 225x150 | 404 14324 [ 416190 | 424120 | 854634 | 1740.18 53.79
Fig. 17(h) || 166x150 143 3228 | 58618 62304 | 124150 | 6.47 12.45
Fig. 17(1) || 231x150 | 412 12710 | 307544 448404 | 768658 | 525.75 20.04
Fig. 17(j) || 184125 390 13066 | 472338 619384 | 1104788 | 1433.9] 18.56

in an image and 2) we developed several special strategiesto ACKNOWLEDGMENTS

substantially reduce the number of edges in the constructed
graph (see Section 5). Although it may be difficult to
analytically derive a tighter estimate of the algorithm
complexity, we implement the proposed grouping method
using C++ and check its runtime in processing a set of real
images. Table 1 shows the runtime on the 20 images shown in
Figs. 16 and 17 and the size of the graph constructed for them.
Our experiments were run on Linux computers equipped
with a 3.4 GHz Xeon processor and 4 Gbytes of RAM.

8 CONCLUSIONS

In this paper, we developed a new grouping method for
detecting closed boundaries that show good bilateral
symmetry. Particularly, the proposed method can detect
both boundaries and their symmetry axes. This is achieved
by 1) defining a new grouping cost that combines the
different boundary and region information, 2) constructing a
new type of trapezoidal grouping tokens by pairing line
segments detected from the input image, and 3) constructing
a new graph model that can transform the proposed
grouping problem into a graph problem of detecting a cycle
that minimizes a given ratio-form cost. We show that this
graph problem can be addressed by an available graph
algorithm in polynomial time. We implemented the pro-
posed grouping method and tested its performance on a set
of synthetic data and real images. We also conducted
experiments to compare its performance to the performance
of two previous edge-grouping methods. These experiments
showed that the proposed method performs more favorably
when the desired structure has a boundary with good
bilateral symmetry.

This work was funded by NSF-EIA-0312861 and AFOSR
FA9550-07-1-0250. Part of the experiments were run on the
“NICK” Dell PC cluster provided by the College of
Engineering and Computing at the University of South
Carolina. Some preliminary results of this paper were
published in a conference proceeding [34].
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