
Globally Optimal O(n) Solution to the PnP
Problem for General Camera Models∗

Gerald Schweighofer and Axel Pinz
Institute of Electrical Measurement and Measurement Signal Processing,

Graz University of Technology†

Abstract

We present a novel and fast algorithm to solve the Perspective-n-Point prob-
lem. The PnP problem - estimating the pose of a calibrated camera based on
measurements and known 3D scene, is recasted as a minimization problem
of the Object Space Cost. Instead of limiting the algorithm to perspective
cameras, we use a formulation for general camera models. Theminimization
problem, together with a quaternion based representation of the rotation, is
transferred into a semi definite positive program (SDP). This transfer is done
in O(n) time and leads to an SDP of constant size. The solution of the SDP is
a global minimizer of the PnP problem, which can be estimatedin less than
0.15 seconds for 100 points.

1 Introduction

Estimating the pose of a calibrated camera has lots of applications in Computer Vision,
Robotics and Augmented Reality. Previous attempts solve that problem either for a spe-
cific, small number of points (three points [4] or four points[9]). Others try to solve for an
arbitrary number of points using iterative methods [12, 3, 10, 18], which minimize a given
cost function. One drawback of such methods is the computational burden. To overcome
that burden, non-iterative methods [16, 6, 2, 11] have been developed. These methods
reformulate the problem in a way that it can be solved by a single (large) equation system
(O(n2) [16] or O(n8) [2]).

Limitations for all of these methods are either (i) the fact that they gain speed by
approximating the cost function (non-iterative ones), or (ii) lack in reaching a global min-
imum (iterative ones).

These limitations have led to a search for global optimization methods. Recent re-
sults were obtained by Agarwal et al. [1]. They proposed to use abranch and bound
algorithm together withsecond order cone programs (SOCP) to estimate global solutions
for triangulation and camera pose estimation. For pose estimation they modeled the cam-
era as a 4×3 matrix without accounting for the constraints on the rotation matrix. The
achieved runtimes vary from 42 seconds (6 points) to 250 seconds (100 points). Using
the constraints of the rotation, Hartley et al. [8] proposeda branch and bound algorithm
which solves iteratively an approximation of the original problem. Due to properties of
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Figure 1: Object Space Costei for General Camera Model.

the approximated rotation, this led to a SOCP too. In [13], Olsson et al. used the same
branch and bound algorithm, but quaternions as representation for rotations. Reported
timings range from 1.5 to 10 minutes (for 10 points) and from 2to 14 minutes (for 4
points) depending on the approximation of the rotation.

In this paper we propose a non-iterative fast global optimalsolution to the PnP prob-
lem. This is achieved based on the following three ideas: First, the problem is recasted
as a minimization problem using the object space cost. This cost is used in many pose
estimation algorithms [10, 18, 5]. In [11] and [18], comparisons of different pose esti-
mation algorithms were performed. The conclusions of both papers are, that minimizing
object space cost gives the best accuracy of the estimated pose. Second, the minimization
can be transformed to a semi definite positive program (SDP) using the theory of sum of
squares [15]. Third, this SDP can be efficiently solved, using publicly available tools like
SeDuMi [19].

One main difference of the proposed approach compared to theother global opti-
mization algorithms is the fact, that the time consumingbranch and bound algorithm is
avoided. Only one SDP need to be solved to estimate the globalsolution. This can be
achieved in less then 0.15 seconds (for up to 100 points) and less than 0.3 seconds (for up
to 1000 points) usingMATLAB on aIntel Core 2 Duo 1.6 GHz.

In the remainder of the paper, we first introduce the general camera model and its
appropriate cost function. Using that cost function we formulate the PnP problem as a
minimization problem. After that we give a short introduction of sum of squares opti-
mization, and show then how the PnP problem can be globally solved using that theory.
Finally, we conclude with experiments.

2 Problem formulation - PnP for a General Camera
Model

We follow the definition of a General Camera Model (GCM) described in [7], and use
the same notation as [17]. Instead of measuring a position inside a sensor, a direction is
measured. This direction is represented by a tuple (c,v). Based on these measurements
theObject Space Error for General Camera Models is defined as [17]:

ei(R, t,Xi) = ‖(I −Vi)(RXi + t− ci)‖
2 with Vi =

vivT
i

vT
i vi

. (1)



As an example the costsei for pointsXi are shown in Figure 1. The costei measures the
distance between a world pointXi and the projection of this point onto theline of sight.
The indexi represents one ofni points.

Given world pointsXi and their measurement in a calibrated camera (vi andci), the
problem of pose estimation is defined as finding the pose (R andt), for which the sum of
all costs is a minimum:

argmin
R,t

E(R, t) = argmin
R,t

ni

∑
i=1

ei(R, t,Xi) =argmin
R,t

ni

∑
i=1

‖(I −Vi)(RXi + t− ci)‖
2 (2)

subject toR ∈ SO(3)

Solving for an optimal translationtopt is given by differentiating (2) w.r.t. the translation
t and setting the result equal to zero [10, 5, 18]:

topt =

(

∑
i

Qi

)−1

∑
i

Qi(RXi + ci) with Qi = (I −Vi)
T (I −Vi) . (3)

Let us introduce the operatorC(X):

C(X) =





XT 01×3 01×3

01×3 XT 01×3

01×3 01×3 XT



 , (4)

where 01×3 is a zero matrix of size 1×3. Using that operator and a vector based represen-
tation of the rotation matrixr(R) = [rT

1 ,rT
2 ,rT

3 ]T (R = [r1,r2,r3]), the optimal translation
topt is given by

topt = T3×10

[

r
1

]

with T3×10 =

(

∑
i

Qi

)−1

∑
i

Qi [C(Xi) | ci]. (5)

Using this result and the vector based notation of the rotationr, the original problem (Pose
Estimation for a General Camera) (2) can be written as:

argmin
r

rT Mrr+Mcr+Mcc (6)

subject toR ∈ SO(3),

with

M = ∑
i

([C(Xi) | ci]+T3×10)
T Qi ([C(Xi) | ci]+T3×10) = (7)

=

[

Mr
1
2Mc

1
2MT

c Mcc

]

.

What makes the minimization problem in (6) complicated is theconstraint “R ∈ SO(3)”,
which restricts the matrixR to be a valid rotation matrix.

In case of a single perspective camera all measurement rays intersect in the optical
center of that camera. Therefore, without loss of generality, all ci = 0, which results in
Mc = 09×1 andMcc = 0. Such a minimization problem (argminr rT Mrr) was solved by



Ess et. al [5] ignoring the constraint on the rotation. Ignoring the constraint leads to a
singular value decomposition (SVD) algorithm. One main drawback of that approach is
that the result of the SVD is not a valid rotation, and therefore a second SVD is needed
to normalize the result. Still, the result of this algorithm is not the optimal solution of the
problem, due to this two step approach.

Schweighofer and Pinz [18] solved the same problem (2) incorporating the constraint
on the rotation matrix using an iterative approach. They found, that there can exist up to
two minima and therefore an iterative approach can end up in alocal minimum instead of
the global minimum.

In this paper we solve (6) with the constraintR ∈ SO(3), which leads to aglobal
solution. We do that using recent results in global optimization, namely the theory of
sum of squares (SOS). In the next section we give a short overview of how SOS can be
used for global optimization.

2.1 Sum of Squares for global minimization

Finding a global minimizer of a functionf (x) could be replaced by

maximizeγ (8)

subject tof (x)− γ >= 0.

In (8) one needs to show that the constraint is positive for all x. In general this problem is
NP-complete [15].

An easier, and computationally more tractable way is to showthat f (x)− γ is a sum
of squares. To start we begin with the definition of a sum of squares (SOS) [15]: A
multivariate polynomialp(x1, . . . ,xn) = p(x) is a sum of squares if there exist polynomials
f1(x), . . . , fm(x) such that

p(x) =
m

∑
i=1

f 2
i (x). (9)

Using that definition it is clear that the polynomialp(x)≥ 0∀x. To show that a polynomial
p(x) is an SOS it is sufficient to show that there exists a semi definite positive matrixQ
such that

p(x) = ZT (x)QZ(x), (10)

whereZ(x) is a vector of monomials ofx. The non-negativity constraint in (8) is replaced
by an SOS constraint

maximizeγ (11)

subject tof (x)− γ = ZT (x)QZ(x)

Q ≥ 0,

which, by comparing coefficients, gives a system of linear equations (Aq = b), and there-
fore results in an SDP

maximizeγ (12)

subject toAq = b

Q ≥ 0,



which could be easily solved using tools like SeDuMi [19].
Let us assume we want to solve the constrained optimization problem:

minimize f (x) (13)

subject togi(x) ≥ 0, i=1,. . . ,M

h j(x) = 0, j=1,. . . ,N

It was shown in [15, 14], that an upper bound to the global minimum could be found using
thePositivstellensatz:

f (x)− γ = σ0(x)+∑
j

λ j(x)h j(x)+∑
i

σi(x)gi(x)+ ∑
i1,i2

σi1,i2(x)gi1(x)gi1(x)+ . . . (14)

If one finds polynomialsλ j(x) and SOSsσi(x) according to (14), thenγ is a lower bound
to the optimization problem of (13). Maximizingγ gives a lower bound, which gets tighter
when the degree of (14) is increased. If the degree of the right hand side of (14) is high
enough, or the lower boundγ = f (x), thenγ is the global minimum.

2.2 Pose estimation using SOS

The minimization problem of (6) can be rewritten as a multivariate minimization problem
in four variables. First, we parameterize the rotation vector r using unit quaternionsq =
[q1,q2,q3,q4]:

r =
[q2

1 +q2
2−q2

3−q2
4,2q2q3 +2q1q4,2q2q4−2q1q3,2q2q3−2q1q4,q2

1 +q2
3−q2

2−q2
4,

2q3q4 +2q1q2,2q2q4 +2q1q3,2q3q4−2q1q2,q2
1 +q2

4−q2
2−q2

3]
T .

(15)

Using that representation for rotations, the constraint “R ∈ SO(3)” can be written in con-
straints on the quaternions: First, the norm ofq must be one (‖q‖2 = 1) to represent a
valid rotation. Second, the ambiguity of quaternions must be resolved:q and−q rep-
resent the same rotation, so we add the constraintq1 ≥ 0. Ignoring the last constraint
would lead to two equally valid solutions, which would distract the SDP solver. With this
quaternion based representation, the pose estimation problem of (6) is recasted as

minimize f (q) (16)

subject toq1 ≥ 0

‖q‖2−1 = 0,

with f (q) = rT Mrr + Mcr + Mcc. Using the Positivstellensatz (14) and SOS decomposi-
tion we obtain

maximizeγ (17)

subject tof (q)− γ −λ (‖q‖2−1)−σq1 is SOS

σ is SOS,

with

σ =
[

1,qT ]

C1

[

1
q

]

and λ =
[

1,qT ]

C2

[

1
q

]

. (18)



HereC1 is a 5×5 matrix with unknown coefficients. To fulfill the constraint“σ is SOS”
C1 has to be a semi-definite positive matrix. The matrixC2 is an upper triangular matrix
of size 5×5 with 15 unknown coefficients. Finally, the minimization problem of (17) can
be written as an SDP like the one in (12). Using a tool for SOS programming [15] we
developed a script, which converts the pose estimation problem (6) (M, Mc andMcc) into
an SDP (A, b andc). The matrixA, and the vectorsb andc for the SDP are too large
to be shown here (size ofA is 266× 70), therefore theMATLAB code which does the
conversion is available at http://www.emt.tugraz.at/∼pinz/code. The SDP is solved using
SeDuMi [19].

2.3 Special Case: Planar Scene

In cases of a single perspective camera all measurement raysintersect in the optical center
of that camera. Therefore, without loss of generality allci = 0, which results inMc = 09×1

andMcc = 0. If the scene pointsXi are co-planar we can assume, again without loss of
generality, that the points are located in the z-plane:Xi = [Xxi,Xyi,0]T . Evaluating the
matrixM with such points results in anM where the 3-rd, 6-th and 9-th columns and rows
are equal to zero.

This results in two different solutions for the global optimum. Let us assume that one
of the global optima is reached atR1 = [r1,r2,r3] andt1. Then the second global optimum
is atR2 = [−r1,−r2,r3] and−t1. Therefore, the two statements are equivalent:

Two global minima
R1 = [ r1, r2,r3] , t1

R2 = [−r1,−r2,r3] , −t1
≡ Points are co-planarXzi = 0 . (19)

In such a situation SeDuMi [19] would not converge to a singlesolution. It reports
that no single solution could be found. To overcome this limitation we need to add a
further constraint which separates the solutions from eachother. Since the rotations of
the two solutions differ only in the sign, we decided to use the sign of the first element
r11 = q2

1+q2
2−q2

3−q2
4 to distinguish the solutions from each other. Solving both problems

minimize f (q) minimize f (q) (20)

subject toq1 ≥ 0 subject toq1 ≥ 0

q1
2 +q2

2−q3
2−q4

2 ≥ 0 q1
2 +q2

2−q3
2−q4

2 ≤ 0

‖q‖2−1 = 0. ‖q‖2−1 = 0.

results in two optimal solutions. In the first one the points are in front of the camera and
in the second one the points are behind the camera. Both solutions have the same cost (2).

If one knows that the points are exactly co-planar only one ofthe two minimization
problems in (20) has to be solved, because the second solution can be obtained from the
first one. If the scene is not exactly planar, or one does not know whether the scene is
planar or not, both programs have to be solved. In such a case the 3-rd, 6-th and 9-th
column and row ofM are not exactly zero and therefore the statement of (19) doesnot
hold anymore. In such cases both systems of (20) are solved and the best one is taken as
the global optimal solution. The code for this special (planar) case (size ofA is 292×70)
is also available at http://www.emt.tugraz.at/∼pinz/code.
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Figure 2: Numerical Results for global optimal pose estimation using SeDuMi. (a) con-
sumed CPU time, (b) SeDuMi iterations, (c) errorE(R), (d) rotation error, (e) number of
valid computations, (f) gap to global minimum.

3 Experiments

The first experiment was performed to analyze the numerical stability of the proposed
algorithm. We generated 100 random points normally distributed in thex,y,z interval
[−0.5,0.5]× [−0.5,0.5]× [9.5,10.5]. These points were observed with a general cam-
era model (ci were normally distributed in thex,y,z interval [−0.5,0.5]× [−0.5,0.5]×
[−0.5,0.5]). From the measurementsvi we generate the matricesMr, Mc andMcc accord-
ing to (7), which are then translated to an SDP program explained in section 2.2. The
SDP program is then solved with SeDuMi [19]. SeDuMi is a publicly available iterative
SDP solver. To stop the iterations one needs to select a stopping criterion. This criterion
is based on the difference between successive iterations. We call this valueAccuracy of
SeDuMi. For different values of that accuracy, ranging from 10−1 to 10−15, we repeated
the experiment 1000 times.
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Figure 3: Consumed CPU time for different numbers of points.Computations are per-
formed on a Intel Core 2 Duo 1.6 GHz,MATLAB R2008a (64-bit), SeDuMi 1.2. (a) 4 to
1000 points, (b) 4 to 100 points.

Fig.2 shows the median, the 1/4 and 3/4 quartiles. In Fig. 2(a) the computation time
is reported, which is compared to the number of iterations SeDuMi needed to reach the
preset accuracy in Fig. 2(b). To reach the highest accuracy only about 16 iterations need
to performed and it takes only about 0.3 seconds to reach thisaccuracy.

In Fig. 2(c) we show the estimated error of the pose estimation problemE(R) (2) and
in Fig. 2(d) we show the rotation error. The rotation error isthe difference of the estimated
rotation w.r.t. ground truth. There is a linear relationship in the interval 10−7 to 10−13.
If we increase the accuracy for SeDuMi above 10−13 we reach the accuracy of the used
data-types inside the implementation. If the accuracy is set too low (larger than 10−7)
SeDuMi failed to converge to a solution.

This failure of SeDuMi is also reported in Fig. 2(e). Here we see how often SeDuMi
reported a valid solution for the 1000 experiments. For an accuracy better than 10−9

always a valid solution was reported. Therefore, we selected 10−10 as a good value for
further experiments. Finally, in Fig. 2(f) we see how far theobtained solution is away
from γ. This is a measure of how close we are to the global optimum.

The second experiment was performed to estimate the runtimeof the algorithm. We
set the accuracy for SeDuMi to 10−10 and repeated the above experiment for different
numbers of points (from 4 to 1000). In Fig. 3(a) we see the spent CPU time. The dashed
line shows the amount of CPU time for the complete algorithm (generating matricesM,
Mc, Mcc, computing the matrices for the SDPA, b, c, solving the SDP), whereas the solid
line shows the time, which was consumed by the SDP solver. In general we can say that
the algorithm is ofO(n) time complexity, while reaching the global optimum. The time
needed to solve the SDP problem is close to constant. This is because the size of the SDP
problem is constant and does not vary with the number of points. On the other hand, the
computation of the matricesM, Mc andMcc depends linearly on the number of points.

A close look into the range of 4 to 100 points in Fig. 3(b) showsthat solving the SDP
requires more time for fewer points. This could be explainedas follows: For three points,
there are up to four valid global optimal solutions [4]. In that case the algorithm fails,
due to the fact that it is only valid if there is one solution. If one adds a fourth point the
up to four solutions are now disturbed by that point, but there are local minima close to
these solutions. For the SDP solver, it takes a lot of time until it detects which of thelocal
possible solutions is the global one. Adding more and more points makes it easier for the
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Figure 4: Accuracy of the proposed algorithm for different noise levels. (a) rotation error.
(b) translation error.

SDP solver todecide which one is the correct one.
In the third experiment we show the behavior of the algorithmw.r.t. noisy measure-

ments for a central camera (ci = 0). We repeated the previous experiment for different
Gaussian noise levels in the measurements. We notice a linear relationship between noise
level and the accuracy of the rotation in degrees Fig. 4(a) and for the the accuracy of the
translation (in percent: 100×|t − tground truth|/|tground truth|) Fig. 4(b).

4 Conclusion
In this paper we have proposed a new globally optimalO(n) algorithm for the PnP prob-
lem. The algorithm was developed using a cost function for general camera models. The
minimization of that cost function can be written as a semi definite positive program,
which is efficiently solved. The main difference to other global optimization algorithms
is the avoiding of a branch and bound algorithm, which results in a fast computation. We
believe that the method of expressing the minimization as a sum of squares problem also
has a high potential for other Computer Vision algorithms, like structure from motion.
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