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Globally Optimal Surface Mapping for Surfaces

with Arbitrary Topology
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Abstract— Computing smooth and optimal one-to-one maps
between surfaces of same topology is a fundamental problem in
graphics and such a method provides us a ubiquitous tool for
geometric modeling and data visualization. Its vast variety of
applications includes shape registration/matching, shape blend-
ing, material/data transfer, data fusion, information reuse, etc.
The mapping quality is typically measured in terms of angular
distortions among different shapes. This paper proposes and
develops a novel quasi-conformal surface mapping framework
to globally minimize the stretching energy inevitably introduced
between two different shapes. The existing state-of-the-art inter-
surface mapping techniques only afford local optimization either
on surface patches via boundary cutting or on the simplified base
domain, lacking rigorous mathematical foundation and analysis.
We design and articulate an automatic variational algorithm that
can reach the global distortion minimum for surface mapping
between shapes of arbitrary topology, and our algorithm is solely
founded upon the intrinsic geometry structure of surfaces. To
our best knowledge, this is the first attempt towards rigorously
and numerically computing globally optimal maps. Consequently,
we demonstrate our mapping framework offers a powerful
computational tool for graphics and visualization tasks such as
data and texture transfer, shape morphing, and shape matching.

Index Terms— Quasi-conformal surface mapping, harmonic
map, uniformization metric, surface parameterization.

I. INTRODUCTION

A. Surface Mapping

How to compute surface mappings is one of the most

fundamental problems in graphics and visualization fields.

It aims to find a bijective (one-to-one and onto) map from

one surface to another. Numerous applications such as shape

registration, matching and comparison, shape morphing, and

texture/attribute/motion transfer all benefit from such a bijec-

tive correspondence between two given surfaces. Researchers

usually measure the mapping quality using angular or area

distortions, because such criteria dictate the end effect of

the enabling applications (e.g., texture mapping). Given two

surfaces with different geometry, distortions are usually in-

evitable; we naturally want to seek the mapping that can

minimize distortions as much as possible. However, if two

given surfaces are not isometric to each other, there does not

exist a mapping that can eliminate the angle and area distortion

simultaneously.

In this work, we choose the harmonicity (measuring angular

distortion) as the criterion because it is most physically mean-

ingful. If we assume surfaces are made of elastic materials.
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When surfaces deform and are mapped to others, the stretching

energy caused by the elastic distortion can be formulated as

harmonic energy. Among all possible mappings, a harmonic

map minimizes the stretching energy and has its direct physical

meaning. Also, the harmonic map minimizes angular distor-

tions. For example, conformal mappings are harmonic, which

are free of angular distortion.

Besides the physical intuition, harmonicity and conformal

mapping have other merits which are critical for real-world

applications. First, the dimension of conformal mappings

between two given surfaces is finite; by fixing the images

of finite points, the mapping can be uniquely determined.

Therefore, these kinds of mapping are easy to control. Second,

conformal mappings can transform arbitrary surfaces to several

canonical domains, and convert all geometric processing into

these domains. This greatly simplifies the complexity of these

geometric processing algorithms. Third, the theoretic foun-

dation and algorithms of conformal mappings are relatively

mature.

In contrast, area-preserving mappings lack the physical

meaning, lack analytic methodology as well as practical com-

putation algorithm, and are hard to control. Therefore, in our

current work, we use the harmonic maps and try to minimize

the angular distortion.

B. State-of-the-art Techniques and Challenges

In terms of finding optimal mapping between two gen-

eral surfaces under some specific criteria, current state-of-

the-art techniques lack mathematically rigorous discussions

and analysis in principle. On the other hand, the criteria of

mapping quality on angular distortions have been analyzed and

optimized in the surface flattening or surface parameterization

research area. Surface parameterization aims to find a bijective

map between surfaces and planes (or other simple canonical

domains such as spheres), thus it can be treated as a special

case of surface mapping since its target surface is usually just

a plane or a sphere. Parameterization arises from the purpose

of texture mapping and synthesis where the angular distortion

is the most critical concern to quantify the mapping quality.

Despite its earlier connection with surface parameterization

over canonical domains, finding a minimally-distorted surface

mapping between two general surfaces are much more tech-

nically challenging. There are three key reasons as follows.

First, there are topological differences. Surface parameteri-

zation usually “flattens” a surface onto the plane, specifically,

the surface is sliced apart into a topological disk, and the

parameterization refers to a map from that disk to the plane, so
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it has only one topological type. For mapping between general

surfaces especially with high genus, a handle of one surface

being mapped to which handle of the second surface needs

to be considered. This topological factor has to be explicitly

determined and it gives rise to the mapping complexity for

shapes with nontrivial topology. Rigorously speaking, map-

pings between two given surfaces are classified into infinite

homotopy classes [1]. Two maps are isotopic to each other, i.e.,

belonging to a same homotopy class, only if one can deform

to another smoothly. A rigorous surface mapping framework

should be able to handle an arbitrarily given homotopy type.

On the other hand, only topologically equivalent mappings can

be compared together; mappings from different classes should

be considered separately since a best mapping may exist in

each class. In the following discussion, we shall consider maps

that are within the same homotopy class.

Second, due to the topological inequivalence between closed

surfaces and the plane, as we mentioned above, parameterizing

surfaces onto planer domains cuts the surface along a bound-

ary. The simplified target canonical shape not only leads to

some well-established numerical solving techniques, but also

unavoidably pushes distortions towards its cutting boundary or

a collection of some singularity points. In contrast, mappings

between surfaces with same topology should prohibits the

cutting, and find a “seamless” result. Therefore, we are not

pursuing a map from a topological disk to the plane, but

a continuous map between two surfaces with complicated

topology.

Third, the most important reason of lacking globally opti-

mized surface mapping techniques is the complex geometry of

the general target surfaces. The non-smoothness of the target

shape actually leads to the technical obstacle in finding the

global optimum among all possible mappings. A natural way

is to follow ideas in surface parameterization: we can optimize

the map between surfaces by simply constructing an initial

map, and then locally adjust it using a variational procedure

until the distortion energy is reduced to the minimum. We

can call this technique “the naive method”. When the target

surfaces are genus zero (e.g., parameterization onto the sphere

or plane), this approach can reach a globally optimized result.

However, for mapping surfaces with non-trivial topology, due

to the nonexistence of canonical target domain (see Section III-

C), any local optimization process will inevitably get stuck at

some local minima. This is the primary reason that other state-

of-the-art methods use base meshes or hierarchical structure

to circumvent this problem, while giving up searching for the

global optimum.

C. Our Novel Solution

In this work, we introduce a novel computational frame-

work to tackle the aforementioned challenging problems. Our

method, based on the theories of Riemannian uniformization

and harmonic maps, is both theoretically rigorous and practi-

cally efficient.

Considering two general surfaces with nontrivial topol-

ogy, under their induced Euclidean metric, the target shape

may have complicated geometry, and the harmonic maps are

usually not globally unique. Some harmonic maps are local

minima of the stretching energy.

To globally reduce the stretching distortion without getting

stuck locally, we propose to use the so-called uniformization

metric. Under their uniformization metric, surfaces with non-

trivial topology have constant non-positive Gaussian curvature

everywhere, so that the harmonic map becomes globally

unique [2]. (Please refer to Section III-A and the Appendix

for more theoretic details and Section VII-D for experimen-

tal demonstrations). Uniformization theory states that for all

surfaces, such uniformization metric does exist; and we can

compute this metric efficiently by using existing techniques.

Under surfaces’ uniformization metric, we conduct our

optimization process. It is guaranteed to converge to unique

global harmonicity under surfaces’ uniformization metric.

Specifically, our algorithm has the following important merits.

• Optimality. Harmonicity under uniformization metric

can be globally optimized without worrying about any

local optima. The resultant map minimizes the stretching

energy and distortion.

• Uniqueness. The global harmonic map in hyperbolic

space is unique; our algorithm converges to the same

result starting from arbitrarily different initial mappings,

as long as they belong to the same homotopy class.

• Conformality. For genus-zero surfaces, arbitrary har-

monic map is free of angle distortions. In genus-one case,

our optimized map minimizes the angle distortion among

all possible maps. Between two general surfaces, if exists

an angle-distortion-free map between them, our method

guarantees to find such a conformal map.

• Efficiency. Harmonicity relaxation under the uniformiza-

tion metric is performed in 2D, which is much more

efficient and robust compared with any other iterative

methods directly conducted over curved surfaces.

The main contributions of this work are:

1. We propose and articulate a novel approach to compute a

globally optimal map minimizing distortions between two

surfaces with the same non-trivial topology. This process

is fully automatic and requires no user interaction. To the

best of our knowledge, this is the first attempt to compute

surface mapping with globally minimized energy for

arbitrary high genus (g ≥ 1) models.

2. Using the intrinsic geometric structure of surfaces, the

convergence of our algorithm is guaranteed. We quanti-

tatively evaluate its performance, and then design toolkits

to clearly visualize the mappings, as well as analyze their

converging effects.

3. We use our surface mapping as a powerful tool for

data and texture transfer, shape morphing, cross-surface

parameterization onto canonical shape domains, shape

matching, and shape comparison. Our globally optimized

mapping demonstrates its great efficacy in these graph-

ics and visualization applications, with potentials in the

broad scope.

The remainder of this paper is organized as follows. We

will briefly review the related literatures in Section II. Then

in Section III, we introduce the theory and algorithm of our
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method. Our algorithm proceeds in three main steps, as dis-

cussed in Section IV, Section V and Section VI, respectively.

We then discuss our mapping performance and properties in

Section VII. Finally, we demonstrate our experimental results

with some applications in Section VIII and conclude our

work in Section IX. In the accompanying appendix, we prove

the existence, global uniqueness, and the one-to-one property

of the harmonic map and we also show our algorithm will

converge to such an optimized map uniquely.

II. RELATED WORK

Our current research builds upon previous work in surface

mapping, conformal geometry, and non-Euclidean geometry.

Earlier work on establishing a bijective mapping is mostly

motivated by the need of blending two shapes. A natural

approach is to use some canonical shape such as a sphere

or the plane as the intermediate domain. Kent et al. [3]

mapped star-shaped surfaces onto spheres, and merged them

by clipping one sphere to the other. Kanai et. al. [4] used

harmonic map on disk to build correspondence between two

genus-zero closed or open surfaces. Alexa [5] wrapped two

genus-zero surfaces onto a unit sphere, and computed the

mapping by minimizing some distance function. Asirvatham

et al. [6] used progressive mesh and their constrained spherical

parameterization to map genus-zero surfaces onto the common

spherical domain. These types of techniques are usually based

on spherical parameterization techniques [5], [7]–[9] or planar

parameterization techniques [10].

Spheres and planar disks are natural domains for computing

maps with minimized stretching energy directly. However, they

can only serve as intermediate domains when the two surfaces

are of genus zero. For high genus surfaces, these kinds of

canonical domains can not be found. In this work, we focus

on finding stretching-optimized maps between surfaces with

non-trivial topology.

Approaches for surfaces with non-trivial topology are usu-

ally applied through another direction ( [11]–[18]). They typ-

ically segment the meshes into subregions first. For example,

in [12] and [13], a common coarse base domain mesh has to

be constructed manually by the user with domain knowledge

in topological surgery; in [14], [16]–[18], feature points are

firstly provided by users, then some automatic subregion

tracing algorithms or progressive meshes are applied for coarse

base mesh generation. The advantage of these approaches is

that feature correspondence can be intuitively incorporated

by making the feature vertices the corners of the patches.

The common drawbacks are that constructing the patch layout

oftentimes involves a number of fragile heuristic algorithms.

Furthermore, the mappings are generally only C0 continuous

across the patch boundaries. In applications such as building

domains for splines, a global continuity is critical. The work

of [19] addresses the continuity problem by taking into account

linear transition functions across patch boundaries. Manifold

concept in mapping is introduced in [20], which primarily

focuses on topology instead of geometry, thus is difficult for

designing optimization algorithms.

Conformal maps have been extensively studied in the liter-

ature of the surface parameterization field. [10], [21] provide

extensive surveys of state-of-the-art techniques in the field.

We only briefly review some most related work, and refer

interested readers to these surveys for details.

Angle preservation is typically addressed either from the

harmonic point of view (Dirichlet energy) [22]–[24] or from

the conformal point of view (Cauchy-Riemann equation) [24],

[25]. Most recently, the hyperbolic structure of Riemannian

surfaces has been introduced to surface parameterization.

Thurston firstly introduced circle packing in [26]. An effective

algorithm and implementation is presented by Stephenson

in [27]. Circle packing has also been generalized to circle

patterns [28] and used for surface parameterization in [29].

Hamilton first introduced Ricci flow on surfaces in [30]. Theo-

retical results of combinatorial Ricci flow are later generalized

in [31], and applied in surface parameterization fields by [32].

III. THEORY AND ALGORITHM

A. Uniformization Metric

On a surface, a metric, or Riemannian metric is a tensor that

defines inner product on the tangent plane at each point. With

the metric, the length of a tangent vector can be determined,

and the angle between two tangent vectors can be explicitly

computed.

Suppose S is a smooth surface embedded in R3; it has the

induced Euclidean metric g. We denote the surface S together

with its equipped metric g as (S,g). If λ : S → R is a scalar

function defined on the surface, then ḡ = e2λ
g is another

metric on S. Any angles on the surface measured by g equals

to those measured by ḡ, therefore, we say ḡ is conformal to

g, meaning that changing between these two metrics is angle-

preserving.

Given two surfaces S1 and S2, the uniqueness of the

harmonic map from S1 to S2, as we will discuss in the

upcoming section, is determined by the distribution of the

Gaussian curvature K of S2. It is important to note that K is

fully determined by the equipped metric of the surface. The

relation between the curvatures K and K̄ under g and ḡ is

K̄ = e2λ(−∆λ + K).
Riemann uniformization states that for an arbitrary closed

surface, there exists a unique λ such that e2λ
g induces constant

Gaussian curvature. Furthermore, the constant is one of the

three choices {+1, 0,−1} for surfaces with zero, one, and

higher genus, respectively. Such kind of metric e2λ
g is called

the uniformization metric of the surface. The uniformization

metric can be computed using Ricci flow method (see Sec-

tion V).

B. Euclidean Harmonic Map and Conformal Map

Given two surfaces embedded in R3 with the induced

Euclidean metrics (S1,g1) and (S2,g2), f : S1 → S2 is a

map between them, the harmonic energy (stretching energy)

is defined as

E(f) =

∫

S1

|∇f |2dA1, (1)

where ∇f is the gradient of the map. A harmonic map is a

critical point of the harmonic energy. Harmonic maps depend

on the Riemannian metrics. However, if f : (S1,g1) →



4

(S2,g2) is a harmonic map, then f : (S1, e
2λ

g1) → (S2,g2)
is also a harmonic map.

If a map preserves angles, then the map is called a con-

formal map. Analytically, if the pull back metric f∗
g2 on

S1 is conformal to g1, e2λ
g1 = f∗

g2, then f is conformal.

A conformal map must be harmonic. For closed genus-zero

surfaces, harmonic maps are also conformal. In general case,

if S1 and S2 are with complicated topology, then there may

not exist a conformal map. But there is a special map, which

minimizes the maximum of the angle distortion; such a map is

called the extremal quasi-conformal map. For genus-one case,

such an extremal quasi-conformal map is the harmonic map

under uniformization metric. Therefore, if the given surfaces

are genus-one, our algorithm converge to the extremal quasi-

conformal map.

C. Uniqueness of Harmonic Maps

The uniqueness of harmonic maps between surfaces is

determined by the shape of target objects. For genus-zero

surfaces, there are infinite harmonic (conformal) maps, all with

zero angular-distortion. Each two of these maps differ by a

möbius transformation on the sphere domain.

Harmonic maps between surfaces with non-trivial topology

are also not unique if the Gaussian curvature of the target

surface is positive somewhere. However, if the target surface

has non-positive Gaussian curvature everywhere, then the

harmonic map exists and is unique. For example, if the Euler

number χ(Si) < 0, i = 1, 2, and we apply uniformization

metric g2 on S2, then harmonic map f exists and is unique,

with its energy E(f) reaching the global minimum.

Therefore, between arbitrary two surfaces with genus ≥ 2,

there uniquely exists such a stretching-minimized harmonic

map. For genus-one surfaces, χ = 0, under uniformization

metric, the harmonic maps are not unique, but only differ by

a rigid translation on the R2 universal covering space, and we

can use one feature point to uniquely determine it.

D. Poincaré Disk Model and its Harmonic Maps

(a) (b) (c)

Fig. 1. (a) The yellow patch represents a chart on the two-hole torus model;
(b) Embed the two-hole torus model in the Poincaré disk; (c) A möbius
transformation moves the chart to the center of the Poincaré disk.

If given surfaces are with higher genus, their uniformization

metrics can only be embedded in hyperbolic space. We have to

carry out our computation in this space, which can be modeled

by the Poincaré disk as follows.

The Poincaré disk is the unit disk on the complex plane

zz̄ ≤ 1, with the Riemannian metric ds2 = 4dzdz̄
(1−zz̄)2 . Our

goal is to compute a map f : (S1,g1) → (S2,g2). We use

their uniformization metrics and compute a harmonic map

f̄ : (S1, ḡ1) → (S2, ḡ2). The computational algorithm of

hyperbolic harmonic maps is based on theoretic results in [33].

We denote the parameters of S1 on the Poincaré disk as

(x, y), the parameter of S2 as (u, v), then the map f̄ is

represented as f̄(x, y) = (u(x, y), v(x, y)). The harmonic

energy is

E(f̄) =

∫

S1

4
|∇u|2 + |∇v|2

(1 − u2 − v2)2
dxdy, (2)

where ∇u is (∂u
∂x

, ∂u
∂y

) and ∇v is ( ∂v
∂x

, ∂v
∂y

).
The harmonic energy in hyperbolic space (2) has more

complicated form than harmonic energy in Euclidean space

(1). We simplify the problem using the following two merits

of hyperbolic harmonic energy:

1. In a small neighborhood of the origin u2 + v2 < ǫ, since

(1−u2−v2)−2 → 1, the hyperbolic metric is close to the

Euclidean metric, the hyperbolic harmonic energy is close

to the Euclidean harmonic energy. We can optimize the

hyperbolic energy by minimizing the Euclidean energy.

2. If φ is a Möbius transformation of the Poincaré disk, then

the composition φ ◦ f̄ and f̄ have the same hyperbolic

harmonic energy. This is because Möbius transformation

is the rigid motion in the hyperbolic space, harmonic

energy is invariant under such isometries of the target

surface.

We describe our computational methodology for hyperbolic

harmonic maps as follows.

1. The surfaces are tessellated to many small triangular

patches, S1 =
⋃

i Ti, where Ti is a triangular patch, then

the harmonic energy is decomposed to the summation

of the energy of the map restricted on these patches, the

sub-maps, E(f̄) =
∑

i E(f̄i), f̄i : Ti → H2.

2. Each sub-map f̄i is composed with a Möbius

transformation φi, such that the image φi ◦ f̄i(Ti)
is in the neighborhood of the origin.

3. If the tessellation is refined enough, Ti is small, and the

diameter of its image under the corresponding sub-map

is within an ǫ-threshold, the hyperbolic energy can be

approximated by Euclidean harmonic energy with high

accuracy.

Therefore, computing the harmonic map under hyperbolic

metric, equivalent to minimizing hyperbolic harmonic energy,

is now converted to optimizing a collection of Euclidean

harmonic energies of sub-maps. We can use mean value

property of the harmonic function to minimize the Euclidean

harmonic energy.

E. Discrete Algorithm

We summarize our approach as the following discrete

algorithm:

The inputs are the source surface S1 and the target surface

S2. The output is the harmonic map f under the uniformization

metric of S2.
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1. Construct an initial map f̃ : S1 → S2 (See Section IV).

2. Compute the conformal deformation (uniformization met-

ric) of S2 using the technique introduced in [32], then

embed S2 in the canonical domain C or H2, φ2 : S2 → C

or φ2 : S2 → H2. (See Section V)

3. Compose the f̃ and φ2 to get ω : S1 → C or ω :
S1 → H2, and apply heat diffusion on dynamic charts

to minimize the harmonic energy:

dω

dt
= −∆ω. (3)

(See Section VI)

4. When ω converges to the global minimum, let f1H = ω
and get the final map f = φ−1

2 ◦ f1H .

IV. INITIAL MAPPING

We first build up an initial mapping between the given

surfaces. The initial mappings determine the homotopy class

of the resultant surface mapping (which will be discussed later

in Section VII-B). Our pipeline for creating the initial map

has two steps: (1) we unfold both surfaces to disks through a

cut graph called the system of loops (See Section IV-A); (2)

we map two surfaces via the disk domain (See Section IV-B).

A. Cutting a Surface into a Topological Disk

An orientable closed surface of genus g, (g ≥ 1) can be

cut into a single topological disk by removing a so-called cut

graph. Computing a special case of cut graphs which pass

through a common given base point, called systems of loops,

is studied in computational geometry field. One of the state-

of-the-art techniques, [34], used an efficient greedy algorithm

to get an optimal cutting loop. We refine their algorithm for

our surface cutting.

We first briefly describe their algorithm for computing a

system of loops L on the given mesh S and the base point x:

(1) Compute the shortest paths tree T of S from x.

(2) For each edge e ∈ S\T (i.e. e /∈ T ), compute the shortest

loop that contains e, denoted as σ(e), which consists of 2
shortest paths from x to endpoints of e plus the e itself.

(3) Compute the dual graph of S\T , denoted as (S\T )∗.

Compute its maximum spanning tree T ∗, where the weight

of each dual edge e∗ is σ(e).
(4) Get the set E′ which contains every edge that is neither

in T nor crossed by T ∗.

(5) E′ has 2g edges e1, e2, · · · , e2g. Compute shortest loop

σ′(ei) containing each ei. These loops constitute the system

loop L.

In [34], they assumed that all the shortest paths from each

point on the cut path to the base point only intersect at the

common base point. This assumption holds in the smooth case

but often fails for triangular mesh representations. Thus in step

(5), shortest paths on triangle meshes may intersect each other,

especially for high genus surfaces. For example, on a genus-

six surface, 12 loops will go through the base point, meaning

that the valence of the base point should at least be 24 to

prevent paths’ intersections outside the base point. Such high

density connectivity is hardly satisfied in ordinary mesh data.

Fig. 2. Local Refinement on the System of Loops Computation. When the
blue cut path intersect with the existing red path in V2, we apply a local
refinement. The intersected path [V1, V2, V3] segment is replaced by the new
green path. Yellow segments are new edges inserted during edge splits in the
refinement.

Fig. 3. Refinement on the System of Loops Computation.

Therefore, a robust algorithm has to adaptively change the

connectivity.

As shown in Figure 2, locally, if a cut path (blue) intersects

with an existing path (red) in one point. We apply the

following algorithm on the blue curve to make it bypass the

red one:

Algorithm 1:

(1) Spin around the intersected vertex V2, enqueue all faces

between [V1, V2] and [V2, V3](For example, f1, f2, f3, f4 here).

(2) Set V1 as the current point p.

(3) Pop face f out from the head of queue. If [V2, V3] is in f ,

add edge [p, V3] to the new path and STOP; else GOTO (4).

(4) Split the edge opposite to the current vertex p. The new

split point is denoted as q. Add the edge [p, q] into the new

path, move to q: set p := q. GOTO (3).

After applying this algorithm, we replace the intersected

path [V1, V2, V3] segment by the new path (as shown in green).

The yellow segments are edges newly inserted onto the mesh

during the edge split procedure.

In general, if the intersected parts have more than one point,

we apply the above algorithm 1 iteratively on each intersected

vertex. Figure 3 illustrates this. In the small picture (upper

left), a cut path (blue) passes through an existed cut path (red).

We apply the following algorithm on the intersected segments:

Refinement Algorithm:

(1) Find out the point right before the intersection (Vh) and

the first point right after this intersection (Vt). Push all vertices

on the current path between Vh and Vt into a queue Q.
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b

Fig. 4. Slice both meshes open and map them to a canonical 4g-gon; compose
these two maps; get the initial mapping. Mappings of different (color-coded)
regions are shown respectively with different colors.

(2) Pop each vertex in Q, and apply Algorithm 1 on it.

Intersections usually happen near the base point because

cutting paths are dense in this region. The Vt in such case is

the base point, and the same refinement process is applied.

B. Initial Mapping via 4g-gon

With the system of loops, we slice each surface onto a

topological disk. For a genus g surface, the cut graph passes

through the base point 4g times, making the disk a topological

4g-gon. We map two given surfaces via this 4g-gon, as the

procedure illustrated in the Figure 4.

1. Slice each surface along its system of loops to open it up

onto the 4g-gon.

2. Flatten each sliced surface to the canonical 4g-gon, using

the harmonic map with fixed boundary.

3. On the canonical planar parameter domain, map S1 to S2

via barycentric coordinates. Unlike [1], we do not extract

a meta-mesh by overlaying the two planar domains.

Instead, we use an approximation mesh S′
2 with only

the connectivity of S1 (though its shape is like S2), and

we may later employ an adaptive remeshing procedure

(Section VII-E) for mapping refinement in areas where

under-sampling occurs.

4. Stitch the topological disk S′
2 along the original cutting

boundary back to the closed surfaces.

By the above algorithm, we get an initial mapping from

S1 to S2. This initial mapping is only used to determine the

homotopy type. In the following sections, we will prove and

demonstrate that if two initial cuts induce two maps belonging

to the same homotopy class, then the final results are identical.

V. COMPUTING UNIFORMIZATION METRIC

According to our previous discussion, given a surface S ⊂
R3 and its induced Euclidean metric (represented by its first

fundamental form g), let u : S → R be a globally defined

function on S, then e2u
g is another Riemannian metric on S,

which is a conformal metric to the original induced Euclidean

metric.

Riemann uniformization theorem [35] states that for any S,

there exists a unique conformal metric, such that it induces

Fig. 5. Side-by-side omparison between Distortions of Initial Map (left) and
Optimized Map (right).

constant Gaussian curvature K and zero geodesic curvature,

K =







+1 χ(S) > 0
0 χ(S) = 0
−1 χ(S) < 0

,

where χ is the Euler characteristic. Such kind of metric is

called the uniformization metric.

We compute the uniformization metric e2u
g using the Ricci

flow method [30]. Ricci flow is defined as

du(t)

dt
= −2K(t), (4)

where K(t) is the Gaussian curvature induced by the metric

e2u(t)
g, under the area preserving constraint

∫

S

dσ =

∫

S

e2u(t)dσ.

In practice, all surfaces are represented as triangular meshes.

Basically, for a triangular face ABC on the mesh with edge

lengths a, b, c, we do not treat it as a planar triangle in the

Euclidean space, but rather a triangle in Hyperbolic space.

All the angles in the triangle can then be calculated using

hyperbolic cosine law, and the discrete Gaussian curvature on

each vertex is defined as the difference between 2π and the

summation of all the corner angles surrounding the vertex.

We associate each vertex vi with a circle of radius γi.

Two circles centered at the end vertices of an edge eij

intersect at an angle Φij . The edge length of eij equals

lij =
√

γ2
i + γ2

j + 2 cosΦij .

Conformal maps transform infinitesimal circles to infinites-

imal circles and preserve the intersection angles among the

circles. Therefore, we only modify the circle radii γi and keep

the intersection angles Φij . Let

ui =

{

ln γi χ(S) = 0
ln tanh γi

2 χ(S) < 0
,

The discrete Ricci flow is similar to the continuous Ricci flow

in the form:
dui

dt
= −Ki,

where Ki is the Gaussian curvature at vi.
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The Ricci flow will converge [32], such that all discrete

Gaussian curvatures are constant, and the edge lengths ap-

proximate the uniformization metric.

If the surface S is equipped with the uniformization metric,

then S can be isometrically and periodically embedded in the

following three canonical spaces, the unit sphere for χ(S) > 0,

the plane for χ(S) = 0, and the hyperbolic space χ(S) < 0.

When χ(S) = 0 the metric is called flat metric since curvature

is zero everywhere, and when χ(S) < 0, it is called hyperbolic

metric. In Figure 1, we demonstrate the hyperbolic embedding

of the two-hole torus model.

We use the Poincaré hyperbolic disk model to represent

the hyperbolic space H2. The Poincaré hyperbolic disk is a

two-dimensional space defined in the unit disk {z ∈ C :
|z| < 1} on the complex plane C with hyperbolic metric.

The hyperbolic metric is defined as

ds2 =
dzdz̄

(1 − z̄z)2
.

The geodesics (hyperbolic lines) in the Poincaré disk are

Euclidean circular arcs perpendicular to the boundary |z| = 1.

The rigid motions in the hyperbolic plane are the Möbius

transformations z → w, z ∈ C with the form

w = eiθ z − z0

1 − z̄0
, (5)

where z0 is an arbitrary point inside the unit disk, θ is a

rotation angle. This formula rigidly transforms the hyperbolic

disk so that the point z0 is moved to the origin (Figure 1 (b)

and (c)).

VI. MAP OPTIMIZATION

With the uniformization metric defined on the target mesh

S2, we can perform the heat diffusion procedure to optimize

the initial map. Because of the constant curvature distribution

under the uniformization metric, our relaxation will not get

stuck in local minima. An arbitrary initial map can be used as

the start of our optimization procedure; it can be stretched and

distorted, or even contain local flip-overs. Our optimization

procedure (Section VI-B) converges to a unique bijective

global optimum robustly; more discussion about this will be

given in Section VII-D, and the rigorous proof is given in the

Appendix.

In Figure 5, we visualize the distortion of the initial mapping

from the amphora model to the vase model by texture mapping

and displaying the connectivity. The checkerboard texture

mapped is distorted (irregular pattern as shown in the top

left image) by this initial mapping. This initial mapping, like

all methods based on cutting, induces great distortions near

the boundary. By relaxing each vertex on dynamic charts

discussed in the following section, we alleviate the distortions

all over the mesh and reach a global minimum.

A. Chart Construction

In order to smooth the mapping between S1 and S2, we need

to redistribute vertices of S1 on the domain of S2 following

the heat diffusion flow. We can either embed the whole

S2 onto C (genus one) or H2 (higher genus) and perform

Fig. 6. The Dynamic Covering Chart on S2. Given a vertex V and its
one-ring on S1, the left figure shows a covering chart on S2: the vertex V is
mapped to the red face; its one-ring neighbors are mapped to the yellow faces.
The right figure shows the domain of the chart. The white arrow indicates the
gradient direction of the harmonic energy.

the redistribution globally; or directly flow over local charts

equipped with uniformization metric. In this work, we use the

second method: dynamically construct a set of overlapping

local charts on S2 and perform relaxation within these charts.

Compared with using one global patch, the dynamical local

charts method has two important advantages:

• The vertices may need to flow across the cutting boundary

to relax the energy. On one parameter patch domain, it is

difficult to perform the relaxation across the boundary.

• Globally embedding the target mesh onto a large patch

is numerically less accurate, especially for hyperbolic

metric. The local embedding of small charts is more

precise.

For each vertex v1 on S1, we create at least one chart on S2

that covers the images of its 1-ring on S1, meaning that the

chart contains all faces onto which the v1’s 1-ring are mapped.

As shown in Figure 6, to construct a covering chart for the

1-ring of a vertex on S1, we first map the vertices of the 1-

ring to S2. Each vertex in this 1-ring is mapped to a face

on S2. Given this set of faces, we find a patch on S2 that

contains these faces and is homeomorphic to a disk. We first

compute an approximate geodesic distance from the ‘center’

face (red) to all other faces. Then we add the faces to the

chart through Breadth First Search (BFS) while maintaining

disk topology. Faces which are closer to the ‘center’ face

are given higher priority during the BFS. After the chart

has been constructed, we tile it in C (or H2, according

to the genus of the mesh). In this way, we get a locally

constructed, yet globally parameterized chart, extracted as

a small subset of the continuous global parameter domain.

During the relaxation, the mapping of vertices and their 1-

ring can change, new charts are dynamically created when

necessary; old charts which are unused for a user-specified

amount of time are removed from memory on the fly.

This is Not Local Parameterization. Note that chart-based

approaches have been used in local-parameterization-based

remeshing [36], [37]. And our approach is fundamentally

different from them in that we are not locally parameterizing

these one-ring charts, but directly embedding the pre-computed

uniformization metric. Local parameterization computes the

flattening of charts every time separately, while we use the

global metric so that a globally consistent covering is achieved.
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Fig. 7. Local Parameterization VS Global Uniformization Metric (Map the
Torus to the Rocker Arm). Top row: side-by-side comparison between local
approach and global approach. Bottom row: temporal statistics of convergence
performance.

With the uniformization metric, we trivially get the flattening

of each local chart by tiling it in a proper local patch domain

(Figure 1). In other words, pre-computed metric already de-

fines all the edge lengths in the mesh of the given chart; we

only conduct a tiling of this triangular mesh.

The relaxation result demonstrates the key difference be-

tween local parameterization and our approach: relaxation

based on local parameterization will get stuck locally, while

using a globally consistent uniformization metric guarantees

the global convergence. To demonstrate this, we perform ex-

periments as shown in Figure 7. Compared with the relaxation

on the uniformization metric (right), the relaxation using local

parameterization1 (left) will get stuck in some local optimum,

and cannot produce the desirable result.

B. Relaxation

We let the skin ‘flow’ on the target planar domain so that

the harmonic energy is minimized. This is performed via an

iterative heat diffusion (relaxation) procedure. The discrete

harmonic energy of a map f is defined as

E(f) =
∑

i

E(f) =
∑

i,j

wij |f(vj) − f(vi)|
2,

where | · | is the norm with respect to Euclidean metric and

wij ’s are the discrete harmonic cotangent weights. We use the

gradient descent method to minimize the harmonic energy. In

each single relaxation step, a vertex is moved in the domain

following the gradient of harmonic energy by the Laplacian

operator, which is defined as

∆f =
∑

j∈Ni

wij(f(vj) − f(vi)),

where Ni is the index of neighboring vertices and f = ω is the

composed map as given in Equation 3. Therefore, the vertex

in the domain is moving towards the new position:

f ′(vi) = f(vi) + ∆f.

1Local parameterization of the charts onto circular disks.

During the iteration procedure, the harmonic energy (from

the source mesh to the target domain) monotonically de-

creases. For genus one meshes, they are embedded in C

under uniformization metric, these operators can be used

directly. For higher genus meshes embedded in H2, we still

use this Euclidean Laplacian operator to relieve the harmonic

energy after an isometric transformation in H2, which is also

called the Möbius transformation. The reason that we can

approximate hyperbolic Laplacian operators using Euclidean

Laplacian operators had been discussed in the previous Sec-

tion III-D. By the Möbius transformation we rigidly transform

the domain of the local chart so that the parameterization of the

vertex being relaxed coincides with the center of the Poincarè

disk(Figure 1). Near the origin, the hyperbolic metric ds =
2|dz|

1−|z|2 only differs by a constant factor from the Euclidean

metric and thus our Euclidean Laplacian operator is a linear

approximation to the Hyperbolic Laplacian operator in this

relaxation region. (The local chart is usually small, so the

approximation is with high precision.) For numerical issue,

we change the f value on each vertex to the target using a

step size 0.5, i.e. f ′(vi) = f(vi) + ∆f
2 .

VII. DISCUSSIONS ON MAPPING PERFORMANCE AND

PROPERTY

A. Mapping Quality Measurement

Harmonic energy is a natural energy to measure the stretch-

ing energy induced by the mapping. A physically meaningful

mapping in reality ought to minimize the harmonic energy.

When the conformal mapping from S1 to S2 does not exist,

the quasi-conformal mapping f maps circular regions around

a local point into ellipses. The ratio of the major to the minor

axis is called the dilatation D at this point. We use a discrete

variance D′ to measure the conformality of this mapping. The

definition is as follows.

Given a local triangle (q1, q2, q3), qi = (xi, yi, zi) of the

original mesh mapped onto a triangle (p1, p2, p3), pi = (ui, vi)
on 2D. The interior discrete mapping S(p) = S(u, v) = q is

represented by

S(p) = (〈p, p2, p3〉q1+〈p, p3, p1〉q2+〈p, p1, p2〉q3)/〈p1, p2, p3〉

, where 〈a, b, c〉 denotes area of triangle abc. The partial

derivatives of Jacobian are

Su = (q1(v2−v3)+q2(v3−v1)+q3(v1−v2))/(2〈p1, p2, p3〉).

and

Sv = (q1(u3−u2)+q2(u1−u3)+q3(u2−u1))/(2〈p1, p2, p3〉).

The larger singular value Γ and smaller singular value γ of

the Jacobian are given respectively [38]:

Γ, γ =

√

E + G ±
√

(E − G)2 + 4F 2

2

, where E, F, G are terms for the first fundamental form.

We compute D′ on each triangle using D′ = Γ
γ

. The

maximal value of D′ of the mapping on the surfaces is

determined by their geometry. As we mentioned above, in
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genus one case, the harmonic map we get is the extremal

quasi-conformal map, minimizing the angular distortion. We

test our mapping performance against the theoretical bound

using the following experiment. Given two torii T1 and T2;

T1 has minor and major radii 0.5 and 2 respectively, while

T2 has these radii 0.5 and 1.5. T1 and T2 can be conformally

mapped onto two 2D rectangles R1(a1, b2) and R2(a2, b2),
where (ai, bi) are the width and length of the rectangle. The

extremal quasi-conformal mapping between T1 and T2 has the

lowest theoretical bound given by the modules ratio of T1 and

T2. In our setting above, these two modules are 0.3531 and

0.5762, meaning the theoretically optimal D′ bound between

T1 and T2 is 1.632. We plot the performance of our mapping

in Figure 9(c) (red curve). The x-direction shows the iteration

numbers and the y-direction shows the global quasi-conformal

distortions.

B. Homotopy Classes of Initial Mappings

When an arbitrary initial mapping is built up, the homotopy

class of the mapping is determined. The subsequent optimiza-

tion procedure (Section VI) reaches a unique optimized result

in this same class. The slicing order of loops in the two

systems of loops decides the homotopy class of the mapping.

Usually, if we arbitrarily pick an order, an optimized result

will be reached in that corresponding homotopy class; but

this kind of arbitrary surface mapping may not be what we

intuitively want. We naturally want handles mapped to handles

consistently. To get consistent slicing orders of systems of

loops, first, we can compute the canonical handle and tunnel

loops using the method of [39]; second, with these handle and

tunnel loops, we can decide the homotopy class of each closed

loop in the system of loops, this pair loops in two systems of

loops, providing the consistent slicing orders in two systems

of loops. In this way, we correspond handles in the source

surface with handles in the target surface. For two genus g
surfaces, there will be g-factorial consistent mappings, any of

them is visually reasonable.

Furthermore, in many applications, users may want more

precise controls on the mapping. For example, sometimes

handles of the source surface need to be mapped to some

specific handles of the target surface. Also, users may require

some feature points to be mapped. Both of these can be easily

implemented in our framework as follows.

C. Constraints and User Controls
To assure the handle-correspondence, users only need to

pick up a corresponding slicing order of two systems of loops,

on the 4g-gon disk, users can easily set up this order once the

systems of loops are computed.

In order to have constraints on the feature points, existing

parameterization techniques for topological disk surfaces with

constraint points, for example, MAPS [14] can be applied for

the initial map. Also, many existing surface mapping frame-

work [1], [14]–[18] all allow the feature point correspondence,

and they can be applied as the initial map. In our work, since

we use Carner et al.’s method [1] to generate the initial map,

we also apply their method for the initial feature registration.

Starting from the initial mapping with feature points

matched correspondingly, we can perform the optimization

without relaxing the feature points and prevent any neigh-

boring vertices movement that violates the validity of the

triangular mesh during the relaxation.

The insertion of landmark definitely may cause larger dis-

tortion in the neighborhood, because now the relaxation cannot

be performed freely and the resultant mapping is not globally

optimized. The detail discussion about feature correspondence

is beyond the focus of this work. We will explore along this

direction in our future work.

D. Global Convergence and Performance

Fig. 8. Global Uniqueness of the Optimized Map in the same Homotopy
Class.

Our surface mapping optimization converges robustly.

Under the same homotopy class, different initial cut-

tings/mappings reach the same global optimized result. A

rigorous proof is given in the appendix. We also perform

experiments and visualize this in Figure 8: from left to right,

the first column shows the original Amphora model and its

texture; the second column are two different initial cut paths.

In the third column, we transfer the Amphora’s textures onto

the target Vase model using the corresponding initial maps.

Their angular distortion distributions (average D′) are color-

coded in the fourth column. Transferred textures on the Vase

model using the final maps are illustrated in the fifth column.

Their final maps are almost the same and have the final

distortion color-coded in the rightmost column.

We plot more experimental performances on computation

of our mappings in Figure 9: (a) and (b) show the harmonic

energy and quasi-conformal distortion convergence during the

iteration, respectively. In (c), we perform experiments for

genus 1 to further quantatively test the robustness and validity

of our mapping. The mapping from T1 to T2 discussed in

the previous Section VII-A with a different initial cutting

converges to the same result (green). The mapping from a torus

T ′
1 (different resolution with T1) to T2 is plotted in the blue

curve. The inverse mapping (T2 → T1, which has the same

quasi-conformality bound in optimum) is plotted in brown.

E. Connectivity Refinement

Since we only use the connectivity of the source mesh S1,

geometry loss may happen in some areas due to under sam-

pling, most likely in high curvature (e.g. sharp feature) areas

on S2. In order to capture such geometric details, we simply

apply an adaptive remeshing algorithm similar to [17]. We

locally modify the connectivity of the mesh using edge split,
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Fig. 9. Mapping Performance. (a) Harmonic energy during iterations. (b) and (c) Global quasi-conformal distortion (average of D′) during iterations.

Fig. 10. Connectivity Refinement. Left column: the initial mapping from
Star model to Rocker-Arm model; Right column: the refined connectivity.

guided by the following two simple error terms which capture

the geometric proximity between S′
2 and S2: Elength(eij) =

|φ(vi)−φ(vj)|, and Enorm(eij) = [1−N(vi)·N(vj)]/2, where

φ : S1 → S2 and N(v) is the normal of vertex v. The first

term measures the length of an edge on S′
2: longer edges are

more likely to miss geometric details and we prefer splitting

them early. The second term measures the normal deviation

of the two vertices of the edge: a greater value implies that

the edge crosses a more curved region or a region with sharp

features. We iteratively split edges with large combined error.

The new vertex generated by the edge split is then mapped

back to the surface of the target mesh via the parameterized

chart that covers this edge.

In Figure 10, we can see that the model created by mapping

the ‘Star’ to the ‘Rocker Arm’, after being refined for 10
iterations, approximates the geometry of the target mesh much

better: the left column is the initial mapping while the right

column shows the refined connectivity. The number of vertices

only increases by a fraction of 11.04%. Our simple error

metric is easy to implement as we do not have to maintain

the inverse map from S2 to S1 in this case.

VIII. RESULTS AND APPLICATIONS

A. Texture Transfer and Mapping Visualization

We need an effective way to clearly visualize a mapping

between two surfaces because showing region correspondence

Fig. 11. Visualization of Surface Mapping between a Teapot Model and a
Cup Model.

Fig. 12. Texture Transfer using the Global Optimized Surface Mapping.

as well as the distortion are challenging. We use a texture

with the color band marks embedded in coordinate lines to

aid in this visualization. The texture is first mapped onto

the source model, each vertex on the source surface has its

“UV” coordinates. When vertices are mapped to the target

surface, their “UV” coordinates are carried. In this way,

texture mapping on the source surface is transferred onto the

target surface, the color bands on the target surface visualize

the region correspondence, and the perpendicularity of the

checker board or coordinate lines shows the angular distortion.

Figure 11 visualizes mapping effect from genus-2 a teapot

model to a cup model.

Texture as well as material transfer is straightforward as an

application of our mapping. We show an example in Figure 12,

which transfers the texture from the amphora model to the

vase model. Since our mapping has the minimized distortions

and global smoothness, such a transplant is physically natural,

which potentially provides a powerful tool for reusing or
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transferring information such as material properties, BRDF,

etc. between models towards information integration.

B. Shape Morphing

(a) Source Surface

(b) Initial: 50% Morph (d) Optimized: 50% Morph

(c) Initial: Target (e) Optimized: Target

Fig. 13. Optimized Mapping for more Natural Morph. The source surface
is shown in (a). If the initial map is used, the Morph generated is depicted in
the left column: (b) shows the 50% morph, (c) shows the map on the target
surface. When the surface map is optimized using our algorithm, the result is
shown in the right column ((d) and (e)).

Another intuitive way to visualize mapping and to evaluate

its distortion is via a morphing sequence. The behavior of the

morph can be an intuitive visual judgement on the mapping

quality. Figure 13 shows an example. The initial mapping, as

indicated previously, is created by the the technique of [1].

Based on initial map, we can conduct linear interpolation and

generate the morph as shown in the left column. The generated

sequence is obviously not attractive. We then optimize the

surface map, and regenerate the morph. As shown in the right

column, the new morph sequence demonstrates symmetric

deformation and is visually much more smooth and pleasing.

Rigorously speaking, the morphing sequence generated by

mapping with lower distortions means that the deformation

sequence is closer to the ‘geodesic’ in the space of shapes,

minimizes unnecessary distortion during the interpolation of

shapes, thus provides better visualization results.

In graphics applications, shape morphing is widely studied

as a direct application for surface mapping. Users usually

want to have control on the morphing via feature or con-

straint points. To achieve this goal, as indicated previously in

Section VII-C, we can use the existing techniques for feature

alignments during the initial mapping process; then we should

keep this correspondence during the afterward optimization.

C. Canonical Mapping from Surfaces to Simplified Domains

Fig. 14. Mapping from a Polycube to the Happy Buddha Model. From left
to right, we visualize the texture on the Polycube, the transferred texture on
the Buddha by the initial mapping, and the transferred texture by the final
mapping.

Fig. 15. Optimized Surface Mapping from the Greek Model to the 4-Torus.
The left column shows the front and back of the Greek model with its texture;
the right column shows the front and back of the target surface (4-Torus),
respectively, with texture transferred by our mapping; the middle column
shows the 50% morph from the Greek to the 4-Torus under our mapping.

Our method conveniently creates canonical mappings from

arbitrary surfaces to simplified domains with globally op-

timized distortions. The canonical domain can be poly-

cubes [40], so that graphics processing such as parameteri-

zation with lower distortion, polycube spline generation, etc.

can be applied based on our mapping. The domain can also

be some canonical N -hole tori [20], so that topologically

equivalent shapes can be processed or analyzed on this smooth

common domain.

In Figure 14, we visualize the polycube map for the genus-

6 Buddha model. Our method successfully deforms arbitrarily

built initial map with severe distortion to a global optimum.

In Figure 15, we show our mapping from the genus-4 Greek

model to a canonical 4-torus.

Our method has an important advantage over direct projec-

tion methods of computing polycube map such as [40] in that

our method is intrinsic. Therefore it is more robust, invariant

with models’ spatial positions and sizes. Furthermore, when
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shapes are with complicated topology and geometry, or the

source surface has great difference with the target surface (for

example, Greek and Torus as shown above), direct projection

method is highly error-prone but our method can robustly

handle it.

D. Shape Matching and Comparison

1 2 3 4 5 6 7

2 0 3.59 22.72 20.81 59.70 19.43

3 0 21.99 21.29 59.38 18.72

4 0 10.98 39.66 19.65

5 0 44.45 16.91

6 0 32.89

7 0

Fig. 17. Shape Comparison using Conformal Representation. The first rows
show all shapes to be compared. The second row and the first left column are
their indices. The table has the symmetry property, and the numbers measure
the distance between models in a pairwise manner.

Our optimal surface mapping creates global, low angular-

distortion correspondence between two models. With such a

non-rigid registration, we can easily match two shapes and

clearly visualize their difference distributions for potential

subsequent analysis purpose.

Conformal Representation. A natural way to characterize

the matching between two surfaces is called conformal repre-

sentation [41]. According to [41], when a surface is mapped

onto a target surface, if the resultant conformal representation

is fixed, the original source surface is rigidly determined. The

conformal representation contains two terms: mean curvature

H , and conformal factor λ. The conformal factor λ of a point

p under a mapping f represents the local area change, i.e.,

the stretching of the map. Discretely, if we denote the area

of one ring neighbor of p as A(p), and the area of one ring

neighbor of f(p) on the target surface as A(f(p)). λ(p) can be

approximated by the ratio of A(f(p)) over A(p). In our work,

although our surface map is not fully conformal (according to

Riemannian geometry, between most high genus models, these

kinds of conformal maps do not exist), our global optimization

aims to relieve angle distortions. Thus the (H, λ) defined on

our map is a well approximated and meaningful representation.

Shape Matching. In Figure 16, we visualize our surface

matching between a torus and a Rocker Arm model using

the above conformal representation. (a) and (b) color-code

the mean curvature distributions of Rocker Arm and Torus,

respectively. We color-code the mean curvature difference in

(c) and the stretching factor distribution in (d). The color-

coding of two terms of conformal representation shows us

where and how much the two surfaces are intrinsically differ-

ent in a visually meaningful way. Since the globally integrated

matching energy is smaller when the mapping is with lower

stretching/distortions, our optimized surface mapping provides

a great registration for the above mechanism. On the other

hand, the registration by our mapping, with global smoothness

and low distortion properties, can be used as a preprocessing

step for various other matching techniques. It serves as a

general shape registration and visualization tool.

Shape Comparison and Retrieval. Given many shapes

in database, we can match and compare them via canonical

domains. This provides an efficient and geometrically mean-

ingful way to measure their differences. Here we perform

an experiment on a database containing 6 different genus-2
geometric shapes: Vase, Amphora, Teapot, Cup, Feline, and

Cube. We use a two-hole torus as the canonical domain for all

these genus two surfaces. We first compute mappings between

these surfaces and the 2-torus domain, and then pairwisely

compare these surfaces via the domain using matching energy

defined by the conformal representation:

E(S1, S2) =

∫

p∈T

||λ1(p)−λ2(p)||2+β||H1(p)−H2(p)||2dp,

where S1 and S2 are two shapes being compared, T is the

canonical torus domain, λ is the conformal factor, and H is

the mean curvature. In Figure 17, we can see the models in

the first row. The matching energies, used as their distance,

are shown in the table. Since the symmetry of the distance is

obviously preserved, we only show the upper-right part of the

table.

E. Algorithm Performance

Our optimization is an iterative algorithm; the total number

of iteration steps is controlled by a user-defined threshold. In

Figure 9, we set the threshold of quasi-conformality to be

1e − 6; in real applications, we can use lower precisions.

We perform our algorithm on a MS Windows XP PC with

dual Intel Xeon 2.6GHz CPUs, 2GB RAM. The one-iteration

running time for most real examples we presented in this paper

are shown in the following runtime table.

Models(S1/S2) Genus Ver # Time

2-Torus/Vase 2 3.5k/5k 0.31s

Amphora/Vase 2 10k/5k 1.4s

RockerArm/Torus 1 15k/14.4k 6.88s

Teapot/Cup 2 7.5k/10k 0.95s

Polycube/Sculpture 3 3.5k/7K 0.49s

Greek/4-Torus 4 14.8k/10K 5.07s

Polycube/Buddha 6 18k/13.3k 10.23s

F. Comparison with Existing Work

Compared with other state-of-the-art techniques, our ap-

proach has several key improvements.

First, our surface mapping framework is based on rigorous

mathematical foundation and analysis, unlike most current

methods that only guarantee to reach local optima, our method

globally minimizes the stretching and converges to a unique

result.

Second, current techniques rely upon large amount of user

intervention for mapping surfaces with non-trivial topology.

For example, mapping procedures need base mesh design (

[12], [13]) or a large number of user-specified landmarks (

[17], [18]). In contrast, our framework does not depend on

user’s involvement, and is fully automatic.
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(a) (b) (c) (d)

Fig. 16. Surface Registration for Matching (Torus vs Rocker Arm model). (a) Mean curvature distributions of Rocker Arm (red represents the maximum
while blue represents the minimum); (2) Mean curvature distributions of Torus; (c) Mean curvature difference distributions, visualized on Torus; (d) Conformal
stretching factor, visualized on Torus.

Third, since the existing methods follow the general prin-

ciple to slice the surface open into subregions, the initial seg-

mentation directly determines the mapping result. In contrast,

our method, because of its global uniqueness, is not controlled

by the quality of initial mappings; therefore, it is much more

general than other existing techniques.

Fourth, existing work primarily focuses on low genus sur-

faces and few takes the homotopy types into account. Carner

et al. [1] also targeted on high genus surfaces, and they stud-

ied the mapping with different homotopy classes. However,

topology information is the primary information they used for

mapping computation and therefore their stretching energy is

not optimized. In our current work, the comparison between

initial and final mapping shows the great improvement from

the initial mapping generated by their method to our globally

optimized result. This can be easily visualized through our

optimization procedure in the accompanying video.

IX. CONCLUSION

This paper has documented our new method for computing a

globally optimal map between surfaces of non-trivial topology

and demonstrated many valuable applications. Based on the

mathematical advances in computing the uniformization metric

using intrinsic geometric structure, we can globally perform

heat diffusion to alleviate the stretching and the average angle

distortion of the map as much as possible. As we discussed in

Section VIII-F, our algorithm have many key advantages over

existing work.

Our mapping algorithm can also serve as a ubiquitous tool

for a wider range of applications such as shape registration,

morphing, matching, comparison, and spline surface construc-

tion over generalized domains. We would like to apply our

mapping framework in more challenging research topics such

as deformable model tracking, animation transfer, etc.

APPENDIX

CONVERGENCE, ONE-TO-ONE, AND UNIQUENESS

In this appendix, we will show our algorithm converges to

a globally unique one-to-one map with the minimal harmonic

energy under the uniformization metric. The pipeline is: (1)

we demonstrate the existence of the harmonic map between

given surfaces S1 and S2 with same topology; (2) we show

if the final map we get is harmonic, then it is one-to-one,

and globally unique; (3) we will show our algorithm does

converge to such a unique mapping with minimal harmonic

energy under uniformization metric.

Existence. Given two high genus surfaces S1 and S2 with

same non-trivial topology. The existence of the harmonic map

is guaranteed by the following theorem

Theorem 1: Suppose that S1 and S2 are compact surfaces

without boundary and that h : S1 → S2 is a diffeomorphism.

Then there exists a harmonic diffeomorphism f : S1 → S2

isotopic to h. Furthermore, f is of least energy among all

diffeomorphisms isotopic to h.

Detailed proof can be found in [35], page 176. Since our initial

map is constructed as a diffeomorphism between S1 and S2,

the existence of harmonic map is guaranteed.

One-to-one and uniqueness. We show if the final map is

harmonic, then it is a diffeomorphism (one-to-one and differ-

entiable) and has the global uniqueness. We prove in the third

step that we do reach a harmonic map. The following theorem

guarantees the harmonic map calculated in our algorithm is a

diffeomorphism.

Theorem 2: Let f : S1 → S2 be a harmonic map between

closed oriented surfaces of the same genus with degree equals

±1. And KS2
≤ 0, then f is a diffeomorphism.

Detailed proof can be found in [35], page 187, or [2], page 15.

In our algorithm, the initial map is constructed by matching

the fundamental polygons of S1 and S2. Therefore, each point

on S2 has a unique pre-image on S1, hence, the degree of

the initial map is 1. The Gaussian curvature of the target

surface is 0 (for genus-1 surfaces) or −1 (for high genus

surfaces), therefore if f is harmonic, then f is one-to-one and

differentiable.

The following theorem postulates the uniqueness of the

map.

Corollary 1: Let u1, u2 be harmonic maps M → N of

degree one between compact surfaces without boundaries, with

genus greater than one, where KN ≡ −1. If u1 and u2 are

homotopic to each other, then u1 = u2.
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The detailed proof can be found in [42], page 144 and [2],

page 16. In our algorithm, the homotopy class of the map is

determined by the way to match the fundamental polygons.

The map is harmonic, the curvature on the target surface is

−1, therefore, the harmonic map is unique.

For genus-one surfaces, their uniformization metric is flat,

which can be lifted to its universal covering space. The

universal cover can be embedded on the plane isometrically.

The fundamental polygons are parallelograms. A harmonic

map between two genus-one surfaces with their flat uni-

formization metrics induces a map between their universal

covering spaces, which is an affine transformation from the

plane to itself. The affine transformation maps the fundamental

polygon of the source surface to that of the target surface.

Therefore, harmonic maps in a homotopy class only differ by

a translation. Each one is the equally optimal result.

Convergence. We prove our algorithm converge to a har-

monic map. Harmonic energy of a surface map is non-negative,

namely, it has lower bound. Our relaxation process reduces

harmonic energy monotonically; therefore, it converges to a

critical point of the harmonic energy, which by definition

is a harmonic map. As the aforementioned theorems show,

there is no local minimum, and this critical point is globally

unique. Therefore, our method converges to the global unique

harmonic map, and it is one-to-one and differentiable.

For genus-one surfaces, this convergence proof also applies,

and all the minima are globally equal and globally optimal.

Our minimization process will converge to one of them.
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