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Globally Regular Solutions to the u5
Klein-Gordon Equation

MICHAEL STRUWE

1. - Introduction

Consider the non-linear wave equation

with initial data

In 1961 K. Jorgens proved that, for p  5, equation ( 1.1 ) admits a unique
regular solution u E C’ for any Cauchy data uo E C3, U1 E C~, see [1, Satz 2,
p. 298].

The case p = 5 was later investigated by Rauch, who obtained global
regularity for small initial energies

see [3, Theorem, p. 347].
Rauch’s approach, moreover, reveals that p = 5 arises as a limiting

exponent for a Sobolev embedding relevant for problem (1.1), see [3, estimate
(14), p. 346]. This and recent progress in elliptic equations involving limiting
non-linearities has been our motivation for studying problem (1.1-2).

The supercritical case p &#x3E; 5 seems to be open.
In this paper we show that Rauch’s smallness assumption actually is

unnecessary and that Jorgen’s result continues to hold - at least for radially
symmetric solutions - at the limiting exponent p = 5, which will be fixed from
now on throughout this paper.

Pervenuto alla Redazione il 10 Dicembre 1987.
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THEOREM 1.1. For any radially symmetric initial data uo E 03 (IFt 3), u1 E

02 (IFt 3), = u 1 ( x ) = u 1 ~ ~ x ~ ) , exists a unique, global, radially
symmetric solution u E C~(R~x[0, oo ~ ) , = u(lxl, t) to the Cauchy problem
( 1.1-2), with p = 5.

The proof involves a blow-up analysis of possible singularities of equation
( 1.1 ). Thereby we heavily exploit "conformal invariance" of ( 1.1 ), i.e. invariance
of ( 1.1 ) under scaling
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2. - Some fundamental estimates

In this section we recall Rauch’s result for equation (1.1) and prove two
basic integral estimates which result from testing (1.1) with suitable functions
p. Besides the standard choice = ut - which gives rise to the well-known
"energy inequality", see Lemma 2.1 -, we will also use u and its radial derivative
x ~ Vu as testing functions: the remaining components of the generator

of the family (1.5). This will give rise to the crucial "Pohozaev-type identity"
Lemma 2.2 (see [2] for a related result in an elliptic setting).

2.1 Notations

Denote z = (x, t) a generic point in space-time. The negative light-cone
through zo = is given by

Its mantle and space-like sections are denoted by

resp. by
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If zo = (0, 0) the point zo will be omitted from this notation.
Truncated cones will be denoted

denotes the Euclidean ball

Again, if xo - 0 we simply write BR(0) = BR.
Finally, for a Cl-function u and a space-like region S~(t) c (R 3 x {t}),

denotes the energy of u in with density

The letters c, C will denote generic positive constants, occasionally numbered
for clarity.

2.2 The energy inequality

Let u E 02 (IR 3 x ] - oo, 0 ~ ) be a solution to ( 1.1 ). Actually, by finiteness of
propagation speed, all estimates only require u to be C2 near suitable sections
of cones.

Multiply (1.1) by ut. This gives the identity

If we integrate this expression over a section C9 of the negative light-cone, we
obtain the following result:

Note that the outward normal to Ml is given by = 1 
2 I )

moreover, we recognize the energy density e ( u ) inside the left bracket of (2.1 ).
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Rauch [3, p. 345] interprets the boundary integrand as follows:

where

Thus we may state:

LEMMA 2.1. For any s  t  0 there holds the energy estimate

where v is given by (2.4).

2.3 A Pohozaev-type identity

The next result apparently is new. This and Lemma 3.3 are the crucial

ingredients in the proof of Theorem 1.1.

LEMMA 2.2. For u as above there holds

where v is given by (2.4).

PROOF. Multiply (1.1) by tut + x - Vu + u. By (2.1) the contribution from
the first term is
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Similarly, we compute

Finally,

Adding, we obtain that

Thus, when we integrate this expression over the cone we obtain

with B ~ denoting the following boundary integral

By Lemma 2.1,
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uniformly. Moreover, by Young’s and Holder’s inequalities
- ..

Hence we may pass to the limit e -&#x3E; 0 in (2.5) and the proof is complete.

qed

2.4 Small energy

Finally, we recall the integral representation

for the value u (o, 0) of a solution u of ( 1.1 ) in terms of the solution u of the
homogeneous wave equation

sharing the Cauchy data of u at a time to  0:

see [3, (10), p. 342]. 
°

We will only apply this formula for functions u which are of class C’ in
a neighborhood of Ct, for some t  0.

Following Rauch [3], we turn (2.6) into a linear inequality for sup 
Ct o

Suppose

is achieved at the origin. Then, if we let

(2.6) implies the inequality, for any s &#x3E; to,



501

By Holder’s inequality

Rauch now invokes Hardy’s inequality

to estimate the last integral in (2.10).
If integration extends only over a bounded domain .B2R , (2.11) is not

immediately applicable. However, if we truncate with a smooth localizing
function r e satisfying the conditions: 77 ~ 1 on BR, r = 0 off

B2R, 0  r  1, then with absolute constants C there holds

Using (2.12) and the energy inequality, Lemma 2.1, the number u (s) from

(2.10) may now be estimated
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The remaining terms in (2.9) are easily bounded using Holder’s inequality

From (2.9), (2.13) we immediately obtain Rauch’s regularity result for small
initial energies - while the more refined estimate (2.14) will be useful later on.

THEOREM 2.3. (Rauch [3]). Suppose u is a 02-solution of (1. 1) in a

neighborhood of Oto with initial data u = uo, ut = U1 on D(to). There exists
an absolute constant eo &#x3E; 0 with the property:

If E(u; D(to))  eo, then

where u denotes the solution to the Cauchy-problem (2.7-8) for the homogeneous
equation.

PROOF. By passing to a smaller cone C c if necessary, we may
assume that

Determine so &#x3E; 0 such that Co (eo + so 2. Applying (2.9), (2.13) with
s = to the Theorem follows.

, 

qed

Note that there is a converse result to Theorem 2.3:

PROPOSITION 2.4. Suppose u is a C2-solution of (1.1) in a neighborhood
of with initial data u = Uo E C3, Ut = U1 E C2 on D(to), and suppose
that I ~ oc as z - 0, z E Otû BI 0). Then for any t E [ to, 0[ [ there holds

where so is the constant of Theorem 2.3.

PROOF. Suppose E ( u; D ~ t ) ) S eo for some t E [to, 0 1. Note that, since by
assumption I u (z) I --~ oc as z - 0, there exists a sequence 8m ~ 0, 8m &#x3E; 0,
such that sup lul is attained in D(-8m). Hence (2.9), (2.13-14) are applicable

C-6m
to
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in suitable cones (zm) c with zm E ~ ( - bm ) , and we obtain

Since (2.15) holds for arbitrarily small 6m &#x3E; 0, there results a contradiction,
and the proof is complete.

qed

3. - Proof of Theorem 1.1

Let uo E C3(I~3), &#x3E; u1 E 02 (IR 3) with Uo (x) = &#x3E; )
be given radial functions. By [1; Satz 1, p. 297] the Cauchy problem (1.1-2)
admits a unique (and hence radially symmetric) 02-solution u(x,t) = u(/xl, t)
locally, i.e. in a neighborhood of R 3 X 10).

Suppose (by contradiction) that u is not globally regular. Then there
is a singularity z = (I, i) such that I z E

see [1, p. 301]. Replacing ~o by another singular point in S’ =

{(~, t) : 0  t  , +-}, if necessary, we may assume that u E C2
in S.

Radial symmetry implies

LEMMA 3.1. ~ = 0, in particular

PROOF. By Proposition 2.4 and since 1

for any z = (x,t-), Ixl == lxi, and any t  t .
Now, if Ixl &#x3E; 0, for any given KEN we can choose points x 1,......, xK

satisfying |=|x| , 1  k  K, and t  t such that with zk = (Xk, t) we have:

But then, letting T + t, Z = (0, T), by Lemma 2.1:

uniformly in K, and for large K we obtain a contradiction. 
’

Hence a singularity is first encountered on the line {x = 0}.
qed
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For convenience we shift coordinates such that z = 0 in our new coordinate

frame, and denote -t == to. Thus our solution u is transformed into a solution
(indiscriminately denoted by u) of (1.1), of class C’ in a neighborhood of

which becomes unbounded as z - 0, z E 
Denote by u the solution of the homogeneous wave equation (2.7) sharing

the Cauchy data of u at to . u is uniformly bounded in a closed neighborhood
of Ct0.

For Rm = 2~"~ , define the blown-up functions

Each um is of class C2 in a neighborhood of a deleted cone Ct~ )(0), t,,, =

to/Rm.
As in (2.4) we denote the trace of Um on by

Relabelling if necessary, we may assume that to  -1.
Note that for any m, any t ~ [trn, 0[, by Lemma 2.1:

On the other hand, since u,n becomes unbounded at 0, by Proposition 2.4:

for any 

By Lemma 2.1 the energy is non-increasing in t, hence tends
to a positive (by (3.2)) limit as t - 0. But then, by Lemma 2.1 again,

as m -; oo, uniformly in t  0.

LEMMA. 3.2. There exists t  0 such that, for some 8m E I- 1, t], there
holds

where o(1) - 0 as 00.
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PROOF. We may assume that

(Otherwise we can choose 8m = -1 to achieve our claim). Choose t e 2013 1,0[ 1
such that 

I i I-q

Suppose by contradiction that

uniformly in for all s e -1, t~ .
Then by (3.3) we obtain

which, for large m, is in conflict with our choice of t.

qed

Since is bounded away from 0, we may scale with sm to achieve

(3.4) with sm = - 1 for all m. Note that with this change of scale the ratio
remains uniformly bounded, i.e. there exists R &#x3E; 0 such that

Now apply Lemma 2.2:
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It follows that

as m --4 00.

LEMMA 3.3. There exists a sequence A c N such that

PROOF. Suppose by contradiction that

I.e. if we let

g is continuous and satisfies

Also denote

Then h is continuous, non-increasing, and satisfies h (t) - h ( -1 ) , for t  - 1,
and h (t) 0 (t - 0) .

Now the proof proceeds as follows: first we establish that h (t) decays
with a certain power of I t I h ( t )  c It IS , ( t - 0).

In a second step we use this decay estimate to prove that u is uniformly
bounded near 0 - which will yield the desired contradiction.

i) Suppose h(t) = g(s) for some s &#x3E; t &#x3E; -1 and that g(s) is attained at

5 = (x,t), where s &#x3E; =su Jul = sup lul. . Note thatc P Ct° 0 to
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i.e.

Similarly, for t 

In particular,
Denote

Remark that J consists of a union of left open intervals I and, for any pair
s  t belonging to such an interval I, there holds

In particular, for any there holds

On the other hand, if
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Now choose p = 5 , and denote :=  t. Since h is non-increasing
and bounded we obtain from (3.8):

Iteratively define , K. Suppose A(tk)  1 for all

I.e., if for some e &#x3E; 0:

it follows that

Note that, since h ( t ) -~ 0 ( ~ - 0), there exist T E) - 1, 0 ~ , E [ such that
(3.9) holds whenever tK E IT", T]. But then also (3.10) holds for all such t, tK,
provided A (t) , A (tk )  1, k = 1, ... , K - 1.
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Now choose any T = TO &#x3E; T and define a sequence as follows:

where 7k denotes the left end-point of the interval I c J containing Tk, if

A (Tk ) &#x3E; 1, and where

Note that

if Tk &#x3E; Tk+2 &#x3E; T. Hence K exists and is finite, for every T  0.

Combining (3.7) and (3.10) we see that

i.e.

ii) Denote

By part  1 and we may choose 1 &#x3E; "1 such that p := 5-y - 2  1, JJ = 0.’y 2
Define

v

Note that is uniformly bounded, continuous and satisfies f (t) 2013~Oas~2013~0.
By (2.6), for all z = (~,) ~ 
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First suppose J.1. &#x3E; 0. Then from (3.11) we obtain

uniformly for all z = ( x, t ) E which contradicts the definition of ~.
Thus p  0. But then by (3.11) u is uniformly bounded in 

contrary to hypothesis.

qed

To proceed with the proof of Theorem 1.1, let (Xm, 8m) E 
m E A, satisfy

Note that by Lemma 3.3

in particular, by (3.12)

Now by ( 0 for some

provided s  8m - c6 for some c6 &#x3E; 0.

Since c5 &#x3E; 0, this is impossible for large m, and it follows that

for s E 8m - C6]’ m &#x3E; mp.

By radial symmetry

for such for all with )z) = 
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as m - 00, rra E A, where zi = (xi, 8m).
PROOF. Since 18m &#x3E; 1, by uniform convexity of balls in there exists

e &#x3E; 0 such that

for all
(Note that

by (3.14). Hence c6 ) &#x3E; tm, for m &#x3E; mo).
Now by (3.5), there exists k (m) such that

Observe that by (3.14) again:

hence ~(m) 2013~ oo, (m ~ oo, 
But then by (3.6)

as mEA.

This proves the claim.

qed

We can now complete the proof of Theorem 1.1.
Given KEN, we can find c &#x3E; 0 such that, for any there are K

points xtn, 1  j  K such that Ixtnl ( = x~1 &#x3E; c -1 ~ for all
1  K. Denote zm = (xtn, 8m). .

Let am e (tm,8m] denote the number determined in Lemma 3.4 for the
family 
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By (3.15-16) and (3.1)

where o(1) - 0 as m 2013~ oo, m E A.

For K sufficiently large we obtain a contradiction, and the proof is

complete.

qed

4. - A Remark on the non-symmetric case

Estimate (3.6) suggests that, also in the non-symmetric case, singularities
tend to build up in a rotationally symmetric pattern. Using this observation,
it is possible to extend our results to arbitrary initial data u E C3, U1 C C2,
provided the modulus of continuity of the blow-up functions um, restricted to
C;;: (where u,n is uniformly bounded by 1), can be uniformly bounded.

Added in proof

Generalizations of (1.1-2) to higher dimensions were studied for intance
by Brenner and von Wahl [4] or Pecher [5], where results analogous to those
found by Jorgens in dimension 3 were obtained. See [4] for further references.
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