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Abstract

Good parameterizations are of central importance in many digital
geometry processing tasks. Typically the behavior of such pro-
cessing algorithms is related to the smoothness of the parameter-
ization and how much distortion it contains. Since a parameteriza-
tion maps a bounded region of the plane to the surface, a parame-
terization for a surface which is not homeomorphic to a disc must
be made up of multiple pieces. We present a novel parameteriza-
tion algorithm for arbitrary topology surface meshes which com-
putes a globally smooth parameterization with low distortion. We
optimize the patch layout subject to criteria such as shape quality
and metric distortion, which are used to steer a mesh simplifica-
tion approach for base complex construction. Global smoothness
is achieved through simultaneous relaxation over all patches, with
suitable transition functions between patches incorporated into the
relaxation procedure. We demonstrate the quality of our parame-
terizations through numerical evaluation of distortion measures and
the excellent rate distortion performance of semi-regular remeshes
produced with these parameterizations. The numerical algorithms
required to compute the parameterizations are robust and run on the
order of minutes even for large meshes.
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1 Introduction

Many algorithms which process digital geometry, such as surface
meshes, require that a parameterization of the mesh be established.
Examples include texture mapping [Lévy et al. 2002], morph-
ing [Lee et al. 1999], editing [Biermann et al. 2002], approxima-
tion [Lee et al. 2000], and compression [Khodakovsky et al. 2000],
among many others.

Due to the importance of parameterizations, many algorithms
for this task have been proposed over the years. Early work by
Eck and co-workers [1995] formulated the parameterization prob-
lem as the minimizer of an energy which measures the quality of
the parameterization. They also proposed a procedure for tiling an
arbitrary topology surface so as to produce a number of regions,
each homeomorphic to a disc. The topological relations between
these patches are encoded by a base complex, which governs the
patch layout and forms the parametric domain of the surface. The
MAPS algorithm [Lee et al. 1998] was the first to use mesh simpli-
fication [Hoppe 1996] to build the base complex. Given a base com-
plex of the same topology as the original surface, parameterizations
can be built in a number of different ways. For example, Wood and
co-workers [2000] used an inflating balloon analogy, while Guskov
et al. [2000] used a recursive piercing procedure. These approaches
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Figure 1: Parameterizations produced by (a) MAPS [1998],
(b) Normal Meshes [2000], (c) Hybrid Meshes [2002] and (d) our
new method, visualizing derivative magnitudes of the tangent field
(gray: small; red: large). Note the discontinuities visible at patch
boundaries, which are remedied by our global parameterization
method.

are global, in that they build a parameterization everywhere at once.
Most other work—starting with Eck et al. [1995]—iteratively im-
proves local parameterizations by cycling over sub-regions of the
mesh, making local improvements each time (e.g., [Guskov et al.
2002]).

One of the distinctions between different algorithms is the en-
ergy which they minimize. Sander et al. [2001] compared a va-
riety of distortion measures with an eye towards controlling tex-
ture blur (see also [Sander et al. 2002]). Some approaches define
discrete measures [Maillot et al. 1993] while others are based on
continuous energies with particular analytic properties [Pinkall and
Polthier 1993; Eck et al. 1995; Desbrun et al. 2002; Lévy et al.
2002]. Floater [1997; 2003] has focused on deriving local coordi-
nates which are always guaranteed to be positive, to ensure injec-
tivity of the solution. In all of these cases the ultimate goal is the
minimization of the unavoidable distortion when mapping a curved
surface to the plane.

Our interest lies in building globally smooth parameterizations
with low distortion for use in the remeshing of arbitrary topology
surfaces. The most important ingredients in this are the construc-
tion of the base complex and control of smoothness and distortion,
in particular at patch boundaries (see [Gu and Yau 2003] for an al-
ternative approach). A good patch layout, for example, can greatly
decrease the distortion in the parameterization. As an extreme case
consider the original mesh itself serving as the parameterization do-
main. In this case the parameterization would have no distortion at



Figure 2: Our algorithm takes an input mesh and generates a base complex for a globally smooth parameterization, illustrated with a texture
map. The base complex and subsequent parameterization relaxation reduce distortion, shown as anisotropic and area distortion, respectively.

all at the cost of a very large base complex. The other extreme
would parameterize the entire surface over a single patch [Gu et al.
2002; Sheffer and Hart 2002] at the cost of having to introduce
seams to map a higher genus surface to a disc. Spherical topol-
ogy does not require cutting, though distortion may be difficult to
control (see [Praun and Hoppe 2003; Gotsman et al. 2003] in these
proceedings).

A globally smooth parameterization with little distortion lies
somewhere between these extremes, balancing the trade-off be-
tween a small base complex and low distortion. We were motivated
to find such parameterizations by noticing that different remesh-
ers can produce markedly different rate distortion (r/d) compres-
sion performance for the same object. For example, the normal
remesher of Guskov et al. [2000] consistently produced the best
remeshes. Unfortunately it can only deal with closed surfaces. The
alternatives, parameterization algorithms which treat sections of the
surface one at a time, tend to suffer from (visible) smoothness arti-
facts at patch boundaries, which we seek to avoid (Figure 1).

To compare different parameterizations we score them accord-
ing to their r/d performance. Aside from measuring a quantity rel-
evant in compression applications, r/d performance also captures
a measure of smoothness in the discrete surface setting. It is well
known from wavelet theory [Strang and Nguyen 1996] that the de-
cay rate of wavelet coefficients characterizes the smoothness class
of a given function. Smooth functions have rapidly decaying coef-
ficients leading to better r/d performance. The geometric smooth-
ness of a surface depends, of course, on the input. However, for
a given smooth surface there are many possible parameterizations.
The coder “sees” the parameterization, not the original surface. In
this way its performance becomes a measure of the quality (smooth-
ness and distortion) of the parameterization (Figure 7).

Contributions We present a novel algorithm for the automatic
generation of parameterizations, which are smooth across patch
boundaries and whose distortion varies gradually over the entire
surface. To accomplish this goal we focus on the construction of
patch layouts and global parameterization computations:

• the base complex combinatorial structure and its layout are op-
timized through the use of weighting criteria which take into
account sources of local distortion during mesh simplification;

• the parameterization is relaxed globally and smoothness be-
tween patches is ensured by a novel set of transition functions.

At present we do not have a theory from which a guaranteed set of
simplification criteria can be derived to ensure optimal r/d perfor-
mance. Instead, we have run extensive experiments with different
criteria to develop a set of heuristics that work well in practice. We
show results of applying our algorithm to a number of example data
sets for the purpose of remeshing, and numerically evaluate distor-
tion measures as well as the r/d performance of these meshes in a
progressive geometry encoder. We generally achieve better remesh-
ing error tolerances and better r/d performance, at times markedly
so. All numerical computations can be performed on the order of
minutes and require only minimal guidance from the user.

2 Smoothness and Distortion

Since the notions of smoothness and distortion are central to our
algorithm we begin with their definition.

Smooth Parameterizations A smooth 2-manifold S is a topo-
logical 2-manifold for which a smooth atlas of overlapping coordi-
nate charts {Uα} is defined [Grimm and Hughes 1995]. Each chart
Uα is parameterized over the region Vα ⊂ R

2 by a parameteriza-
tion function φα : Vα 7→ Uα. Each φα is a bijection, and we denote
its inverse by ψα. A transition function ταβ : Vαβ 7→ R

2 is defined
on the intersection of Uα and Uβ , where Vαβ = φ−1

α (Uα ∩ Uβ).
The smoothness of the manifold is determined by the smoothness
of the transition functions.
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Figure 3: (a) A chart Uα is defined as a patch Pα and its three
neighboring patches. (b) A patch Pα and a chart Uα are the images
of triangles Tα and Vα, respectively. (c) The intersection of Vα and
Vβ defines the domain Vαβ where the transition function ταβ acts.

We partition S into triangular patches Pα and define the chart
Uα to be the union of Pα and its three edge neighbors (Figure 3a).
Each chart Uα is mapped to the set Vα composed of four equi-
lateral triangles, with the center triangle Tα corresponding to Pα

(Figure 3b). For any two neighboring patches Pα and Pβ , the in-



tersection Uα ∩ Uβ equals the union Pα ∪ Pβ (Figure 3c). There-
fore, the transition function ταβ maps Vα ∩ Vβ 7→ Vα ∩ Vβ , where
Vα (resp. Vβ) is parameterized by barycentric coordinates (u, v, w)
with respect to Tα (resp. Tβ). Note that some of these coordinates
are negative over Vα\Tα (resp. Vβ\Tβ). Later on we will drop the
charts Uα and refer only to their patches Pα. Consequently, transi-
tion functions between patches should be understood as transition
functions on their associated charts.

We will call a parameterization globally smooth if lines of con-
stant parameter value cross patch boundaries smoothly, i.e., the tan-
gent vectors along the iso-parameter lines of one chart transform
into tangent vectors along the same lines of the other chart, up
to some permutation of the coordinates. The smoothness condi-
tion forces the derivatives of the transition functions to be ±1, and
we force ταβ to be the identity function at the common bound-
ary between Tα and Tβ . Later on we require our transition func-
tions to be linear. This assumption is not restrictive, because we
will only apply them near the boundary between adjacent patches.
Under these conditions, the only non-trivial transition function is
ταβ = (−u, 1 − v), where we have chosen u = 0 for the bound-
ary. This solution has a simple geometric interpretation: it takes the
point (u, v)α with respect to Tα and expresses it as (u, v)β with
respect to Tβ .

Distortion Measures An embedding φ of a manifold in R
3 de-

fines a metric gij = 〈∂iφ, ∂jφ〉, i, j ∈ {u, v}, which expresses
the notions of angle, distance and area on the surface. This met-
ric can also be used to define a measurement of the local distortion
of these quantities. Let γmax and γmin be the largest and smallest
eigenvalues of the metric tensor: these values provide bounds on
the local distortion in φ. Sander et al. [2001] define an L2 dis-
tortion measure by taking the root-mean-square of the two values,
and define L∞ = γmax. Conversely, Sorkine et al. [2002] define
their geometric distortion as max{γmax, 1/γmin}. We chose a qual-
itatively equivalent, but more intuitive, pair of distortion measures:
Γa = γmax/γmin [Hormann and Greiner 2000], which measures
the amount of anisotropic distortion, and Γd = γmaxγmin =
det g, which measures area distortion. Γa is a natural measurement
for the shear in the parameter function φ since it is scale-invariant.
In our comparisons, we normalize Γd by the total area of the surface
(for example, in Figure 2).

3 Algorithms

The parameterization process typically consists of two steps. First,
the original input surface mesh is partitioned into disc-like regions
called patches. Second, for each patch, a map into the parameter
domain is computed. We use triangles as patch shapes, but quadri-
laterals are possible as well [Guskov et al. 2002]. For remeshing, a
third step follows: the parameter domain is refined and the surface
is sampled at associated parametric locations until some remeshing
error tolerance is met.

For the construction of the base complex, i.e., the number of
patches and their combinatorial structure, we follow MAPS [1998]:
a copy of the input mesh serves as an initial parametric domain
with the initial parameterization being the identity. The domain
is then successively simplified until the base complex is as simple
as possible without violating quality measures (Section 3.1). The
quality measures are responsible for controlling the distortion in
the parameterization (Section 3.1.1).

During simplification the initial parameterization is incremen-
tally updated as in MAPS, carefully ensuring a bijection throughout
the process. At the end of the simplification stage, each vertex in
the input mesh is associated to some base complex triangle with an
appropriate barycentric coordinate. This parameterization is not yet

smooth, but serves as a valid starting point for a relaxation process
which builds the final smooth parameterization (see Section 3.2).

Before moving on to the algorithm details we will fix some no-
tation that will be useful throughout.

Notation The input to our algorithm is a mesh M = (V, E ,F)
with vertices, edges, and faces. The mesh is a topological 2-
manifold, possibly with boundary. We assume that all faces are
triangles and that each vertex carries a point position in R

3: vi 7→
pi ∈ S, which samples the surface S. These point positions in-
duce an embedding E(M) ⊂ R

3 of the mesh as a piecewise linear
surface. In practice this embedding often has self-intersections and
“bad” geometry, e.g., tiny triangles with noisy positions and poor
aspect ratios.

During base domain construction it will be useful to think of
φα as being composed of two functions φα = φp

α ◦ φe
α. The

first linearly embeds a domain triangle into R
3, φe

α : Tα 7→ T e
α.

φα
pφα

e

φα

ψαTα

(u,v,w)

Pα

Tα
e

The second function completes the
mapping to the surface, φp

α =
φα ◦ (φe

α)−1. The linear embedding
φe

α(Tα) is defined by the three point
positions on the surface which are
associated with the vertices of Tα.
These can be thought of as the cor-
ners of the patch Pα.

3.1 Base Domain Generation

We generate the patch layout through a sequence of topological
simplifications of an initial domain complex, T 0 = M. Using
the standard greedy approach, T i+1 is produced from T i through
a least cost simplification step [Hoppe 1996; Garland and Heckbert
1997]. Following MAPS [1998], we use vertex removal followed
by the retriangulation of the hole left by the removed vertex and
its incident triangles N i ⊂ T i (Figure 4a). During retriangula-
tion, any vertices in M whose barycentric coordinates are associ-
ated with a triangle in N i receive new barycentric coordinates with
respect to the triangles Ri filling the hole (Figure 4b). The new
coordinates are computed by flattening N i in the plane using the
exponential map zθ , and assigning new coordinates with respect to
Ri [Lee et al. 1998]. This step maintains valid ψα mappings. An
invariant of this procedure is that each vertex present in the base
complex maps to some vertex in the input mesh, i.e., φe

α is always
well defined.

There are many possible retriangulations of a given hole and we
choose one that admits little distortion under zθ . If no good trian-
gulation of this type exists, the vertex is not considered for removal.

a b c d

Figure 4: At each simplification step, (a) a vertex and its incident
triangles N are removed, (b) the resulting hole is filled with new
triangles R, and each vertex mapped to N is reassigned to a triangle
in R. (c) The edge classification algorithm incrementally updates
the list of patches crossed by an edge (d) by examining the crossings
one patch at a time as the hole is retriangulated.

3.1.1 Priority Criteria

Standard mesh simplification methods are geared towards maintain-
ing closeness in R

3 between S and the piecewise linear embedding
φe(T ). In our setting closeness of embeddings is not the relevant
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Figure 5: An example of base complexes that optimize (a) triangle quality, (b) metric distortion, and (c) our cost function Ω, which com-
bines the two. The edges which cross patch boundaries are highlighted to emphasize the patches generated by the simplification algorithm.
(d) Plotting the cost function Ω reveals three distinct stages during simplification. We find our ideal stopping point before the third stage.

property to track. Instead we care about the φα having low distor-
tion. Some decrease in the amount of distortion can be achieved
with the subsequent relaxation algorithm. However, the bulk of the
distortion is controlled through the choice of T and the initial φα.
For example, consider the model of a horse (Figure 8): in principle,
a tetrahedron is sufficient to parameterize the surface, but great dis-
tortion would have to be tolerated in the legs. Guskov et al. [2002]
considered this the “skin growth” problem and dealt with it through
the introduction of additional base complex pieces during hierar-
chical refinement. Since our goal is to have a single global param-
eterization we cannot follow their path.

Ideally, each domain triangle Tα ∈ T should map to a patch Pα

of “equilateral” shape, with neighboring patches having smoothly
varying area. Shewchuk [2002] gives an in-depth discussion of dif-
ferent choices of triangle shapes for approximation. In particular he
finds that the approximation error between a function and its piece-
wise linear approximation is provably minimized if triangles are
allowed to be anisotropic and align with curvature directions. Stan-
dard mesh simplification criteria such as error quadrics [Garland
and Heckbert 1997] tend to favor such triangles and corresponding
alignments. However, once gradients of functions are taken into
account the situation changes. In this case, both small and large
angles in the triangulation are detrimental.

The use of additional criteria for surface approximation was con-
sidered by Kobbelt and co-workers [1998]. One of their criteria, the
roundness of a triangle, also works well for scoring surface param-
eterizations, an observation which matches Shewchuk’s theory in
the function approximation setting. During simplification the algo-
rithm of course cannot anticipate the exact properties of the final
φα, so any priority criteria are necessarily heuristic.

To produce good parameterizations φα = φp
α ◦ φe

α, we consider
the effect of φp

α and φe
α separately. The triangle quality is con-

trolled by φe
α while the initial metric distortion is captured by φp

α.
We rate these functions according to the distortion that they con-
tribute to φα, and combine these ratings in an oracle which guides
the simplification algorithm.

Triangle Quality There are two factors which contribute to the
distortion in φe

α. The shape of the triangle T e
α = φe

α(Tα) affects
the gradient inside Tα, and the area dispersion between T e

α and its
neighbors T e

β affects the gradient between the triangles. Both fac-

tors are minimized when the triangles are equilateral in R
3. We

measure the shape distortion σ(Tα) by the inverse of the roundness
of T e

α, i.e., the ratio of the longest edge length to the inner circle
radius, normalized so that σ(Tα) = 1 when T e

α is equilateral. The
area dispersion ρ(Tα) is calculated as the largest ratio of area be-
tween T e

α and its neighbors T e
β . Optimizing the patch layout based

on triangle quality alone tends to produce nearly equilateral trian-
gles, however the patches do not respect the features of the surface
well, as seen in Figure 5a.

Metric Distortion The parameterization φα generated during
simplification gives a conservative estimate of the distortion in the
final parameterization computed by our method. This distortion can
be measured, for example, on the edges e which are incident to a
vertex with coordinates in Tα. The metric distortion δ(Tα) accu-
mulates the ratio of edge lengths,

δ(Tα) =
∑

e∈Pα

max

(

‖φα(e)‖

‖φe
α(e)‖

,
‖φe

α(e)‖

‖φα(e)‖

)2

· ‖φα(e)‖

normalized by the sum of edge lengths ‖φα(e)‖. Patch layouts op-
timized for metric distortion tend to align patches with flat regions,
but also contain long, thin triangles (Figure 5b).

Oracle Given a candidate vertex v, we assign a cost to it by eval-
uating our heuristic functions for each triangle Tα in the retriangu-
lation R of the hole left by v. To balance the influence of these
functions, we shift them to zero, and introduce a set of coefficients
to weight them appropriately. We compute the cost Ω(v) as

Ω(v) =
∑

Tα∈R

A(Tα) · (γσ(Tα)2 + µρ(Tα)2 + δ(Tα)2)

where A(Tα) is the area of Pα on S. Since we have no precise
definition of the surface area of a patch, we estimate this quantity
by summing the areas of the Voronoi regions of the vertices in Pα,
which are computed in a pre-processing step. We find that the co-
efficient values γ = 2 and µ = 1 work well in practice. This
balance tends to produce patch layouts that align to the features of
the object, and tile the surface with patches that change shape grad-
ually (Figure 5c).

The vertex with the lowest cost Ω(vi) is selected to produce

T i+1. A plot of the costs Ω(vi) identifies three distinct stages in
the simplification (Figure 5d). The first stage quickly corrects ill-
conditioned triangles in the input mesh M, and the second stage
begins a slow linear ascent as the triangle quality dominates the
cost. The final stage is dominated by metric distortion, and we have
observed that stopping the simplification before this stage produces
the least distortion in our experiments.

3.1.2 Edge Classification

In preparation for the global parameterization solver, we augment
the information produced by the MAPS algorithm with edge clas-
sifications. At the end of the simplification stage, every vertex in
the input mesh has barycentric coordinates with respect to some do-
main triangle in the base complex T , but this information is not suf-
ficient to determine which domain triangles are crossed by a given
edge. The end points of an edge may map to the same base do-
main triangle, or they may map to different triangles. In the latter
case, the triangles may be neighbors or they may be further apart.



Edges cannot be classified

by their end points alone.

There may even be edges with both end
points contained in the same triangle, yet
the edge traverses a number of intermedi-
ate triangles. These situations are likely
to appear near patch corners. Knowledge
of the sequence of base domain triangles
traversed between two end points of an
edge will be important for the composi-

tions of transition functions.

To address this problem we classify all edges during the simpli-
fication process. For each edge, we keep the ordered list of domain
triangles which are traversed when going from one end point to
the other. This information is purely topological, no geometry is
involved. Most edges will have only one entry in their list: their be-
ginning and end points are mapped to the same domain triangle, and
the edge crosses no others. Other edges may have longer lists. For
each edge, the transition list defines a sequence of triangle cross-
ings, i.e., two adjacent triangles in the list define a crossing over the
boundary they share. In addition to the transition lists associated
with edges, each domain triangle maintains pointers to the edges
whose transition lists contain the given triangle. During simplifica-
tion, the transition lists are updated incrementally with the help of
these pointers.

Incremental Update of Transition Lists Recall that an ele-
mentary simplification step removes a vertex and its incident trian-
gles N , and retriangulates the hole with a set of new triangles R.
Any vertices with barycentric coordinates in N will receive new
assignments in R. Accordingly, all edges pointed to by the trian-
gles in N must have their transition lists updated. Note that among
these may be edges with both end points outside of N (Figure 4c).

We prepare to update the edge transition lists by removing from
them the triangles in N . Edges whose triangle crossings include a
boundary of the hole will be left with at most two partial list seg-
ments, since in practice edges with more than two boundary cross-
ings never occur. The rest of the edges now have empty transition
lists. Next, we advance the transition lists for all the edges that need
updating.

A given triangulation of the hole (a simple polygon) always has
the property that we can clip off an “ear”, i.e., the retriangulation
can be split into a single triangle with two edges on the boundary,
and a remainder. We incrementally reconstruct the transition lists
by processing such an “ear”, and then recurse on the remainder of
the triangulation.

Advancing Transition Lists Across a Triangle The se-
lected triangle Tα ∈ R has two boundaries, which are annotated
with the working set of edge transition lists that need to be incre-
mented. Tα is appended to each such list, and we check the working
set for completed transition lists. If the end point of a given list is
in Tα, the list is complete, otherwise the edge transitions out of
Tα and crosses either one of the other two boundaries (Figure 4d).
If it crosses the other boundary edge, it must match against a par-
tial list associated with that boundary, and we connect those lists.
Otherwise the list is advanced to the “open” boundary. In addition,
there may be new edges which begin in Tα. Their lists are added to
the working set and associated with the open boundary if their end
point does not also belong to Tα. At this stage, we have processed
all the relevant transition lists, and each edge crossing the boundary
of the (remaining) open hole has a partial list associated to it. The
algorithm now recurses over the next “ear”, until the hole is filled.
Note that at no point are actual geometric intersection computa-
tions required: all triangle crossings are purely topological. This
observation is important since the triangle boundaries do not even
possess an embedding.

3.2 Parameterization

Our goal is to compute a globally smooth parameterization of the
surface. Traditionally, parameter values are fixed on the patch
boundaries and computed inside each patch as a solution of a linear
system [Desbrun et al. 2002; Lévy et al. 2002]. This approach pro-
duces continuous parameterizations since neighboring patches use
the same parameter values on the boundary, but in general the result
is not smooth. Boundary relaxation can be employed to improve
the quality, for example, by smoothing the parameter function in
the direction orthogonal to the boundary [Guskov et al. 2002]. But
boundary relaxation cannot make both parameter functions smooth,
as illustrated in Figure 1c.

We take a different approach: we do not fix patch boundaries.
Instead, we solve for parameter functions on all patches simultane-
ously. The boundary values are fixed only at patch corners and on
open boundaries, if any, of the input mesh.

3.2.1 Global Parameterization System

Each vertex of the original mesh is assigned to be either a patch
corner, i.e., it maps to one of the base domain vertices, or it belongs
to exactly one patch. This is true even of vertices which map exactly
to a triangle boundary in the base domain. Therefore the complete
description of the parameterization at a non-corner vertex vi is a
triple ψ(vi) = (u, v, α), where α indexes a triangle in the base
domain, and correspondingly the patch Pα to which vi belongs. A
corner vertex is assigned parameter values in each of its incident
patches.

A wide class of parameterization schemes can be written in the
form:

(ui, vi) =
∑

j∈1-ring(i)

cij · (uj , vj) (1)

where (ui, vi) are parameter values at vertex vi and cij are scalar
coefficients which depend on the geometry of the original mesh.
The various parameterization schemes differ in the way they de-
fine these coefficients. Our approach can be applied to any of
these schemes. We chose the mean value parameterization [Floater
2003], because it always produces positive weights cij .

The parameterization equation (1) is a linear combination of pa-
rameter variables over the 1-ring neighborhood of a given vertex.
In general, these parameters may belong to different patches, and
in this situation taking linear combinations is meaningless. Instead,
we use the transition functions ταβ which express barycentric co-
ordinates in one patch with respect to a neighboring patch. Using
these transition functions, we obtain a global parameterization sys-
tem

(ui, vi, αi) =
∑

j∈1-ring(i)

cij · τij(uj , vj , αj). (2)

For any edge e(i, j), the transition function τij takes the parameter
values of the vertex vj in the patch Pαj

and expresses them with
respect to the patch Pαi

containing vertex vi. In the most typical
case, the edge (i, j) is inside a single patch, so τij is the identity.
The next most common case has e(i,j) crossing exactly one patch
boundary, so that τij = ταiαj

. Occassionally we encounter edges
which cross multiple patches, as discussed in Section 3.1.2. In this
case, the transition function is defined to be the composition of ele-
mentary transition functions, applied in the same order as the edge
crosses the patches. The edge classification information collected
during simplification is used to determine the appropriate transition
function for each edge.

The system (2) is linear since we defined our transition functions
to be linear. Our choice of transition functions also ensures another
important property: if ψ is a solution of (2), then the result of the
reassignment of any vertex v to another patch is again the same
solution.
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Figure 6: Transition functions are used to transform parameter val-
ues across patch boundaries.

We use a bi-conjugate gradient solver to compute a solution for
the global parameterization system (2). This solution may have pa-
rameter values which are not in the range of valid barycentric coor-
dinates. For every vertex with invalid parameter values, we check if
the coordinates are valid when transformed to a neighboring patch,
and if so, reassign the vertex to that patch.

Some of the vertices with invalid parameter values may not yet
be reassigned. Such vertices occur in the neighborhoods of patch
corners. In a subsequent stage of vertex relaxation, the patch cor-
ners are moved to new locations on the surface, forcing the global
parameterization to be recomputed. Since the reassignment of patch
corners is a non-linear operation, the theoretical analysis of the ex-
istence of a valid solution is a difficult problem. Experimentaly, we
have found that after a couple iterations of relaxation and update
of the global parameterization, all of the vertices are reassigned so
that their parameter values are in their valid range.

3.2.2 Vertex Relaxation

When we compute our global parameterization, the patch corners
are fixed while the parameter values of the remaining vertices are
calculated. However, the positions of the fixed vertices are some-
what arbitrary, and may not be optimally placed to reduce the dis-
tortion in the parameterization. Morever, for some configurations
the solution can be so distorted that the parameter values would be
out of their valid range. To improve the parameterization, we repo-
sition the patch corners using a vertex relaxation method [Guskov
et al. 2000; Guskov et al. 2002].

The relaxation algorithm iterates over all the patch corners and
repositions each one by assigning it to a new vertex in the original
mesh. To relax a given patch corner, we begin by selecting a region
of vertices on the original mesh, typically a few rings around the
corner. We map the selected vertices onto a disc using a confor-
mal map zθ , where θ = 6/k and k is the number of patches that
share the corner. Then we fix the positions of the outermost ver-
tices and compute a local parameterization inside the disc. Using
this parameterization, we locate the vertex closest to the origin, and
assign it to be the new patch corner. Finally, the parameter values
of the selected vertices are updated by applying the inverse confor-
mal map to the local parameter values that we just computed. The
patch assignments for these vertices are determined by splitting the
disc into k sectors, corresponding to the neighborhood of the patch
corner.

3.3 Algorithm Summary

We have described an algorithm for computing a globally smooth
parameterization of an input mesh, which proceeds through the fol-
lowing stages:

1. The base complex is generated through simplification of the
original mesh. During this process, every vertex that is re-
moved from the base complex is assigned an initial parameter
value with respect to a particular patch.

2. A bi-conjugate gradient solver is used to compute parameter
values for all the vertices of the original mesh.

# Vertices # Faces # Bnd. # Base Er

Venus 50002 100000 0 15 3.55
David 583528 1174602 1 90 22.50
rabbit 67039 134074 0 70 3.68
bunny 34835 69473 4 150 4.22
horse 48485 96966 0 140 5.16
feline 49864 99732 0 280 3.54

Table 1: Statistics for the example meshes: number of vertices,
faces, and boundary components in the original mesh; the number
of vertices in the base complex; and the remeshing error (relative
ℓ2 error w.r.t. the bounding box diagonal, in units 10−5).

3. Vertex relaxation is performed on a small neighborhood of
vertices around each patch corner.

4. Steps 2 and 3 are performed alternately until no more relax-
ation is required.

4 Results

Our original motivation behind the research reported here started
with the observation that remeshes of the same input model pro-
duced by different parameterization algorithms can yield widely
varying rate distortion performance in a progressive geometry
coder.

We implemented the algorithms described in Section 3 and ap-
plied them to a number of common models to allow comparison
with previous results (where available). Figure 8 shows the models
with patch layouts and resulting remeshes. For purposes of illus-
tration we do not show the finest resolution remesh. The remeshes
were produced by successive quadrisection of domain triangles fol-
lowed by mapping through the parameterization to the surface and
sampling it. Table 1 lists the remeshing errors (computed with
Metro [Cignoni et al. 1998]) as mean-square magnitudes relative
to the bounding box diagonal. Note that the high remeshing error
for the David model is due to geometrically large “stalactite” clus-
ters of noise in the interior of the model. Incidentally this model is
a challenging stress test of the robustness of any parameterization
algorithm.

One way to compare different parameterizations for a single
model is demonstrated in Figure 1. The color coding visualizes the
magnitude of discrete differences of the first derivatives of the pa-
rameterization over the surface. The original MAPS algorithm did
not explicitly enforce smoothness (Figure 1a). It applied a modified
version of Loop [1987] subdivision to the initial parameterization
instead. The mesh in Figure 1c was produced by a solver which
explicitly relaxes the parameterization on the interior of edge ad-
jacent patches, holding the boundary of the pair of patches fixed.
Here we can clearly see the “breaks” in smoothness across patch
boundaries. Figure 1b was produced by the normal remesher of
Guskov et al. [2000]. Interestingly it never explicitly computes a
parameterization. Finally, Figure 1d shows the result achieved with
our algorithm.

Another approach for comparing the quality of different param-
eterizations is to measure their rate distortion performance with
the publicly available progressive geometry coder (PGC) of Kho-
dakovsky and co-workers [2000]. Specifically, we compare favor-
ably with their rate distortion results and with the Normal Mesh
results from Khodakovsky and Guskov [2003]. Since we are inter-
ested in comparing smoothness of the parameterization and not the
remeshing error, we do not present results at high bit rates which
are dominated by the remeshing error.

The PGC paper mainly featured semi-regular meshes produced
with the MAPS algorithm. We see that compression of our
remeshes gives significant improvement (about 3 − 5 dB on av-
erage). For Normal Mesh compression we have two sets of results.



One, based on the modified Butterfly [Zorin et al. 1996] wavelet
transform, takes advantage of the normality of the mesh. It pro-
duces the coefficients with no parametric (tangential) components.
Another set of results (Loop) does not recognize normality and
leads to inferior performance. However, it is more suitable for mea-
suring the smoothness of the parameterization because the Butterfly
wavelet transform does not contain any parameterization informa-
tion. For the three models for which we found normal compression
data, our remeshes lead to better compression than the “Normal
Loop”. It is not surprising, that we cannot match the “Normal But-
terfly” curves since we still need to deal with all three components
of the coefficients.

The timing results were measured on an Athlon 1800++. The
total time to remesh the David head with 586K vertices is 32 min.
Most of this time was taken by two passes of the global solver al-
gorithm with the tolerance for the residual vector set to 5 · 10−5 in
the ℓ∞ norm. In comparison, the same sequence of steps applied to
the simplifed David head of 90K vertices took only 86 seconds.

Throughout our experiments, we relied on the default simplifica-
tion parameters from Section 3.1.1. Some trial-and-error is needed
to select the base domain size, with the help of a simplification cost
plot like Figure 5d. Intervention during the parameterization step is
minimal, as the user only decides how many iterations of relaxation
to perform to lower the distortion to a satisfactory level.

Since we are interested in compressing highly detailed models,
our input data consists of densely sampled meshes (Figure 2). For
this reason, our decision to restrict patch corners to vertices of the
original mesh does not have any noticeable effect on the quality
of the parameterizations we produce. For sparsely sampled input

Our method
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Figure 7: Rate distortion curves provide a measurement of the
quality of a surface parameterization. Shown here are our results
compared to parameterizations generated by other remeshing tech-
niques (PSNR vs. compressed file size in 103 bytes).

data, we locally refine the input mesh to introduce more degrees of
freedom for our relaxation algorithm.

5 Summary and Future Work

In this paper we introduced a novel method to compute globally
smooth parameterizations for arbitrary topology surfaces. Distor-
tion in the parameterization is controlled both through judicious
choice of the base domain and relaxation of the intitial parame-
terization. The solver uses explicit transition functions between
patches to ensure global smoothness. The base domain creation
is controlled by triangle quality and metric distortion. These cost
heuristics have proven effective in helping to avoid high distortion
in the parameterization, and the formation of badly shaped patches.
In comparing the rate distortion properties of these meshes against
the best previous examples, we found our approach to have compa-
rable and in some cases superior performance.

An interesting avenue for future work is the exploration of global
smoothness questions from an analytic point of view. For example,
we know from subdivision surface techniques that globally smooth
parameterizations are possible even in the presence of irregular ver-
tices. Consider lines of constant parameter values, which define a
tangent field on the surface. Our choice of transition functions en-
sures that lines crossing patch boundaries have continuously vary-
ing tangent vectors. Such a tangent field is defined everywhere
except at patch corners. If the valence of a corner is six our re-
laxation procedure produces a smooth field at such points. At ir-
regular patch corners the pattern is visually very close to what is

Figure 8: Examples of parameterizations created by our algorithm.
A base complex (left) is generated to reduce the distortion in the
globally smooth parameterization of the surface (right).



da b c

Figure 9: The parameterization produced by Loop subdivision (a, c)
is remarkably similar to our own (b, d). Shown here are discs with
5 and 9 sectors, respectively.

seen under smooth subdivision. Figure 9 compares parameteriza-
tions of k-sector disk meshes (k = 5 and k = 9) computed by our
method with the parameterization produced through Loop subdivi-
sion. The close similarity gives us hope that our parameterization
can be proven smooth even at irregular vertices.

It would also be interesting to compare our approach to that of
Gu and Yau [2003] who produce globally smooth parameterizations
with the least number of irregular vertices. To alleviate extensive
distortion they add additional punctures to the surface at extrema
of the conformal factor. We hypothesize that placement of these
punctures plays a role similar to placement of irregular vertices in
our approach. In general, finding methods that allow more control
over the number and placement of high and low valence vertices
would be very useful in the control of distortion.

Finally, more work is needed to construct efficient numerical
solvers for very large unstructured meshes.
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